
Dear Editor, 

We have compiled our point-by-point response to comments made by both reviewers below. 
We have also included a marked-up version of the modified manuscript, addressing all of the 
reviewer’s concerns. 

Yours faithfully, 

Adil Shah  



Response to reviewer 1 

  



We thank the reviewer for taking the time to review our manuscript and for some very useful 
and constructive comments and suggestions. We have responded (red text) to each comment 
(black italic text) in turn below. We have used these comments and suggestions to update and 
improve a revised version of the manuscript. 

Shah et al. employ two different UAV platforms to quantify known sources of CH4 during a 
series of release experiments. The deployment of a lighter prototype Microportable 
Greenhouse Gas Analyzer (pMGGA) is new and may be interesting to other potential users 
as well. The authors have done a reasonable job to characterise the sensor in the laboratory; 
however, testing of the sensor in a harsh environment with varying temperature and pressure 
is missing. The near-field Gaussian plume inversion methodology presented in previous work 
was applied to the release experiments, and the estimated fluxes and associated uncertainties 
were compared with the known sources. The paper is well structured and well written, and 
can be published at AMT after taking into account the following comments. 

We agree that the importance of temperature and pressure variability were not well described. 
We hope we have now strengthened the manuscript by addressing this concern. We have 
added a new table (Table 5), which shows that variability in cell temperature for the MGGA 
and pMGGA was no more than 1.3° C and 2.7° C, respectively, within each UAV flight, 
compared to a variability of 2.9° C noted during our 19-hour MGGA Allan variance 
characterisation. During the MGGA Allan variance test, there was no discernible systematic 
effect of either cell temperature or cell pressure on measured methane mole fraction (see 
section S1 of the supplement, newly added, which now describes this). With regard to 
pressure specifically, all measurements were made at ambient atmospheric surface pressure, 
which changes only very slightly up to 50 m in height and between flight surveys. 
Furthermore, the pMGGA was closely controlled to a fixed cell pressure. Regarding 
temperature and pressure conditions during sampling, we would argue that they were not 
“harsh” (see Table 5) and that we should have made this clearer in the original manuscript. 
During UAV sampling, recorded cell temperature was on average 23° C across all UAV 
flights compared to calibration temperatures for the MGGA and pMGGA of (31.4±0.7)° C 
and (24.6±0.1)° C, respectively. We thank the reviewer for raising this point. On a wider 
point, a truly harsh environment, such as volcanic caldera sampling, would (we agree) likely 
require further characterisation in extreme temperatures, but this is out of scope of this work. 

General comments: 

1. A weak point of the calibration in Section 3.2 is that the temperature and pressure 
dependence of CH4 measurements by both the MGGA and the pMGGA is not characterised, 
which may be potentially much larger than the gain factor uncertainty and the offset 
uncertainty. In the case that the field characterisation was not performed, why not 
characterize it in the laboratory? 

This is a very useful and valid point. To test the effect of changes in cell temperature, we 
measured a test gain factor of 0.9979 (at 12.7° C lower than the main calibration) and for cell 
pressure, we measured a test gain factor of 0.9967 (at 37.2 mbar lower than the main 
calibration), in the MGGA (noting, as above, that cell pressure is fixed and controlled for the 
pMGGA). Neither test revealed a discernible change in MGGA gain factor within uncertainty 
(this point is now made in the final paragraph of section 2.3). To put this into context, if 
sampling 12.7° C above the cell temperature conditions of the main calibration, mole fraction 
enhancements (above the background) of at least 2.3 ppm would be required for the 
temperature effects on gain factor to be larger than the instrumental noise (characterised by 



the 10 Hz Allan deviation). Such an enhancement is relatively large compared with typical 
ambient sampling of plume emissions at a distance from a source.  

In addition to these specific tests, we utilised sampling from the 19-hour MGGA Allan 
variance test, where variability in cell temperature and pressure was characterised. This is 
also now described in the supplement. Though the cell pressure and temperature variability 
ranges were limited to a “reasonable” range of typical ambient conditions, these parameters 
showed no obvious methane mole fraction correlation, with Pearson’s correlation coefficients 
of -0.3835 and 0.4849, respectively. Unfortunately, housekeeping data were not recorded by 
the pMGGA during the Allan variance test, but in principle, any correlation should be similar 
as the same spectroscopic fitting is used in both instruments. These results are now 
summarised in the final paragraph of section 2.1. 

2. What’s the reason behind the exponential decay of H2O with CH4 mole fraction? Is it due 
to line interferences? It is difficult for readers to judge when the wavelengths of H2O, CH4 
are not given. Is there an interference between CO2 and H2O as well? Notice that the 
exponential fits in Figures S3&S4 are based on very limited data points. What’s the air 
matrix of the 100 ppm CH4 cylinder? Could the dependence of H2O measurements be caused 
by other species? 

We realise that the choice of exponential fit is arbitrary, but we chose this as it provided a 
suitable fit the available data points. However we also now note that that the WMO 
calibration scale only extends up to 5 ppm of methane, so attempting to model the water 
baseline any higher than this is problematic and potentially meaningless. We have therefore 
changed our approach and we now instead use a linear fit across the methane mole fraction 
range. 

There is a difference between the water and methane absorption peaks of 0.2 nm which is 
now stated in paragraph 1 of section 2.1. This line separation is sufficient that we do not 
expect spectral line overlap to have a significant impact here, as the reviewer rightly points 
out. 

All cylinders used during the water correction contained a synthetic air mix that included 
ambient levels of argon. While including argon in the mix is important for the calibrations (as 
it ensures the dry air broadening for the cylinder measurements is representative of dry air 
broadening for the sample measurement) we do not expect the air matrix to affect the water 
baseline because this represents the retrieved water vapour mole fraction for a dry sample. 
Therefore changes in the water baseline reflect changes in the baseline offset, not the line 
broadening, for this absorption line. 

3. Regarding the uncertainties of the estimated fluxes σF, what are the fractional 
contributions due to individual components? This information may help reduce the 
uncertainties in future measurements. 

This is a very useful idea. The σF uncertainties were derived from flux density uncertainties, 
which were in turn derived by combining individual statistical uncertainties in quadrature. 
Therefore fractional uncertainties (that sum up to form σF) cannot be derived. However it is 
possible to derive σF for individual uncertainty components, assuming other uncertainties to 
be zero. This revealed that uncertainty in wind speed was the dominant source of uncertainty. 
This conclusion is now given in the paragraph 3 of section 4, with individual σF results given 
in the supplement. 



Detailed comments: 

L92-93: The flow rate needs to be given when the e-folding time is discussed. Alternatively, 
the e-folding volume can be provided. 

This is a very useful comment. The flow rate through both instruments is now given in Table 
1. 

L97-98: The unit should be ppb instead of ppm. 

Thank you for spotting this. This has now been corrected. 

L159-162: should make it clear that +0.27% and +1.8% are the differences between with 
and without the water vapour corrections, instead of an increase of measurement accuracy. 

The suggested change has now been made. 

L207: Equation 10 should use the molar density of dry air since CH4 is given in dry mole 
fraction. 

The reviewer raises a very valuable point here. We realise that we have thus far used wet 
methane mole fraction when this should have been converted into dry mole fraction. This 
requires the humidity to be taken into account when calculating molar density. We have 
renamed the “molar density of air” as “molar density of dry air” in paragraph 2 of section 2.4 
to reflect this. We are thankful to the reviewer for raising this. 

L234-239: what was the nominal flow rate? Was the flow rate recorded? What fraction of 
measurements on average were omitted from each flight? 

Although the flow rate was not recorded, the average volumetric flow rate through the tubing 
can be calculated to be (110±10) cm3 s-1 from the volume of the tube and the measured lag 
time, which was determined as the time between a spike (cough) at the inlet and the 
instrument response. This has been added to paragraph 3 of section 3.3 alongside the 
measured flow rate through the instrument of (27.90±0.05) cm3 s-1. 

16% of all sampling conducted by UAV1 was omitted due to kinks in the tubing. This now 
stated paragraph 3 of section 3.3. 

L239-240: what was the flow rate through the pMGGA? 

The flow rate was measured to be (5.08±0.02) cm3 s-1. This has been added to Table 1 and to 
paragraph 3 of section 3.3. 

L326-330: Comparing T1.1 with T1.2 in Figure 3, I expect that larger emissions would be 
quantified for T1.1 and with larger uncertainties, however, the results showed the opposite. 
Why is that? Where are the centers of the plumes found? 

The reviewer makes an interesting observation. While it may appear as though survey T1.1 
should derive  higher flux as there were more plume intersections, on close examination of  
where T1.2 intersected the plume near the ground, methane mole fraction enhancements in 
T1.2 were actually far higher than in T1.1. This can be seen more clearly in the time series in 
Figure 2, where mole fractions of up to 12.5 ppm were recorded for T1.1, whereas up to 



25.3 ppm was recorded for T1.2. Both plumes were horizontally centred near the centre of the 
sampling plane, with T1.1 centred at -3 m and T1.2 centred at -5 cm from the centre line, 
according to the NGI method. The importance of taking into account the magnitude of flux 
density peaks, as well as the number of plume intersections is now described in a new 
paragraph (paragraph 4) of section 4. 

L335-341: It looks that the crosswind distance is not sufficient to cover the plume, especially 
for UAV1. Why were the transects of UAV1 not centered? The current sampling tends to miss 
the center of the plume. 

There may be some misunderstanding here, as there may be some ambiguity in the 
description of our flux quantification methodology, which we hope we have now improved. 
The sampling shown in Figure 3 and Figure 4 may appear as if the time-averaged plume was 
not centred. This was because the time-invariant plume was narrow (when nearer the source) 
and appeared episodically due to coincidental intersection with the UAV. When nearer to the 
source (approximately 50 m away), the time-invariant plume can be conceived to have had 
less time to disperse compared to sampling approximately 100 m away. Therefore it may 
appear as though the time-averaged plume was not centred in our sampling plane. We now 
explain this in the final paragraph of section 3.3. However, in reality, where the time-
averaged plume is centred on our arbitrary sampling plane is irrelevant to the flux calculation, 
so long as the time-averaged plume morphology can be characterised (as is the case here). 

During our sampling campaign, we ensured that we flew on a downwind sampling plane, 
with the UAV approximately centred downwind of the source using wind direction 
measurements. The flight strategy was decided on each day based on wind forecasts and on-
site surface wind measurements to optimise downwind sampling of the turbulently advected 
emission plume. This point is now made in paragraph 2 of section 3.1 and its implications are 
discussed in paragraph 4 of section 3.3. 

  



Response to reviewer 2 

  



We thank the reviewer for taking the time to review our manuscript and for some very useful 
and constructive comments and suggestions. We have responded (red text) to each comment 
(black italic text) in turn below. We have used these comments and suggestions to update and 
improve a revised version of the manuscript. 

Review 

Testing the near-field Gaussian plume inversion flux quantification technique using 
unmanned aerial vehicle sampling 

Adil Shah et al. 

The authors use a near-field Gaussian plume inversion (NGI) technique to determine the 
strength of methane emission sources. In that context, they describe, characterize and deploy 
two commercial near-IR off-axis integrated cavity output spectroscopy (ICOS) spectrometers 
from ABB/Los Gatos Research. One instrument is ground-based and samples through a tube 
from the UAV, while the other, more lightweight instrument is deployed onboard the UAV. 
The authors rightly claim that more reliable techniques are needed to determine emissions 
from diffuse methane sources. The paper has two main technical sections: chapter 2 
"Methane instrumentation and calibration" and chapter 3 "Method Testing". After struggling 
hard with chapter 2, I decided not to continue the review, and I suggest that the paper must 
be fundamentally rewritten, with respect to both language and content, before publication in 
AMT. 

We regret that the reviewer has identified a number of issues with section 2. We have worked 
hard to address all of the specific points raised by the reviewer by making significant 
modifications to section 2 of the revised manuscript We hope that this improves its 
readability. 

Chapter 2 has four subsections: 

2.1 Instrument inter-comparison (20 lines) Jonas, please check # lines 

2.2 Water vapour correction (61 lines) 

2.3 Calibration (28 lines) 

2.4 Methane enhancement and uncertainty (20 lines) 

Section 2.1 d contains very little actual intercomparison, and thus the title is misleading The 
inter-comparison consists mainly of one table containing the manufacturer's specifications 
and the key numbers of one Allan Variance plot (based on laboratory measurements), which 
is given in S1. In the context of this paper, which attempts to use the instruments under harsh 
field conditions, much work could and should have been done to provide useful, real-world 
characterization under field conditions, beyond what the manufacturer reports. This may 
include (but should not be limited to) performance characteristics and comparison (see 
section title) of long-term stability, stability of calibration factors, temperature and pressure 
dependence, sensitivity to vibration (UAV), linearity, selectivity, (measured) response time, 
concentration range, etc. 

We agree that the title of this section may be misleading. We have therefore renamed the 
section title, “Instrumental overview”, to reflect the more general scope of the comparisons 



made in this section. As the reviewer rightly points out, the Allan variance plots are useful 
and have now been moved to the main manuscript. 

Unfortunately, we lacked the facilities to replicate some UAV sampling conditions, such as 
UAV vibration, in the laboratory. However, we can see no reason why vibrations this should 
affect measurements, especially for the MGGA which was stationary on the ground 

 We disagree that we sampled in harsh conditions for this work. We sampled in the bottom 
50 m of the planetary boundary layer, where pressure and temperature changes are relatively 
small compared to laboratory conditions, especially in temperate summer months. To better 
convey this, the sampling conditions have now been plotted alongside the calibration 
conditions, for both instruments, in the supplement. Furthermore, as suggested, we now 
discuss the very small potential effect of temperature and pressure variations on measured 
methane mole fraction for the MGGA in the final paragraph of section 2.1, which showed no 
discernible impact on measured methane mole fraction with changes in the ambient range of 
cell temperature and cell pressure during the Allan variance test.  

We believe that the temporal stability of calibration factors was already captured in section 
2.4, where the standard deviation in offset and gain factor is given over a long calibration 
period in the laboratory. However the reviewer rightly points out that we failed to capture the 
uncertainty due to linearity which we have now determined and included in the revised 
manuscript in the final paragraph of section 2.4. 

The measured response time depends on the length of the inlet, as air takes time to travel 
through the external and internal tubing. This was measured in the field. Therefore these 
details are provided in paragraph 3 of section 3.1 where it is more relevant to the specific 
instrumental set-up.  

Section 2.2 is the core part of the instrumental section, which is reflected by its length. It 
covers an in-depth description of water vapor correction but sadly contains a number of 
fundamental flaws. Some examples are below, but this list is not exhaustive: 

- The largest correction to obtain dry CH4 values ([X]dry), needed for flux calculations, is 
water vapor. While the authors do many tests and calculations (see below) to get this value, 
they never show how accurate the H2O measurements of the instruments are. They likely have 
the information (based on the measurements with a dew point generator), but the 
corresponding performance is never shown. For such a detailed water vapor study, it would 
be key to deduce this effect first and then discuss (and correct) the remaining influencing 
parameters in a second step. 

The reviewer rightly points out that we do not accurately derive water vapour mole fraction 
in the cell. As we conduct an empirical water correction, which by its nature is based on 
reported methane mole fraction, it is not necessary to derive water mole fraction accurately, 
based on the conclusions of Rella et al (2013). However this empirical correction requires the 
water vapour mole fraction measurement to be stable and independent of methane mole 
fraction. As it was observed that the water baseline was in fact affected by methane mole 
fraction, our water baseline corrected for this systematic effect. In order to emphasise the fact 
that our water correction is purely empirical and is not based on spectroscopic first principles, 
we have renamed the section “Empirical water vapour correction” and we have redefined ν as 
an “empirical water correction factor”. To be clear, we do not attempt to characterise the 
suitability of these instruments for measurement of water vapour concentration, which would 



require a separate evaluation focussed on water vapour with a different (high accuracy) water 
reference instrument. This may constitute future work, but the scope of this paper is on 
methane measurement only, with water vapour as a “problem” to be accounted for.  

- Figure S3 shows the effect of CH4 on apparent water, due to cross sensitivity of the 
analyzers. Equation 1 has no physical meaning or motivation, but it produces an exponential 
curve, which fits the data points nicely. If there is no clear motivation, such a weak set of 
data may as well be described by a linear interpolation (see S3). Furthermore, applying the 
same parameter (ɷ) for the other analyzer, which shows clearly different absolute and 
relative behavior (S4), is not justified. 

The reviewer is correct to point out that the exponential baseline fit was arbitrary and was 
used to fit the data well. On reflection, we realise that the WMO calibration scale only 
extends up to 5 ppm, so any water baseline correction above 5 ppm is meaningless, without 
an equally good test for linearity up to a higher mole fraction using certified standards. To 
this end, we agree with the reviewer and have now applied a linear regression to the baseline 
from both instruments, over the range of the WMO scale. 

As we observed the water baseline to behave non-linearly at 100 ppm methane mole fraction 
in the MGGA, we have also applied a linear fit including the additional 100 ppm data. This 
allowed us to assess the change in mole fraction measurements with the 100 ppm data 
included in the baseline to be, on average, (0.02±0.03)% higher for all MGGA sampling 
recorded from UAV1. This analysis is now presented in the supplement. 

- Somewhat similar is the issue in S5 and S7. It is not surprising to find a (nearly linear) 
dependence between ν and water vapor. It is also not surprising that the residuals become a 
bit smaller if using a second order polynomial. However, since there is no information on the 
long-term stability of this system (e.g. repeatability and reproducibility), these fit 
characteristics are of very little use (a larger order polynomial would give even smaller 
residuals). 

The choice of a second order polynomial fit was based on polynomial water corrections used 
in previous work, using similar spectroscopic techniques (O’Shea et al. (2013), for example). 
Furthermore, O’Shea et al. (2013) (who used the same off-axis ICOS technique but a 
different instrument) found that ν remains consistent over time with negligible temporal drift. 
This valuable point has now been made in the final paragraph of section 2.2. 

- The authors call ν the water correction factor. This, again, is misleading because it contains 
normalization to dry conditions, which is a standard procedure, and corrections for non-
perfect spectroscopy (which is specific to their analyzers). 

We realise that this may be misleading and have therefore renamed it an “empirical water 
correction factor”. 

- Based on these badly justified fits and corrections, the authors deduce a water uncertainty 
factor (σν). However, σν is the standard deviation of the mean of the residuals in S6/7. This 
parameter carries information about the quality of the fit of the polynomial, but no 
information about the quality of the water correction for a specific measurement at a given 
CH4 and H2O mole fraction. 



The reviewer rightly points out that our uncertainty is based on the quality of our polynomial 
fit. We simply cannot derive an uncertainty on something that is already uncertain. We have 
to assume that the uncertainty is represented by the goodness of the fit we can produce from 
empirical data. We have used the same approach as Rella et al. (2013) and O’Shea et al. 
(2013), as guidance of optimal practice. We have therefore clarified this in the final 
paragraph of section 2.2. 

Sections 2.3 and 2.4 describe the calibration procedure and derive measurement uncertainty. 

- Calibrated enhancement in methane mass density (E) is calculated based on parameters 
that are obtained in the above experimental and fit procedures. The procedures themselves 
are correct (but see some remarks above and below). The authors then state that their 
approach is especially useful because it can be used to determine measurement uncertainty 
(equation 11). However, this uncertainty calculation is based on laboratory measurements 
and badly motivated fit procedures. It does not contain non-linearity nor any changes (drifts) 
in time, e.g. of G and ν. Furthermore, it does not include any field (in)stability 
considerations, nor the fact that one parameter is just assumed to be the same in MGGA and 
pMGGA. A realistic uncertainty budget would be highly welcome, but the approach chosen 
here is useless. 

We thank the reviewer for highlighting the fact that we had not previously accounted for non-
linearity. This has now been quantified up to 5 ppm by introducing a new non-linearity 
uncertainty parameter (σL), which has been incorporated into the enhancement uncertainty, as 
suggested. 

With regards to drifts, the variability in G was already included in the enhancement 
uncertainty, represented by σG. As σG was derived from changes in G over time, we believe 
that it implicitly captures temporal drifts. We have now made this clear in the second 
paragraph of section 2.4. Additionally, we assume here that ν does not drift, based on 
previous work using a similar instrument described by O’Shea et al. (2013). 

Some less fundamental comments are below, illustrating that the whole paper should be 
strongly re-vised: 

We have addressed all of the reviewer’s comments and we have significantly revised the 
manuscript to take these comments into account.  

Abstract 

Page 1 – Line 12 

Many parameters contribute to the uncertainty. Are they large or small, and is the 
contribution due to the "maybe" poorly quantified sources important or neglectable? 

This sentence simply motivates the background to the paper. We are not tackling the global 
methane budget problem head on in the work. The choice of the words “may be” is due to the 
large uncertainties within the source and sink terms in global methane budget and the widely 
recognised difficulty in attributing the cause of these uncertainties. Section 1 expands on this 
and cites relevant papers that discuss the global methane problem. To make this clearer for 
the purposes of our manuscript and the abstract, we have added the words “potentially” and 
“many”, so the sentence reads, “Methane emission fluxes from many facility-scale sources 



may be poorly quantified, potentially leading to uncertainties in the global methane budget”. 
We hope this clarifies our point of view.  

Page 1 – Line 14 

This is not a NEW near-field Gaussian plume inversion (NGI) technique – it has been 
published before by the same authors. 

The word “new” has been removed. We instead claim that this is the “first test” of the NGI 
method using “unbiased sampling”. 

Page 1 – Line 20 

Modified with respect to what? 

This is a good point. It was not previously clear what this was with respect to. The sentence 
has been rephrased to make it clear that the water correction was specially adapted for the 
instrument. The sentence now reads, “a water vapour correction factor, specifically calculated 
for the instrument, was applied and is described here in detail”. 

Page 1 - Line 23 

Simplify sentence, e.g. the uncertainty was between ... and ... 

We appreciate that this sentence can be simplified. However the quoted values are not 
uncertainties but rather uncertainty bounds as a fraction of the controlled emission flux. We 
have rephrased the sentence to simplify it, whilst maintaining the correct meaning. 

Page 1 – Line 25 

The term "range" implies that it is the range between 17 and 218 %, but this is not meant 
here. 

The term “These highly conservative uncertainty ranges” has been replaced by “This range of 
highly conservative uncertainty bounds”. This is now less ambiguous. 

Page 1 – Line 27 

"flux approaches": check language 

The term “flux approaches” has been replaced by “flux quantification approaches”. 

Page 1 – Line 27 

Replace "may perform well" by "may be a valuable alternative" 

This replacement has been made. 

Page 1 – Line 28 

"applied to UAV sampling" should read "combined with UAV sampling" 

This replacement has been made. 



Introduction 

Page 2 – Line 53 

precision should read accuracy or precision and accuracy 

The suggested change has been made. 

Page 2 – Line 54 

have not yet 

This replacement has been made. 

Page 2 – Line 60 

This suggests that controlled release is the only acceptable method. Make statement more 
general, e.g. the method was not validated, and its uncertainty was not quantified (e.g. with 
controlled release experiments). 

Although some methods can be mathematically correct on paper and conceptually sound, we 
stand by the idea that any method should be tested by sampling emissions of an accurate 
known flux rate to prove its utility. However we acknowledge the reviewer’s point that a 
controlled release from a gas cylinder is not necessarily required and other approaches could 
be adopted, so long as a flux is known. We have rephrased the sentence so it reads, “However 
this method was not tested for UAV sampling with an accurately known (controlled) methane 
flux rate”, to make it more general and allow for testing using any known flux. 

Page 2 – Line 62 

Make it clear that "Shah et al" is not any other researchers but the same group, e.g. our 
previous study... 

The suggested change has been made. 

Page 2 – Line 65 

Language: the sampling does not develop the technique. e.g.: ... sampling ... used in 
combination with ... 

The downwind sampling used during this previous study was used to develop our flux 
quantification technique. The technique did not exist before the sampling campaign. The 
measurements we acquired showed us that a new flux quantification approach was required, 
as previous approaches failed. We have now added this point to the sentence, to make it 
clearer that the new approach was a consequence of the failure of other approaches. We have 
also clarified that the “data-set” from the previous sampling campaign was used to develop 
the new method. 

Methane Instrumentation and Calibration 

Page 3 – Line 97 



σAV is a very unusual parameter. Contains very little information because it depends on 
averaging time. "Allan deviation uncertainty factor" is confusing. 

We realise that the Allan deviation at the maximum sampling frequency (σAV) is not so useful 
for direct instrument comparison, which is why we also provide the Allan deviation at the 
same frequency (both 1 Hz and 0.1 Hz) in Table 1. For our purposes, as both instruments 
sampled at their maximum sampling frequency (or minimum averaging time) and these were 
different for each instrument, σAV is used to quantify instrumental noise (for the instrumental 
averaging time used during sampling) and serves as a component of the total mole fraction 
enhancement uncertainty. We have renamed σAV as “sampling noise uncertainty” to make this 
less ambiguous. 

Page 3 – Line 108 

"These three effects have a net effect of decreasing [X]0 in both instruments". You probably 
mean "decreasing [X]". Furthermore, this is only useful information if you state before which 
effects have a positive/negative impact. Whether the sum is a net negative effect depends on 
the conditions (usually dilution dominates, so the statement is not wrong). 

We feel there may be some misunderstanding here in terms of the effect of water vapour on 
[X]. [X] is a true mole fraction measurement (i.e. the true dry mole fraction in the 
atmosphere), independent of the instrument, whereas [X]0 is an instrumental reading which 
can be different to the true value because it may be affected by conditions such as 
atmospheric water vapour and is not calibrated. 

Regarding isolating the individual water vapour effects on [X]0, we do not deem it 
empirically possible as what the instrument observes is decreasing [X]0 with increasing water 
mole fraction. We have described all three effects in the manuscript to provide a background 
and motivation for our correction procedure. We believe it is unnecessary to fully 
characterise each of the three individual effects if the combined effect can be adequately 
characterised empirically. We have now clarified that we observe consistent decrease in [X]0 
at a range of methane and water mole fractions. 

Page 3 – Line 110 

If the pressure broadening coefficient should account for effects two AND three, then state so 
explicitly. 

We have now clarified this in the first paragraph of section 2.2 that spectral overlap is 
expected to be an issue. Therefore we have now made it clear that the algorithm only corrects 
for pressure broadening in paragraph 2 of section 2.2. 

Page 4 – Line 122 

Has a calibration for water vapor been performed, and what are the results? 

This is addressed in our response to the comment regarding Section 2.2 above. In summary, 
we do not characterise this instrument for water vapour measurement. 

Page 4 – Line 132 



"more points" means: 1.9, 2.1, 5.0 and ca. 104 ppm. It does not make sense to derive 
parameters of a (complicated) exponential function if there is no physical concept that 
supports this function. 

We agree and have replaced it with a linear regression, over the range of the WMO scale (up 
to 5 ppm). 

This H2O baseline is very large; your data in S3 suggests that 100 ppm (dry) CH4 results in 
ca. -5500 apparent ppm H2O. Is this analyzer malfunctioning and should be returned to the 
manufacturer, or is it within the specifications for water vapor measurements? Using the 
MGGA H2O baseline function "as-is" for another analyzer does not make sense, especially 
since the experimental values for the pMGGA (S4) are significantly different from those of 
the MGGA, indicating that the two functions may well not be the same. Alternatively, one 
may just acknowledge this fact and do a corresponding uncertainty budget. In the context of 
the large uncertainty of flux estimation with NGI, this may be appropriate. However, it would 
fundamentally change the arguments and line of thought in this paper. 

We do not evaluate the performance of this instrument for water vapour measurement, which 
is beyond the scope of the manuscript. In this work, we are interested in the effect of water 
vapour on our target gas, methane. Water vapour influence is therefore something we simply 
seek to account for.  However, the instrument specifications suggest that the instrument is 
designed to sample up to 0.03 molwater mol-1, with a manufacturer specified accuracy of 
0.2 mmolwater mole-1 at 1 Hz. The objective of characterising a water baseline was to ensure 
that the subsequent water correction was independent of the effects of methane in the cavity. 

Regarding our choice of baseline, we agree with the reviewer and now use fully independent 
linear baselines for each individual instrument.  

Page 4 – Line 135 

"Having established a well characterised water baseline…" 

This baseline may be well characterized. However, it corresponds to a very large correction, 
which can-not easily be redone in the field. Therefore, it is necessary to measure the longterm 
stability of the baseline and instrument-to-instrument variability. Otherwise the "well 
characterized" is not helpful. 

This is a very useful point. We are confident that that the water baseline is relatively stable. 
To test this, we also conducted an Allan variance test on the dry water baseline for both 
instruments, at 2 ppm of methane. This revealed that the Allan variance of the MGGA and 
pMGGA (at the averaging time used to derive the baseline) was ±16 · 10-6 molwater mol-1 and 
±27 · 10-6 molwater mol-1, respectively. This information is now added to paragraph 4 of 
section 2.2. These water baseline values are far smaller than water mole fractions sampled 
during the water correction procedure of up to 20 000 · 10-6 molwater mol-1, also at 2 ppm 
methane. 

Page 4 – Line 136 

What was the mole fraction of CH4 in this cylinder? 

The methane mole fraction was 2.205 ppm for the MGGA and 2.183 ppm for the pMGGA 
(different cylinders were used). This is now stated in paragraph 4 of section 2.2.  



The H2O baseline has a huge dependence on CH4. Nevertheless, this experiment was only 
done at one CH4 concentration only. This may not be representative and add uncertainty to 
the retrieval of the "real-world" measurements. 

The concentration of methane in the gas cylinder was 2.2 ppm, which is similar to the current 
atmospheric background of approximately 1.9 ppm (depending on the time of year). Thus the 
water correction was performed in the most real-word conditions possible, to minimise 
uncertainty. 

Furthermore, pressure broadening line shape changes and dilution affect the instrument 
methane gain factor, with increasing water mole fraction. There is no physical (instrumental) 
reason for these effects to manifest themselves as an effect on the instrumental methane 
offset. Therefore, a water correction derived at one methane mole fraction should be equally 
valid at other methane mole fractions. 

Page 4 – Line 150 

The difference between wet and dry corresponds to humidity, thus typically 1-3 %. This is not 
"almost equal". If it has little impact on the result, then this is because the retrieved apparent 
H2O does not very strongly depend on CH4 under the conditions used to test the 
simplification. 

We accept that the phrase “almost equal to” may be misleading. We have therefore rephrased 
this as “close to”. We have also now clarified that the water correction has little overall 
impact on dry mole fractions in the penultimate paragraph of section 2.2, in our simplified 
test, where it is referred to as a “simple example”. 

Page 5 – Line 156-157 

The uncertainty of water measurements cannot be derived using "the water correction 
residual (R) from Eq. (2)". The calculated value is not the uncertainty of water 
measurements, nor the uncertainty after water correction. It is the standard deviation of the 
mean of the residuals. This parameter carries information about the quality of the fit of the 
polynomial, but no information about the quality of the water correction for a specific 
measurement at a given CH4 and HO mole fraction. 

The reviewer correctly points out that we do not present an uncertainty in the water 
correction factor, but instead an uncertainty in our fit. This was also addressed in our 
response above, where this was raised. We now make this clear in the final paragraph of 
section 2.2. Furthermore, the water “uncertainty factor” has been renamed the water “fitting 
uncertainty factor” to reflect this. 

Page 5 – Line 160 

"For example our correction was used to increase 160 the MGGA measurement accuracy of 
[X] 0 (at 2 ppm) by +0.27%, at a humidity of 0.001 mol water mol-1, and by +1.8%, at a 
humidity of 0.01 mol water mol-1". This is a meaningless statement. It does not consider that 
any correct measurement includes the correction of the dilution effect. You compare apples 
with rotten pears. 

This sentence may have been poorly written and misleading. The purpose of this sentence is 
to convey that we can improve the measured mole fraction, i.e. it more closely agrees with 



the true dry mole fraction. We have replaced the phrase “increase the MGGA measurement 
accuracy of [X]0” with “increase [X]0”. This reduces ambiguity, to make it clear what the 
correction achieves. 

Calibration 

Page 5 – General Comments on Section/Calibration 

Useful: 

The alternating measurement of two standards. This gives the repeatability of measurements 
under laboratory conditions. A simple average and standard deviation would characterize 
this. Alternatively (x - average x) vs. N (in bins) as a figure would illustrate that the values 
show a normal distribution. 

Not useful: 

The concept of uncertainty in C and G because it neglects the fact that the linearity in 
response is most frequently the key factor determining the uncertainty of the measurement. 

Needed: 

Determination of linearity. 

The reviewer raises a valuable point regarding quantifying uncertainty due to non-linearity. 
During our main calibrations, only two standards were used (2 ppm and 5 ppm), as the World 
Meteorological Organisation Greenhouse Gas Calibration Scale does not extend higher than 
5 ppm and reliable alternative standards cannot readily be obtained. Therefore, we have now 
tested the linearity within the calibration range, by sampling 5 gases with the MGGA. This 
showed that the residual uncertainty between measured and certified [X] was on average 
2.3 ppb. As we no longer have access to the pMGGA, we assumed similar linearity in both 
instruments as they use identical spectroscopic techniques. This test is described in section S4 
of the supplement. The non-linearity uncertainty has been incorporated into the overall 
enhancement uncertainty. 

Page 5 – Line 168-169 

This does not make sense. Water vapor in reference gas cylinders should be very low if filled 
dry (which I assume was done here). Even if filled wet, then 60 bar/20°C should be 
significantly below 500 ppm. Thus, H2O from a pressurized bottle (if treated correctly) is so 
low that it has very little impact on the measurements. An additional trap (as used here) may 
well lead to water contamination if one is not very careful. 

We used a water trap as these cylinders were synthetic blends, prepared to include ambient 
levels of argon to provide an appropriate air matrix. This may cause a small amount of water 
to be present in the cylinders. 

Page 6 – Line 195-196 

C deviates by about 12 ppb from 0. Whether that is good or bad (and under what conditions) 
depends on the application. However, to say that this is "almost equal to 0" for an analyzer 
with an Allan Minimum below 1 ppb is bizarre. 



This is a valid point. 12 ppb is indeed much larger than a 3 ppb Allan deviation (at 10 Hz) for 
the MGGA. However when compared to the atmospheric methane background of 
approximately 1800 ppb, 12 ppb is very small. The sentence now includes this qualification, 
to clarify our point of view. 

Page 6 – Line 195 

ν is ca. 0.98 at 1 % H2O. This is not "almost equal to 1". Furthermore, ν in S6 contains all 
water-related corrections, including normalization to dry conditions. Stating that this is 
"almost equal to 1" does not make sense, because the correction to dry conditions should be 
done in any case. 

We recognise the reviewer’s point. We have therefore removed any reference to ν from this 
sentence. 

Additional remarks 

"A lightweight wind sensor (FT205EV, FT Technologies Limited) was mounted on-board 
UAV1, on a carbon fibre pole 305 mm above the plane of the propellers. It recorded wind 
speed and direction at 4 Hz. This data was used to model the change in wind speed with 
height above ground level (z)." 

- Was this sensor validated? 

The wind sensor was used to derive a wind-height profile, for cross comparison against 
stationary ground-based wind measurements. The key need here was a linear response to 
wind speed changes. This was tested by comparing wind speed at 3.3 m from the UAV sensor 
to a stationary 3.3 m anemometer. A linear fit intersecting the origin agreed with all points, 
within uncertainty, implying linear response of the UAV wind sensor. These results are now 
presented in section S7 of the supplement. 

- Are the measurements independent of the propellers? How was this validated? 

The effect of air disturbance on the measured wind field due to rotating propellers was 
minimised as the wind sensor was positioned 0.3 m above the plane of the propellers. 
Unfortunately, we did not have required facilities (such as a wind tunnel) to fully test that this 
was the case. However each UAV transect was carefully planned to minimise this effect by 
rotating the UAV orientation at each turning point. This would effectively cancel out any 
potential residual net wind vector distorting the wind field due to the rotation of the 
propellers. This is now stated in section S7 of the supplement. 

- How reliable were the direction and speed when the drone was moving? How was this 
determined? 

The reviewer is correct to suggest that the UAV wind measurement may have been affected 
due to the movement of the UAV. This impacts the measured wind vector component parallel 
to the direction of movement of the UAV. Therefore only the wind component perpendicular 
to the orientation of the UAV sampling plane was used. The motion of the UAV has no 
impact on the wind component perpendicular to the plane of movement of the UAV. It is the 
perpendicular wind component that is used to construct the wind profile used to derive flux.  
This rationale is now explicitly stated in paragraph 1 of section S7 in the supplement. 



One analyzer was using an inlet just underneath the drone. The corresponding sample is 
representative of the air above the drone because of downwash. Was this considered? How? 

This is an astute comment. The reviewer is right to point out that mixing due to downwash 
could occur and that what is sampled is air from a subtly higher elevation to the position of 
the inlet. The inlet was 31 cm below the plane of the propellers. We have not (and cannot 
usefully) account for this small height difference in the calculation of flux as the air sampled 
is likely mixed in a thin (31 cm) layer between the plane of the rotors and the plane of 
sampling.  

Flux of one drone --> the other just sampled further away. 

We do not understand what the comment above is suggesting. 

The Allan Variance plot should be in main section of the paper. Its v-shape is relevant for 
interpreting the measurements during flight (i.e. 10 – 30 minutes, typically). 

Both plots have now been moved to the main manuscript, as suggested. 
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Abstract. Methane emission fluxes from many facility-scale sources may be poorly quantified, potentially leading to 

uncertainties in the global methane budget. Accurate atmospheric measurement based flux quantification is urgently required 

to address this. This paper describes the first test (using unbiased sampling) of a new near-field Gaussian plume inversion 

(NGI) technique, suitable for facility-scale flux quantification, using a controlled release of methane gas. Two unmanned 15 

aerial vehicle (UAV) platforms were used to perform 22 flight surveys downwind of a point-source methane gas release of 

methane gas from a regulated and flow-metered cylinder. One UAV was tethered to an instrument on the ground, while the 

other UAV carried an on-board high-precision prototype instrument, both of which used the same near-infrared laser 

technology. The performance of these instruments from UAV sampling is described. Both instruments were calibrated using 

certified standards, to account for variability in the instrumental gain factor. Furthermore, a water vapour correction factor, 20 

specifically calculated for the instrument, was modified approach to correcting for the effect of water vapour applied and is 

described here in detail. The NGI technique was used to derive emission fluxes for each UAV flight survey. We found good 

agreement of most NGI fluxes with the known controlled emission flux, within uncertainty, verifying the flux quantification 

methodology. The lower and upper NGI flux uncertainty bounds wereas, on average, 17%±10(1σ)% and 227%±98(1σ)% of 

the controlled emission flux, respectively and the upper NGI flux uncertainty bound was, on average, 218%±100(1σ)% of 25 

the controlled emission flux. This range ofese highly conservative uncertainty ranges bounds incorporate factors including 

the variability in the position of the time-invariant plume and the potential for under-sampling. While these average 

uncertainties are large compared to methods such as tracer dispersion, we suggest that UAV sampling can be highly 

complementary to a toolkit of flux quantification approaches and may perform wellbe a valuable alternative in situations 

where site access for tracer release is problematic. We see a tracer release applied combined withto UAV sampling as an 30 

effective combination approach in future flux quantification studies. Successful flux quantification using this the UAV 

sampling methodology described here demonstrates its future utility in identifying and quantifying emissions from methane 

sources such as oil and gas extraction infrastructure facilities, livestock agriculture and landfill sites, where site access may 

be difficult. 

1 Introduction 35 

The global methane budget is subject to significant uncertainties (Kirschke et al., 2013; Saunois et al., 2016b; Nisbet et al., 

2019), particularly from inventory uncertainty in facility scale sources such as landfill sites (Scheutz et al., 2009), herds of 

cattle (Blaxter and Clapperton, 1965) and oil and gas extraction infrastructure (Brantley et al., 2014), which collectively 

contribute significantly to global methane emissions (Dlugokencky et al., 2011; Saunois et al., 2016a). These uncertainties 

can be reduced through the accurate source identification and subsequent quantification of methane emission fluxes using 40 
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top-down (atmospheric measurements based) methods, in order to validate bottom-up (inventory based) emission flux 

estimates (Lowry et al., 2001; Nisbet and Weiss, 2010; Allen, 2016; Desjardins et al., 2018). 

 

Accurate top-down flux quantification from facility scale sources requires a combination of wind vector measurements along 

with in situ measurements of atmospheric methane mole fraction (Dlugokencky et al., 1994; Rigby et al., 2017). Facility-45 

scale emission fluxes can be derived from near-field sampling (less than 500 m from the source), which may be acquired 

from an unmanned aerial vehicle (UAV) platform (Gottwald and Tedders, 1985). UAVs are cheap, versatile and relatively 

easy to use (Villa et al., 2016), compared to large manned aircraft (Illingworth et al., 2014; Lehmann et al., 2016). They can 

fly near to source and can be directed automatically using waypoints, to enable even and unbiased spatial sampling 

(Greatwood et al., 2017; Feitz et al., 2018). There are three principal approaches for measuring methane mole fraction from a 50 

UAV in situ: on-board air samples can be collected for subsequent analysis (Chang et al., 2016; Greatwood et al., 2017; 

Andersen et al., 2018), air can be pumped through a long tube to a sensor on the ground for analysis (Brosy et al., 2017; 

Wolf et al., 2017; Shah et al., 2019) or air can be analysed live using a sensor mounted on-board the UAV (Berman et al., 

2012; Khan et al., 2012; Nathan et al., 2015; Golston et al., 2017). Yet, a key limitation to accurate source identification and 

flux quantification is the precision and accuracy of methane mole fraction measurements (Hodgkinson and Tatam, 2013). 55 

Miniaturised sensors suitable for UAV sampling are emerging (Villa et al., 2016), but high precision lightweight in situ 

sensors, featuring superior techniques, such as off-axis integrated cavity output spectroscopy, have previously failed tonot 

yet materialised. 

 

Some studies have also used UAV remote sensing measurements to derive emission fluxes (Golston et al., 2018; Yang et al., 60 

2018). However, to our knowledge, only Nathan et al. (2015) have derived methane emission fluxes using UAV in situ 

measurements. In that study, a UAV with an on-board in-situ low precision sensor (±0.1 ppm at 1 Hz) flew in orbits around a 

gas compressor station, using mass balance box modelling, with geospatial kriging for interpolation, to derive the emission 

flux. However this method was not tested for UAV sampling using with an accurate (known) (controlled) methane flux 

raterelease of methane gas, beforehand. It is crucial that novel flux quantification techniques are tested by sampling a 65 

controlled known flux release, prior to investigating unknown emission sources (Desjardins et al., 2018; Feitz et al., 2018). 

Our previous study, Shah et al. (2019)was were the first to test of an in situ flux quantification technique using UAV 

sampling downwind of a controlled methane release. In that study, where a UAV was connected to a high precision methane 

analyser on the ground using 150 m of tubing (Shah et al., 2019). A data-set of Twotwo-dimensional downwind sampling 

measurements, on a vertical flux plane, was used to develop the near-field Gaussian plume inversion (NGI) technique for 70 

flux quantification, as other flux quantification approaches failed (Shah et al., 2019). Fully manual UAV piloting was 

employed in this previous study to actively pursue the position of the time-invariant emission plume on the sampling plane, 

using mid-flight knowledge of its position. This resulted in calculated emission fluxes that were significantly positively 

biased compared to known emission fluxes; this represents a source of vulnerability in fully manual UAV sampling, which 

we address in this work. 75 

 

Here we test the application of the NGI method with unbiased UAV sampling of controlled methane emission sources, by 

flying two UAVs downwind of the release. In this work, the causes of positive flux bias reported in Shah et al. (2019) were 

addressed in our sampling strategy, by flying a UAV without prior knowledge of the position of the time-invariant emission 

plume. One UAV was connected to a commercially available instrument on the ground and the other carried a lighter 80 

prototype on-board instrument (sect. 3). Both instruments were characterised and calibrated, with the effects of cell pressure 

and cell temperature also assessed (sect. 2). Our modified approach to water vapour correction is also outlined in sect. 2. 
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Sampled data was then used to derive NGI flux uncertainty ranges (sect. 4) for each of 22 flight surveys. In sect. 5 the 

success of the NGI method is assessed overall and its sampling constraints are summarised. 

2 Methane instrumentation and calibration 85 

2.1 Instrumental overview inter-comparison 

Two instruments were used to derive dry atmospheric methane mole fraction ([X]) measurements during UAV sampling. [X] 

is given in units of parts-per-million (ppm) throughout this paper, which are defined here as the number of moles of methane 

per million moles of dry air (10-6 · molmethane mol-1), with parts-per-million (ppb) defined as the number of moles of methane 

per billion moles of dry air (10-9 · molmethane mol-1). In this section, the ABB Los Gatos Research, Inc. Micro-portable 90 

Greenhouse Gas Analyzer (MGGA) and a lighter prototype MGGA (pMGGA), designed for UAV use, are compared and 

characterised to assess their performance. The technical specifications of both instruments are compared in Table 1. Both 

instruments use off-axis integrated cavity output spectroscopy (ICOS) to derive simultaneous measurements of methane, 

carbon dioxide and water mole fraction, from the absorption of a near-IR (1650 1651 nm) laser, with the water and methane 

absorption peaks separated by 0.2 nm. The pMGGA uses an additional laser (1603 nm) to measure carbon dioxide mole 95 

fraction more accurately. Off-axis ICOS techniques reflect a tuneable laser between two mirrors in a high-finesse optical 

cavity, to obtain high-precision mole fraction measurements (see Paul et al. (2001) and Baer et al. (2002) for further details 

on off-axis ICOS). 

 

The e-folding time of the high-finesse cavity in both sensors was measured here by fitting an exponential decay function to 100 

the transition from a high to low mole fraction standard gas (see Table 1 for results, with sensor flow rate also given). This 

represents the time taken for 63.2% of the contents of the high-finesse cavity to be replaced. The Allan variance precision of 

each sensor was also derived at various integration times, by measuring [X] from a dry cylinder of compressed air for at least 

17 hours of continuous sampling (see Fig. S1 and Fig. S2 for Allan variance plots), by sampling a dry gas standard 

continuously (17 hours and 23 minutes for the MGGA and 38 hours and 30 minutes for the pMGGA). The 1 Hz and 0.1 Hz 105 

Allan deviation for both instruments is given in Table 1. The Allan deviationsampling noise uncertainty factor (σAVσn), 

defined here, used within the total mole fraction enhancement uncertainty (discussed in section 2.4), represents the Allan 

deviation at the maximum sampling frequency. σAV σn for the MGGA and pMGGA are 2.71 ppm ppb (at 10 Hz) and 

5.44 ppm ppb (at 5 Hz), respectively, with the Allan deviation at 1 Hz and 0.1 Hz given in Table 1. The optimum Allan 

variance integration time was also assessed for each sensor ((20±3) s for the MGGA and (70±10) s for the pMGGA); this 110 

represents the maximum sampling time before instrumental drift begins to dominate over instrumental noise. During the 

MGGA Allan variance test, cell temperature (which varied between 24.9° C and 27.8° C) and cell pressure (which varied 

between 1.0093 bar and 1.0128 bar) were also recorded to assess their correlation with [X] in ppm (see Fig. S1 and Fig. S2). 

Correlation of both cell temperature and cell pressure was poor, with Pearson correlation coefficients of -0.4849 and -0.3835, 

respectively, and linear gradients of -0.0022 ppm° C-1 and -0.0022 ppm mbar-1, respectively. Thus over a limited cell 115 

pressure and cell temperature range, there was no definitive correlation with [X] for the MGGA under typical laboratory 

conditions. 

 

2.2 Water Empirical water vapour correction 

Raw wet methane mole fraction measurements ([X]0) recorded by each instrument were corrected for the influence of 120 

atmospheric water vapour, on mole fraction retrievals. Water vapour influences dry measurements of [X] for three main 
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reasons (Karion et al., 2013; O'Shea et al., 2013; Rella et al., 2013). First and most significantly, dilution effects occur, 

where the bulk presence of water reduces the quantity of methane in the cavity at a given pressure. Second, strong, broad 

infrared absorption bands of water can lead to interference with the absorption spectrum of methane, though this effect is 

thought to be small in this case as the spectral lines are well separated in the spectral sampling region of these instruments. 125 

Third, pressure broadening of can alter the shape of the methane spectral absorption bandabsorption peaks can occur, where 

due to collisional interaction between water and methane molecules changes the shape of the methane spectral absorption 

band, compared to pressure broadening in the absence of water in the cavity. These The combined impact of pressure 

broadening absorption band changes and dilution hasthree effects have a net effect of decreasing [X]0 in both instruments, 

based on laboratory observations at a range of methane and water mole fractions, under typical lower boundary layer 130 

conditions. 

 

To account for these effectspressure broadening absorption band changes, both the MGGA and pMGGA use an internal 

retrieval algorithm to derive methane mole fractions, which includes empirically -derived estimates of the effect of pressure 

broadening coefficient in the presence as a function of varying water vapour mole fraction. The instruments then output both 135 

raw dry mole fraction measurements, which have additionally been corrected for the effect of mole fraction dilution by water 

vapour, and raw wet methane mole fraction measurements ([X]0) which have not been corrected for this dilution effect (but 

are still calculated using the same empirically derived pressure broadening coefficientcorrection, as a function of water mole 

fraction). A Ttypical pressure broadening coefficientscorrection (as a function of water mole fraction) areis determined by 

the manufacturer based on experiments conducted with a sample batch of instruments, yielding an average correction values 140 

which are then applied to all instruments. However, because these derived coefficients correction convolves pressure 

broadening absorption band changesline broadening due to water vapour with pressure broadening absorption band 

changesline broadening due to instrument factors, there is some variability from unit to unit. Therefore, to obtain a more 

accurate correction for the influence of water vapour on the individual instruments used here, we apply a further empirical 

post-processing correction factor to the [X]0 measurements (without the dilution correction) reported by the instruments, 145 

using reported measurements of water mole fraction ([H2O]). Although [H2O] measurements reported by the instruments 

may not be an accurate representation of the true water mole fraction in the cavity, they are sufficient for an empirical 

correction on [X]0, provided that [H2O] does not drift and is independent of dry uncalibrated methane mole fraction ([X]0
dry). 

Therefore [H2O] was not calibrated against standards and an instrumental reported value was used for this empirical 

correction. 150 

 

For the water correction to be valid, [H2O] should be independent of [X]0
dry, However both instruments reported a small but 

non-zero [H2O] value when sampling dry air, which decreased with increasing [X]0
dry. Therefore bBefore a water correction 

could be applied, a [H2O] baseline ([H2O]0) was derived up to 5 ppm, which represents the upper limit of the World 

Meteorological Organisation Greenhouse Gas Scale (WMO-X2004A) for methane, as both instruments reported small, but 155 

non-zero values of [H2O], when sampling dry air. Gas from two cylinders with different methane compositions (1.901 ppm 

and 5.049 ppm) was dried by passing it through a dry ice water trap (a stainless-steel coil immersed in solid carbon dioxide 

pellets) before being sampled by both the MGGA and the pMGGA. Dry air from two an additional cylinders (~104 ppm and 

2.167 ppm) was also sampled by the MGGA. Each gas was sampled a minimum of 11 times for 4-minute periods, from 

which 1-minute averages were taken. [H2O]0, was observed to decay exponentially decreased with dry uncalibrated methane 160 

mole fraction ([X]0
dry), given by Eq. (1), where a is the water baseline offset, and b is the water baseline coefficient and w is 

the water baseline decay factor. The plotted data used to fit [H2O]0 is given plotted in Fig. S3 and Fig. S4. 

(1) [H2O]0 = a + �b · [X]0
drye- 

[X]0
dry

w �  
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a and, b and w for both instruments are given in Table 2. w for the pMGGA was assumed to be the same as w for the 

MGGA. The same w value was used for the pMGGA as gas was sampled by the MGGA at more [X]0
dry points, resulting in 165 

an improved fit.The effect of changes in the water baseline on [X] beyond the 5 ppm range was also tested up to [X]0
dry of 

approximately 100 ppm (see SI for details). 

 

[H2O]0 is assumed here to be relatively constant over time. To test this, an Allan variance test was conducted on [H2O]0 for 

both instruments (see Fig. S5 and Fig. S6), using the same Allan variance data-set described in the previous section. This 170 

revealed a water baseline Allan deviation precision for the MGGA and pMGGA of ±16 · 10-6 molwater mol-1 and ±27 · 10-

6 molwater mol-1, respectively, using a 1-minute integration time (the averaging time used for each [H2O]0 point). These 1-

minute Allan deviation averages are small compared to the water vapour content of typical tropospheric air, suggesting that 

[H2O]0 remains relatively stable. Having established a stable and well characterised water baseline, a post-processing 

empirical water correction factor (ν) was derived by sampling gas from a single cylinder (2.205 ppm for the MGGA and 175 

2.183 ppm for the pMGGA), which was humidified to 9 fixed dew points (from 0 °C to 18 °C), using a dew point generator 

(LI-610, LI-COR, Inc.), following a similar experimental set-up used by O'Shea et al. (2013). The humidified gas was first 

sampled dry (to measure [X]0
dry), by passing it through the dry ice water trap, and then sampled wet (to measure [X]0 as a 

function of [H2O]). An example of sampled [X]0 and [H2O] measurements, used to calculate each data point, is given in Fig. 

S6S8. A single gas standard was deemed sufficient for this test as both dilution and pressure broadening absorption band 180 

changes affect the gain factor on methane mole fraction measurements (i.e. they do not affect the instrumental methane 

offset). Thus this water correction is assumed to be independent of [X]0
dry and solely dependent on the amount of water in the 

cavity. 

 

[X]0 is then corrected by dividing it by ν, as ν is effectively the ratio between [X]0 and [X]0
dry, as a function of [H2O]. The 185 

ratio of [X]0 to [X]0
dry was plotted against ([H2O] - [H2O]0), where [H2O]0 was the water baseline measured during dry 

sampling (see Fig. S6 S9 and Fig. S7S10). Subtracting the baseline in this analysis minimised the effects of [X]0
dry on [H2O]. 

A quadratic fit was applied to both curves, with the intercept forced to unity. The first order coefficient (α) and second order 

coefficient (β) of the quadratic fit, given in Table 2, were then be used to derive ν using Eq. (2), as a function of [H2O]. 

(2) ν = 1 + (α · ([H2O] - [H2O]0)) + (β · ([H2O] - [H2O]0)
2) 190 

As [H2O]0 in Eq. (2) is typically unknown, [H2O]0 defined in Eq. (1) can be substituted into Eq. (2), to yield Eq. (3). 

(3)  ν = 1 + �α · ��H2O� - a - �b · [X]0
drye- 

[X]0
dry

w ��	  + �β · ��H2O� - a - �b · [X]0
drye- 

[X]0
dry

w ��2	 

As [X]0
dry in Eq. (3) is also unknown, an approximation that [X]0

dry is almost equalclose to [X]0, in typical tropospheric 

humidity conditions, can be used. Thus Eq. (3) can be rewritten in terms of [X]0 and [H2O], using Eq. (4). 

(4)  ν ≈ 1 + 
α · ��H2O� - a - �b · [X]0e
- 

[X]0
w ��  + 
β · ��H2O� - a - �b · [X]0e

- 
[X]0

w ��2 195 

To checkconfirm the above assumption, as a simplen example (for the MGGA), when [H2O] is 0.01 molwater mol-1 and [X]0
dry 

is 5 ppm, Eq. (3) yields ν of 0.98089 whereasand Eq. (4) yields a similar value for ν of 0.9808598092, for the MGGA. This 

small ν change supports the use of Eq. (4) as an alternative to Eq. (3), by confirming that [X]0
dry is close to [X]0 in this simple 

example. 

 200 

The fit given by Eq. (4) relies on a reliable water baseline. If the MGGA sampled 5 ppm of dry methane and without a 

baseline correction, ν would be 1.0020, thus representing a methane mole fraction reduction of 0.0098 ppm (at 5 ppm). 

However, as Eq. (4) acts to remove this small uncertainty, the residual uncertainty would be very small. In addition, The the 
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uncertainty in our empiricalthe water correction fit was quantified using eachthe water correction residual (R) from Eq. (2), 

to derive a water fitting uncertainty factor (σν) for each instrument (see Table 2), using Eq. (5). This σν uncertainty is the 205 

standard deviation of the mean of the residuals and quantifies the quality of our applied water correction fits, where N is the 

total number of residuals. 

(5)  σν = �∑�R2�
N

�1
2
 

N is the total number of residuals.Our water correction approach (given by Eq. (2)) is analogous to the approach of previous 

work using the same spectroscopic technique (O'Shea et al., 2013); this previous work found that the water correction is 210 

stable and does not drift. Thus an uncertainty in our water correction fit was deemed to be sufficient to characterise 

uncertainty empirically. To summarise, this is a purely empirical correction specific to the instrumentsUsing the above to 

correct for the effects of water vapour in the measurement cavity, valid for the tested water mole fraction range of up to 

0.016 molwater mol-1we can increase the accuracy of [X]0 measurements. For example our correction was usedwould to 

increase anthe MGGA [X]0
dry measurement accuracy of [X]0 (at 2 ppm) by +0.27%, at a humidity of 0.001 molwater mol-1, and 215 

by +1.8%, at a humidity of 0.01 molwater mol-1, thus improving measurement accuracy. 

2.3 Calibration 

In order to convert [X]0 into [X], both instruments were calibrated by sampling gas from two cylinders: one contained a low 

standard methane mole fraction ([X] low) of 1.901 ppm and the other contained a high standard methane mole fraction ([X]high) 

of 5.049 ppm, both of which were certified WMO-X2004A standards. The composition of both cylinders was certified such 220 

that they were referenceable to the World Meteorological Organisation Greenhouse Gas Scale (WMO-X2004A). Each gas 

was sampled intermittently for 4-minute periods of continuous sampling. The dry ice water trap was used throughout each 

calibration as an extra precaution, to ensure dry gas entered the sensor cavities.  

 

One-minute averages from each 4-minute sampling period were taken to derive one value of low [X]0
dry ([X]0

dry
low) and one 225 

value of high [X]0
dry ([X]0

dry
high) representative for each 8-minute period. The time increment between each [X]0

dry
low and 

[X]0
dry

high value was then interpolated from 8 minutes to 4 minutes, such that every measured value of [X]0
dry

low had a 

corresponding interpolated value of [X]0
dry

high and vice-versa. Individual measured and interpolated values of [X]0
dry

low and 

[X]0
dry

high values for both instruments are plotted in Fig. S8 S11 and Fig. S9S12. 

 230 

 These measured and interpolated averages were used to calculate an average gain factor (G) and gain factor uncertainty (σG), 

from the average and standard deviation, respectively, using of a set of at least 24 individual gain factors, calculated using 

Eq. (6) (Pitt et al., 2016). 

(6) gain factor = 
[X]high - [X]low

[X]0
dry

high
 - [X]0

dry
low

 

The average offset (C) and offset uncertainty (σC) was calculated by taking the average and standard deviation, respectively, 235 

of individual offsets, calculated using Eq. (7) and Eq. (8) (Pitt et al., 2016). 

(7) low offset = [X] low - (G · [X]0
dry

low) 

(8) high offset = [X]high - (G · [X]0
dry

high) 

G, σG, C and σC for both instruments are given in Table 3. During these calibrations, the cell temperature of the MGGA and 

pMGGA were (31.4±0.7)° C and (24.6±0.1)° C, respectively, and the cell pressure of the MGGA and pMGGA were 240 

(1005.9±0.2) mbar and (614.30±0.01) mbar, respectively. 
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A key advantage of this calibration procedure is that the uncertainty in G is well quantified up to [X]high , (for assuming stable 245 

cell temperature and cell pressure) and can be incorporated in the measurement uncertainty. Cell temperature and cell 

pressure both effect spectral fitting parameters and may consequently have an impact on G, though this effect would be 

smaller for the pMGGA which is pressure controlled. We believe cell temperature effects on G to be small: the MGGA was 

also calibrated at (44.08±0.02)° C, yielding a gain factor of 0.9979 (see SI for details). In addition, the MGGA was calibrated 

at (968.7±0.3) mbar, yielding a gain factor of 0.9967 (see SI for details). These short-term (test) gain factors are both similar 250 

to G (from the main calibration) of 0.9970±0.0002. Furthermore, there was no discernible correlation for both cell 

temperature and cell pressure during the Allan variance test for the MGGA (see above), which suggests that G is negligibly 

insensitive to these parameters, over the limited environmental range for the duration of the Allan variance test. Although the 

pMGGA was not tested in this way, we assume similar behaviour due to identical spectroscopic techniques. Nevertheless, 

separateSeparate in-field calibrations would be preferable to enhance measurement accuracy, by characterising the effect of 255 

by accounting for variability in cell temperature and cell pressure on G. However there are logistical challenges with in-field 

calibrations, such as the need for calibration gases and the time required to perform calibrations in dynamic atmospheric 

temperature and pressure conditions. The laboratory calibrations described here required at least three hours of sampling in 

order to characterise the variability in G: this may be impractical in field conditions. Therefore the calibration coefficients 

presented here are useful as they account for variability in G under laboratory conditions. 260 

2.4 Methane enhancement and uncertainty 

The calibration and water vapour correction procedures described above show that G is almost equal to 1, and C is almost 

equal to 0, relative to the atmospheric methane background, for both instruments (see Table 3) and ν is almost equal to 1 (at 

5 ppm methane and a very high 0.01 molwater mol-1 humidity) for both instruments. This means that both instruments record 

raw [X]0 measurements with very little systematic error, even when uncalibrated. Thus for most methane measurement 265 

purposes, [X]0 may not need to be corrected. However in this work, G and ν werewas applied to [X]0 for optimal 

instrumentalimproved accuracy. 

 

[X] can be calculated in ppm using Eq. (9). 

(9) [X] = �G

ν
 · [X]0�  + C 270 

However, during flux calculation, the enhancement in methane mass density (E), in kg m-3, above some background is 

required and was calculated here using Eq. (10). The background methane mole fraction ([X]b) and corresponding 

background uncertainty (σb) can be calculated from a subset of [X]0 measurements, which can be acquired from out-of-plume 

sampling (see sSect. 3). The molar density of dry air (ρ) and the uncertainty in ρ (σρ), in units of dry mol m-3, can be derived 

from pressure and , temperature and humidity measurements. The molar mass of methane (M) is fixed at 275 

0.01604 kg molmethane
-1. 

(10)  E = �[X]0[X] - [X]b� · 
G

ν
 · ρ · M  

 

To calculate theThe uncertainty in E (σE), the linearity in the instrument response was characterised up to 5 ppm (i.e. the 

extent of the WMO-X2004A scale). This was achieved by characterising the MGGA response to five certified WMO-280 

X2004A standards. A linear fit was then applied to measured [X], with residuals used to derive an uncertainty due to non-

linearity (σL) of ±2.3 ppb (see SI for further details). The linearity of the MGGA and pMGGA was assumed to be the same as 

they use identical spectroscopic techniques. σE can then be calculated by combining σb with the precision and accuracy 

uncertainty components of [X], using Eq. (11). Precision is characterised by σAV σn and accuracy is characterised by σL, σG 
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and σν terms. σG also incorporates the effects of drifts, as it was derived from a prolonged sampling period over which drifts 285 

could develop. 

(11) σE = E · 
��σAVn
2 + σL

2 + �σb · 
G

ν
� σb

2�  · �ρ · M
E

�2�  + �σG

G
�2

 + �σν
ν

�2
 + �σρ

ρ
�21

2

 

Although M remains constant, ν in Eq. (11) changes as a function of [X]0 and [H2O], for each value of E. σC is not required in 

Eq. (11) as the offset cancels out in Eq. (10), when substituting in Eq. (9). This is an important advantage of calculating 

using E rather than [X], during in the flux analysis used in the following section. 290 

3 Method Testing 

3.1 Experimental description 

A UAV sampling methodology for source identification and flux quantification was tested in two fields adjacent to a natural 

gas extraction facility in Little Plumpton (near Wesham), Lancashire, United Kingdom (+53.78785° N, -2.94758° E), prior 

to any drilling or hydraulic fracturing, over five sampling days in August and September 2018. A map of the field site is 295 

given in Fig. 31. The two adjacent grass fields, in which all UAV sampling took place, belong to a fully operational dairy 

farm. Methane was released from within the operating site at one of two controlled flux rates (F0), from 0.25 m above 

ground level (see SI for controlled release details). F0 was undisclosed during flux analysis, prior to the comparisons shown 

later in this paper, allowing for blind method testing. 

 300 

Two adapted DJI Spreading Wings S1000+ octocopter UAVs (labelled UAV1 and UAV2) were used to sample the methane 

plume on a downwind vertical plane, roughly perpendicular to mean wind direction (see Table 4 for UAV details). The 

location of the UAVs in relation to the controlled release and their sampling paths was decided on each day based on public 

wind forecasts and on-site wind measurements, to horizontally centre (as best as possible) each UAV flight track downwind 

of the controlled release. [X] mMeasurements of [X] from both platforms are given in Fig. 42. UAV1 was operated using 305 

pre-programmed waypoints and ascended diagonally. Each UAV1 flight survey was composed of two parts: one flight to the 

right of the source (projected onto the sampling plane, perpendicular to mean wind direction) and one to the left. Meanwhile 

each UAV2 flight survey was composed of a single flight, to perform horizontal transects, with each transect at a roughly 

fixed height, up to approximately 100 m laterally away from the take-off position. 7 surveys were conducted by UAV1 

(labelled, T1.1 – T1.7) and 15 surveys were conducted by UAV2 (labelled, T2.1 – T2.15). Individual flight survey details are 310 

given in Table S1 and Table S2. 

 

UAV1 was connected to the MGGA on the ground, using 150 m of perfluoroalkoxy (PFA) tubing (4.76 mm inner diameter; 

6.35 mm outer diameter). Air was pulled through the tubing using a small pump (NMS 030.1.2 DC-B 12V, KNF Neuberger 

UK Ltd), from which the MGGA subsampled. The sampling lag time between air entering the UAV air inlet at the end of the 315 

tube on the UAV and air entering the MGGA cavity was measured to be 25 s, with an average volumetric flow rate through 

the tube of (110±10) cm3 s-1 and a flow rate through the instrument (at ambient pressure) of (27.90±0.05) cm3 s-1. Both the 

MGGA and the pump were powered by a 12 V lead-acid battery. As the tether connected to UAV1 occasionally kinked 

during flight, blocking air through the tube, there were periods16% of all [X]0 sampling from UAV1 was discarded that were 

omitted from each flight (such periods were identified and recorded in the field from the flow of air to the pump). The 320 

pMGGA was mounted on board UAV2, beneath the centre frame. The sampling lag time between air entering the external 

air inlet and air entering the pMGGA cavity was measured to be 2 s, with a flow rate through the instrument of 

(5.08±0.02) cm3 s-1. The pMGGA was powered using the on-board 22.2 V UAV2 battery. Both the MGGA and pMGGA 
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transmitted live, real-time mole fraction measurements wirelessly, to a tablet computer on the ground. Satellite geolocation 

was recorded by the pMGGA, on-board UAV2, simultaneous with every [X]0 measurement. Satellite geolocation was 325 

recorded on UAV1 by a separate on-board computer, sampling at 1 Hz. Aerial plots of UAV flight tracks are given in Fig. 

S10 S14 for UAV1 and Fig. S11 S15 for UAV2. 

 

A lightweight wind sensor (FT205EV, FT Technologies Limited) was mounted on-board UAV1, on a carbon fibre pole 

305 mm above the plane of the propellers (see SI for further details and testing) to minimise any potential distortion of the 330 

wind field due to air disturbance from the rotating propellers (Zhou et al., 2018). It recorded wind speed and direction at 

4 Hz. These measurements wereis data was used to model the change in wind speed with height above ground level (z). A 

two-dimensional stationary sonic anemometer (WS500-UMB Smart Weather Sensor, G. Lufft Mess- und Regeltechnik 

GmbH) was also situated on the southern boundary of the operating site (see Fig. 13), (3.30±0.03) m above ground level. 

This provided wind speed, wind direction, relative humidity, temperature and pressure measurements every minute. Wind 335 

measurements from both sensors were combined to derive the average absolute wind speed as a function of z (WS(z)), for the 

duration of each flight survey. This is described in detail in the SI. 

3.3 Flux density measurements 

Each individual UAV1 survey resulted in (9±1(1σ)) minutes of useable [X]0 measurements and each UAV2 survey resulted 

in (8±1(1σ)) minutes of useable [X]0 measurements (see Table S1 and Table S2 for individual sampling periods). This data 340 

was prepared for flux quantification by carrying out the following steps. The [X]0 timestamp from both instruments was 

corrected to account for lag time. 1 Hz satellite geolocation from UAV1 was interpolated to the 10 Hz [X]0 frequency of the 

MGGA. [X]0 was converted into [X] using Eq. (9). E was calculated with [X]0 measurements from both instruments using Eq. 

(10). [X]b was derived by fitting a log-normal distribution to all recorded [X]0 measurements from each flight survey, using 

the method described by Shah et al. (2019) in our previous study. This background was derived from a histogram of all 345 

useable [X]0 measurements acquired during each flight experiment; a log-normal fit can usually be applied to the lowest [X]0 

measurements in the histogram, which represent out-of-plume sampling. The peak of the log-normal fit to these lowest [X]0 

measurements was taken to be [X]b. ρ was derived using average temperature and , pressure and relative humidity recorded 

by at the stationary anemometer for the duration of each flight survey, with the standard deviation in temperature and, 

pressure and humidity used to derive σρ. 350 

 

Satellite-derived altitude was corrected to obtain the height of the air inlet above ground level, by taking into account take-

off altitude and the height of the air inlet when on the ground. This step ensures that the data represent the true point of 

sampling. After converting longitude and latitude from degrees into meters, metric longitude and latitude were projected 

onto a plane perpendicular to and a plane parallel to mean wind direction, respectively. Mean wind direction was derived 355 

from the stationary anemometer for the duration of each flight survey. The coordinate projection procedure is described in 

further detail by Shah et al. (2019). 

 

In order to calculate flux, flux density, q, (in kg s-1 m-2) was derived. To achieve this, each geospatially mapped E 

measurement was combined with WS(z), using Eq. (12). 360 

(12)  q = E · WS(z) 

Geospatially mapped q, on a plane perpendicular to mean wind direction, for each flight survey, is given plotted in Fig. 53 

for UAV1 and in Fig. 64 for UAV2. Measurements of [X] (see Fig. 4 for a time series for each survey2) were not used in the 

flux analysis, but are nevertheless of interest, as they show [X] to generally reduce with z, as expected, to support 

observations of q enhancements in q shown in Fig. 53 and Fig. 64. 365 
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Both Fig. 53 and Fig. 46, show significant background sampling (yellow data points), extending sufficiently far away from 

the position of the source projected onto the sampling plane (0 m), such that the narrow turbulently advecting time-invariant 

plume centre across each transect (typically manifested by a peak mole fractionq increase) had been passed. All of the UAV1 

surveys in Fig. 3 5 took place from a similar distance from the source, of approximately 50 m. It is clear that during most 370 

UAV1 surveys, enhancements in q were concentrated near the ground (below 10 m) and close to the position of the source, 

projected onto the sampling plane (0 m). However T1.3 shows considerable enhancements in q above the ground (up to 

approximately 30 m), which was possibly due to a transient updraft. Meanwhile, the UAV2 flight surveys in Fig. 46, many 

of which took place approximately 100 m from the source, show large enhancements in q across the flux plane, up to 

approximately 15 m above the ground. Enhancements of q in Fig. 64 can also be seen at a much greater lateral distance from 375 

the source, projected onto the sampling plane. This is likely a consequence of many UAV2 flight surveys sampling at a 

greater distance from the source than UAV1 flight surveys, which gave the time-invariant plume more time to spread 

outdisperse. On the other hand, UAV1 flight surveys, which took place nearer to the source, show that UAV1 intersected the 

time-invariant plume less often. Thus, it may appear that the UAV flight track was not centred downwind of the source, 

when in practice erratic variations in the position of the time-invariant plume-centre made it appear this way, as the time-380 

invariant plume did not have time to disperse. 

3.4 Flux quantification 

Calculated flux density (q) from each flight survey was used to derive an emission flux (in units of kg s-1) using the near-

field Gaussian plume inversion (NGI) flux quantification technique (see Shah et al. (2019)). In principle, the NGI method 

accounts for turbulent variations in wind using Gaussian statistics. The method also takes into account sampling on a slightly 385 

offset sampling plane (compared to the plane perpendicular to mean wind direction) by introducing a third dimension to the 

traditional two-dimensional Gaussian plume model. The NGI method uses a least-squares approach to compare measured 

and modelled values of q. Residuals in q are minimised to output model parameters, which include an initial flux estimate 

(Fe). 

 390 

Full details of the NGI method can be found in our previous study in Shah et al. (2019). We provide a brief overview here. 

The size of the time-averaged plume is assumed to increase linearly with distance from the source, by assuming q to 

decrease according to the inverse square law with distance (an assumption which is valid over short distances). Therefore 

instead of using constant crosswind and vertical dispersion terms, these terms are allowed to increase with distance from the 

source, with both terms being fixed at a one metre distance. The crosswind dispersion term (at 1 m) is characterised using 395 

measurements of q, rather than assumptions of atmospheric stability, as these assumptions are valid for time-averaged 

plumes characterised by dispersion, rather than turbulent advection. In addition, the centre of the time-averaged plume in the 

crosswind direction is derived from measurements of q, as the precise position of the source may be unknown. The vertical 

dispersion term (at 1 m) and Fe can then be acquired by inverting modelled values of q, derived by minimising residuals, as 

described above. 400 

 

A measurement flux uncertainty (σF) is calculated by combining the uncertainties in individual E, u(z) and vWS(z) values. A 

lower uncertainty bound (σ-) is calculated using residuals between modelled and measured q values. An upper uncertainty 

bound (σ+) is calculated by incorporating σ- with the potential effects of negative flux bias due to under-sampling, using a 

random walk simulation. The simulation is repeated 180 times for each flight survey. In each simulation, a static Gaussian 405 

plume (simulating a prescribed arbitrary target flux) is sampled across three dimensions, where sampling is constrained to 

the spatial limits of UAV sampling and is limited to the UAV sampling duration. The NGI method is used to derive a flux 
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from these random walk simulations. The average fractional target flux underestimation from these simulations can be 

incorporated into σ+. Random walk flux underestimation occurs due to limited spatial sampling coverage (i.e. sampling gaps) 

and limited spatial sampling extent. This simulation step therefore gives an important indication of the systematic error due 410 

to potential under-sampling. All Fe, σ
-, σ+ and σF values for each flight survey are given in Table S5. 

4 Flux results and discussion 

Calculated NGI emission fluxes were compared to the known (controlled) emission fluxes, using the ratio between the NGI 

flux uncertainty range and F0 (see Fig. 75). As this was a blind flux analysis, F0 was not revealed to the analysis team 

researchers prior to calculating the NGI flux uncertainty range. Fig. 75 shows that the NGI flux uncertainty range agrees well 415 

with F0, for most flight surveys. Only four three surveys (T2.1, T1.1, T1.3 and T1.7) had a flux uncertainty range that fell 

short of F0. Although no flux uncertainty range exceeded F0, T2.3 spanned a large flux range, much of which fell above F0. 

Flux underestimation may be explained using the plots shown in Fig. 53 and Fig. 64, which demonstrate the following: a 

limited sampling duration made it possible to almost entirely avoid the emission plume, thus resulting in low flux results; 

similarly, some flights intersected the emission plume multiple times resulting in flux overestimation in cases, although large 420 

NGI uncertainty ranges can conservatively account for this effect. Therefore it is clear that the Fe value obtained using the 

NGI method must not be taken at face value and the full NGI flux uncertainty range must be considered. Furthermore, the 

flux ranges in Fig. 75 represent uncertainty bounds of one standard deviation; it is statistically realistic to expect some 

discrepancy between F0 and the NGI flux uncertainty range. 

 425 

The flux uncertainty ranges given in Fig. 5 7 are asymmetric, although the magnitude of this asymmetry was different for 

flight experiments conducted by the different UAVs. σ+ was (0.33±0.1314(1σ)) times larger than σ- for UAV2 but was only 

(0.0608±0.03(1σ)) times larger for UAV1. This is because UAV2 sampled further from the source, on average, on a similar 

sized sampling plane to UAV1. As UAV2 was further from the emission source, the instantaneoustime-invariant plume had 

a greater likelihood of extending beyond the sampling plane and being missed (beyond the horizontal edges of the sampling 430 

plane), due to spatially limited sampling extent. This potential loss of in-plume sampling may have otherwise contributed 

towards the overall flux, thus enhancing σ+. Therefore σ+ is comparatively larger than σ- for flights conducted by UAV2. 

 

The suitability of our experimental sampling methodology can be assessed by quantifying σF as a fraction of Fe, which was 

on average (±45±8)%. To assess the dominant sources of σF, the contribution of WS(z) and E uncertainty components 435 

towards it were analysed (see SI for details and results). As σF is derived by combining individual components in quadrature, 

this analysis was conducted by assuming other uncertainties to be zero. The test showed that if wind speed was the only 

source of uncertainty, it would on average result in (±90±8)% of σF, therefore representing a dominant source of uncertainty. 

The standard deviation variability in cell temperature and cell pressure within each flight survey (see Table 5) was, on 

average, far smaller than maximal cell temperature changes (2.9° C) and cell pressure changes (3.5 mbar) observed during 440 

the MGGA Allan variance test. The average cell temperature and cell pressure during each flight survey was also derived 

(see Fig. S18 and Fig. S19) with averages given in Table 5. The values in Table 5 are not dissimilar to conditions during 

calibrations (plotted in Fig. S18 and Fig. S19). As there was no discernible correlation between [X] and cell temperature and 

cell pressure from the MGGA Allan variance test and considering dominance of winds contributing towards σF, one can 

assume that variation in cell temperature and cell pressure had negligible net effect on σF. Furthermore, the (poorly 445 

correlated) temperature trend from the MGGA Allan variance test reveals a maximum uncertainty of 20 ppb for the MGGA 

and 14 ppb for the pMGGA (derived from the maximum difference between average calibration cell temperature and 

average UAV sampling cell temperature). These uncertainty values are far smaller than the average enhancement uncertainty 
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(expressed as a dry mole fraction) within each flight survey of (55±47) ppb (see Table S7 for individual values), though 

further laboratory testing would be needed to better characterise these effects. 450 

 

It is important to recognise the magnitude of the NGI uncertainty ranges in Fig. 57, relative to F0, which are due to the 

difficulties in inverting sparse spatial sampling to derive an emission flux, following the NGI method. These uncertainties 

reflect the limited sampling duration of sampling and the effects of variability in wind. While we fully acknowledge that flux 

uncertainty ranges in Fig. 5 7 are large, we believe that the true value of the NGI method with UAV sampling is to derive 455 

snap-shot rapid flux estimates at low cost, with an order-of-magnitude level precision, for subsequent flux investigation 

using more precise flux quantification techniques. Although longer periods of sampling in each flight survey may reduce the 

uncertainties in Fig. 57, this is practically difficult with limited UAV battery life, with little additional benefit. Tethered 

power or multiple UAV flights may alternatively be used, as was the case with UAV1, but wind conditions can quickly 

change when sampling for prolonged periods with too many lengthy intervals between flights. 460 

 

Some flux results (T1.1 for example) intersected the time-invariant plume more often than others (T1.2 for example) but 

resulted in a lower NGI flux range. On closer inspection of the mole fraction time series given in Fig. 4, flight surveys such 

as T1.2 sampled higher mole fraction enhancements (and hence q), than T1.1, However, as the time-invariant plume may 

have largely been centred near to the ground, it can be more difficult to distinguish from a simple plot of the flux density 465 

UAV flight track. The comparative magnitude of mole fraction enhancements is clear, on examination of the mole fraction 

time series. Thus it is important to take into account both the number of plume intersections and the magnitude of q during 

each plume intersection, when assessing NGI flux results.  

 

In order to assess whether multiple flight surveys could be used effectively to capture the known controlled emission flux, 470 

within uncertainty, the upper and lower NGI uncertainty bounds were averaged for all surveys (see penultimate row of Fig. 

57). The average lower NGI flux uncertainty bound as a fraction of F0 (F-
� ) was 0.2±0.1(1σ) and the average upper NGI flux 

uncertainty bound as a fraction of F0 (F+���) was 2±1(1σ), for all surveys. Thus F0 (i.e. 1 in Fig. 57) falls comfortably within 

the average NGI flux uncertainty range, over 22 independent flight surveys. F-
�  and F+��� were also calculated for surveys 

conducted by UAV1 and UAV2, separately. These separate F-
�  and F+��� values for each UAV also comfortably overlap with 475 

the F-
�  and F+��� values for all surveys combined. This suggests that the sampling strategies employed by UAV1 and UAV2 

were both capable of deriving the known emission flux, with a similar degree of both lower and upper uncertainty. The 

percentage standard error in F-
�  and F+���, over all 22 flight surveys, was 1312% and 109%, respectively. The large standard 

errors in F-
�  and F+��� may be reduced with more surveys, in order to better constrain the NGI flux uncertainty range. However 

more precise flux estimates can be obtained using other approaches such as with the tracer dispersion methods. Although we 480 

recognise that the F-
�  and F+��� uncertainty averages are large, we emphasise that our methodology has been adapted for rapid 

flux analysis, rather than precise flux estimates for inventory publication. 

 

The ability of the NGI method to calculate a target emission flux was further assessed by calculating the central flux estimate 

as a fraction of F0 (Fc) for each flight survey, using Eq. (13). Fc is distinct from Fe (as a fraction of F0), in that Fc finds the 485 

centre of an asymmetric flux uncertainty, whereas Fe is an initial flux estimate calculated using the NGI method, which does 

not take into account the potential effects of under-sampling, which may result in a potential negative flux bias. 

(13)  Fc = 
Fe + 
σ+ - σ-

2


F0
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The mean of Fc (Fc���) and the mean standard error in Fc��� for the 22 surveys (see bottom row of Fig. 57) treats each survey as an 

independent quantification of the flux, with no weighting for sampling time (as flight times were broadly similar). This 490 

clearly demonstrates the improvement in flux accuracy (for a constant source) that can be obtained with greater sampling 

time or repeated flights, as expected. Fc��� was also calculated for surveys conducted by UAV1 and UAV2 separately: these 

separate Fc��� values both overlap with the combined Fc��� value for all flight surveys (within one standard deviation); there is no 

discernible difference in the NGI flux result results obtained by either UAV. This suggests that both UAV sampling 

strategies were equally capable of delivering the same emission flux estimate, by taking the average of multiple flight 495 

surveys. 

 

The overlap of the standard deviation in Fc��� (shown in Fig. 57) with the known emission flux (i.e. 1 in Fig. 57) also suggests 

that there was no apparent flux bias (within uncertainty) in this study. This indicates that we have successfully overcome the 

causes of positive biases reported in our previous study (Shah et al., 2019)by Shah et al. (2019). Shah et al. (2019) sampled 500 

downwind of a controlled emission source and actively pursued the time-invariant emission plume (projected onto the 

sampling plane) using mid-flight knowledge of its position, inferred by releasing smoke grenades during flight surveys. 

However in this current work, manual sampling was avoided by either flying UAV1 using pre-programmed waypoints or by 

flying UAV2 using lateral transects in course-lock. Both of the approaches presented here successfully avoided biased 

sampling. 505 

 

To conclude, UAV sampling can be used to practically derive unbiased snap-shot emission fluxes with the NGI method, with 

an order-of-magnitude precision, by sampling on a plane perpendicular to wind direction from at least approximately 50 m 

away from the source. Although typical flux uncertainties were high, NGI UAV fluxes serve as an important tool for snap-

shot source identification and flux quantification. Our UAV methodology fills an important gap between cheap leak 510 

detection techniques (such as infrared cameras), which do not provide fluxes, and reliable flux quantification techniques 

(such as the tracer dispersion method), which require expensive instrumentation and may be more difficult to organise. For 

example, tracer methods can be problematic in cases where site access for tracer release is impossible or in cases where the 

plume may be lofted. The UAV methodology we describe is highly suitable for regulatory leak detection and source 

isolation, for regulatory leak detection, with the added capability to gauge the severity of flux leaks, for subsequent 515 

investigation using other approaches. We anticipate a combination of UAV sampling with a tracer release, where both a 

target gas (in this case methane) and a proxy tracer can be measured simultaneously downwind, taking advantage of vertical 

sampling enabled by UAVs, as a powerful future toolkit for precise facility-scale flux quantification. 

5 Conclusions 

Two UAVs were used to test the near-field Gaussian plume inversion technique for flux quantification. One UAV was 520 

connected to the MGGA on the ground using a tether, while the other carried a new ABB pMGGA prototype instrument on-

board. Both instruments measured atmospheric methane mole fraction, which was calibrated and corrected for the influence 

of water vapour, following laboratory testing. 

 

The flux approach was tested for 22 UAV flight surveys, by deriving fluxes from a controlled release of methane gas. This 525 

yielded successful results, with 18 19 out of 22 fluxes falling within the UAV-derived flux uncertainty range. This 

demonstrates that the near-field Gaussian plume inversion methodology used here could be used to derive emission fluxes 

from UAV sampling of plumes from facility-scale (point) sources, where such sources are relatively invariant over the 

period of such UAV sampling. The lower flux uncertainty bound was, on average, 17%±10(1σ)% of the controlled emission 
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flux and the upper flux uncertainty bound was, on average, 218227%±10098(1σ)% of the controlled emission flux. Thus the 530 

known emission flux was comfortably encapsulated by the UAV flux results, within uncertainty. 

 

A key advantage of the methodology used here is the ability to sample downwind of sources to obtain off-site mole fraction 

measurements. Such sampling allows for independent and portable studies of methane emissions without the need for heavy 

infrastructure, special permissions, runway access or prior notification. We conclude that the near-field Gaussian plume 535 

inversion flux quantification method can be used confidently in future with UAV sampling to derive snap-shot methane 

emission fluxes from relatively constant facility-scale sources such as oil and gas extraction infrastructure, livestock 

agriculture and landfill sites. An exciting future application may be the incorporation of UAV sampling within the tracer 

release method, where simultaneous measurement of a target gas and a proxy tracer can take advantage of vertical sampling 

enabled by UAVs. This avoids the limitation of current mobile vehicle sampling which cannot sample lofted plumes. 540 

Together, this may represent a powerful future toolkit for precise and efficient flux quantification. 
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 680 

 

Figure 1. Allan variance for the MGGA plotted against integration time on logarithmic axes. 
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Figure 2. Allan variance for the pMGGA plotted against integration time on logarithmic axes. 685 
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Figure 3. The two fields used for UAV sampling. The map extends 0.71 km horizontally and 0.50 km vertically. The 

controlled release points are marked by labelled crosses (see Table S3 for details). The background image is taken 

from Google Maps (imagery (2017): DigitalGlobe, GetMapping plc, Infoterra Ltd & Bluesky, The GeoInformation 690 

Group). 
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Figure 4. [X] measurements acquired by the MGGA and the pMGGA, as a function of sampling duration, for each 695 

flight survey, with sampling height above ground level also plotted (coloured dots). A logarithmic colour legend has 

been used. Vertical blue lines indicate an interruption in continuous sampling. 
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Figure 5. UAV1 flight tracks (coloured dots), with the colour corresponding to q. Periods in which the tubing inlet 

kinked have been removed. A logarithmic colour legend has been used. The position of the source projected on the 

plane perpendicular to mean wind direction has been set to a reference of 0 m. The controlled emission flux and the 

parallel distance of the sampling plane from the source (weighted to the position of q enhancements) are given in 705 

brackets. 
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Figure 6. UAV2 flight tracks (coloured dots), with the colour corresponding to q. The position of the source projected 710 

on the plane perpendicular to mean wind direction has been set to a reference of 0 m. The controlled emission flux 

and the parallel distance of the sampling plane from the source (weighted to the position of q enhancements) are 

given in brackets. 
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Figure 7. NGI flux uncertainty range (thick cyan bars), for each method testing flight survey, as a fraction of F0. The 

σF uncertainty range (horizontal blue lines) is given on either side of Fe (vertical blue lines). Fc��� and F-
�  and F+���� 

averages (vertical blue lines) are plotted for UAV1, UAV2 and for all flight surveys. Standard deviation uncertainty 

ranges (horizontal blue lines) and standard error uncertainty ranges (thick yellow bars) are given on either side of Fc���, 720 

F-
�  and F+���� values. 

  



30 

 MGGA pMGGA 
Mass 4.8 kg 3.4 kg 
Length 0.35 m 0.33 m 
Width 0.30 m 0.20 m 
Depth 0.15 m 0.13 m 
Power consumption 35 W 32 W 
Operating DC voltage 10 V – 30 V 10 V – 28 V 
Cell pressure atmospheric pressure controlled to 0.61 bar 
E-folding time (1.6±0.2) s (3.0±0.1) s 
Volumetric flow rate (27.90±0.05) cm3 s-1 (5.08±0.02) cm3 s-1 
Maximum sampling frequency 10 Hz 5 Hz 
σAVσn 2.71 ppb 5.44 ppb 
1 Hz Allan deviation 0.71 ppb 2.2 ppb 
0.1 Hz Allan deviation 0.24 ppb 0.72 ppb 
Optimum integration time (20±3) s (70±10) s 
Table 1: General properties of the MGGA and the pMGGA. 
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 MGGA pMGGA 
a -0.00557-0.000312 molwater mol-1 -0.000503+0.000195 molwater mol-1 
b +0.00530-0.000193 molwater mol-1 ppm-

1 
+0.000704-0.0000257 molwater mol-
1 ppm-1 

w 23.6 ppm 23.6 ppm 
α -1.556 mol molwater

-1 -1.640 mol molwater
-1 

β -12.25 mol2 molwater
-2 -1.208 mol2 molwater

-2 
σν 0.0004253 0.0002613 
Table 2: Water correction coefficients for the MGGA and pMGGA, required to obtain ν using Eq. (4) and σν. 725 
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 MGGA pMGGA 
G±σG 0.9970±0.00023 0.9869±0.00028 
C±σC (+0.0132±0.0020) ppm (-0.0019±0.0015) ppm 
Table 3: Calibration coefficients for the MGGA and pMGGA. 
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 UAV1 UAV2 
Flights per survey 2 1 
Distance of sampling plane from 
source 

48 47 m – 51 50 m 64 m – 104 114 m 

Take-off and landing Manual Manual 
Flight control Waypoints Manual (course lock) 
Average velocity across the sampling 
plane 

(1.5±0.1) m s-1 (2.8±0.6) m s-1 

Payload PFA tubing and inlet, wind sensor pMGGA 
Height of plane of propellers 0.540 m 0.680 m 
Height of air inlet 0.845 m 0.370 m 
Table 4: A comparison between UAV1 and UAV2.   
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 UAV1 UAV2 
Instrument MGGA pMGGA 
Average cell temperature standard 
deviation within flight surveys 

(±0.16±0.09)° C (±0.28±0.28)° C 

Average cell pressure standard 
deviation within flight surveys 

(±1.15±0.86) mbar (±0.40±0.01) mbar 

Average cell temperature mean 
across flight surveys 

(25±2)° C (22±4)° C 

Average cell pressure mean across 
flight surveys 

(1025.6±5.4) mbar (614.4±0.1) mbar 

Table 5: Average cell temperature and cell pressure standard deviation variability within each UAV flight survey, 730 
recorded by the MGGA and the pMGGA. The average cell temperature and cell pressure mean is also given. 
 


