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Abstract. A new technique, named “HailPixel,” is introduced for measuring the maximum dimension and intermediate di-

mension of hailstones from aerial imagery. The photogrammetry procedure applies a convolutional neural network for robust

detection of hailstones against complex backgrounds and an edge detection method for measuring the shape of identified hail-

stones. This semi-automated technique is capable of measuring many thousands of hailstones within a single survey, which is

several orders of magnitude larger (e.g., 10,000 or more hailstones) than population sizes from existing sensors (e.g., a hail5

pad). Comparison with a co-located hail pad for an Argentinan hailstorm event during the RELAMPAGO project demonstrates

the larger population size of the HailPixel survey significantly improves the shape and tails of the observed hail size distribu-

tion. When hailfall is sparse, such as during large and giant hail events, the large survey area of this technique is especially

advantageous for resolving the hail size distribution.
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1 Introduction

Measurements of the hail size distribution (HSD) are challenging to collect owing to the infrequent and hostile nature of

hailstorms. Because of these constraints, HSD measurements are uncommon, especially for larger hail (> 25 mm). Such

observations are necessary to constrain hail microphysics parameterization schemes used in weather and climate models, and

for hail detection and sizing algorithms from weather radar. Improvements to hail retrievals and modelling are an important15

step towards mitigating the increasingly significant hail-related losses to agriculture, motor vehicles and buildings (Sánchez

et al., 1996; Changnon et al., 1997; Hohl et al., 2002).

Ground sensors for measuring the size distribution of large hail can be separated into those that provide time-recording (e.g.,

hail disdrometer) and those that provide time-integrated measurements (e.g., hail pad). Time-recording instruments such as
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impact or optical disdrometers provide valuable information on the temporal variability of the HSD within a given storm, but

are often expensive to fabricate and maintain, and difficult to deploy. Thus, such instruments typically are only deployed as

smaller networks or for field campaigns (e.g., Federer and Waldvogel, 1975; Löffler-Mang et al., 2011; Brown et al., 2014).

In contrast, time-integrated instruments often are cheaper to fabricate, maintain, and deploy, making them attractive options

for longer-term monitoring of hailfall. The most commonly used time-integrated instrument for measuring HSDs is a hail5

pad, consisting of a foil covered styrofoam pad that preserves dents of hail impact (Long et al., 1979). This sensor is cost

effective and has seen extensive use by previous and ongoing campaigns in the US and Europe over the last 50 years (Cheng

and English, 1983; Fraile et al., 1992; Cifelli et al., 2005; Kalina et al., 2014). Both hail pads and hail disdrometers provide

reasonable estimates of hail size, but are subject to significant limitations even with careful calibration (e.g., Palencia et al.,

2011). Further, both time-recording and time-integrated instruments for measuring the HSD utilize a small sample area on the10

order of 0.1 to 0.3 m2. Towery et al. (1976) suggests this small sample area is likely to underrepresent the HSD, particularly

for larger hail, and recommends deployment of multiple sensors to minimize this effect.

The concentration of large hail, and particularly giant hail (> 100 mm) can be very sparse (Witt et al., 2018), severely limiting

the effectiveness of these small ground sensors even with multiple units. To overcome these sampling limitations, we describe

a new time-integrated technique for measuring the HSD by combining aerial imagery captured from a small unmanned aircraft15

with deep learning and computer vision feature extraction. Methods involving deep learning have seen increased utilization

in the atmospheric sciences community, including for the application of severe weather (e.g., McGovern et al., 2017; Gagne

et al., 2019); however, there has been limited usage of such methods in targeted field observation datasets and in situ data. Over

the last two decades, convolutional neural network’s (CNN) have become a rapidly developing deep learning research tool

that excels at image feature recognition (e.g., Razavian et al., 2014; Krizhevsky et al., 2012). This is achieved by developing20

complex feature recognition filters independent of prior knowledge, inspired by processes within the animal visual cortex

(Hubel and Wiesel, 1968).

The new technique described here, named “HailPixel," enables the capture of very large areas (> 1500 m2, equivalent area

to several thousand hail pads) immediately following a hailstorm. This paper describes the methods of imagery capture and

semi-automated extraction of the HSD using a combination of CNN and computer vision techniques. Results from a HailPixel25

survey of a hailstorm on 26 November 2018 in San Rafael (Argentina) are discussed in the context of existing studies and

potential improvements for future surveys.

2 Data and Approach

To effectively extract the HSD from aerial imagery, hailstone size must of significantly larger than the effective ground resolu-

tion of the sensor and the concentration of hailstones must be sufficiently low so that overlapping stones are minimised. Aerial30

imagery surveys of hail coverage were conducted in the Mendoza Provence of Argentina after hailstorms on 25 and 26 Novem-

ber 2018 during the RELAMPAGO field campaign (Nesbitt, 2019). Only the 26 November event produced non-accumulating

hail of sufficiently large diameter (> 20 mm), and imagery from this event will be used throughout the paper. The hail swath
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observed from the 26 November event was produced by a marginally supercellular storm that developed in an environment of

moderate instability and deep-layer shear. The storm initiated on the Andean Mountains and tracked approximately 120 km

east-northeast towards the city of San Rafael before observations were made. A single hail pad (300×400×30 mm polystyrene

foam block covered in aluminium foil) was also deployed 2 km southwest of the aerial survey site for the San Rafael hailstorm

(34.6533◦ S 68.5030◦ W), providing a secondary measure of the HSD. To estimate hail size from hail pad indentations, the5

major and minor axis length of individual dents was measured with digital calipers and transformed into hail major and minor

axis size using a relationship developed by the Community Collaborative Rain, Hail, and Snow Network (N. Doesken, personal

communication, April 17, 2019).

2.1 Imagery

A DJI Phantom 4 Pro V2 aircraft and Pix4DCapture flight-control software was used for image acquisition. The integrated,10

gimbal-mounted aircraft camera uses a 13.2×8.8 mm CMOS sensor which provides 20M effective pixels, automatic exposure,

and an auto-focus lens with a focal length of 8.8− 24 mm and maximum field of view of 84◦. For the 26 November event, the

aircraft was flown at an altitude of 10 m (relative to the take-off location) over a rectangular survey area of 1290 m2 centred

on 34.6459◦ S 68.4814◦ W, providing a ∼2.7-mm ground sampling distance (Fig. 1a). Near surface wind speed at the time

of capture was noted by the authors to be a gentle breeze (3.5 - 5.5 ms−1), reducing the likelihood wind-induced motion15

blur. Images were captured with a 70% overlap laterally and medially at a flight speed of 1 m s−1 over a surface consisting

of sparse grasses, small shrubs, gravel, and dirt. A large image overlap and slow flight speed was selected to increasing the

number of quality matching points during orthomosaic construction and reduce motion blur (Bemis et al., 2014). The survey

was initialized immediately once hail fall concluded and required approximately 4 minutes to complete. The location of images

was measured using the integrated GPS receiver, which has an accuracy of ±1.5 m. Precise location measurements (e.g., real-20

time kinematic positioning) are not essential for improving the pixel size accuracy during photogrammetry processing (Strecha,

2012).

The Pix4DMapping software package was used to generate orthomosaic imagery and a digital elevation model (DEM) from

the survey photos (Strecha, 2012) with a ground sampling distance of 2.7 mm. The software is based on the Structure from

Motion photogrammetry technique and uses the following automated steps:25

1. Tie points between the survey images are identified. Each tie point must be matched in at least 3 images

2. Tie points are combined with positioning and orientation information from the aircraft autopilot to reconstruct the camera

perspective and position for each survey image. This information is used to verify the quality of matching points and

calculate the 3D coordinates of tie points.

3. The sparse point cloud of 3D coordinates is interpolated to obtain a gridded DEM.30

4. The DEM is used to project every image pixel and to calculate a orthomosaic.
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An average of 181,081 matched tie points were found per m3 with a mean geolocation error of less than 1 mm. Analysis of

the DEM indicates a gradual slope was present across the survey area with a total change in elevation of approximately 2.3 m

(not shown). Two scale markers consisting of 300× 300 mm black and white vinyl tiles were also placed into the aerial survey

area to provide a secondary check of pixel size within the orthomosaic.

2.2 Hail Detection5

To efficiently identify the many thousands of hailstones captured in the aerial imagery after the San Rafael hailstorm, automated

feature detection techniques were explored. Simple thresholding of pixel luminosity for detecting hailstones performed poorly

owing to similar luminosity from sparse grasses, light dirt patches, pale colored rocks and leaf debris, and for instances where

hailstones were in contact. Despite the low contrast, hailstones were easily identifiable in the imagery by human observers,

motivating the application of the state-of-art mask region-CNN (R-CNN) model (He et al., 2017). This technique combines the10

optimised selection and parallel processing of proposed feature regions (Fast R-CNN) with semantic segmentation, whereby

each pixel is classified. Mask R-CCN architecture and implementation used is described in detail by He et al. (2017).

To reduce memory requirements, the 489-megapixel aerial survey orthomosaic was divided into 1961 tiles of size 600

× 600 pixels, including a 50-pixel overlap along edges with neighbour tiles to avoid cropped hailstones (Fig. 1b, 2a,b). To

provide a sufficiently large sample of hailstones for training the Mask R-CNN model, 12 tiles were manually selected that in15

total contained more than one thousand stones and were annotated using the VGG Image Annotator (VIA) tool (Dutta and

Zisserman, 2019). These tiles were also selected to sample the varying background types across the orthomosaic. Nine tiles

were randomly selected for training (containing 729 annotated hailstones) and the remaining three for validation (Fig. 1c). The

Mask-RCNN training was initialized with the pre-trained weights from the Microsoft COCO dataset (set of > 2× 105 labelled

images; Lin et al. (2014)), which capture many features in natural images. Utilizing these weights greatly reduces the training20

time required to recognize hail. The default learning and weighting configuration described by He et al. (2017) were applied

and training was performed on 8 GPUs with 1 image per GPU for 3,000 iterations (∼43 minutes of computation time). The

trained model detected more than 94% of hailstones in each validation tile with a false alarm rate of < 1%. When applied to

all tiles, the trained Mask R-CNN model detected a total of 46,871 hailstones.

2.3 Hail Size Measurement25

The segmentation mask generated by the Mask R-CNN model was initially tested for hail size measurement, but found to

contain small errors that rendered it unsuitable. To provide the pixel-level accuracy required for measuring hailstones, an edge

detection algorithm was developed to find the steep “lightness" gradient1 at the hailstone edge that occurs radially from the

hailstone centroid (Figure 1d). The HSL color space is an alternative to Red-Green-Blue (developed for color displays) that is

commonly used in computer vision applications for reducing the correlation between colors (Cheng et al., 2001). The hailstone30

centroids required to initialize the edge detection technique are derived from the segmentation mask. Two additional quality

control steps are also applied to the centroids and image tiles:
1lightness here is from the Hue-Saturation-Lightness (HSL) color space with a range 0-255
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1. Tiles where hail was obscured (e.g., under long grass or shrubs) or water had accumulated were removed, leaving 188

“clean" image tiles containing 15,983 hailstones over a total area of 342.6 m2 for hail size measurement.

2. Hail centroids for the 188 clean image tiles were manually assessed and amended if required using the VIA annotation

tool.

The clean image tiles are next transformed into the HSL color space and the hailstone size is measured for every centroid using5

the following procedure. First, coordinates of 12 equally spaced radials of length 20 pixels from the centroid (p0) are calculated

(Fig. 2c), denoted as pki Where i is the pixel index (i= 1,...20) and k is the radial index (k = 1,...,12). For all points along a

radial, the lightness values L(pki ) are extracted. Then, the gradient of lightness values L′(pki ) along each radial are calculated.

Starting from the centroid of each radial, the edge point is found at coordinate pki when the following criteria are met:

L′(pki )< 0.75×L′(pki−1)10

and

L(p0)−L(pki )> 50

The required minimum lightness difference between the hailstone centroid and background (50) was found to perform well

across all background types, including light colored soils. Once all edge points are found along the radials (Figure 2d), the

median distance d̃ from the centroid is calculated for each edge point. If an edge point falls outside the range [d̃× 0.5 to15

d̃× 1.5], it is replaced by d̃. Finally, to measure the major and minor axis length of the hailstone, the minimum bounding box

(allowing for rotation) is calculated for the set of edge points.

3 Results and Discussion

The resulting distribution of major axis length and axis ratio for the San Rafael hailstorm is shown in Figure 4, along with

the distributions obtained from the hail pad (total of 17 impacts). Comparison of the major axis length distribution from the20

HailPixel and hail pad techniques clearly demonstrate the value of aerial photogrammetry: the large population size (n=

15983) of the aerial survey provides a defined distribution shape and tails (Figure 4). The HailPixel distribution peak is 2.5

mm lower than the hail pad peak, possibly due to melting of hail on the ground before it was photographed or uncertainty in

hail size retrievals. The distribution shape is well approximated by a Gamma probability distribution function (PDF) with a

mostly absent lower quartile and long upper tail. The gamma PDF was also found to be most suited for major axis length in25

a number of other case studies studies, including Ziegler et al. (1983) for Okalahoma (US), Wong et al. (1988) for the Albert

(Canada), and Fraile et al. (1992) for León (Spain). Impact concentration observed by the hail pad was 141 m−2, significantly

higher than the mean hail concentration observed by the aerial survey (47 m−2). This difference is speculated to be the product

of longer hail fall duration at the hail pad location (2 km south west) and possible secondary impacts on the hail pad from

bouncing stones.30
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The distribution of axis ratios from the HailPixel survey is well approximated by an exponentially increasing function (not

shown); however, a local maximum at 0.8-0.85 suggests a more complex underlying distribution. Note that oblate hailstones

are most likely to rest on the surface with their minor axis orientated vertically; thus, the HailPixel technique would not

measure the true minor axis length in this scenario, but rather provides estimates of the intermediate axis ratio (assuming

ellipsoidal geometry for hailstones). This limitation is likely to also effect hail pad measurements when tumbling motions of5

oblate hailstones are not too extreme. Comparing the HailPixel intermediate/major axis distribution with Giammanco et al.

(2014) major/minor axis distributions demonstrates the expected skew towards higher axis ratios in the HailPixel dataset.

Both HailPixel and hail pad data demonstrate decreasing axis ratio with increasing hail size. This shape of this relationship

becomes apparent when the highly variable HailPixel data are binned into 5-mm intervals. For the 20-30-mm hail size range,

axis ratio remains constant and close to 0.9. For sizes > 30 mm, axis ratio decreases by 0.4−0.5% mm−1. Despite the potential10

bias in axis ratio measurements, the shape of this trend is comparable to observations by Knight (1986) for an Alberta (Canada)

hailstorm. Another study using a 3-year database of hailstones collected from the Great Plains by Giammanco et al. (2014)

demonstrates a less significant decreasing trend between hail size and axis ratio, and less spherical stones for smaller sizes. It

is likely that this relationship is also highly variable between hailstorm cases and within hailstorms (Federer and Waldvogel,

1975; Ziegler et al., 1983; Knight, 1986).15

It is also important to highlight the optimal conditions and configuration for future HailPixel surveys. We recommend

avoiding inhomogeneous background surfaces if possible, with cut or grazed turf grasses being most ideal. A uniform and

contrasting background will likely permit the use of less complex hail detection and sizing techniques. Large survey areas

(> 1000 m2) are only necessary when very sparse giant (> 100 mm) hailstones are present. Assuming a normally distributed

sample mean, a sample size of 2088 hailstones is required to represent the population mean (from 15,983 hailstones) within a20

2% confidence level at the 95% significance level. This sample size equates to a sample area of 40.1 m2 for the 26 November

survey; however, an area of at least ∼250 m2 is recommended to adequately resolve the tails of the distribution. For the DJI

Phantom 4 Pro V2 aircraft flown at a 10 m altitude, the authors recommend a minimum hail diameter of 20 mm (major axis

length) and less than 30% total ground coverage. The minimum size limit is particularly critical when separating multiple

stones in contact. Higher resolution imagery would allow for small (< 20 mm) hailstones to be measured, but the increased25

susceptibility to motion blur would likely require the aircraft to remain stationary during image capture. Further, 10 m winds

exceeding a moderate breeze (> 8 ms1) would increase the likelihood of motion blur. To quantify the measurement uncertainty

from the HailPixel technique, we recommend that hail within a 1 m2 area of the aerial survey is manually measured for three

orthogonal axes immediately following aerial capture. Finally, minimizing the melting of hailstones is critical. Where possible,

avoid aerial surveys of areas where water may flow or accumulate and conduct surveys immediately after hail fall ceases.30

4 Summary

This paper describes the novel HailPixel aerial photogrammetry technique for measuring time-integrated HSD’s after cessation

of hail fall. The workflow for collecting imagery, detecting hail stones, and measuring hail size is described, including the
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use of state-of-art mask R-CNN image segmentation algorithm. Results from a HailPixel survey after the 26 November 2018

San Rafael (Argentina) hailstorm are compared with observations from a co-located hail pad. Despite potential bias of axis

ratio measurements, the HSD and relationships observed for the San Rafael hailstorm are comparable to previous studies. In

contrast to hail impact sensors, the use of aerial imagery provided a sample area that is several orders of magnitude larger

(341.6 m2). As a result, the hailstone population size from the 26 November 2018 imagery was substantially larger than5

previous studies (15,983 hailstones), providing a more robust analysis of the HSD. Ongoing work to relate HailPixel results

with mobile polarmetric radar observations from the 26 November 2018 San Rafael hailstorm will explore the signatures of hail

size and swath extent for this event. Future HailPixel surveys are encouraged to quantify the variability of these distributions,

particularly for hailstorms producing sparse giant hail.

Data availability. All imagery, hail pad and hail retrieval data used for this work are publicly available: Soderholm. (2019). HailPixel Survey10
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Figure 1. Workflow of (a) data collection, (b) tiling of orthomosaic, (c) hail detection using the Mask-RCNN technique and (d) hail size

measurement using radial transects.
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Figure 2. Demonstration of hail size extraction from the 26 November 2018 survey orthomosaic (a) from a single tile (b; blue bounding box)

for a single hail stone (c, black circle in b). Radial transects for extracting imagery lightness are shown in (c) as black lines radiating from

hailstone centroid (blue marker) and hailstone edge pixels along transects are numbered. Subplot (d) shows the normalised pixel lightness

along the 12 transects shown in (c) with the corresponding edge pixels marked.
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Figure 3. Orthomosaic RGB imagery from the 26 November 2018 survey overlaid with the outlines of tiles used for the extraction of hail

size distribution statistics
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Figure 4. Distribution of hail major axis length, minor axis ratio and scatter plot of axis ratio and major axis length from the (a) pho-

togrammtery and (b) pad hail size retrievals for the 26 November 2018 survey. A fitted Gamma distribution probability density function for

photogrammtery major axis size distribution is shown (black line). Photogrammtery scatter plot observations are binned using 5-mm bin

sizes and error bars represent ±1 standard deviation.
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