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Abstract. We characterize the magnitude of seasonally and spatially varying biases in the National Aeronautics and Space 45 

Administration (NASA) Orbiting Carbon Observatory-2 (OCO-2) Version 8 (v8) and the Atmospheric CO2 Observations from 

Space (ACOS) Greenhouse Gas Observing SATellite (GOSAT) version 7.3 (v7.3) satellite CO2 retrievals by comparisons to 

measurements collected by the Total Carbon Column Observing Network (TCCON), Atmospheric Tomography (ATom) 

experiment, and National Oceanic and Atmospheric Administration (NOAA) Earth System Research Laboratory (ESRL) and 

U. S. Department of Energy (DOE) aircraft, and surface stations. Although the ACOS-GOSAT estimates of the column 50 

averaged carbon dioxide (CO2) dry air mole fraction (XCO2) have larger random errors than the OCO-2 XCO2 estimates, and 

the space-based estimates over land have larger random errors than those over ocean, the systematic errors are similar across 

both satellites and surface types, 0.6 ± 0.1 ppm. We find similar estimates of systematic error whether dynamic versus 

geometric coincidences or ESRL/DOE aircraft versus TCCON are used for validation (over land), once validation and co-

location errors are accounted for.  We also find that areas with sparse throughput of good quality data (due to quality flags and 55 

preprocessor selection) over land have ~double the error of regions of high-throughput of good quality data. We characterize 

both raw and bias-corrected results, finding that bias correction improves systematic errors by a factor of 2 for land 

observations and improves errors by ~0.2 ppm for ocean.  We validate the lowermost tropospheric (LMT) product for OCO-2 

and ACOS-GOSAT by comparison to aircraft and surface sites, finding systematic errors of ~1.1 ppm, while having 2-3 times 

the variability of XCO2.  We characterize the time and distance scales of correlations for OCO-2 XCO2 errors, and find error 60 

correlations on scales of 0.3 degrees, 5-10 degrees, and 60 days.  We find comparable scale lengths for the bias correction 

term. Assimilation of the OCO-2 bias correction term is used to estimate flux errors resulting from OCO-2 seasonal biases, 

finding annual flux errors on the order of 0.3 and 0.4 PgC/yr for Transcom-3 ocean and land regions, respectively. 
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1 Introduction 

The NASA OCO-2 instrument, launched in 2014, collects near infrared observations of reflected sunlight that are analyzed to 65 

yield estimates of the column-averaged CO2 dry air mole fraction (XCO2) (Crisp et al., 2015; Eldering et al., 2017; Crisp et 

al., 2017).  OCO-2 is in sun-synchronous orbit with overpass about 1:36 pm local time.  Soundings are collected continuously 

at 0.333 second intervals across a narrow swath (8 observations wide) while over the sunlit part of the globe. Adjacent ground 

tracks are separated by ~25 degrees of longitude (~2700+ km at the equator) on any given day, and repeated at 16-day intervals.  

After each 16-day period, there are still gaps of about 1.6 degrees in longitude (e.g. see maps in Fig. 3).  OCO-2 has 3 science 70 

observation modes:  land nadir, land glint, and ocean glint.  Nadir observations look straight down from the satellite and glint 

observations look slightly offset from the solar reflected glint spot (resulting in seasonal shifts in longitude for glint 

observations).  OCO-2 additionally takes dense observations targeting TCCON stations or other sites.  This targeted data has 

previously been validated for OCO-2 v7 (Wunch et al., 2017).  This work focuses on validation of OCO-2 v8 with standard 

mode observations.  We validate both XCO2 and the lowermost tropospheric column (LMT) introduced in Kulawik et al. 75 

(2016). 

OCO-2 continues the CO2 near infrared column record from GOSAT (launched in 2009), and from SCIAMACHY (launched 

in 2002).  OCO-2, however, has better precision, a smaller footprint, and collects about a hundred times more observations 

than GOSAT.  Use of CO2 data for flux estimates is challenging because CO2 is a long-lived atmospheric constituent, and 

therefore variations in CO2 are a small percent of the total amount of CO2 (with typical seasonal and year-to-year variations 80 

between 0.1% and 3% of the CO2 volume mixing ratio (VMR)).  Similarly, because CO2 is a long-lived atmospheric 

constituent, models are needed to trace the observed CO2 anomalies back to surface sources or sinks.  Models assimilate 

observations on the model grid, which typically has a resolution of 50 to 2500 km.  Therefore, it is important to characterize 

how errors decrease with averaging, and to characterize both random and systematic errors, so that the data are assimilated 

correctly.  We also characterize two pre-averaged XCO2 products. 85 

For validation, this paper compares the satellite XCO2 estimates to: 

 XCO2 derived from the Atmospheric Tomography (ATom) experiment (Wofsy et al., 2018), which provides 
validation snapshots at particular times over large latitude ranges; 

 Columns from the Total Carbon Column Observing Network (TCCON) (Wunch et al., 2011, 2015) which provides 
a time series of validation at specific locations;   90 

 XCO2 derived from aircraft observations by NOAA ESRL (Sweeney et al., 2015, 2018) and DOE (Biraud et al., 
2013); and 

 CO2 from surface observations (Dlugokencky et al., 2018) 

This paper attempts to characterize the following: 

 OCO-2 and ACOS-GOSAT random error (for all observing modes) for XCO2 and LMT; 95 
 OCO-2 and ACOS-GOSAT systematic error (for all observing modes) for XCO2 and LMT; 
 Errors of pre-averaged OCO-2 products; 
 Effects of bias correction; 
 The size and correlation lengths of spatially and seasonally varying biases for OCO-2; and 
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 Estimate of the impact of OCO-2 “regional” biases onto fluxes 100 

In this paper, "systematic error" refers to the magnitude of seasonally and spatially varying biases, representing differences 

from validation data that do not reduce with averaging.  In this work, two components make up the "systematic error" 1) 

"station bias variability", the standard deviation of the overall bias at each validation location, and 2) "correlated error", the 

standard deviation of n averaged satellite observations versus validation data, in the limit of large n.  The correlated error 

can result from aerosols or albedo, seasonally-dependent biases, or other conditions resulting in regional scale transient 105 

biases. 

2 Datasets 

2.1 Validation datasets 

2.1.1 ATom dataset 

The ATom dataset is from an observation package containing 10-second averages, obspack_co2_1_ATom_v2.0_2017-07-10.  110 

This contains observations from the first and second ATom deployments.  Like the HIAPER Pole-to-Pole Observations 

(HIPPO) observations used for XCO2 validation in Frankenberg et al. (2016), the ATom flights collected in situ CO2 profiles 

at altitudes extending from the surface up to altitudes between ~7 and ~13 km, with most flights going to 10 km.  Figure 1 

shows the ATom observation locations.  The profiles are extrapolated upwards to the top of the atmosphere using model data, 

as described later. 115 

2.1.2 ESRL and DOE aircraft datasets 

Aircraft and ocean measurements taken by NOAA’s ESRL and DOE (Biraud et al., 2013) are obtained from an observation 

package product (Sweeney et al., 2015, 2018).  Because aircraft measurements are collected one or two times per month, and 

a tight geometric (+/-3 degrees latitude, +/- 5 degrees longitude, ±1 hour) coincidence criteria was adopted here, the validation 

measurements are very sparse.  In Kulawik et al. (2016), the geometric coincidence requirement was taken to be ±3 degrees 120 

latitude, ±5 degrees longitude, and ±1 week time, resulting in larger co-location error for geometric coincidences.  Similarly 

as for ATom, the profile must be extended above the aircraft’s maximum altitude using model fields, and the profile is extended 

to the surface using the lowest observation (between 0.2 and 0.5 km above the surface). 

The aircraft stations used for land validation are:  

North Slope, Alaska (NSA) 

Poker Flat, Alaska (PFA) 

East Trout Lake, Canada (ETL) 

Dahlen, North Dakota (DND) 

The aircraft stations used for ocean validation are: 

Estevan Point, Canada (ESP) 

Offshore Portsmouth, New Hampshire (NHA) 

Trinidad Head, California (THD) 

CMA, Offshore Charleston, South Carolina (SCA) 
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Park Falls, Wisconsin (LEF) 

Offshore Portsmouth, New Hampshire (NHA) 

Trinidad Head, California (THD) 

Briggsdale, Colorado (CAR) 

Homer, Illinois (HIL) 

Offshore Cape May, New Jersey (CMA) 

Southern Great Plains, Oklahoma (SGP) 

Offshore Charleston, South Carolina (SCA), and 

Offshore Corpus Christi, Texas (TGC) 

Offshore Corpus Christi, Texas (TGC), and Rarotonga, 

Cook Islands (RTA) 

 

(Note that RTA is the only remote ocean site) 

 

 

The version of ESRL aircraft data (Sweeney et al. 2018) analyzed for this paper has since been updated to exclude ~5% of 125 

CO2 measurements due to a negative bias related to ambient H2O levels greater than ~1.7 % v/v. We investigated the potential 

impact of the biased data using a candidate correction factor applied to data from the RTA site, where the largest fraction of 

data were affected, and found maximum potential errors of 0.1 ppm in XCO2 and 0.4 ppm in LMT. This error is captured in 

Table 1 and subtracted from the second-to-last column in Tables 2-5 to estimate the satellite error.  Since the LMT overall bias 

is tied to the aircraft (similarly to how XCO2 is tied to TCCON), this may result in an overall bias in LMT. 130 

2.1.3 The TCCON dataset 

The GGG2014 TCCON dataset is used in this paper (Wunch et al., 2015).  The locations of the TCCON stations used for this 

work are shown in Figure 1b.  The TCCON data are averaged over 90 minutes to reduce error.  It would be more ideal to 

average TCCON data ± 60 or 90 minutes within each satellite observation, rather than pre-averaging the TCCON data, but due 

to processing time, the pre-averaging approach was used.  As previously discussed, OCO-2 has different observing modes, 135 

and different TCCON sites can be used for the validation of one or more mode types.  The TCCON XCO2 estimates are also 

derived from remote sensing observation, though with extensive aircraft validation to tie them to WMO standards (Wunch et 

al., 2011). They typically have a systematic error of about 0.4 ppm for averaged values (Wunch et al., 2017), which is captured 

in Table 1 as "TCCON error".  Because the TCCON XCO2 estimates are derived from up-looking measurements of direct 

sunlight, they have a somewhat different vertical sensitivity to CO2 than OCO-2 or GOSAT XCO2.  The TCCON averaging 140 

kernel varies with solar zenith angle and altitude, and 18 column averaging kernels are provided by the TCCON team at 

increments of 5 degrees from 0-85 degrees. The TCCON averaging kernel is applied: 

𝐱୰ୣ୲  =  𝐱୮୰୧୭୰  +  𝐀(𝐱୲୰୳ୣ − 𝐱୮୰୧୭୰)       (1) 

where 𝐱୲୰୳ୣ is the "true state", 𝐱୮୰୧୭୰ is the prior vector, and 𝐱୰ୣ୲ is the simulated retrieved value.  For our case, 𝐱୲୰୳ୣ is the 

retrieved TCCON profile, which is the TCCON prior scaled to the retrieved value, and 𝐱୰ୣ୲ is the TCCON retrieval with OCO-145 

2 averaging kernel applied.  Note that TCCON and ACOS-GOSAT and OCO-2 all use the same prior vector, which assumes 
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a consistent yearly increase that has been lagging behind from the actual XCO2 increase over the past several years and will 

be updated in the next TCCON version. 

Two stations have special considerations regarding altitude:  The Izaña station is on an island (mean surface pressure 773 hPa), 

surrounded by ocean (mean surface pressure 1016 hPa); Garmisch is in a local valley (mean surface pressure 840 hPa) 150 

surrounded by higher elevation land (though the mean pressure of OCO-2 co-located within 3 degrees latitude and 5 degrees 

longitude is 987 hPa).  For both of these cases, the XCO2 was calculated using the pressure grid of the original observation.  

The station-dependent results (in Tables B.1 and B.2) show that these two stations without any additional manipulations to 

match the pressure grids, have results similar to other TCCON stations and so we did not try to match the pressure grids.  A 

more comprehensive discussion of the effects of surface pressure on validation is in Kulawik et al. (2016).  It would also make 155 

sense to use a more relaxed (±2 hours) co-location for geometric coincidence at remote ocean sites (e.g. Reunion, Ascension), 

but we found sufficient co-locations with ±1 hour and so used consistent criteria at all sites. 

TCCON stations used in this analysis for land coincidences are:  Eureka (Strong et al., 2017), Sodankyla (Kivi et al., 2017; 

Kivi and Heikkinen, 2016), East Trout Lake (OCO-2 only, Wunch et al., 2017), Bialystok (Deutscher et al., 2017), Karlsruhe 

(Hase et al., 2017), Orleans (Warneke et al., 2017), Garmisch (Sussmann and Rettinger, 2014), Park Falls (Wennberg et al., 160 

2017), Lamont (Wennberg et al., 2017), Anmyeondo (Goo et al., 2017), Dryden (Iraci et al., 2017), Hefei (Liu et al., 2018), 

Burgos (OCO-2 only, Velazco et al., 2017), Manaus (only land glint OCO-2, Dubey et al., 2017), Darwin (Griffith et al., 2017), 

Wollongong (Griffith et al., 2017), Lauder125 (Sherlock et al., 2017).   

TCCON ocean stations used in this analysis are:  Park Falls (OCO-2 glint, over the Great Lakes, Wennberg et al., 2017), 

Rikubetsu (OCO-2, Morino et al., 2017), Tsukuba125 (Morino et al., 2017), Saga (Shiomi et al., 2017), Izana (Blumenstock 165 

et al., 2017), Ascension (Feist et al., 2017), Darwin (Griffith et al., 2017), Reunion (De Mazière et al., 2017), Wollongong 

(Griffith et al., 2017), Lauder125 (Sherlock et al., 2017).   

Stations not used in calculating error fits, due to local effects are:  JPL, Caltech, FourCorners, Indianapolis, Paris, and Bremen.  

Tsukuba has some influence from nearby Tokyo but was included in the analysis.  Other stations not included were due to 

insufficient co-locations (<100) (Ny Alesund, Zugspitze). 170 

2.1.4 Surface flask measurements 

Remote surface sites are from the ESRL Observation Package Data Product surface flask measurements (Conway et al., 1994). 

These were downloaded on 9/2018 from 

https://www.esrl.noaa.gov/gmd/ccgg/obspack/data.php?id=obspack_co2_1_GLOBALVIEWplus_v4.0_2018-08-02 

(Dlugokencky et al., 2018) and include local times between 11:30 am and 3:30 pm.   The “remote oceanic” locations used in 175 

this paper are selected to have at least 97% ocean along a circle with a 5 degree radius around the location, which are 

summarized here and shown in Fig. 1: 

 ena at 39°N, 28°W 
 mid at 28°N, 177°W 
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 mnm at 24°N, 154°E 180 
 mlo at 20°N, 155°W 
 asc at 8°S, 14°W 
 smo at 14°S, 171°W 
 ams at 38°S, 78° 

 185 

2.2 OCO-2 version 8 (9/2014 through 2/2018) 

We validate the NASA OCO-2 v8 dataset using the bias-corrected Lite files, available from 

https://disc.gsfc.nasa.gov/datasets/OCO2_L2_Lite_FP_V8r/summary?keywords=OCO-2 (O’Dell et al., 2018).  The 

documentation for this dataset is available from https://co2.jpl.nasa.gov/#mission=OCO-2.  The algorithmic improvements in 

v8 include (1) using lamp, solar, and lunar data to produce a radiometric correction that accounts for the effects of icing, solar 190 

diffuser and lamp degradation, (2) spectroscopy updates, and (3) addition of a retrieved stratospheric aerosol, which improved 

biases seen near the southern and northern edges of OCO-2 data seasonally (described in Wunch et al., 2017 and O’Dell et al., 

2018). The lower tropospheric (LMT) product for OCO-2 was calculated similarly to Kulawik et al. (2017) with bias correction 

described in Appendix A. 

2.2.1 OCO-2 Averaged products 195 

Averaging is useful for combining similar information over scales smaller than model resolution, to manage errors, and reduce 

dataset size.  Averaging allows combining geographically similar observations and assigning an error to these assuming 

correlated and random error values.  Assimilation methods generally assume errors from different observations are not 

correlated, and therefore assimilation of 1000 separate observations, each with error of 1 ppm, into a single grid box would 

result in errors of < 0.1 ppm, which is much smaller than the actual errors after averaging.  Different averaging schemes are 200 

possible, e.g.  weighting by predicted errors, checking agreement with neighboring observations (buddy check), and weighting 

by local variability.  Three of these schemes are described below and validated against TCCON and aircraft data.  

Averaged products can have a significantly reduced data volume.  The number of good quality land glint observations co-

located with Lamont TCCON (geometric co-location, ± 3 degrees latitude, ±5 degrees longitude, ± 1 hour) is: 

 175,000 for the OCO-2 lite product 205 
 1,300 for OCO-2 Baker-averaged product (described in Section 2.2.2) 
 1,200 for OCO-2 Liu-averaged product (described in Section 2.2.3) 
 8,700 for OCO-2 20-average product (described in Section 2.2.4) 

For comparison, there are 7,000 quality observations for GOSAT nadir land (over 7 years). 
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2.2.2 v8 Baker "10-second" average 210 

A 10-second average product (~0.6 degree) was created by David Baker (described in Crowell et al., 2019) to reduce the 

computational burden of assimilation and to assign errors to averaged quantities.  For most assimilation systems, 0.6 degree is 

below the assimilation system resolution.  This product averages 10 seconds of OCO-2 observations, spanning 0.6 degrees of 

latitude.  If all soundings are cloud free and have converged, their quality flags are good, and a 10-second collection includes 

240 observations.  Because soundings that are cloudy or have bad quality flags are not included, the mean number of 215 

observations included in this averaged product is 74, and the number of observations per bin ranges from 1 to 240.  This dataset 

emphasizes evenly weighting data at one-second intervals (Crowell et al., 2019), so averaging is first done for each one second 

of data (spanning ~0.06 degrees), weighting the average by the predicted total error from the v8 lite product.  The error for the 

one-second average is the larger of the standard deviation of the data that is averaged or the mean predicted total error from 

the v8 lite product.  Then, the one-second bins are averaged.   220 

In the observations used in Table 5, there is an average of 85 observations per bin, 6% of the bins have 1 observation 

(representing 0.04% of the original data), 3.5% of the bins have 2 observations, 31% of bins have 19 or less observations per 

bin, 55% of bins have 74 or less, and 13% have 200 or more observations per bin. Eliminating bins with fewer than 20 

soundings removes 2% of observations and 31% of the bins, so the averaged product has many bins that represent only a few 

measurements.  We evaluate the Baker-10 second average product for all bins together, and for a subset of this product with 225 

bins containing at least 20 observations.  The predicted error for this product decreases with the number of observations per 

bin, with an average error of 0.8 ppm when n=1, and an average error of 0.5 for n = 240. 

2.2.3 v8 Liu "Buddy" average 

The v8 Liu average product was generated in the same manner as the v7 Liu average product used in Liu et al., (2017). Only 

observations with “good quality” as indicated with the quality control flag were used. We use a two-step strategy to 230 

homogenize the observation spatial distribution and remove the outliers. We first perform a buddy-check (Liu et al., 2012) to 

remove the outliers within 100 km along the same orbit track. The observation, 𝑦𝑖, is removed if 

yi -
1

n
yii

iiÎA

å > 2s o  

  

where A represents 100 km circular domain, n is the total number of observations within the domain, and ii is within the 235 

domain. The value, 𝜎𝑜, is the standard deviation of all the observations within the domain. We then calculate a super 

observation (or “superobs”) for every 1° by 1° box by averaging the observations within the 1° by 1° domain at the same orbit 

track.  Note that the 1° by 1° box does not have overlaps.  The mean latitude, longitude, and time are the longitude, latitude, 

and time of the new average product. 
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The observation error of the average product is the sum of 1) the mean of the observation uncertainty from OCO-2 Lite files 240 

and 2) the standard deviation of the observations within the 1° by 1° box along the same orbit track.  The means of the 

observation uncertainty within the 1° by 1° box are used to represent biases, assuming biases are dominant relative to random 

errors.  The field "xco2_std+uncertainty" is the predicted error for the averaged product. 

2.2.4 20-observation average 

This average product is generated by looping over the OCO-2 observations ordered in time, and averaging 20 adjacent good 245 

quality observations, provided the observations are collected within 30 seconds and 1 degree of latitude of each other.  

Variations on this product were tested, e.g. weighting by the inverse predicted error or local variability.  However, the more 

complicated averaging did not yield improved results, so unweighted averaging was used. 

2.3 ACOS-GOSAT v7.3 (4/2009 through 5/2016) 

The ACOS-GOSAT v7.3 product is an update from the previous v3.5, using a Level 2 (L2) retrieval algorithm that 250 

approximately matches that used to produce the OCO-2 v7 product (O'Dell et al., 2018).  The key changes to the L2 algorithm 

relative to OCO-2 included scaling the O2-A band spectroscopy, and fitting a zero level offset to the A-band (O'Dell et al., 

2018).  The v7.3 product includes observations collected from April, 2009 through May, 2016, which provides some overlap 

with OCO-2.  The lower tropospheric (LMT) product for V7.3 was calculated similarly to Kulawik et al. (2017) with bias 

correction described in Appendix A. 255 

2.4 CarbonTracker 2017 (2009-2016) 

The CarbonTracker model (Peters et al., 2007) output, CT2017, was downloaded from 

(ftp://aftp.cmdl.noaa.gov/products/carbontracker/co2/CT2017/molefractions/co2_total/) and goes through 12/31/2016.  From 

2017 onwards, the CarbonTracker model is extrapolated from 2016 by adding a global offset of 2 ppm/year.  The 

CarbonTracker model is used to quantify co-location error (by calculating biases and errors for the model co-located with 260 

validation locations and times versus satellite location and times).  The CarbonTracker model is also used to extend aircraft 

profiles from the top observation to the top of the atmosphere.  The CarbonTracker model through 2016 is also directly 

compared to TCCON and aircraft observations.  Within the domain (22.5-61.5°N, 63.5-128.5°W), the 1x1 degree "nam" files 

are used, and elsewhere, the 3x2 degrees files are used. 

2.5 CAMS Reanalysis (2009 through 2017) 265 

The CAMS reanalysis model output was downloaded from http://apps.ecmwf.int/datasets/data/cams-ghg-inversions/ and goes 

through December 2017 (see description https://confluence.ecmwf.int/pages/viewpage.action?pageId=58131166).  This model 

is used to extend aircraft profiles to the top of the atmosphere (up to 0.1 hPa, or 65 km) for evaluation of the error introduced 
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by model extension.  Comparisons between profiles extended by different methods are used to quantify the error from 

extending aircraft profiles. 270 

2.6 GMAO-7km and GMAO-50km (6/2005 through 6/2007) 

The Goddard Modeling and Assimilation Office (GMAO) produced a high resolution, global nature run for CO2 (Putman et 

al., 2014).  This data is run/sampled at 7 km and 50 km gridding every 30 minutes.  The run extends through half of 2005, 

2006, and half of 2007.  The difference between this model co-located to the validation data versus co-located to the satellite 

observations is used to quantify co-location error.  Everything is matched except the year, which is set to 2006.  We are using 275 

this to quantify the differences between XCO2 at the satellite and validation locations and time.  We were interested in whether 

the smaller domain models would result in higher co-location errors. 

3 Methods and quantification of imperfect validation 

This section discusses co-location criteria, methodology used to estimate errors, and a quantification of the errors from 

imperfect validation, which includes errors in the validation data itself (quantified by the data provider), errors from missing 280 

validation data, errors resulting from sensitivity mismatches, and errors from imperfect co-location.  Section 3.1 describes the 

types and methodology used to estimate systematic and random errors. 

3.1 Co-location criteria and examples of co-locations versus time and latitude 

Two co-location criteria are used, geometric and dynamic (following the methodology of Kulawik et al. (2016), and similarly 

to other OCO-2 and GOSAT validation criteria).  Geometric is within 3 degrees latitude and 5 degrees longitude.  For ATom 285 

and ESRL/DOE aircraft, the time coincidence is 9 hours (same-day coincidence), and for TCCON the time coincidence is 1 

hour.  The dynamical criteria (Wunch et al., 2011; Keppel-Aleks et al., 2011; Keppel-Aleks et al., 2012) are designed to exploit 

information about the dynamical origin of an air parcel through a constraint on the free-tropospheric temperature.  Briefly, a 

co-location is found when the measurements are within 5 days and the following is satisfied: 

1
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     (2) 290 

"dynamic small" uses Eq. 2 with coincidence changed from 10 degrees to 5 degrees in latitude, 30 degrees to 15 degrees in 

longitude, while still using 2 degrees K.  Data are selected within ± 2.5 days rather than ±5 days.  "Dynamic small" has smaller 

co-location error, but is not adequate for comparisons to TCCON stations north of 50N where OCO-2 does not reach in winter 

months, whereas the standard TCCON co-location of ± 10 degrees latitude reaches more stations.  Other co-location techniques 

include Nguyen et al. (2014) which used spatiotemporal averaging, and Guerlet et al. (2013) which considered model gradients 295 
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when selecting co-locations.  Since this work finds that co-location errors are significant, the more specialized co-location 

techniques of Nguyen et al. (2014) and Guerlet et al. (2013) will be helpful for future work. 

Figures 2 and 3 show examples of geometric and dynamic co-location at different stations for OCO-2 and GOSAT.  Use of 

the dynamic criteria results in about a thousand times more co-locations.  In the lower panel of Fig. 3b, a bias between OCO-

2 and TCCON in the summer, 2016 is seen for dynamic co-location.  This bias is not seen for geometric co-location (lower 300 

panel of Fig. 3a).  The co-location error is quantified by the difference between the CarbonTracker model co-located with the 

satellite and with the TCCON observations, shown by the purple or black dashed line in the difference plots.  This model/model 

comparison compares the model fields versus model fields at different times and locations.  The co-location error indicates a 

bias is expected for OCO-2 minus TCCON in summer, 2016, though it is a smaller bias than the actual bias of OCO-2 minus 

TCCON. 305 

As seen in Figure 2, dynamic criteria are useful for GOSAT which does not have sufficient co-locations at monthly 3x5 degree 

bins at many stations for geometric co-location.  Although OCO-2 collects an order of magnitude more data than GOSAT, 

dynamic coincidence criteria are still useful for OCO-2 because high latitudes do not have data in winter months.  Figure 4 

shows co-locations at Park Falls (45.945N).  Poleward of 40N has no co-located OCO-2 observations in winter due to quality 

flag screening during winter.  However, dynamic coincidence fills in these temporal gaps. 310 

Figure 5 shows comparisons of OCO-2 XCO2 and lower partial column (LMT) versus DOE aircraft observations at sgp (36.6N, 

97.5W).  The aircraft profile is extended with CarbonTracker2017 and the OCO-2 averaging kernel is applied using Eq. 1.  

Note that the lower partial column shows about twice the seasonal cycle amplitude as the full column, and also about twice 

the error.  The dashed line in the lower panels shows the difference between the model at the satellite observation locations 

and times minus the model at validation locations and times.  The co-location flags a large co-location error in mid-2015, 315 

where the satellite minus aircraft shows a similar error.  Although the patterns look similar, one seasonal minimum and 

maximum for XCO2 in 2015 are shown on the both graphs.  The LMT reaches the maxima and minima at least one month 

before XCO2. 

Figure 6 shows OCO-2 versus ATom aircraft observations (where the aircraft observations are extended using CarbonTracker 

model and the OCO-2 averaging kernel is applied, using Eq. 1) using geometric coincidence criteria.  The gaps are locations 320 

where no coincidences are found with good quality OCO-2.  An overall low bias is seen for the "1S" campaign, but much less 

bias is seen for the "2N".  This could indicate a temporal (seasonal) bias, which is discussed later in the paper. 

3.2 Station bias and bias variability:  grouping comparisons versus validation data to determine regional biases 

The TCCON dataset provides a timeseries of validation data at particular locations; whereas the ATom dataset provides a 

range of latitudes at particular times.  The validation data are grouped by "station", which is a TCCON location, an ESRL 325 

location, or an ATom campaign.  The overall bias for each station is called the "station bias" and gives an idea of the sizes of 

regional biases.  Table 2 shows the station bias for each coincidence type.  The only category in Table 2 that had an overall 

bias was ATom versus OCO-2 ocean glint, which had a -0.7 ppm bias (OCO-2 low).  Appendix B shows biases for each 
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individual station and campaign for OCO-2.  For land, in Table B.1, these biases do not seem to show any consistent pattern, 

however, for ocean, seen in Table B.2, OCO-2 versus the ocean stations between 19 and 33N (Burgos, Izana, and Saga) have 330 

biases from -0.7 to -1.0 ppm.  The low ATom bias seen in Table 2, however, is persistent over all latitudes (e.g. see OCO-2 

versus ATom Fig. 6a).  However, note that the ATom Atlantic track (2N) does not have a low bias, except around 10-30N, as 

seen in Fig. 6b, consistent with the low bias seen at Izana.  A persistent bias can be due to the particular types of aerosols or 

albedos near a station, a time-dependent bias, or other persistent factors.  So, in summary there seems to be no trend in land 

biases, but there seems to be persistent low biases in OCO-2 ocean glint observations, at least between 19 and 33N. 335 

The variability of the station bias is characterized as the "station bias variability" and feeds into the systematic error estimate.  

For example, the average difference (mean bias) of all co-location pairs of (satellite – TCCON) for the set of stations north of 

50N (Eureka, Sodankyla, East Trout Lake, and Bialystok) are -1.5 ppm, 0.6, -0.2 ppm, and 0.3, respectively.  The "station bias 

variability" for the stations north of 50N is standard deviation of these mean biases, or 0.9 ppm.  The station bias variability is 

calculated for all stations and is part of the systematic error (the total systematic error combines the station bias variability and 340 

the correlated error discussed in Section 3.3 and is calculated in Section 4.2). 

3.3 Quantifying how error reduces with averaging 

OCO-2 collects stripes of densely packed data, with ~200 observations for 0.5 degrees latitude.  When OCO-2 data is 

assimilated into models with resolution of 0.5 degrees or more, hundreds to thousands of observations can be averaged and 

compared to a particular model location and time.  It is important to characterize the error of the averaged quantity.  Kulawik 345 

et al. (2016) characterized the correlated and random errors of ACOS-GOSAT and SCIAMACHY observations, finding that 

satellite errors reduce when n observations are averaged according to Equation 3 (where all n observations are co-located with 

the same validation data point).  For ACOS-GOSAT v3.5, the correlated error was about 0.8 ppm and the random error about 

1.6 ppm.  Worden et al. (2017) also found that OCO-2 v7 data had correlated errors within 1-degree bins. 

𝑒𝑟𝑟𝑜𝑟 =  ඥ𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑ଶ + 𝑟𝑎𝑛𝑑𝑜𝑚ଶ/𝑛        (3) 350 

The correlated error is a systematic error and is combined with the station bias variability to estimate the total systematic error. 

3.4 Quantification of uncertainty introduced from the validation process 

This section quantifies the uncertainty introduced in the validation process, for example, the error resulting from a spatio-

temporal mismatch of validation and satellite data or aircraft profile extension.  This section describes and quantifies validation 

errors, which in total give an upper bound on the validation accuracy.  These errors quantified result from: 355 

 Co-location error.  Validation data rarely occurs exactly at the point of satellite observation; and even if exactly 
coincident, does not integrate over the entire airmass that the satellite observes (e.g. 2x3 km footprint).  Co-location 
error is quantified by comparing the model co-located to the observation time/location of the satellite versus the 
model co-located to the observation time/location of the validation data.  The comparison of model@satellite vs. 
model@validation is used to compute co-location station biases, co-location correlated errors, and co-location 360 
random errors.  These co-location error estimates are shown in Table 1 and Table 2.  Table 1 shows an estimate for 
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different coincidence criteria and viewing modes.  Table 2 shows the co-location error for each entry (shown in 
parentheses) and then subtracts this error in quadrature to estimate a co-location corrected systematic error.  4 
different model runs are used to estimate co-location error: CT2017, CAMS, GMAO50, and GMAO7, with 
GMAO7 showing the highest co-location errors, of 0.5 ppm, indicating higher variability in GMAO7.  However, 365 
CT2017 is used in Table 2 because it has results for all years.  The co-location error in Table 1 was for OCO-2 
comparisons to TCCON and gives a general idea of the magnitude.  In Table 2, the co-location error was estimated 
for every entry individually. 

 Averaging kernel error (TCCON).  This is due to differences between the TCCON and OCO-2 sensitivity to the true 
CO2 profile and estimated 1) using comparisons with and without the OCO-2 averaging kernel applied to TCCON, 370 
and 2) applying Eq. 1 to CarbonTracker model profiles to simulate TCCON (sim_TCCON) or OCO-2 results 
(sim_OCO2), and then look at the difference between the sim_OCO2 and sim_TCCON, which tests the effects of 
the different sensitivity of OCO-2 and TCCON.  For 1), comparing OCO-2 v8 vs. TCCON found that systematic 
errors decreased from 0.58 to 0.50 ppm for ocean and from 0.82 to 0.72 ppm for land if the OCO-2 averaging kernel 
is applied to TCCON prior to comparison to OCO-2 (using Eq. 1).  Test 2) was done at Park Falls and Darwin, 375 
finding about a seasonally dependent 0.2 ppm amplitude difference at Park Falls (sim_OCO2 higher in the 
summer), and ~0.1 ppm seasonally dependent difference at Darwin (sim_OCO2 higher in the months SON).  The 
difference also has a slope of -0.1 ppm/year (sim_OCO2 increasingly lower) due to the increasingly discrepancy 
between the TCCON/ACOS prior and CarbonTracker (e.g. see Fig. 3).  The difference between sim_TCCON with 
the OCO-2 averaging kernel applied and sim_OCO2 was tested, but the results were the same.  Previously, Wunch 380 
et al. (2011, appendix A) estimated this size as ~0.2 ppm and Nguyen et al. (2014) estimated this as 0.12 ppm for 
ACOS-GOSAT.  This error is set to 0.1 ppm in Table 1, but unlike other errors it is directly subtracted, not 
subtracted in quadrature, because the comparison with and without averaging kernel resulted in a similar error 
difference no matter the size of the total error (e.g. 0.4->0.3, or 0.8->0.7 ppm).  Note that the TCCON averaging 
kernel was not applied to OCO-2 because that process needs the retrieved OCO-2 profile and it was not clear how 385 
to bias correct the OCO-2 profile.  Kulawik et al. (2017) showed that the bias correction is significantly different in 
the near surface versus tropospheric part of the profile. 

 Aircraft profile extension to the top of the atmosphere (TOA).  Uncertainties introduced by aircraft profile extension 
above the aircraft observations.  An aircraft profile is never measured over the entire range of the surface to the top 
of the atmosphere.  Model data is used to extend the profile over the whole atmosphere (up to 65 km).  Errors 390 
resulting from aircraft profile extension are estimated by comparing different extension schemes, either from using 
different models or methodologies (e.g. straight extension vs. scaled extension), described below (although it is 
possible that different models or schemes have biases in the same direction). 

 Aircraft profile sampling and extension to surface.  Uncertainties from aircraft extension to the surface.  The lowest 
aircraft measurement is 0.2 to 0.5 km.  This was estimated using AirCore profiles and sampling at aircraft altitudes 395 
for SGP, then calculating the total column either with the original AirCore profile or the sampled profile, described 
in more detail below. 

The errors for each of the above are shown in Table 1. 

This paragraph discusses the aircraft profile extension error to the top of the atmosphere (TOA).  ATom profiles go up through 

about 9 or 13 km, whereas ESRL and DOE aircraft profiles go up through 3 to 9 km.  The aircraft profile is extended in 4 400 

different ways using two independent models; then the differences in validation give an estimate of the error introduced by 

profile extension.  The different ways the profile is extended are 1) "tropo":  extending the top value of the aircraft profile up 

through the NCEP identified tropopause, then tacking on the CarbonTracker model, 2) "scale":  calculating an offset between 

the CarbonTracker model and the top observed aircraft observation, then extending the profile upwards using the 
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CarbonTracker model plus offset; 3) and 4) Same as 1) and 2) but using the CAMS model.  For ESRL land, there were no 405 

statistical difference in any aspect of the comparison, but there was an overall bias difference of 0.1 ppm (CarbonTracker 

results are higher by 0.1 ppm).  ESRL "ocean" comparisons use stations at land/ocean boundaries, e.g. LEF near the Great 

Lakes, PFA on the coast of Alaska, TGC at the border of Texas and the Gulf of Mexico.  For these comparisons, the LEF site 

showed large differences (with the "scale" extension resulting in lower bias variability for OCO-2 versus aircraft among all 

aircraft sites).  The LEF site is unique in that it only goes up to 3 km, whereas other sites go up to 5-9 km.  The LEF site did 410 

not show differences for extension with CAMS versus CarbonTracker.  When the LEF site was removed, there were small 

differences (< 0.1 ppm) between "tropo" and "scale", and no differences between using the CarbonTracker versus CAMS 

models for extension.  For the ATom profiles, extension with CarbonTracker also resulted in a -0.1 ppm bias versus extension 

with CAMS (the opposite sign as the above).  However, there were no other differences in comparison metrics.  So aircraft 

profile extension was estimated as 0.1 ppm.  This is smaller than the previous calculation of this in Wunch et al. (2010) of 0.3 415 

ppm.  Wunch et al. (2010) perturbed the model profile to check the size of the effects, whereas this work compared results 

when using 4 different but equally plausible methods of profile extension.  

This paragraph discusses errors introduced by aircraft sampling and extension to the surface.  This analysis was done for ESRL 

aircraft sampling at the SGP site.  The sampling was at 0.50, 0.63, 0.94, 1.25, 1.58, 1.92, 2.25, 3.19, 3.84, 4.19, 4.83 km above 

sea level (ASL).  The surface at SGP is at 0.31 km above sea level.  3 AirCore profiles taken at SGP were degraded to aircraft 420 

sampling, then XCO2 was calculated from the sampled profiles and compared to the original AirCore XCO2.  The differences 

for the above were less than 0.1 ppm.  The AirCore profile varies less than 1 ppm between the surface and the lowest aircraft 

measurement.  The air between the surface and 0.2 ppm above the surface represents 2% of the total airmass, so that this could 

be used to estimate the error from extending the aircraft measurement to the surface. 

The total systematic error added from validating from XCO2 constructed from aircraft profiles is estimated as ~0.2 ppm, from 425 

Table 1.  This combines errors from the aircraft data (Section 2.1.2) and errors from the profile extension at the top of the 

atmosphere and at the surface.  This error estimate is less than the ~1 ppm estimated in Miyamoto et al. (2013), which was 

estimated at airports where extension by models near the surface will be much less accurate. 

4 Random and systematic errors  

This section quantifies random and systematic errors for ACOS-GOSAT and OCO-2, and also for CarbonTracker.  One 430 

important component of this process is the quantification and removal of validation error, which is discussed in section 3.4 

and Table 1. 

4.1 Plots showing how error reduces with averaging 

After satellite data is co-located to validation data (described in Section 3.1), the overall bias is subtracted (described in section 

3.2), and the standard deviation of the satellite data minus validation data is calculated.  How the standard deviation of satellite 435 
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data minus validation data decreases as more satellite data is averaged is quantified.  Figure 7 shows how error reduces when 

data is averaged.  As more data is averaged, the error is reduced.  However the error does not drop off as the inverse of the 

square root of n, where n is the number of data points averaged, but rather as Eq. 3, which has both a correlated and random 

component. 

4.2 Characterization of random and systematic errors 440 

This section quantifies random errors (errors which improve with averaging, see Section 4.1) and systematic errors, composed 

of regional biases (station bias variability, see Section 3.2) and correlated errors (errors that do not improve with averaging 

(see Section 4.1)).  The correlated error and station bias variability are added in quadrature to estimate the total systematic 

error.  The results of these, by satellite, viewing mode, and coincidence criteria are shown in Table 2.  The values in "()" are 

estimates of the co-location errors, which are obtained from the difference between the model co-located to validation data 445 

and model co-located to the satellite (discussed in Section 3.4).  The column, "Co-location corrected systematic error" subtracts 

out the co-location error in quadrature.  Dynamic co-locations have, in general, higher systematic error and higher co-location 

error; however, the corrected systematic error is fairly consistent between geometric and dynamic criteria.  The final column 

subtracts other validation errors, which are TCCON error, Averaging Kernel difference error (for TCCON), Aircraft error, 

uncertainty from Aircraft profile extension to TOA, and Aircraft profile sampling and extension to surface, to estimate the 450 

systematic error for the satellite.   

The OCO-2 land glint and land station bias variability without Manaus and Hefei is 0.4 ppm rather than 0.6, due to the large 

mean biases at Manaus and Hefei of -1.6 and -1.2 ppm, respectively (OCO-2 lower than TCCON).  The model-predicted co-

location bias at Manaus and Hefei are 0.1 and 0.3 ppm, respectively, so do not explain the large biases (which could reflect 

satellite errors or models failing to capture the gradients at these locations). Without these two stations, the station bias 455 

variability, subtracting the co-location error in quadrature, is 0.4 for all modes of GOSAT and OCO-2. 

The total systematic error is fairly consistent at 0.5 – 0.8 ppm for ACOS-GOSAT and OCO-2 land.  The lower values for 

geometric coincidence for ocean OCO-2 observations of 0.3 – 0.4 ppm should also consider the overall bias of OCO-2 ocean, 

of -0.2 to -0.7, and the estimate of 0.6 ppm for OCO-2 ocean dynamic coincidences.  The comparisons of ESRL aircraft versus 

OCO-2 land observations give consistent results to TCCON, but comparisons to OCO-2 ocean observations estimates a higher 460 

systematic error than TCCON, possibly because of onshore/offshore differences not captured in the co-location error. 

ACOS-GOSAT has about 1.6 times higher random error than OCO-2 but similar total systematic error to OCO-2.  The 

CarbonTracker model also has somewhat smaller systematic errors than the satellite data, estimated at about 0.4 ppm. 

In Table 3, we show errors on the raw (non-bias corrected) data.  The bias correction improves the overall bias, the systematic 

error (by about 0.2 ppm for ocean and about 0.5 ppm for land), and improves the random error by about 0.5 ppm larger for 465 

OCO-2 land and GOSAT ocean and improves OCO-2 random error by 0.2 ppm over ocean. 

Table 4 shows validation of lower tropospheric (LMT) OCO-2 and GOSAT described in Kulawik et al. (2017).  We cannot 

compare versus TCCON because TCCON is a total column measurement, so LMT is compared to aircraft and remote surface 
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site observations.  The OCO-2 and ACOS-GOSAT land LMT systematic errors are 0.8 and 1.1 ppm, respectively.  The ocean 

validation relies on OCO-2 ocean observations near continental aircraft sites.  The systematic errors for ocean LMT for OCO-470 

2 and ACOS-GOSAT are higher than expected, at 3.0 and 1.6 ppm, respectively.  However, note that the estimate for ocean 

XCO2 versus aircraft shown in Table 2 is significantly higher than the TCCON or ATom error estimates for ocean, possibly 

because of on-shore/off-shore differences.  Also, note that the one true oceanic site, RTA, validates well, with ~1.0 ppm 

systematic error.  The OCO-2 versus ATom comparisons show a systematic error of <1.1 ppm for ocean comparisons.  The 

actual error cannot be determined because the co-location error is also 1.1 ppm and when it is subtracted the predicted error is 475 

0.  Satellite observations are also compared to surface sites, with  ~1.3 ppm systematic error.  The surface sites are at the 

surface, rather than the lowermost column from satellites, so this estimate is likely high.  Considering all of the above, the 

systematic error for OCO-2 and ACOS-GOSAT is estimated conservatively at ~1.1 ppm.  However, recently aircraft 

measurements were found to have a low bias on the order of -0.6 ppm for LMT and that the LMT overall bias is tied to aircraft.  

So the v8 product may have a -0.6 ppm low bias.  This is consistent with the low biases versus ATom (-0.8 ppm) and surface 480 

observations (-0.3 ppm) in Table 4. 

Although 1.1 ppm is higher than the XCO2 systematic error of ~0.6, the true variability of LMT is also larger than XCO2.  

Looking at a few random days:  6/16/2015, 10/16/2015, 1/16/2015, the standard deviation of the values of LMT divided by 

the variability of XCO2 was 2.1, 2.4, and 3.4, respectively, and the correlation between LMT and XCO2 was 0.71, 0.81, and 

0.90, respectively.  So LMT has 2-3 times the signal variability of XCO2.  Figure 5 shows time series of XCO2 and LMT versus 485 

aircraft observations.  This figure shows both the higher variability of LMT and the offset seasonal cycle between XCO2 and 

LMT. 

4.3 Results for averaged data products 

The pre-averaged products are useful for assimilation, as the data volume is significantly less, and the averaged product has 

an assigned error for each averaged value.  We calculate the standard deviation of the averaged products versus validation 490 

data.  Since the data is already significantly averaged, the characterization of how the error reduces with averaging is more 

difficult to quantify with the averaged products. 

Table 5 shows results for averaged data products.  The Baker product has an average of 74 observations per bin.  The expected 

standard deviation of 74 average observations for land nadir, using Eq. 3 and Table 2, would be 0.8 ppm, whereas the Baker 

product standard deviation is 1.3 ppm.  However, even though the average number of observations per bin is 74, the range of 495 

observations per bin is 1 to 240, and the averages consisting of a lower number of observations will have higher errors.  For 

this reason, Table 5 also shows the standard deviation of the Baker product only for bins when the number of observations per 

bin is at least 20.  The standard deviation of this product is 0.9 ppm, which is similar to the predicted error and the same as the 

straight average 20-obs average of the lite product.  The Liu product for v8 also has a higher standard deviation than would be 

expected for an averaged product, but does not track the number of observations per bin. 500 
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Figure 8 shows the total error (random plus systematic) of the Baker-averaged OCO-2 product versus TCCON for glint and 

nadir land and ocean comparisons with geometric coincidence.  The error is the square root of the standard deviation of (OCO-

2 minus TCCON) added in quadrature with the station bias variability.  The validation error terms (the co-location error, co-

location bias variability, TCCON error, and TCCON sensitivity error) are subtracted in quadrature.  The sparse observations 505 

over land have errors (~2.5 ppm) much higher than predicted from Eq. 3 (red dashed line), but sparse ocean observations do 

not have larger errors than denser ocean observations. 

The total error is much larger than expected for bins with small n for land, i.e. in locations with low throughput.  The error of 

the n=1 bin is 2.5 ppm, whereas the predicted error, using Eq. 3 and Table 2 (using the random error of 1.0 ppm and correlated 

error of 0.6 ppm from Table 2), is 1.2 ppm.  The error drops substantially from n=1 through n=3, then the error drops more 510 

gradually.  Even though the errors are higher for low throughput regions, it is possible that value is added because they cover 

times or locations that would otherwise be missing.  However, the predicted errors for the OCO-2 products should be updated 

according to the above findings, briefly the actual error is shown in Table 6 for land.  The ocean errors follow Eq. 3, with 

random error of 0.6 ppm and systematic error of 0.6 ppm. 

Additional types of averaging were tried, e.g. averaging weighted by the predicted error, averaging weighted by the local 515 

variability (by setting the error to the standard deviation of each point ± 5 points).  Straight averaging versus averaging 

weighted by the predicted error had a negligible difference (not affecting values rounded to 0.1 ppm) in the random, correlated 

error and biases. 

5 Characterizing regional and temporal biases 

Regional and seasonal biases are characterized by the mean bias of the observation versus validation data by season and the 520 

correlation of error versus distance or time.  In Section 5.3.2, the OCO-2 bias term, a stand-in for OCO-2 regional bias, is 

assimilated to see what effect regional biases have on flux estimates. 

5.1 Seasonal biases 

For seasonal biases, we look at GOSAT, OCO-2, and CarbonTracker versus TCCON or ESRL/DOE aircraft (mainly in the 

United States) for 3 month groupings (DJF, MAM, JJA, SON) for land or ocean observations, with the mean annual bias 525 

subtracted.  The TCCON comparisons are grouped by latitude and ocean/land.  For the ESRL comparisons, the stations are 

grouped into geographic clumps of western North America (esp, thd), inland North America (etl, lef, car, hil, sgp), and eastern 

coastal North America (nha, cma, sca, tgc).  The seasonal biases are all less than 0.4 ppm.    Significance was tested using the 

t test.  However, the mean biases (even those significant biases) are mostly within the TCCON estimated systematic error (0.4 

ppm) and smaller than the OCO-2 or ACOS-GOSAT systematic error estimates of ~0.6 ppm. 530 
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There are two locations with both TCCON and aircraft, LEF (Park Falls) and SGP (Lamont) (ETL also has both but not long 

enough a record so far).   The monthly difference of (OCO-2 – TCCON) and (OCO-2- aircraft) was correlated at both Park 

Falls and Lamont.  The correlation at Park Falls was -0.05, and was 0.37 at Lamont. 

5.2 Correlation scales of biases 

This section attempts to quantify the length scales, time scales, and sizes of correlated bias errors.  The question we try to 535 

answer is:  if there is a positive bias in OCO-2 at (latitude1, longitude1, time1), what is the probability that there is a similar 

positive bias in OCO-2 at (latitude2, longitude2, time2)?  Nguyen et al. (2014) looked for the scale length of variability in 

ACOS-GOSAT data, finding scales of ~15 degrees latitude, ~20 degrees longitude, ~3 days.  In this paper we are not looking 

for the scale length of the signal, but the scale length of the systematic error (OCO-2 minus validation data). 

This question is addressed with 3 different methods: 540 

 Correlation of signal versus latitude in remote ocean measurements (where the OCO-2 value is expected to be 
constant) 

 Correlations of biases of (OCO-2 minus ATom) versus latitude 
 Correlations of biases of (OCO-2 minus TCCON) versus time 

A variogram plots the square of the XCO2 error versus time (days) or distance (latitude) lag.  We fit this to an exponential: 545 

𝑣𝑎𝑟𝑖𝑜𝑔𝑟𝑎𝑚(𝑙𝑎𝑔) = 𝑎 − 𝑏𝑒ି/௦        (4) 

The resulting values of interest are: 

 Random error = sqrt(a-b) 
 Correlated error = sqrt(b) 
 Scale length = scale, in either distance(latitude) or time (days) 550 

To estimate the size of the correlated region, we use the full-width-half-max for Eq. 4, which is lag = 1.4*scale.  Section 5.3 

estimates flux errors resulting from regional or temporal biases. 

5.2.1 Correlation of errors versus latitude in remote ocean measurements 

For remote ocean, observations between 90W and 165E longitude and 20S and 10N latitude, in the tropical Pacific, are used.  

The true XCO2 on any given day is assumed to be constant within this box, and any variations in the observed data are assumed 555 

to be error.  The entire box may also have a bias, but this analysis will not quantify the mean bias for group of observations 

(there is no way to estimate this without using validation data).  The data is pre-averaged to 0.1 degree bins to reduce random 

error. 

A variogram showing the co-variance of the corrected XCO2 (binned by 0.1 degrees to reduce error) versus latitude is shown 

in Fig. 9.  It is useful to keep in mind that values in variograms are co-variances; and a co-variance of 0.2 ppm corresponds to 560 

an error of 0.4 ppm.   
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The fits using Eq. 4 find a random error of 0.1 ppm (which is small because this data was pre-averaged to 0.1 degree bins), 

and a correlated error of 0.4 ppm.  This correlated error should be: 

 Smaller than the correlated errors of ocean glint versus TCCON, of 0.6 ppm (from Table 2) because correlated 
errors contain co-location error and validation error 565 

 Smaller than the corrected systematic error, because the corrected systematic error contains bias error 
 Similar to the corrected systematic error (0.5) with the station bias error (0.4) subtracted in quadrature, which is 0.3. 

Figure 9 also shows the variogram for the OCO-2 bias correction term (multiplied by 1.6 so that the co-variance at large lags 

is similar).  The bias correction term has a scale length of 0.4 degrees, whereas OCO-2 XCO2 has a scale length of 0.2 degrees.  

The retrieval parameters that have scale length of 0.5 degrees or less (similar to the scale length of OCO-2) are:  albedo_o2a, 570 

aod_total, aod_water, dP, co2_grad_del, h2o_scale.  The cross-correlation between the above retrieval parameters and XCO2 

variations was 0, 0, -0.2, 0.2, 0.4, and 0, respectively.  The parameters used in the XCO2 ocean bias correction are dP and 

co2_grad_del.  This analysis shows that aod_water could be considered for ocean bias correction as it has a similar scale length, 

and the variations in aod_water are anti-correlated to variations in XCO2 for remote ocean locations.  The right panel of Fig. 

9 shows correlations of variations of XCO2 (corrected), XCO2 (original), the XCO2 bias correction term, and cross-correlations 575 

between XCO2 (original and corrected) and the bias correction term.  The right panel of Fig. 9 shows that the original XCO2 

is correlated with the bias correction term, but the bias corrected XCO2 is not correlated with the bias correction term.  Figure 

9 shows that a) the OCO-2 bias correction term has a similar correlation scale lengths to XCO2, but is not correlated to bias 

corrected XCO2.  The size of the biases (see discussion following Eq. 4) is 1.4*0.2, or ~0.3 degrees. 

5.2.2 Correlation of errors versus latitude using ATom validation 580 

The same analysis from Section 5.2.1 is done for errors of OCO-2 minus ATom.  The idea is the following:  if an OCO-2 point 

has a low bias versus ATom, does a neighboring point also tend to be lower?  What is the correlation length of the biases?  

This is done by binning 0.1 degree bins (to reduce random error) and then calculating the correlation of (OCO-2 – ATom) 

versus latitude difference.  There are 3 ATom results versus latitude with reasonable amounts of data (using geometric criteria), 

1N, 1S, 2S.  (Dynamic coincidence criteria, which uses very large spatial domains, is not conducive to evaluating spatial 585 

biases).  The correlation is found to drop off over 5-10 degrees then drop to ~0.  Because there are only 3 sets to look at, the 

accuracy cannot be nailed down more than 5-10 degrees. 

5.2.3 Correlation of errors versus time using TCCON validation 

Time correlation of the error (OCO-2 minus TCCON) is used to calculate correlation of error versus time.  The correlation of 

the bias correction term and the co-location error are also calculated.  For geometric coincidences, good fits of the error 590 

correlation versus time were not obtained because of the temporal sparseness of the OCO-2 fits versus TCCON.   

Figure 10 shows the error correlation for land and ocean glint.  For land observations co-located using dynamic coincidence 

criteria versus TCCON, the mean correlation scale (evaluated at every station, then averaged over all stations) was 43 days for 
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the error and 34 days for the bias term, and the size of the correlated error was 0.8 ppm for the difference and 0.7 ppm for the 

bias term.  The bias correlation is similar to the error correlation for land but the bias correlation for ocean shows a strong 595 

annual cycle, so that the bias correction repeats annually, particularly at stations Burgos, Orleans, Reunion, Tsukuba, and 

Wollongong.  The timescale for the bias correction term is about half for the bias correction term versus the XCO2 error, with 

the correlated error about the same (0.7 ppm or 0.8 ppm).  The timescale of correlations (see discussion around Eq. 4) is 1.4*43 

or about 60 days. 

Figure 3b, lower panel, shows an example of a temporally persistent low bias in OCO-2 minus TCCON during the period of 600 

summer, 2016 lasting several months.  CarbonTracker@OCO-2 minus CarbonTracker@TCCON (purple dashed line) suggests 

that this bias could result from co-location error, because the co-location error also shows a persistent bias, even though the 

magnitude is smaller.  Therefore, the variogram analysis was applied to co-location error (CarbonTracker@OCO-2 minus 

CarbonTracker@TCCON), finding a correlated error of 0.4 ppm and a timescale of 9 days, suggesting that co-location error 

is not responsible for the 43-day correlated error in OCO-2 versus TCCON. 605 

5.3 Effect of regional/temporal biases on flux estimates 

This section estimates the effects of regional observation biases on flux biases using the relationship that a flux of 2.1 PgC 

corresponds to a global atmospheric increase of 1 ppm (e.g. Baker et al., 2006).  This section calculates how much "fake flux" 

is caused by biases. 

5.3.1 Simplistic calculations 610 

We estimate the effect of a bias of 0.5 ppm over a 30 degrees latitude by 60 degrees longitude area using the relationship that 

2.1 PgC corresponds to a global atmospheric increase of 1 ppm.  This area is about 3% of the surface area of the earth, so a 

bias of 0.5 ppm only over 3% of the globe would correspond to a flux bias of (0.5 ppm * 2.1 PgC / 1 ppm * 0.03) = 0.03 PgC.  

The mean absolute value of the fluxes of the TransCom regions from Baker et al. (2006) is 0.5 PgC, so the bias represents a 

6% error for an average TransCom region.  This gives an idea of the net effect of a 0.5 ppm bias spanning 30 degrees latitude 615 

and 60 degrees longitude. 

We estimate the effect of a bias over the entire northern hemisphere during April and May.  This can be estimated by 

multiplying the fraction of the yearly airmass affected multiplied by the relationship that 2.1 PgC corresponds to a global 

atmospheric increase of 1 ppm.  The flux bias equals (1/2 the world) * (2/12 months)* 0.5 ppm * (2.1 PgC / 1 ppm) = 87 TgC.  

This is a 3% bias of the global flux of 3 PgC.  If the flux bias goes into one TransCom region, with a mean flux of 0.5 PgC, it 620 

corresponds to an error of 17%.   

However, the above describes an unrealistic scenario, where the bias aliases into a single TransCom region.  The more likely 

scenario is, in order to fit a bias that is not consistent with physical fluxes, a pattern of positive and negative fluxes is used to 

fit the unphysical bias, resulting in positive and negative errors for different TransCom regions.  For example, Stephens et al. 

(2007) found that model transport error resulted in a positive and negative flux dipole pattern. 625 
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Previous work (Kulawik et al., 2013) assimilated a hemispheric summer seasonal bias of 0.3 – 0.5 ppm, finding that this bias 

caused a pattern of positive and negative flux biases, with positive biases in North America and Asian mid-latitude regions 

and negative biases in South America, with the sizes of the biases of comparable sizes to the flux updates from GOSAT data 

itself.   

5.3.2 Assimilation of the OCO-2 bias correction term to estimate systematic flux errors 630 

This section describes assimilation of the v7 OCO-2 bias correction term.  The v7 OCO-2 bias correction term, taken over the 

v7 record, has size 0.71 ± 1.10 ppm for land and 0.03 ± 0.50 ppm for ocean.  The bias correction consists of a constant bias 

correction (for land/ocean) plus bias correction that varies regionally and seasonally.  A lot of the variable bias correction 

averages down over small areas, so that averaging over 20 observations, results in a bias of 0.70 ± 0.68 ppm for land and 0.04 

± 0.35 ppm for ocean.  Section 5.2 finds that the OCO-2 bias correction term has similar correlation length scales as OCO-2 635 

biases, so assimilation of the OCO-2 bias correction term could be used as a crude estimate of the pattern of flux biases.  It 

will not lead to conclusions like, "OCO-2 error causes some specific bias in some specific region", but will lead to conclusions 

like, "Regional biases cause errors for Transcom regions on the order of 0.3 GtC/year".   

The annual fluxes for every TransCom region are shown in Table 8 for both land nadir (LN) and ocean glint (OG).  There is 

no overall bias resulting from the bias assimilation, and standard deviation of the flux estimates gives an estimate of the size 640 

of the error.  Since we estimate that the XCO2 bias from OCO-2 is of similar size to the bias correction term, this can be used 

to estimate the flux errors resulting from XCO2 regional or seasonal biases.  OCO-2 land nadir regional biases cause flux errors 

on the order of 0.4 PgC/year for land and 0.3 PgC/year for ocean TransCom regions.  For land nadir, these biases are fairly 

persistent from year to year, so comparing fluxes from one year to another results in errors of 0.2 PgC/year for land and 0.1 

PgC/year for ocean.  These errors are comparable to model transport errors, which are estimated in Basu et al. (2018), Fig. 4.  645 

These errors are also comparable to the mean flux magnitude of TransCom regions of 0.2 PgC/year from land and 0.5 PgC/year 

for ocean. 

6 Discussion and Conclusions 

The systematic errors are estimated for OCO-2 v8 and GOSAT v7.3, which include locally and seasonally correlated error and 

regional biases.  Although GOSAT has higher random errors than OCO-2 and land has higher random errors than ocean, all 650 

modes and both satellites have similar systematic errors, of ~0.6 ± 0.1 ppm.  Validation with geometric coincidences vs. 

dynamic coincidence or validation vs. ESRL aircraft, ATom aircraft, and TCCON results in similar error estimates (after co-

location and validation errors are subtracted).  From studying averaged quantities, OCO-2 observations from areas with low 

throughput over land (from pre-processor selection and quality flags) have about twice the error (~2.6 ppm) as areas of high 

throughput.  The seasonal biases, aggregated over many TCCON stations within latitude bands were usually on the order of 655 

0.2 ppm, indicating no large hemispheric seasonal biases.  However, there is an overall low bias in the OCO-2 ocean 
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observations of -0.7 to -1.0 ppm from ~19N to ~33N.  The single observation error, combining the systematic (0.6 ppm) and 

random errors (0.6 ppm for ocean, 1.0 ppm for land) is 0.8 ppm for ocean and 1.0 ppm for land. 

The averaged OCO-2 products have, on average, larger error than is predicted by the product, about 1.2 ppm for land 

observations and 0.8 ppm for ocean observations.  This is partially due to the finding that low throughput areas over land have 660 

much higher error, and the purposeful de-emphasis of the high-throughput data.  For example, 4% of the Baker-averaged 

product contain 1 observation, whereas this represents 0.05% of the original data.  If averaged products containing at least 20 

observations are used, the error estimates are similar to what is expected, based on the number of observations averaged.  

The lower partial column from ACOS-GOSAT v7 and OCO-2 v8 was validated, finding systematic errors of 1.1 ppm for both 

land and ocean.  This agrees well with the systematic error estimate from Kulawik et al. (2017) for ACOS-GOSAT v3.5 LMT 665 

of 1 ppm.  For investigating local effects (e.g. plumes), the random error comes into play, which is 2.6 and 1.0 ppm for land 

and ocean, respectively, for OCO-2 v8.  The higher error for LMT is offset by the larger true variability of the lower partial 

column, which has 2-3 times the signal variability of XCO2.  For signals completely in the lower partial column, the LMT will 

have 4 times the signal, since it contains 1/4 the airmass of the full column. The LMT product is most useful when the 2 partial 

columns behave differently.   670 

The raw (un-bias-corrected) products for OCO-2 v8 and ACOS-GOSAT v7.3 were also validated, with the finding that the 

bias correction improves the overall bias, the systematic error (by about 0.2 ppm for ocean and about 0.5 ppm for land), and 

the random error (by about 0.5 ppm for land and GOSAT ocean and by 0.2 ppm for OCO-2 ocean). 

Since regional and seasonal biases have a detrimental effect on flux estimates, we characterized the time and length scale of 

biases in corrected XCO2 for OCO-2, finding a small length scale bias (on the order of 0.3 degrees) similarly to Worden et al. 675 

(2017), a medium length scale bias (on the order of 5-10 degrees), and a time scale in the bias of ~60 days.  The bias correction 

term, though not correlated with the corrected XCO2 bias, had somewhat similar distance and time scales and sizes.  So, to 

estimate the effect of regional and seasonal biases on flux estimates, the bias correction term from OCO-2 was assimilated and 

the flux estimates were aggregated on Transcom-3 regions.  The assimilation caused flux variations, i.e. positive and negative 

fluxes which had a standard deviation of 0.4 PgC/year for land regions and 0.3 PgC/yr for ocean regions.  The bias correction 680 

is somewhat persistent for year-to-year, so that the year-to-year differences in the biases were less than half the error for a 

particular year. 

Appendix A.  Bias correction for LMT 

The LMT product and quality flags must be bias corrected for each version, similarly to the XCO2 product.  The data was 

compared to ESRL and DOE aircraft observations co-located using geometric criteria.  For ACOS-GOSAT V7.3, the quality 685 

flags (in addition to using good quality XCO2 observations) are shown in Table A.1 and A.2, for land and ocean, respectively.  

The bias term for ACOS-GOSAT v7.3 is: 
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        bias_land = -4.058460 + 0.299454*co2_grad_del -0.544289*dp -1.639720*dofs + 0.030454*glint_angle -

30.231600*aod_ice -4.345870*errorobservation_xco2 -27.450700*aod_dust +6.480650*aod_total -0.315448*aod_oc -

26.739900*aod_water + 1.575730*error_lmt -0.045352* TCWV + 7957.230000* ALBEDO_SLOPE_3 + 0.119988* 690 

DP_ABP + 2.306030* H2O_SCALE 

        bias_ocean = 13.1117000 + CO2_GRAD_DEL*0.5328290 + AOD_OC*10.2381000 + DP_ABP*0.0439909 + 

ALBEDO_2*-459.8480000 - 3.6511400* AOD_DUST -0.0420218* TCWV + 10.0339000* AOD_SULFATE + 0.3429140* 

LOGDWS 

The bias is subtracted from the raw value to calculate the corrected value.   695 

For OCO-2 v8, the quality flags (in addition to using good quality XCO2 observations) are shown in Table A.3 and A.4, for 

land and ocean, respectively.  The bias term for OCO-2 v8 is: 

        bias_land = -1.57429000 + 0.25243500* CO2_GRAD_DEL - 0.51346000 * dP + 0.13949800 * S32 - 

0.70878200*error_lmt - 9.10000000 * DWS - 0.74062800 * DELTAT + 0.00212755 * SNR_O2A + 18.24700000 * 

AOD_SULFATE 700 

        bias_ocean = -2.740660 + 0.313480 * co2_grad_del - 0.561932 * dP 

The bias is subtracted from the raw value to calculate the corrected value. 

Appendix B.  Station-by-station results 

Table B.1 and B.2 show results versus TCCON, ESRL/DOE stations and ATom campaigns for geometric coincidences, 

showing the bias, random, and correlated errors shown in Table 2, except for each station used for land (B.1) and ocean (B.2).  705 

The standard deviation of these biases is what is called the "Station bias variability" in, e.g. Table 2.  There is no obvious 

pattern to the land biases, but there is a consistent ocean bias near Saga, Izana, and Burgos between 19 and 33N, of -1.0, -0.9, 

and -0.7 ppm, respectively (OCO-2 low).  Interestingly, the OCO-2 land data versus Burgos do not have a negative bias.  The 

other stations that are used for both land and ocean comparisons:  Park Falls, Darwin, Wollongong, and Lauder have biases 

less than 0.3 ppm. 710 

Table B.3 shows the overall bias versus TCCON stations for OCO-2 land geometric coincidence for 3 different years (2015, 

2016, and 2017).  The question we are interested is whether these biases are persistent year-to-year.  The correlation between 

2015 and 2016 biases is -0.27 (0.48 if Eureka and Sodankyla are not included).  The correlation between 2016 and 2017 is 

0.54 (0.84 if Sodankyla is not included). 
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Table 1 Quantification of errors from imperfect validation.  These errors represent systematic, not random, errors.   

  Land 

nadir/glint 

(ppm) 

Ocean glint (ppm) 

Co-location error  Geometric (CT2017) 0.4 (0.3, 0.2)* 0.4 (0.3, 0.2)* 

Geometric (CAMS) 0.2 (0.2, 0.1) 0.3 (0.3, 0.1) 

Geometric (GMAO-50 

km) 

0.3 (0.3,0.1)* 0.5 (0.4, 0.3)* 

Geometric (GMAO-7 km) 0.5 (0.5,0.1)* 0.5 (0.5, 0.3)* 

Dynamic (CT2017) 0.7 (0.7, 0.2)* 0.7 (0.7, 0.2)* 

Small dynamic (CT2017) 0.6 (0.6, 0.2)* 0.6 (0.6, 0.2)* 

TCCON error 

(Section 2.1.3) 

 0.4 0.4 

Averaging Kernel 

error (TCCON) 

 0.1 0.1 

Aircraft error 

(Section 2.1.2) 

 0.1 (XCO2) 0.4 

(LMT) 

0.1 (XCO2) 0.4 

(LMT) 

Aircraft profile 

extension to TOA 

(ATom) 

 0.1 0.1 

Aircraft profile 

extension to TOA 

(ESRL/DOE) 

 0.1 0.1 

Aircraft profile 

sampling and 

extension to surface 

(ESRL/DOE) 

 0.1 0.1 

* The co-location error is shown as the total systematic error with the correlated and station bias errors in parentheses) 
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Table 2 random and correlated errors and bias variability for geometric coincidence criteria and non-sequential averaging.  

Numbers in parentheses are the co-location error estimates.  The Systematic error adds (in quadrature) the correlated error and 

the station bias.  The corrected systematic error removes co-location and validation errors.  Numbers are reported, rounded to 

the nearest 0.1 ppm.  The non-bold entries are intermediate values. 

 Mean 

bias 

 (ppm) 

Rando

m error  

 (ppm) 

Correlated 

error 

(ppm) 

Station bias 

error 

(ppm) 

Systematic 

error 

(ppm) 

Co-

location 

corrected 

systematic 

error 

(ppm) 

Correct

ed 

systema

tic error 

(ppm)*

* 

ACOS-GOSAT 

(dynamic) 

       

Land (TCCON) -0.1 (-0.1) 1.7 (0.6) 0.8 (0.6) 0.7 (0.1) 1.1 (0.6) 0.9 0.7 

Land (ESRL/DOE aircraft) -0.1 (-0.1) 1.6 (0.7) 0.8 (0.7) 0.5 (0.2) 0.9 (0.7) 0.6 0.5 

Ocean (TCCON) -0.3 (0.0) 1.1 (0.3) 0.9 (0.5) 0.4 (0.1) 1.0 (0.5) 0.8 0.6 

OCO-2 (geometric 

coincidence) 

       

Land nadir (TCCON) 0.0 (0.0) 1.0 (0.3) 0.8 (0.3) 0.6 (0.1) 1.0 (0.3) 0.9 0.8 

land glint (TCCON) -0.1 (-0.1) 1.1 (0.3) 0.7 (0.4) 0.6 (0.3) 0.9 (0.5) 0.8 0.6 

All land (TCCON) -0.1 (-0.1) 1.1 (0.3) 0.7 (0.3) 0.6 (0.2) 0.9 (0.4) 0.8 0.6 

All land (TCCON) (20-ave) -0.1(-0.1) 0.7 (0.3) 0.6 (0.2) 0.6 (0.2) 0.9 (0.4) 0.8 0.6 

Ocean glint (TCCON) -0.2 (0.1) 0.5 (0.2) 0.6 (0.4) 0.4 (0.2) 0.7 (0.4) 0.6 0.3 

Ocean glint (TCCON) (20-

ave) 

-0.2 (0.1) 0.6 (0.2) 0.7 (0.4) 0.4 (0.2) 0.8 (0.4) 0.7 0.4 

Ocean glint (ATom) -0.7 (-0.1) 0.8 (0.3) 0.1 (0.2) 0.5 (0.3) 0.5 (0.4) 0.4 0.3 

OCO-2 (dynamic 

coincidence) 

       

Land nadir (TCCON)* -0.2 (-0.1) 0.9 (0.6) 0.9 (0.7) 0.5 (0.2) 1.0 (0.7) 0.7 0.5 

land glint (TCCON)* -0.2 (-0.2) 1.0 (0.7) 0.9 (0.7) 0.6 (0.3) 1.1 (0.8) 0.8 0.6 

All land (TCCON)* -0.2 (-0.1) 1.0 (0.6) 0.9 (0.7) 0.5 (0.2) 1.0 (0.7) 0.7 0.5 
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 965 

* The TCCON dynamic results are done with 20-observation averages due to huge number of co-locations for dynamic 

coincidence, resulting in smaller random error (offset by higher random co-location error) 

** The far right column is the 2nd from the right column with the validation errors from Table 1 subtracted in quadrature or 

directly subtracted (for the averaging kernel sensitivity error). 

+Likely high due to comparisons of ocean versus continental observations. 970 

  

All land (ESRL/DOE 

aircraft) 

0.0 (0.0) 1.2 (0.6) 0.9 (0.8) 0.5 (0.3) 1.0 (0.9) 0.6 0.5 

Ocean glint (TCCON) -0.2 (0.1) 0.6 (0.5) 0.9 (0.7) 0.6 (0.2) 1.1 (0.7) 0.8 0.6 

Ocean glint (ESRL/DOE 

aircraft ) 

-0.1 (0.2) 0.7 (0.5) 1.3 (0.8) 0.3 (0.2) 1.3 (0.8) 1.0 1.0+ 

CT2016/CT2017NRT 

(geometric) 

       

Land nadir (TCCON) -0.2 0.3 0.3 0.5 0.6 0.6 0.4 

Land glint (TCCON) -0.1 0.3 0.4 0.5 0.6 0.6 0.5 

Ocean (TCCON) -0.2 0.2 0.4 0.4 0.6 0.6 0.4 

Ocean (ATom) -0.4 0.3 0.2 0.6 0.6 0.6 0.6 
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Table 3.  OCO-2 and GOSAT errors without bias correction.  These can be compared to the same cases from Table 2.  The 

non-bold entries are intermediate values. 

** Systematic error with co-location error and validation error subtracted 

  975 

 Mean bias  

 (ppm) 

Random 

error  

 (ppm) 

Correlated 

error 

(ppm) 

Station 

bias error 

(ppm) 

Systematic 

error 

(ppm) 

Co-location 

corrected 

systematic 

error 

(ppm) 

Corrected 

systematic 

error 

(ppm)** 

GOSAT (dynamic coincidence) 

land (TCCON) 0.5 (-0.1) 2.0 (0.7) 0.9 (0.6) 1.1 (0.1) 1.4 (0.6) 1.3 1.1 

Ocean (TCCON) 0.1 (0.0) 1.5 (0.3) 1.0 (0.5) 0.4 (0.1) 1.1 (0.5) 0.9 0.8 

OCO-2 (geometric coincidence) 

land (TCCON) -2.1 (-0.1) 1.6 (0.3) 1.0 (0.3) 0.8 (0.2) 1.3 (0.4) 1.2 1.0 

Ocean (TCCON) -2.5 (0.0) 0.8 (0.2) 0.8 (0.4) 0.5 (0.2) 0.9 (0.4) 0.8 0.7 
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Table 4.  Validation of lower-tropospheric OCO-2 versus aircraft (listed in Table 2) and remote ocean surface measurements.  

The non-bold entries are intermediate values. 

 

 

  980 

 Mean bias  

 (ppm) 

Random 

error  

 (ppm) 

Correlated 

error 

(ppm) 

Station 

bias error 

(ppm) 

Systematic 

error 

(ppm) 

Co-location 

corrected 

systematic 

error 

(ppm) 

Corrected 

systematic 

error 

(ppm)** 

GOSAT LMT (dynamic coincidence) 

land (aircraft) -0.3 (-0.2) 2.8 (1.8) 2.2 (2.0) 0.9 (0.6) 2.4 (2.1) 1.1 1.1 

Ocean (aircraft) -0.9 (1.4) 2.0 (0.9) 2.9 (2.5) 1.8 (1.7) 3.4 (3.0) 1.6 1.6 

Ocean (aircraft, rta 

only) 

0.1 (0.0) 1.6 (0.3) 0.7 (0.3)    ~0.7 

Ocean (surface) -0.5 (0.3) 1.7 (0.6) 1.2 (0.7) 0.8 (0.3) 1.4 (0.8) 1.2 1.2 

OCO-2 LMT (dynamic coincidence) 

land (ESRL/DOE 

aircraft) 

0.1 (-0.2) 2.6 (1.9) 2.3 (2.2) 0.9 (0.7) 2.5 (2.3) 0.9 0.8 

Ocean (ESRL/DOE 

aircraft) 

0.0 (0.4) 1.6 (1.1) 3.4 (2.1) 1.5 (0.5) 3.7 (2.2) 3.0 3.0 

Ocean (aircraft, rta 

only) 

0.0 (0.1) 1.2 (0.3) 1.0 (0.3)    ~1.0 

Ocean (ATom 

aircraft) (dynamic) 

-0.8 (-0.4) 2.2 (1.3) 0.8 (0.7) 0.8 (0.8) 1.1 (1.1) - <1.1 

Ocean (surface, 

geometric coinc.) 

-0.3 (-0.1) 1.0 (0.4) 1.2 (0.4) 0.8 (0.3) 1.4 (0.5) 1.4 1.3 
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Table 5.  Standard deviation and bias variability for OCO-2 averaged products using geometric coincidence.  The same set of 

stations is used as in Table 2.  The "Baker (# > 20)" entry considers only bins that have at least 20 observations.  The Systematic 

error combines the standard deviation (which assumes is correlated error) and station bias, and subtracts the co-location error 

and validation error, similarly to what was done in Table 2. 

 985 

 Bias 

(ppm) 

Stdev 

(ppm) 

Station bias 

(ppm) 

Systematic 

error 

(corrected) 

(ppm) 

Predicted error 

(ppm) 

Land nadir      

   Lite 20-obs average 0.1 (0.0) 1.0 (0.4) 0.6 (0.1) 1.0 0.7* 

   Baker (# > 20) 0.0 (-0.1) 0.9 (0.5) 0.6 (0.2) 0.8 0.7** 

   Baker 0.4 (0.0) 1.3 (0.4) 0.5 (0.1) 1.4 0.7** 

   Liu 0.4 (0.0) 1.4 (0.6) 0.5 (0.1) 1.3 1.1*** 

Land glint      

   Lite 20-obs average 0.0 (-0.1) 1.0 (0.5) 0.5 (0.3) 0.8 0.6* 

   Baker (# > 20) 0.0 (-0.1) 0.9 (0.5) 0.6 (0.2) 0.8 0.7** 

   Baker 0.3 (-0.1) 1.3 (0.5) 0.6 (0.2) 1.2 0.7** 

   Liu 0.3 (-0.1) 1.3 (0.6) 0.5 (0.2) 1.2 1.1*** 

Ocean glint      

   Lite 20-obs -0.2 (0.0) 0.8 (0.5) 0.4 (0.2) 0.6 0.5* 

   Baker (# > 20) -0.2 (0.0) 0.8 (0.4) 0.4 (0.2) 0.6 0.5** 

   Baker -0.2 (0.0) 0.9 (0.4) 0.4 (0.2) 0.8 0.6** 

   Liu -0.2 (0.0) 0.9 (0.4) 0.4 (0.1) 0.8 0.7*** 
*Using Eq. 3 and values from Table 2 (OCO-2 geometric coincidence results).**Field xco2_uncertainty.***Field 

XCO2_STD+UNCERTAINTY 
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Table 6.  The actual errors for the Baker-average OCO-2 products.  The errors reflect the fact that areas with sparser good 

quality observations have higher errors. 990 

Number Error (ppm) 

1  2.5 

2  1.7 

3-15  1.3 

16-25  1.2 

26-42  1.1 

43-70  1.0 

71-113  0.9 

114-189  0.8 

190-240  0.7 
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Table 7.  Mean seasonal biases versus aircraft and TCCON for ocean and land.  The stations comprising the averages are:  

Bialystok, Karlsruhe, Orleans, Garmisch; Park Falls, Lamont, Anmyeondo, Dryden; Darwin, Wollongong, Lauder125 for 

TCCON land, and Saga, Izana; Ascension, Darwin, Reunion, Wollongong, Lauder for TCCON ocean; dnd, thd for western 995 

North America, etl,lef,car,hil,sgp for inland North America, and nha, cma, sca, and tgc for eastern coastal North America.  The 

bold entries indicate statistically significant biases (using the t test) of at least 0.2 ppm magnitude. 

 CT ACOS-GOSAT OCO-2 

Category DJF MAM JJA SON DJF MAM JJA SON DJF MAM JJA SON 

NH > 45N (TCCON land) -0.1 0.3 -0.1 -0.1 -0.1 -0.1 0.0 0.2 0.1 0.0 -0.1 0.0 

NH 0-45N (TCCON land) 0.1 -0.2 0.2 -0.2 0.3 -0.3 0.1 -0.1 0.4 -0.1 -0.2 -0.1 

West coast N. America 

(ESRL land) 

0.0 0.2 0.1 -0.3 0.2 -0.3 0.2 -0.1 0.2 0.0 0.1 -0.3 

Inland N. America (ESRL 

land) 

-0.4 0.4 0.2 -0.2 0.0 -0.1 0.1 -0.1 -0.2 0.3 0.0 -0.1 

East coast N. America (ESRL 

land) 

0.1 0.1 -0.2 0.0 0.2 -0.1 -0.1 -0.1 0.2 0.2 -0.4 0.0 

NH 0-45N (TCCON ocean) -0.2 0.0 0.3 -0.0 -0.4 0.3 0.2 0.0 -0.1 0.1 -0.1 0.1 

SH (TCCON land) -0.3 0.2 0.2 -0.1 -0.2 0.0 0.3 -0.1 -0.2 0.1 -0.1 0.2 

SH (TCCON ocean) -0.3 0.3 0.3 -0.2 -0.2 -0.2 0.4 0.1 -0.3 -0.1 0.3 0.1 
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Table 8.  Assimilation of OCO-2 XCO2 bias correction term for land nadir (LN) and ocean glint (OG) annual fluxes. 1000 

# TransCom region LN Annual 

flux 

2015 

(PgC) 

LN Annual 

flux 

2016 

(PgC) 

LN Annual 

flux 

2016-2015 

(PgC) 

OG 

Annual 

flux 

2015 

(PgC) 

OG 

Annual 

flux 

2016 

(PgC) 

OG 

Annual 

flux 

2016-2015 

(PgC) 

1 North American Boreal   -0.06 -0.18 -0.12 0.03 -0.07 -0.1 

2   North American Temperate   -0.26 -0.62 -0.36 0.01 0.25 0.24 

03a  N. Tropical South America  -0.06 -0.17 -0.11 -0.18 -0.13 0.05 

03b S. Tropical South America  -0.47 -0.47 0.00 0.07 0.19 0.12 

4 South American Temperate   -0.56 -0.79 -0.23 0.12 -0.04 -0.16 

05a Temp. N. extratrop. Africa 0.32 0.35 0.03 0.04 0.03 -0.01 

05b Northern Tropical Africa 0.72 0.41 -0.31 0.09 -0.03 -0.12 

06a Southern Tropical Africa -0.33 -0.28 0.05 -0.14 0.07 0.21 

06b Temp. S. extratrop. Africa 0.12 0.19 0.07 0.15 0.05 -0.1 

7 Eurasia Boreal    -0.09 0.20 0.29 -0.05 -0.04 0.01 

8 Eurasia Temperate  -0.33 -0.19 0.14 0.33 0.16 -0.17 

09a Northern Tropical Asia -0.65 -0.59 0.06 -0.09 -0.07 0.02 

09b Southern Tropical Asia -0.16 -0.14 0.02 -0.27 -0.3 -0.03 

10a Tropical Australia  0.14 0.12 -0.02 -0.09 -0.08 0.01 

10b Temperate Australia  0.33 0.36 0.03 0.13 0.05 -0.08 

11 Europe 0.38 0.46 0.08 0.15 0.03 -0.12 

 Land mean -0.06 -0.08 -0.02 0.02 0.00 -0.01 

 Land stdev 0.38 0.40 0.17 0.15 0.13 0.12 

12 North Pacific Temperate -0.38 -0.58 -0.2 0.07 0.24 0.17 

13 West Pacific Tropical -0.08 -0.07 0.01 -0.17 -0.14 0.03 

14 East Pacific Tropical -0.08 -0.11 -0.03 -0.28 -0.11 0.17 

15 South Pacific Temperate 0.03 0.00 -0.03 -0.04 -0.05 -0.01 

16 Northern Ocean  0.09 0.11 0.02 0.04 -0.02 -0.06 
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17 North Atlantic Temperate 0.74 0.66 -0.08 0.08 0.08 0 

18 Atlantic Tropical  -0.01 -0.02 -0.01 0 0.1 0.1 

19 South Atlantic Temperate 0.03 0.00 -0.03 0.08 -0.05 -0.13 

20 Southern Ocean  0.24 0.30 0.06 0.34 0.22 -0.12 

21 Indian Tropical  0.10 0.14 0.04 -0.1 -0.09 0.01 

22 South Indian Temperate 0.24 0.23 -0.01 0.04 -0.02 -0.06 

23 Not optimized  0.02 0.03 0.01 0.03 0.02 -0.01 

 Ocean mean 0.08 0.06 -0.02 0.01 0.02 0.01 

 Ocean stdev 0.26 0.29 0.07 0.15 0.12 0.10 

 All mean 0.00 -0.02 -0.02 0.01 0.01 -0.01 

 All stdev 0.34 0.36 0.13 0.15 0.13 0.11 
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Table A.1 ACOS-GOSAT v7.3 LMT Land quality flags 

 General O2A Weak Strong 

Sounding airmass < 3.2    

Co2_grad_del < 100, > -50    

H2o_scale < 1.3, > 0.7    

snr  > 80 > 70 > 150 

Aod_oc < 0.13    

Reduced_chi_squared  < 1.3 < 1.5, > 0.7 < 1.5 

Aod_seasalt < 0.06    

S32 > 0.22    

tcwv_uncertainty < 0.4    
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Table A.2 ACOS-GOSAT v7.3 LMT Ocean quality flags 

 General O2A Weak Strong 

Sounding airmass < 2.5    

H2o_scale < 1.4    

Aod_seasalt < 0.4    

Aod_ice < 0.1    

S31 > 0.42, < 0.57    

S32 < 0.61    

Albedo_slope   > 0  

Retrieved surface 

pressure 

< 1025    

Predicted error < 7 ppm    

Pre-processor 

H2o_ratio 

> 0.92, < 1.02    
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A.2 OCO-2 v8 

Table A.3 OCO-2 v8 LMT Land quality flags 1010 

 General O2A Weak Strong 

deltaT < 2    

Eof3_3_rel < 1    

snr  < 600   

Aod_bc < 0.01    

Land_fraction > 0.99    
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Table A.4 OCO-2 v8 LMT Ocean quality flags 

 General O2A Weak Strong 

Albedo  < 0.05   

Aod_dust < 0.04    

Aod_seasalt < 0.08    

Aod_surfate < 0.10    

aod_total < 0.10    

aod_oc < 0.02    

aod_water < 0.02    
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Table B.1.  Station-by-station results for OCO-2 land versus TCCON for geometric coincidences.  The mean bias, random and 

correlated errors are shown with the co-location estimates for each shown in (). 

TCCON station 
Latitude 
(deg) 

Longitude 
(deg) 

bias(col) 
(ppm) 

random(col) 
(ppm) 

corr(col) 
(ppm) 

Eureka 80 -86 -1.5(0.1) 2.1(0.1) 0.5(0.1) 
Sodankyla 67 27 0.6(0.2) 1.0(0.6) 0.8(0.4) 
East Trout Lake 54 -105 -0.2(-0.2) 1.1(0.6) 0.9(0.6) 
Bialystok 53 23 0.3(0.1) 1.1(0.4) 0.7(0.3) 
Karlsruhe 49 8 1.0(-0.5) 1.1(0.3) 0.8(0.5) 
Orleans 48 2 0.4(0.1) 1.0(0.3) 0.6(0.4) 
Garmisch 47 11 0.1(-0.1) 1.2(0.4) 1.4(0.6) 
Park Falls 46 -90 -0.2(0.1) 1.0(0.6) 0.6(0.5) 
Lamont 37 -97 0.0(0.0) 0.8(0.3) 0.6(0.3) 
Anmyeondo 37 126 -0.1(-0.3) 1.3(0.3) 0.6(0.3) 
Dryden 35 -118 0.5(-0.1) 1.1(0.2) 1.1(0.3) 
Hefei 32 117 -0.8(-0.2) 0.8(0.4) 1.6(0.3) 
Burgos 19 121 0.0(0.0) 1.3(0.1) 0.1(0.0) 
Manaus -3 -61 -1.2(-0.1)* 1.9(0.2) 0.0(0.5) 
Darwin -12 131 -0.1(0.0) 0.7(0.1) 0.7(0.1) 
Wollongong -34 151 -0.3(0.0) 0.9(0.1) 0.6(0.2) 
Lauder125 -45 170 0.0(0.0) 1.0(0.1) 0.7(0.1) 

Aircraft station 
Latitude 
(deg) 

Longitude 
(deg) 

bias(col) 
(ppm) 

random(col) 
(ppm) 

corr(col) 
(ppm) 

pfa 65 -149 0.6(0.5) 1.3(0.8) 0.9(0.4) 
etl 54 -105 0.5(0.5) 1.2(0.4) 1.0(1.3) 
dnd 47 -99 -0.6(0.1) 1.1(0.7) 1.1(1.2) 
nsa 70 -153 0.7(0.4) 1.3(0.7) 0.8(0.8) 
lef 46 -90 -0.2(-0.4) 1.1(0.6) 1.5(0.8) 
nha 43 -70 0.1(-0.2) 1.1(0.7) 0.7(0.9) 
thd 41 -124 0.2(0.4) 1.5(0.7) 1.4(1.0) 
car 41 -104 -0.2(0.0) 1.3(0.7) 0.9(0.4) 
hil 40 -88 -0.6(-0.3) 1.2(0.7) 0.8(0.7) 
cma 39 -74 0.0(-0.2) 1.1(0.7) 0.8(0.8) 
sgp 37 -97 -0.5(-0.2) 1.4(0.7) 0.7(0.7) 
sca 33 -80 0.0(-0.2) 1.2(0.6) 0.9(0.6) 
tgc 28 -97 -0.4(-0.3) 1.2(0.6) 0.5(0.5) 

* Sparse number of observations 
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Table B.2.  Station-by-station results for OCO-2 ocean versus TCCON.  The mean bias, random and correlated errors are 1020 

shown with the co-location estimates for each shown in (). 

TCCON 
station 

Latitude 
(deg) 

Longitude 
(deg) 

bias(col) 
(ppm) 

random(col) 
(ppm) 

corr(col) 
(ppm) 

Park Falls 46 -90 -0.1(0.5) 0.8(0.7) 0.8(0.8) 
Rikubetsu 43 144 0.1(-0.1) 0.7(0.0) 0.6(1.1) 
Tsukuba125 36 140 -0.4(-0.1) 0.9(0.5) 0.9(0.5) 
Saga 33 130 -1.0(0.1) 0.8(0.4) 0.7(0.5) 
Izana 28 -16 -0.9(0.0) 0.6(0.1) 0.5(0.3) 
Burgos 19 121 -0.7(0.3) 0.6(0.1) 0.7(0.2) 
Ascension -8 -14 0.1(0.0) 0.6(0.1) 0.6(0.1) 
Darwin -12 131 0.1(0.0) 0.5(0.1) 0.7(0.2) 
Reunion -21 55 0.0(0.0) 0.6(0.1) 0.8(0.1) 
Wollongong -34 151 0.2(0.0) 0.5(0.1) 0.6(0.3) 
Lauder125 -45 170 0.1(0.0) 0.5(0.1) 0.4(0.1) 

ESRL station 
Latitude 
(deg) 

Longitude 
(deg) 

bias(col) 
(ppm) 

random(col) 
(ppm) 

corr(col) 
(ppm) 

Rarotonga -21 -160 -0.2(0.0) 0.5(0.1) 0.4(0.1) 
ATom 
campaign 

Date 
start Date end 

bias(col) 
(ppm) 

random(col) 
(ppm) 

corr(col) 
(ppm) 

1S 8/3/16 8/22/26 -1.2(-0.5) 1.0(0.5) 0.1(0.4) 
1 8/22/16 8/22/16 -0.4(0.3) 0.7(0.6) 0.0(0.3) 
2S 2/1/17 2/10/17 -0.7(0.0) 0.6(0.1) 0.2(0.1) 
2 1/26/17 1/29/17 -1.2(0.0) 0.7(0.1) 0.0(0.0) 
2N 2/10/17 2/15/17 -0.1(-0.1) 0.8(0.3) 0.1(0.1) 
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Table B.3 OCO-2 biases versus TCCON for 2015, 2016, and 2017 for OCO-2 geometric land coincidences with co-location 

bias in (). 1025 

 Lat Lon 
2015 bias 
(col) 

2016 bias 
(col) 

2017 bias 
(col) 

Eureka 80 -86 -1.5(0.1) 0.8(0.2)  
Sodankyla 67 27 1.0(0.0) -1.3(0.0) 0.2(0.3) 
Bialystok 53 23 0.3(0.2) 0.1(-0.1) 0.0(0.2) 
Karlsruhe 49 8 1.1(-0.6) 0.8(-0.4) 1.3(-0.3) 
Orleans 48 2 0.7(0.0) 0.5(0.1) 0.1(-0.1) 
Garmisch 47 11 0.2(-0.2) 0.0(-0.1) 0.4(-0.1) 
Parkfalls 46 -90 -0.1(0.1) -0.4(0.0) -0.2(0.2) 
Lamont 37 -97 0.2(0.0) 0.0(0.0) -0.2(0.0) 
Anmyeondo 37 126 -0.1(-0.3) 0.0(-0.2)  
Dryden 35 -118 0.5(-0.1) 0.3(-0.1)  
Hefei 32 117 0.5(-0.3) -1.1(-0.2)  
Darwin -12 131 0.3(0.0) -0.7(0.0) -0.5(0.0) 
Wollongong -34 151 -0.3(-0.1) -0.3(-0.1) -0.5(0.0) 
Lauder125 -45 170 -0.1(0.0) -0.2(0.0) 0.0 (0.0) 
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Table B.4 OCO-2 v8 biases versus TCCON for ocean geometric coincidences showing stations with comparisons all 3 years, 

with co-location bias in (). 

 Lat Lon 
2015 bias 
(col) 

2016 bias 
(col) 

2017 bias 
(col) 

Parkfalls 46 -90 0.0(0.6) -0.3(0.4) -0.6(0.0) 
Rikubetsu 43 144 0.3(-0.3) 0.3(-0.4) -0.2(0.3) 
Tsukuba125 36 140 -0.4(-0.2) 0.1(0.2) -0.7(-0.2) 
Saga 33 130 -0.8(0.0) -1.2(-0.1) -1.1(0.3) 
Izana 28 -16 -0.6(-0.2) -0.7(0.1) -1.1(0.0) 
Ascension -8 -14 0.1(0.0) 0.1(-0.1) -0.2(0.0) 
Darwin -12 131 0.5(0.1) -0.4(0.0) -0.5(0.0) 
Reunion -21 55 0.3(0.0) 0.2(0.0) -0.2(0.0) 
Wollongong -34 151 0.7(0.0) -0.2(0.0) 0.0(-0.1) 
Lauder125 -45 170 0.2(0.0) -0.2(0.0) 0.1(0.0) 
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Figure 1: Observation locations for (a) ATom, (b) TCCON, (c) ESRL and DOE aircraft, and (d) "remote" surface observations.  1035 
ATom campaigns are designated by color, with the profiles extending above 12 km with a "+" placed, with inset showing the 
distribution of ATom heights.  For (b), (c), and (d) the colors designate the bias of OCO-2 XCO2 at each site.  If a site is used for 
land and ocean OCO-2 validation, the left side of bias is for land and right side of the bias is for ocean. 

  

(b) TCCON 
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  1040 

  

 

  

Figure 2: ACOS-GOSAT co-located to TCCON using geometric and dynamic coincidence criteria.  Monthly averages are shown for 
ACOS-GOSAT (red), TCCON (pink), the ACOS-GOSAT prior (blue/green), and the CarbonTracker model (purple dotted) (n= 1045 
shows the number of months containing co-locations).  The lower plots show differences of ACOS-GOSAT (red) and the prior 
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(blue/green) difference versus TCCON.  The dashed purple line on the lower plots shows the difference between the CarbonTracker 
model co-located with GOSAT observation location/times minus the CarbonTracker model co-located with TCCON 
observation/times (to quantify the error introduced by co-location). 
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Figure 3: OCO-2 co-located with TCCON using geometric and dynamic coincidence criteria.  Monthly averages are shown for OCO-1055 
2 (red), TCCON (pink), the OCO-2 prior (blue/green), and the CarbonTracker model (purple dotted).  The lower plots show 
differences of OCO-2 (red) and the prior (blue/green) difference versus TCCON.  The dashed purple line on the lower plots shows 
the difference between the CarbonTracker model co-located to OCO-2 observation location/times minus the CarbonTracker model 
co-located to TCCON observation/times. 
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Figure 4: Geometric and Dynamic coincidence criteria for OCO-2 versus TCCON at Park Falls.  Same descriptions as Fig. 2.  For 
v8 geometric coincidence, data is missing from November through April. 
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Figure 5: Monthly averages of OCO-2 XCO2 and lower partial column (LMT) versus aircraft.  The OCO-2 value is red, the prior in 1070 
blue/green, and airplane in black.  On the lower plots, differences are shown between OCO-2 (read) and the prior (blue/green) and 
aircraft.  The lower plots show the differences between CarbonTracker co-located with OCO-2 minus CarbonTracker co-located 
with aircraft (black dashed lines). 

  

XCO2 

LMT 

https://doi.org/10.5194/amt-2019-257
Preprint. Discussion started: 28 October 2019
c© Author(s) 2019. CC BY 4.0 License.



57 
 

  1075 

 

Figure 6: OCO-2 ocean glint versus ATom for campaigns "1S" and "2N".  OCO-2 (averaged over 10 adjacent observations) is 
shown in red, ATom CO2 in black.  CarbonTracker co-located with to OCO-2 or ATom are shown in pink or purple, respectively.  
The lower plots show differences versus ATom.  The difference between the OCO-2 prior and ATom is shown in green. TCCON co-
located in latitude and time are shown as black triangles.  The gaps are locations where no co-located observations were found. 1080 
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Figure 7: Error reduction with averaging for (a) OCO-2 versus TCCON at Lamont (land nadir) for geometric coincidences, (b) 
OCO-2 versus ATom campaign 2N for ocean glint. 1085 
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Figure 8: Total error (systematic plus random) for the Baker-averaged product versus the number of observations per average for 
land (left) and ocean (right).  The red dashed line shows the expected error from Table 2 and Eq. 3.  The purple and blue dashed 1090 
lines show fits for different regimes of n for land.  This shows that sparser data has higher error. 
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Figure 9: (Left) Variogram of XCO2 variability for remote ocean sites (left).  For comparison the variogram of the bias correction 1095 
term (blue) is also shown.  (Right) correlation of XCO2 variations (original, dotted; bias corrected solid), variations in the bias 
correction term (blue) and cross-correlations between the bias correction term and original XCO2 (dashed) and bias corrected XCO2 
(dotted). 
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Figure 10: Variogram of XCO2 error (OCO-2 minus TCCON) in time for land (left) and ocean glint (right). 
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