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Dear Editor, 

We thank the associate editor for their timely response and for their useful advice. We have addressed 
the issues raised by reviewer 3 to the best of our ability except, where the associate editor rightly 
highlights, improvements were not logistically feasible due to return of the pMGGA instrument or lack 
of access to additional gas standards. 

To address the limitations of the sensors, we now clearly state in the abstract that the sensor 
characterisation is suitable for our UAV sampling purposes but that temperature and pressure effects 
have not yet been comprehensively characterised. Temperature and pressure characterisation is 
presented as a topic of future work. We have also added a sub-section to the end of section 2, 
summarising potential future improvements for sensor characterisation. This now outlines ways to 
improve sensor characterisation, either by running calibrations in controlled environments or by 
sampling multiple gas standards. We also further discuss sources of (very small) systematic uncertainty 
associated with an assumption of linearity in the water baseline, in response to reviewer 3. 

We have compiled our point-by-point response to comments made by both reviewers below. We have 
also included a marked-up version of the modified manuscript, addressing all of the reviewer’s 
concerns. 

Yours faithfully, 

Adil Shah  
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Response to reviewer 1 
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The reviewer appreciates the extensive responses from the authors. After reading through the responses 
to both reviewers' comments, my impression is that it may be Okay to use the two instruments MGGA 
and pMGGA to measure large signals as in the CH4 release experiment, but the uncertainties of the two 
analyzers have not been thoroughly/convincingly characterised, which unfortunately limits the potential 
use of such instruments in other applications. This is especially the case when a direct comparison of 
such an instrument with a proven technique is lacking. 

We thank the reviewer for taking the time to review our manuscript for a second time. We also thank 
the reviewer for acknowledging our improvements. We regret that the reviewer still deems our 
additional analyses to be insufficient, in light of the fact that UAV sampling conditions (see Table 5) 
were similar to conditions during laboratory testing. However we recognise that further future 
characterisation by others may well serve to improve measurement accuracy. Indeed, characterisation of 
any instrument is something that should always be done and is all too often overlooked by some. We 
have therefore now stated clearly in the abstract that temperature and pressure effects were suitably 
characterised for our UAV sampling experiments, but that future characterisation may be necessary 
depending on the application of measurements. We appreciate that the constraints of our 
characterisation work mean that they may not be applicable for use in more extreme environments. To 
highlight recommended future sensor characterisation improvements, we have added a new sub-section 
to the end of section 2 summarising these ideas (calibrations in a controlled environment and sampling 
additional gas standards). We hope these additional modifications are more acceptable and appropriate 
in light of the principal (UAV sampling) focus of the manuscript.  
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Response to reviewer 3 
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We thank the reviewer for taking the time to review our manuscript and for some very useful and 
constructive comments and suggestions. We have responded (red text) to each comment (black italic 
text) in turn below. We have used these comments and suggestions to update and improve a revised 
version of the manuscript. 

General Comments: 

1) In S3 and S4 you derived the [H2O] offset by measuring two or three different concentrations. I think 
two points alone does not make a strong enough correlation for a calibration curve (typically you need 
at least 4-5 for this practice). This however has created a very large spread on the ends of your 
distribution, and it doesn’t necessarily tell you much about if the behavior is linear in between the 
points. For example, in S3, your point between the extremes lies under your line of best fit. So perhaps it 
would be best to present your endpoints as points with error bars to better represent the uncertainty. If 
possible, I would recommend running the pMGGA with the 2.167 cylinder and both with one more 
standard. You may also consider adding a blank (0 ppm), as is common in most spectroscopic practices. 
However, I think the method you used of drying the gas is acceptable. I also agree with the assertion 
that this will stay relatively constant over time. 

The same thinking goes to S6 and S7. This treatment may help determine if the exponential truly is the 
line of best fit in S9 and S10. 

The reviewer makes a valid comment regarding our choice of water baseline fit and this is an aspect we 
addressed in a previous manuscript discussion. The use of a linear fit was actually recommended by 
previous reviewers. We have conducted further work to assess the systematic uncertainty associated 
with the use of such a baseline fit (see below). We agree with the reviewer that three data points is 
insufficient for a complete understanding of the potential linearity of the water baseline. We also agree 
that it would be better to sample more gas standards. Unfortunately, more gas standards are not 
available to us at present. Furthermore, the prototype instrument has now been returned to the 
manufacturer so we cannot conduct further characterisation work. However, as the water baseline is a 
very small component of the water correction factor, our assumption of linearity is sufficient, given the 
large mole fraction enhancement uncertainty terms in equation 11, including σL of ±2.3 ppb and σn of at 
least ±2.7 ppb. To verify this assumption, a sensitivity test was conducted, assuming the water baseline 
at 2 ppm to in fact be the water baseline 5.1 ppm. In principle, this would erroneously reduce mole 
fraction (at 2 ppm) by only 2 ppb. Thus even if our assumption of non-linearity is utterly false and there 
is no trend at all, the increase in systematic uncertainty would be negligible when compared with 
instrumental precision. This sensitivity test is now described and discussed in paragraph four in section 
S2 of the supplementary material.  

We thank the reviewer for highlighting the spread in water baseline values. We have now added a 
standard deviation bar alongside each individual data point, for each gas cylinder, in Figure S3 and 
Figure S4 as suggested. This now better highlights the variability in water baseline and better captures 
the magnitude of uncertainty in our fit. 

The reviewer has made an astute observation that one of the three sampled gas cylinders in Figure S3 
(for the MGGA water baseline) resulted in a water baseline below the general linear trend. Having 
investigated this further, we now realise that this was most likely due to slightly different environmental 
conditions when sampling this gas cylinder compared to the other two (now described in paragraph 4 of 
section S2 of the supplement). Instrumental housekeeping data revealed that the cell pressure was 
9.4 mbar higher and the cell temperature was 1.9° C lower when sampling this cylinder. Nevertheless, 
as our laboratory characterisation procedures took place under similar environmental conditions to 
UAV testing (see Table 5 for values), we believe any net effect on methane mole fraction to be very 
small and that any systematic water baseline effects is captured within the existing uncertainty terms of 
equation 11. 
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Ideally, we would have preferred to sample the 2.167 ppm cylinder using the pMGGA. However, we 
had limited access to this instrument, as it was returned to the manufacturer. Nevertheless, following the 
sensitivity test described in paragraph 1 above, the net effect of the water baseline on the overall water 
correction factor is small, especially for the pMGGA. Variability in water baseline for the pMGGA 
(between 2 ppm and 5 ppm) was 0.00005 molwater mol-1, while for the MGGA it varied by 
0.0007 molwater mol-1. Thus even if the water baseline was potentially poorly characterised for the 
pMGGA during laboratory testing, its small variability with methane mole fraction means that any 
potential systematic uncertainty in water correction factor would be negligibly small compared with the 
inherent random error. 

Testing both instruments using zero-air (a 0 ppm standard) is a good suggestion. However we did not 
have access to a synthetic air mix without any methane. Although we could use pure nitrogen, it would 
not be suitable for this test as collisional peak broadening would result in an unnatural line shape 
without oxygen, argon and carbon dioxide. However we acknowledge that if a suitable standard were 
available, this would be a very valuable test in future. This has now been suggested as a potential test 
for forward guidance. 

In summary, we recognise that there are a number of tests that would serve to improve sensor accuracy 
in future, by better characterising the water baseline and deriving a gain factor across a wider range of 
environmental temperature and pressure conditions. These tests are beyond the scope of our manuscript 
as the sensors needed to be suitable for UAV sampling in ambient atmospheric conditions in the UK 
summer. We have confirmed that conditions were suitable by comparing the values in Table 5 to the 
environmental conditions during these laboratory tests. Nevertheless, tests in a controlled environment, 
sampling more standards, could be recommended in future work in order to get the very best out of the 
instrument. Therefore we have added a new sub-section at the end of section 2, highlighting these future 
improvements. 

2) For UAV2, where was the airflow being pulled into the pMGGA from? Did it have a boom or some 
other inlet that brough air into the instrument from a location undisturbed from the rotor wash? Same 
goes for the UAV1 and its tubing – was it located on a boom away from the propellers? Several groups 
have determined that sensor placement matters a great deal, so you may want to at least discuss any 
considerations you did make, even if this was not the aim of this work. Including a schematic of UAV 1 
and 2 in section 3.1 could be beneficial to help readers see where the sensors were placed, including 
the wind sensor you did describe. This was very good, and I think you just need to add the inlets for the 
pMGGA / MGGA tubing to this section. 

The reviewer is right to highlight the importance of air inlet positioning. It has been well-documented 
(including our previous work: Shah et al., 2019) that propeller downwash can distort the sampled spatial 
plume morphology. The inlet should ideally be placed above the plane of the propellers as air funnels 
inwards from the sides towards the centre of the UAV, with turbulent disturbance and downwash below 
the plane of the propellers. As UAV1 was specially designed for atmospheric sampling, both the air 
inlet and the on-board wind sensor were positioned on poles 0.3 m above the plane of the propellers (see 
Table 4 for air inlet heights with respect to the base of the UAV). A perfectly analogous setup for 
UAV2 was not possible, as we only had access to the pMGGA for a limited time. We now discuss these 
points in an additional paragraph at the end of section 3.1 

We agree that including a schematic of the position of the air inlet is a very good idea. We have now 
added a new figure (figure 5) to the manuscript which shows photographs of both UAVs and highlights 
the position of the air inlet as well as the plane of the propellers, with respect to the base of the UAV. 

Detailed Comments: 

L33-39: This paragraph does an excellent job elucidating why the methane budget is poorly 
constrained and how we can work to reduce our uncertainties. However, what could really put the 
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finishing touch here I believe is a sentence at the beginning highlighting the importance of the methane 
budget to the climate system (i.e. GHG forcing, implications on hydroxyl radicals etc.). 

We thank the reviewer for their kind comments. The reviewer makes a valuable point here. Two short 
sentences have been added to the start of the introduction to place the rest of the manuscript into 
context, as follows. “Methane is the second most important anthropogenic greenhouse gas (Etminan et 
al., 2016), with an important role in atmospheric chemistry processes (Ehhalt et al., 1972). There is 
more methane in the atmosphere today (on an average annualised basis) than there has even been over 
the past 800 000 years (Etheridge et al., 1998; Loulergue et al., 2008; Earth System Research 
Laboratory, 2020).” 

L309: Be advised the numbering in section 3 skips from 3.1 to 3.3. Please correct this to 3.2 then 3.3. 

We thank the reviewer for highlighting this error which we have now corrected. 

S17-18: If the authors are referring to the mole fraction intercept in S2, 4.3014 ppm is incorrect. The y-
axis in the plot is the same in both S1 and in S2, so either S2 needs to be corrected of the text needs 
corrected. 

There may be some confusion here. The different figures show the (different) y-intercept for different 
parameters (cell temperature and cell pressure). The value we are referring to here is a y-intercept when 
x equals zero. This extrapolates the linear fit to the point where x equals zero as a function of cell 
temperature and cell pressure (separately). They are inherently different. The confusion here may 
simply be because the gradient “looks” similar on the two plots, whilst they each have a different 
intercept. To clarify this in the supplement, we have replaced “mole fraction intercept” with “mole 
fraction zero intercept”.  
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Modified manuscript 
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Abstract. Methane emission fluxes from many facility-scale sources may be poorly quantified, potentially leading to 

uncertainties in the global methane budget. Accurate atmospheric measurement based flux quantification is urgently required 

to address this. This paper describes the first test (using unbiased sampling) of a near-field Gaussian plume inversion (NGI) 

technique, suitable for facility-scale flux quantification, using a controlled release of methane gas. Two unmanned aerial 

vehicle (UAV) platforms were used to perform 22 flight surveys downwind of a point-source methane gas release from a 

regulated and flow-metered cylinder. One UAV was tethered to an instrument on the ground, while the other UAV carried an 

on-board high-precision prototype instrument, both of which used the same near-infrared laser technology. The performance 

of these instruments from UAV sampling is described. Both instruments were calibrated using certified standards, to account 

for variability in the instrumental gain factor, assuming fixed temperature and pressure. Furthermore, a water vapour 

correction factor, specifically calculated for the instrument, was applied and is described here in detail. We also provide 

guidance on potential systematic uncertainties associated with temperature and pressure, which may require further 

characterisation for improved measurement accuracy. The NGI technique was then used to derive emission fluxes for each 

UAV flight survey. We found good agreement of most NGI fluxes with the known controlled emission flux, within 

uncertainty, verifying the flux quantification methodology. The lower and upper NGI flux uncertainty bounds were, on 

average, 17%±10(1σ)% and 227%±98(1σ)% of the controlled emission flux, respectively. This range of highly conservative 

uncertainty bounds incorporate factors including the variability in the position of the time-invariant plume and potential for 

under-sampling. While these average uncertainties are large compared to methods such as tracer dispersion, we suggest that 

UAV sampling can be highly complementary to a toolkit of flux quantification approaches and may be a valuable alternative 

in situations where site access for tracer release is problematic. We see a tracer release combined with UAV sampling as an 

effective approach in future flux quantification studies. Successful flux quantification using the UAV sampling methodology 

described here demonstrates its future utility in identifying and quantifying emissions from methane sources such as oil and 

gas extraction infrastructure facilities, livestock agriculture and landfill sites, where site access may be difficult. 

1 Introduction 

Methane is the second most important anthropogenic greenhouse gas (Etminan et al., 2016), with an important role in 

atmospheric chemistry processes (Ehhalt et al., 1972). There is more methane in the atmosphere today (on an average 

annualised basis) than there has even been over the past 800 000 years (Etheridge et al., 1998; Loulergue et al., 2008; Earth 

System Research Laboratory, 2020). The global methane budget is subject to significant uncertainties (Kirschke et al., 2013; 

Saunois et al., 2016b; Nisbet et al., 2019), particularly from inventory uncertainty in facility scale sources such as landfill 

sites (Scheutz et al., 2009), herds of cattle (Blaxter and Clapperton, 1965) and oil and gas extraction infrastructure (Brantley 

et al., 2014), which collectively contribute significantly to global methane emissions (Dlugokencky et al., 2011; Saunois et 
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al., 2016a). These uncertainties can be reduced through the accurate source identification and subsequent quantification of 

methane emission fluxes using top-down (atmospheric measurements based) methods, in order to validate bottom-up 

(inventory based) emission flux estimates (Lowry et al., 2001; Nisbet and Weiss, 2010; Allen, 2016; Desjardins et al., 2018). 

 

Accurate top-down flux quantification from facility scale sources requires a combination of wind vector measurements along 

with in situ measurements of atmospheric methane mole fraction (Dlugokencky et al., 1994; Rigby et al., 2017). Facility-

scale emission fluxes can be derived from near-field sampling (less than 500 m from the source), which may be acquired 

from an unmanned aerial vehicle (UAV) platform (Gottwald and Tedders, 1985). UAVs are cheap, versatile and relatively 

easy to use (Villa et al., 2016), compared to large manned aircraft (Illingworth et al., 2014; Lehmann et al., 2016). They can 

fly near to source and can be directed automatically using waypoints, to enable even and unbiased spatial sampling 

(Greatwood et al., 2017; Feitz et al., 2018). There are three principal approaches for measuring methane mole fraction from a 

UAV in situ: on-board air samples can be collected for subsequent analysis (Chang et al., 2016; Greatwood et al., 2017; 

Andersen et al., 2018), air can be pumped through a long tube to a sensor on the ground for analysis (Brosy et al., 2017; 

Wolf et al., 2017; Shah et al., 2019) or air can be analysed live using a sensor mounted on-board the UAV (Berman et al., 

2012; Khan et al., 2012; Nathan et al., 2015; Golston et al., 2017; Martinez et al., 2020). Yet, a key limitation to accurate 

source identification and flux quantification is the precision and accuracy of methane mole fraction measurements 

(Hodgkinson and Tatam, 2013). Miniaturised sensors suitable for UAV sampling are emerging (Villa et al., 2016), but high 

precision lightweight in situ closed path sensors, featuring superior techniques, such as off-axis integrated cavity output 

spectroscopy, have not yet materialised. 

 

Some studies have also used UAV remote sensing measurements to derive emission fluxes (Golston et al., 2018; Yang et al., 

2018). However, to our knowledge, only Nathan et al. (2015) have derived fugitive methane emission fluxes using UAV in 

situ measurements. In that study, a UAV with an on-board in-situ low precision sensor (±0.1 ppm at 1 Hz) flew in orbits 

around a gas compressor station, using mass balance box modelling, with geospatial kriging for interpolation, to derive the 

emission flux. However this method was not tested for UAV sampling with an accurate known (controlled) methane flux 

rate. It is crucial that novel flux quantification techniques are tested by sampling a known flux, prior to investigating 

unknown emission sources (Desjardins et al., 2018; Feitz et al., 2018). Our previous study, was the first test of an in situ flux 

quantification technique using UAV sampling downwind of a controlled methane release, where a UAV was connected to a 

high precision methane analyser on the ground using 150 m of tubing (Shah et al., 2019). A data-set of two-dimensional 

downwind sampling measurements, on a vertical flux plane, was used to develop the near-field Gaussian plume inversion 

(NGI) technique for flux quantification, as other flux quantification approaches failed (Shah et al., 2019). Fully manual UAV 

piloting was employed in this previous study to actively pursue the position of the time-invariant emission plume on the 

sampling plane, using mid-flight knowledge of its position. This resulted in calculated emission fluxes that were significantly 

positively biased compared to known emission fluxes; this represents a source of vulnerability in fully manual UAV 

sampling, which we address in this work. 

 

Here we test the application of the NGI method with unbiased UAV sampling of controlled methane emission sources, by 

flying two UAVs downwind of the release. In this work, the causes of positive flux bias reported in Shah et al. (2019) were 

addressed in our sampling strategy, by flying a UAV without prior knowledge of the position of the time-invariant emission 

plume. One UAV was connected to a commercially available instrument on the ground and the other carried a lighter 

prototype on-board instrument (sect. 3). Both instruments were characterised and calibrated, with the effects of cell pressure 

and cell temperature also assessed (sect. 2). Our approach to water vapour correction is also outlined in sect. 2. Limitations 

to our sensor characterisation procedures and future improvements are also outlined. Sampled data was then used to derive 
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NGI flux uncertainty ranges (sect. 4) for each of 22 flight surveys. In sect. 5 the success of the NGI method is assessed 

overall and its sampling constraints are summarised. 

2 Methane instrumentation and calibration 

2.1 Instrumental overview 

Two instruments were used to derive dry atmospheric dry methane mole fraction ([X]) measurements during UAV sampling. 

[X] is given in units of parts-per-million (ppm) throughout this paper, which are defined here as the number of moles of 

methane per million moles of dry air (10-6 ∙ molmethane mol-1), with parts-per-million (ppb) defined as the number of moles of 

methane per billion moles of dry air (10-9 ∙ molmethane mol-1). In this section, the ABB Los Gatos Research, Inc. Micro-

portable Greenhouse Gas Analyzer (MGGA) and a lighter prototype MGGA (pMGGA), designed for UAV use, are 

compared and characterised to assess their performance, albeit under ambient (variable) laboratory temperature and pressure 

conditions. The technical specifications of both instruments are compared in Table 1. Both instruments use off-axis 

integrated cavity output spectroscopy (ICOS) to derive simultaneous empirical measurements of methane, carbon dioxide 

and water mole fraction, from the absorption of a near-IR (1651 nm) laser, with the water and methane absorption peaks 

separated by 0.2 nm. The pMGGA uses an additional laser (1603 nm) to measure carbon dioxide mole fraction more 

accurately. Off-axis ICOS techniques reflect a tuneable laser between two mirrors in a high-finesse optical cavity, to obtain 

high-precision mole fraction measurements (see Paul et al. (2001) and Baer et al. (2002) for further details on off-axis 

ICOS). 

 

The e-folding time of the high-finesse cavity in both sensors was measured here by fitting an exponential decay function to 

the transition from a high to low mole fraction standard gas (see Table 1 for results, with sensor flow rate also given). This 

represents the time taken for 63.2% of the contents of the high-finesse cavity to be replaced. The Allan variance of each 

sensor was also derived (see Fig. 1 and Fig. 2), by sampling a dry gas standard continuously (17 hours and 23 minutes for the 

MGGA and 38 hours and 30 minutes for the pMGGA), under ambient conditions. The 1 Hz and 0.1 Hz Allan deviation for 

both instruments is given in Table 1. The sampling noise uncertainty (σn), used within the total mole fraction enhancement 

uncertainty (discussed in sect. 2.4), represents the Allan deviation at the maximum sampling frequency. σn for the MGGA 

and pMGGA are 2.71 ppb (at 10 Hz) and 5.44 ppb (at 5 Hz), respectively. The optimum Allan variance integration time was 

also assessed for each sensor ((20±3) s for the MGGA and (70±10) s for the pMGGA); this represents the maximum 

sampling time before instrumental drift begins to dominate over instrumental noise. During the MGGA Allan variance test, 

cell temperature (which varied between 24.9° C and 27.8° C) and cell pressure (which varied between 1.0093 bar and 

1.0128 bar) were also recorded to assess their correlation with [X] in ppm (see Fig. S1 and Fig. S2). Correlation of both cell 

temperature and cell pressure was poor, with Pearson correlation coefficients of -0.4849 and -0.3835, respectively, and linear 

gradients of -0.0022 ppm° C-1 and -0.0022 ppm mbar-1, respectively. Thus over a limited cell pressure and cell temperature 

range, there was no definitive correlation with [X] for the MGGA under typical laboratory conditions, though there may be a 

need for a more comprehensive cell temperature and cell pressure characterisation in future, depending on the expected 

sampling conditions. 

2.2 Empirical water vapour correction 

Raw wet methane mole fraction measurements ([X]0) recorded by each instrument were corrected for influence of 

atmospheric water vapour on mole fraction retrievals. Water vapour influences dry [X] measurements of [X] for three main 

reasons (Karion et al., 2013; O'Shea et al., 2013; Rella et al., 2013). First and most significantly, dilution effects occur, 
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where the bulk presence of water reduces the quantity of methane in the cavity at a given pressure. Second, strong, broad 

infrared absorption bands of water can interfere with the absorption spectrum of methane, though this effect is thought to be 

small in this case as the spectral lines are well separated in the spectral sampling region of these instruments. Third, pressure 

broadening can alter the shape of the methane spectral absorption band, due to collisional interaction between water and 

methane molecules, compared to pressure broadening in the absence ofwithout water in the cavity. The combined impact of 

pressure broadening absorption band changes and dilution has a net effect of decreasing [X]0 in both instruments, based on 

laboratory observations at a range of methane and water mole fractions, under typical near-surfacelower boundary layer 

conditions. 

 

To account for pressure broadening absorption band changes, both the MGGA and pMGGA use an internal retrieval 

algorithm to derive methane mole fractions, which includes empirically derived estimates of the effect of pressure 

broadening as a function of varying empirical water vapour mole fraction. The instruments then output both raw dry mole 

fraction measurements, which have additionally been corrected for the effect of mole fraction dilution by water vapour, and 

raw wet methane mole fraction measurements ([X]0), which have not been corrected for dilution (but are still calculated 

using the same empirically derived pressure broadening correction, as a function of water mole fraction). A typical pressure 

broadening correction (as a function of water mole fraction) is determined by the manufacturer based on experiments 

conducted with a sample batch of instruments, yielding an average correction applied to all instruments. However, because 

the correction convolves pressure broadening absorption band changes due to water vapour with pressure broadening 

absorption band changes due to instrument factors, there is some variability from unit to unit. Therefore, to obtain a more 

accurate correction for the influence of water vapour on the individual instruments used here, we apply a further empirical 

post-processing correction factor to the [X]0 measurements (without the dilution correction) reported by the instruments 

under ambient laboratory conditions, using reported measurements of water mole fraction ([H2O]). Although [H2O] 

measurements reported by the instruments may not be an accurate representation of the true water mole fraction in the 

cavity, they are sufficient for an empirical correction on [X]0, provided that [H2O] does not drift and is independent of dry 

uncalibrated methane mole fraction ([X]0
dry). Therefore [H2O] was not calibrated against standards and an instrumental 

reported value was used for this empirical correction. 

 

For the water correction to be valid, [H2O] should be independent of [X]0
dry,. However both instruments reported a small but 

non-zero [H2O] value when sampling dry air, which decreased with increasing [X]0
dry. Therefore before a water correction 

could be applied, a [H2O] baseline ([H2O]0) was derived under ambient (variable) laboratory conditions up to 5 ppm, which 

represents the upper limit of the World Meteorological Organisation Greenhouse Gas Scale (WMO-X2004A) for methane. 

Gas from two cylinders with different methane compositions (1.901 ppm and 5.049 ppm) was dried by passing it through a 

dry ice water trap (a stainless-steel coil immersed in solid carbon dioxide pellets) before being sampled by both the MGGA 

and the pMGGA. Dry air from an additional cylinder (2.167 ppm) was also sampled by the MGGA. Each gas was sampled a 

minimum of 11 times for 4-minute periods, from which 1-minute averages were taken. [H2O]0 decreased with [X]0
dry, given 

by Eq. (1), where a is the water baseline offset and b is the water baseline coefficient. The data used to fit [H2O]0 is plotted 

in Fig. S3 and Fig. S4. 

(1) [H2O]0 = a + (b ∙ [X]0
dry) 

a and b for both instruments are given in Table 2. The effect of [H2O]0 changes in the water baseline on [X]0
dry beyond the 

5 ppm range was also tested up to [X]0
dry of approximately 100 ppm (see SI for details). 

 

[H2O]0 is assumed here to be relatively constant over time. To test this, an Allan variance test was conducted on [H2O]0 for 

both instruments (see Fig. S5 and Fig. S6), using the same Allan variance data-set described in the previous section. This 
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revealed a water baseline Allan deviation precision for the MGGA and pMGGA of ±16 ∙ 10-6 molwater mol-1 and ±27 ∙ 10-

6 molwater mol-1, respectively, using a 1-minute integration time (the averaging time used for each [H2O]0 point). These 1-

minute Allan deviation averages are small compared to the water vapour content of typical tropospheric air, suggesting that 

[H2O]0 remains relatively stable. Having established a stable and well characterised water baseline (assuming ambient 

temperature and pressure conditions), a post-processing empirical water correction factor (ν) was derived by sampling gas 

from a single cylinder (2.205 ppm for the MGGA and 2.183 ppm for the pMGGA), which was humidified to 9 fixed dew 

points (from 0 °C to 18 °C), using a dew point generator (LI-610, LI-COR, Inc.), following a similar experimental set-up 

used by O'Shea et al. (2013). The humidified gas was first sampled dry (to measure [X]0
dry), by passing it through the dry ice 

water trap, and then sampled wet (to measure [X]0 as a function of [H2O]). An example of sampled [X]0 and [H2O] 

measurements, used to calculate each data point, is given in Fig. S8. A single gas standard was deemed sufficient for this test 

as both dilution and pressure broadening absorption band changes affect the gain factor on methane mole fraction 

measurements (i.e. they do not affect the instrumental methane offset). Thus this water correction is assumed to be 

independent of [X]0
dry and solely dependent on the amount of water in the cavity. However any water correction may be 

systematically influenced by cell temperature and cell pressure, which is beyond the scope of this work as these effects are 

deemed to be small under typical near-surface environmental changes (see SI for further discussion). 

 

[X]0 is then corrected by dividing it by ν, as ν is effectively the ratio between [X]0 and [X]0
dry, as a function of [H2O]. The 

ratio of [X]0 to [X]0
dry was plotted against ([H2O] - [H2O]0), where [H2O]0 was the water baseline measured during dry 

sampling (see Fig. S9 and Fig. S10). Subtracting the baseline in this analysis minimised the effects of [X]0
dry on [H2O]. A 

quadratic fit was applied to both curves, with the intercept forced to unity. The first order coefficient (α) and second order 

coefficient (β) of the quadratic fit, given in Table 2, were then be used to derive ν using Eq. (2), as a function of [H2O]. 

(2) ν = 1 + (α ∙ ([H2O] - [H2O]0)) + (β ∙ ([H2O] - [H2O]0)2) 

As [H2O]0 in Eq. (2) is typically unknown, [H2O]0 defined in Eq. (1) can be substituted into Eq. (2), to yield Eq. (3). 

(3) ν = 1 + (α ∙ ([H2O] - a - (b ∙ [X]0
dry))) + (β ∙ ([H2O] - a - (b ∙ [X]0

dry))2) 

As [X]0
dry in Eq. (3) is also unknown, an approximation that [X]0

dry is close to [X]0, in typical tropospheric humidity 

conditions, can be used. Thus Eq. (3) can be rewritten in terms of [X]0 and [H2O], using Eq. (4). 

(4) ν ≈ 1 + (α ∙ ([H2O] - a - (b ∙ [X]0))) + (β ∙ ([H2O] - a - (b ∙ [X]0))2) 

To check the above assumption, as a simple example (for the MGGA), when [H2O] is 0.01 molwater mol-1 and [X]0
dry is 

5 ppm, Eq. (3) yields ν of 0.98089 whereas Eq. (4) yields a similar value for ν of 0.98092. This small ν change supports the 

use of Eq. (4) as an alternative to Eq. (3), by confirming that [X]0
dry is close to [X]0 in this simple example. 

 

The fit given by Eq. (4) relies on a reliable water baseline, independent of cell pressure and cell temperature. If the MGGA 

sampled 5 ppm of dry methane and without a baseline correction, ν would be 1.0020, thus representing a methane mole 

fraction reduction of 0.0098 ppm (at 5 ppm), assuming invariant environmental conditions. However, as Eq. (4) acts to 

remove this small uncertainty, the residual uncertainty would be very small. In addition, the uncertainty in our empirical 

water correction fit was quantified using each water correction residual (R) from Eq. (2), to derive a water fitting uncertainty 

factor (σν) for each instrument (see Table 2), using Eq. (5). This σν uncertainty is the standard deviation of the mean of the 

residuals and quantifies the quality of our applied water correction fits, where N is the total number of residuals. However 

there may be additional water correction uncertainty due to effects of cell temperature and cell pressure on ν, which may be 

useful to examine further in future work. 

(5) σν = ൬
∑൫R2൯

N
൰

1
2
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Our water correction approach (given by Eq. (2)) is analogous to the approach of previous work using the same 

spectroscopic technique (O'Shea et al., 2013); this previous work found that the water correction is stable and does not drift. 

Thus an uncertainty in our water correction fit was deemed to be sufficient to characterise uncertainty empirically. To 

summarise, this is a purely empirical instrument specific correction specific to the instruments to correct for the effects of 

water vapour in the measurement cavity, valid for the tested water mole fraction range of up to 0.016 molwater mol-1. For 

example our correction (assuming constant temperature and pressure) would increase an MGGA [X]0
dry measurement (at 

2 ppm) by +0.27%, at a humidity of 0.001 molwater mol-1, and by +1.8%, at a humidity of 0.01 molwater mol-1, thus improving 

measurement accuracy. 

2.3 Calibration 

In order to convert [X]0 into [X], both instruments were calibrated by sampling a low standard methane mole fraction ([X]low) 

of 1.901 ppm and a high standard methane mole fraction ([X]high) of 5.049 ppm, both of which were certified WMO-X2004A 

standards. Each gas was sampled intermittently for 4-minute periods of continuous sampling. The dry ice water trap was 

used throughout each calibration as an extra precaution, to ensure dry gas entered the sensor cavities. One-minute averages 

from each 4-minute sampling period were taken to derive one value of low [X]0
dry ([X]0

dry
low) and one value of high [X]0

dry 

([X]0
dry

high) representative for each 8-minute period. The time increment between each [X]0
dry

low and [X]0
dry

high value was then 

interpolated from 8 minutes to 4 minutes, such that every measured value of [X]0
dry

low had a corresponding interpolated value 

of [X]0
dry

high and vice-versa. Individual measured and interpolated [X]0
dry

low and [X]0
dry

high values for both instruments are 

plotted in Fig. S11 and Fig. S12. 

 

These measured and interpolated averages were used to calculate an average gain factor (G) and gain factor uncertainty (σG), 

from the average and standard deviation, respectively, of a set of at least 24 individual gain factors, calculated using Eq. (6) 

(Pitt et al., 2016). 

(6) gain factor = 
[X]high - [X]low

[X]0
dry

high
 - [X]0

dry
low

 

The average offset (C) and offset uncertainty (σC) was calculated by taking the average and standard deviation, respectively, 

of individual offsets, calculated using Eq. (7) and Eq. (8) (Pitt et al., 2016). 

(7) low offset = [X]low - (G ∙ [X]0
dry

low) 

(8) high offset = [X]high - (G ∙ [X]0
dry

high) 

G, σG, C and σC for both instruments are given in Table 3. During these calibrations, the cell temperature of the MGGA and 

pMGGA were (31.4±0.7)° C and (24.6±0.1)° C, respectively, and the cell pressure of the MGGA and pMGGA were 

(1005.9±0.2) mbar and (614.30±0.01) mbar, respectively. 

 

A key advantage of this calibration procedure is that uncertainty in G is well quantified up to [X]high, assuming stable cell 

temperature and cell pressure. Cell temperature and cell pressure both effect spectral fitting parameters and may 

consequently have an impact on G, though this effect would be smaller for the pMGGA which is pressure controlled. We 

believe cThe effect of cell temperature effects on G isto be small; this was tested by performing a short term (test) calibration 

with: the MGGA was also calibrated at (44.08±0.02)° C, yielding a gain factor of 0.9979 (see SI for details). In addition, the 

MGGA was calibrated at (968.7±0.3) mbar, yielding a gain factor of 0.9967 (see SI for details). These short-term (test) gain 

factors are both similar to G (from the main calibration) of 0.9970±0.0002. Furthermore, there was no discernible correlation 

for both cell temperature and cell pressure during the MGGA Allan variance test for the MGGA (see above), which suggests 

that G is negligibly insensitive to these parameters, over the limited environmental range for the duration of the Allan 

variance test, though more comprehensive characterisation of these parameters may be required in future work. Although the 
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pMGGA was not tested in this way, we assume similar behaviour due to identical spectroscopic techniques. Nevertheless, 

separate in-field calibrations would be preferable to enhance measurement accuracy, by characterising the effect of 

variability in cell temperature and cell pressure on G. However there are logistical challenges with in-field calibrations, such 

as the need for calibration gases and the time required to perform calibrations in dynamic atmospheric temperature and 

pressure conditions. The laboratory calibrations described here required at least three hours of sampling to characterise 

variability in G: this may be impractical in field conditions. 

2.4 Methane enhancement and uncertainty 

The calibration procedures described above show that G is almost equal to 1 and C is almost equal to 0, relative to the 

atmospheric methane background, for both instruments (see Table 3), under ambient (but not controlled) conditions. This 

means that both instruments record raw [X]0 measurements with very little systematic error, even when uncalibrated. Thus 

for most methane measurement purposes, [X]0 may not need to be corrected. However in this work, G was applied to [X]0 for 

improved accuracy. 

 

[X] can be calculated in ppm using Eq. (9). 

(9) [X] = ቀ
G

ν
 ∙ [X]0ቁ  + C 

However, during flux calculation, the enhancement in methane mass density (E), in kg m-3, above some background is 

required and was calculated here using Eq. (10). The background methane mole fraction ([X]b) and corresponding 

background uncertainty (σb) can be calculated from a subset of [X] measurements, which can be acquired from out-of-plume 

sampling (see sect. 3). The molar density of dry air (ρ) and the uncertainty in ρ (σρ), in units of dry mol m-3, can be derived 

from pressure, temperature and humidity measurements. The molar mass of methane (M) is fixed at 0.01604 kg molmethane
-1. 

(10) E = ([X] - [X]b) ∙ ρ ∙ M 

 

To calculate the uncertainty in E (σE), the linearity in the instrument response was characterised up to 5 ppm (i.e. the extent 

of the WMO-X2004A scale). This was achieved by characterising the MGGA response to five certified WMO-X2004A 

standards. A linear fit was then applied to measured [X], with residuals used to derive an uncertainty due to non-linearity (σL) 

of ±2.3 ppb (see SI for further details). The MGGA linearity of the MGGA and pMGGA was assumed to be the same for the 

pMGGA as they use identical spectroscopic techniques. σE can then be calculated by combining σb with the precision and 

accuracy uncertainty components of [X], using Eq. (11). Precision is characterised by σn and accuracy is characterised by σL, 

σG and σν terms. σG also incorporates the effects of drifts, as it was derived from a prolonged sampling period over which 

drifts could develop. However σE does not incorporate uncertainties due to the potential systematic error of cell temperature 

and cell pressure variations on E, which may manifest themselves as an accuracy term in Eq. (11). 

(11) σE = E ∙ ൭ቆ(σn
2 + σL

2 + σb
2) ∙ ቀ

ρ ∙ M

E
ቁ

2
ቇ  + ቀ

σG

G
ቁ

2
 + ቀ

σν

ν
ቁ

2
 + ቀ

σρ

ρ
ቁ

2
൱

1
2

 

Although M remains constant, ν in Eq. (11) changes as a function of [X]0 and [H2O], for each value of E. σC is not required in 

Eq. (11) as the offset cancels out in Eq. (10), when substituting in Eq. (9). This is an important advantage of using E rather 

than [X], in the flux analysis used in the following section. 

2.5 Future improvements for instrumental characterisation  

Although it is beyond the scope of this manuscript, there are a number of steps that can be taken to better characterise both 

instruments, to account for the effects of cell temperature and cell pressure on instrumental output. The simple tests at the 
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end of sect 2.3 show that both cell temperature and cell pressure can affect G, though this effect is subtle over small 

variations. This is supported by environmental variations observed during the Allan variance tests (see sect. 2.1). Thus future 

calibrations should be conducted in a controlled environment. Cell temperature and cell pressure may also effect [H2O]0 (see 

SI for details). It would also be useful to characterise [H2O]0 under a wider range of environmental conditions. Furthermore, 

[H2O]0 is assumed to respond linearly to [X]0
dry (up to 5 ppm) based on our sampling of two or three gas standards. This 

linearity could be tested in future, under controlled conditions, by sampling more standards. The linearity of instrumental 

[X]0
dry response to [X] could also be tested by sampling more certified standards to populate the range between 2 ppm and 

5 ppm. It may also be useful to sample below 2 ppm to fully characterise linearity, including at 0 ppm (using synthetic zero-

air). However as the instruments are designed for atmospheric sampling, it is rare to sample air below the atmospheric 

ambient mole fraction background (approximately 1.9 ppm at the time of writing). On the other hand, although the WMO-

X2004A scale does not exceed 5 ppm, it would be useful to test the linearity in instrumental response at higher mole 

fractions, using specialised certified gas mixes. Nevertheless, we are confident that Eq. (11) adequately quantifies 

uncertainties up to 5 ppm, incorporating terms for both accuracy and precision, assuming relatively constant temperature and 

pressure. Measurement accuracy may be improved by following the above suggestions, but this is not the focus of this work 

and our instrumental testing was deemed sufficient for our UAV sampling approach, described in the next section. 

3 Method Testing 

3.1 Experimental description 

A UAV sampling methodology for source identification and flux quantification was tested in two fields adjacent to a natural 

gas extraction facility in Little Plumpton (near Wesham), Lancashire, United Kingdom (+53.78785° N, -2.94758° E), prior 

to any drilling or hydraulic fracturing, over five sampling days in August and September 2018. A map of the field site is 

given in Fig. 3. The two adjacent grass fields, in which all UAV sampling took place, belong to a fully operational dairy 

farm. Methane was released from within the operating site at one of two controlled flux rates (F0), from 0.25 m above 

ground level (see SI for controlled release details). F0 was undisclosed during flux analysis, prior to the comparisons shown 

later in this paper, allowing for blind method testing. 

 

Two adapted DJI Spreading Wings S1000+ octocopter UAVs (labelled UAV1 and UAV2) were used to sample the methane 

plume on a downwind vertical plane, roughly perpendicular to mean wind direction (see Table 4 for UAV details). The 

location of the UAVs in relation to the controlled release and their sampling paths was decided on each day based on public 

wind forecasts and on-site wind measurements, to horizontally centre (as best as possible) each UAV flight track downwind 

of the controlled release. [X] measurements from both platforms are given in Fig. 4. UAV1 was operated using pre-

programmed waypoints and ascended diagonally. Each UAV1 flight survey was composed of two parts: one flight to the 

right of the source (projected onto the sampling plane, perpendicular to mean wind direction) and one to the left. Meanwhile 

each UAV2 flight survey was composed of a single flight, to perform horizontal transects, with each transect at a roughly 

fixed height, up to approximately 100 m laterally away from the take-off position. 7 surveys were conducted by UAV1 

(labelled, T1.1 – T1.7) and 15 surveys were conducted by UAV2 (labelled, T2.1 – T2.15). Individual flight survey details are 

given in Table S1 and Table S2. 

 

UAV1 (see Fig. 5) was connected to the MGGA on the ground, using 150 m of perfluoroalkoxy (PFA) tubing (4.76 mm 

inner diameter; 6.35 mm outer diameter). Air was pulled through the tubing using a small pump (NMS 030.1.2 DC-B 12V, 

KNF Neuberger UK Ltd), from which the MGGA subsampled. The sampling lag time between air entering the UAV air inlet 
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and air entering the MGGA cavity was 25 s, with an average volumetric flow rate through the tube of (110±10) cm3 s-1 and a 

flow rate through the instrument (at ambient pressure) of (27.90±0.05) cm3 s-1. Both the MGGA and the pump were powered 

by a 12 V lead-acid battery. As the tether connected to UAV1 occasionally kinked during flight, blocking air through the 

tube, 16% of all [X]0 sampling from UAV1 was discarded (such periods were identified and recorded in the field from the 

flow of air to the pump). The pMGGA was mounted on board UAV2 (see Fig. 5), beneath the centre frame. The sampling 

lag time between air entering the external air inlet and air entering the pMGGA cavity was 2 s, with a flow rate through the 

instrument of (5.08±0.02) cm3 s-1. The pMGGA was powered using the on-board 22.2 V UAV2 battery. Both the MGGA 

and pMGGA transmitted live, real-time mole fraction measurements wirelessly, to a tablet computer on the ground. Satellite 

geolocation was recorded by the pMGGA, on-board UAV2, simultaneous with every [X]0 measurement. Satellite 

geolocation was recorded on UAV1 by a separate on-board computer, sampling at 1 Hz. Aerial UAV flight tracks are given 

in Fig. S14 for UAV1 and Fig. S15 for UAV2. 

 

A lightweight wind sensor (FT205EV, FT Technologies Limited) was mounted on-board UAV1, on a carbon fibre pole 

305 mm above the plane of the propellers (see SI for further details and testing) to minimise any potential distortion of the 

wind field due to air disturbance from the rotating propellers (Zhou et al., 2018). It recorded wind speed and direction at 

4 Hz. These measurements were used to model the change in wind speed with height above ground level (z). A two-

dimensional stationary sonic anemometer (WS500-UMB Smart Weather Sensor, G. Lufft Mess- und Regeltechnik GmbH) 

was also situated on the southern boundary of the operating site (see Fig. 3), (3.30±0.03) m above ground level. This 

provided wind speed, wind direction, relative humidity, temperature and pressure measurements every minute. Wind 

measurements from both sensors were combined to derive the average absolute wind speed as a function of z (WS(z)), for the 

duration of each flight survey. This is described in detail in the SI. 

 

The position of the UAV1 wind sensor and the positon of the air inlet for both UAVs, relative to the plane of the propellers, 

are shown in Fig. 5. In hindsight, the UAV2 air inlet should have been elevated above the plane of the propellers, as 

downwash from the rotating propellers can distort the apparent plume morphology, leading to small errors in the geospatial 

positioning of the sampled air (Schuyler and Guzman, 2017; Zhou et al., 2018). As UAV2 generally sampled at a greater 

distance from the emission source than UAV1, allowing the instantaneous plume to disperse across a larger area, the impact 

of such geospatial error is expected to the small. Nevertheless care should be taken in future work to reduce these potential 

sampling biases. 

3.23 Flux density measurements 

Each individual UAV1 survey resulted in (9±1(1σ)) minutes of useable [X]0 measurements and each UAV2 survey resulted 

in (8±1(1σ)) minutes of useable [X]0 measurements (see Table S1 and Table S2 for individual sampling periods). This data 

was prepared for flux quantification by carrying out the following steps. The [X]0 timestamp from both instruments was 

corrected to account for lag time. 1 Hz satellite geolocation from UAV1 was interpolated to the 10 Hz [X]0 frequency of the 

MGGA. [X]0 was converted into [X] using Eq. (9). E was calculated with [X] measurements from both instruments using Eq. 

(10). [X]b was derived by fitting a log-normal distribution to all recorded [X] measurements from each flight survey, using 

the method described by Shah et al. (2019) in our previous study. This background was derived from a histogram of all 

useable [X] measurements acquired during each flight experiment; a log-normal fit can usually be applied to the lowest [X] 

measurements in the histogram, which represent out-of-plume sampling. The peak of the log-normal fit to these lowest [X] 

measurements was taken to be [X]b. ρ was derived using average temperature, pressure and relative humidity recorded at the 

stationary anemometer for the duration of each flight survey, with the standard deviation in temperature, pressure and 

relative humidity used to derive σρ. 
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Satellite-derived altitude was corrected to obtain the height of the air inlet above ground level, by taking into account take-

off altitude and the height of the air inlet when on the ground. This step ensures that the data represent the true point of 

sampling. After converting longitude and latitude from degrees into meters, metric longitude and latitude were projected 

onto a plane perpendicular to and a plane parallel to mean wind direction, respectively. Mean wind direction was derived 

from the stationary anemometer for the duration of each flight survey. The coordinate projection procedure is described in 

further detail by Shah et al. (2019). 

 

In order to calculate flux, flux density, q, (in kg s-1 m-2) was derived. To achieve this, each geospatially mapped E 

measurement was combined with WS(z), using Eq. (12). 

(12)  q = E ∙ WS(z) 

Geospatially mapped q, on a plane perpendicular to mean wind direction, for each flight survey, is plotted in Fig. 65 for 

UAV1 and in Fig. 76 for UAV2. Measurements of [X] (see Fig. 4 for a time series for each survey) were not used in the flux 

analysis, but are nevertheless of interest, as they show [X] to generally reduce with z, as expected, to support observations of 

q enhancements shown in Fig. 65 and Fig. 76. 

 

Both Fig. 65 and Fig. 76, show significant background sampling (yellow data points), extending sufficiently far away from 

the position of the source projected onto the sampling plane (0 m), such that the narrow turbulently advecting time-invariant 

plume centre across each transect (typically manifested by q increase) had been passed. All of the UAV1 surveys in Fig. 65 

took place from a similar distance from the source, of approximately 50 m. It is clear that during most UAV1 surveys, 

enhancements in q were concentrated near the ground (below 10 m) and close to the position of the source, projected onto 

the sampling plane (0 m). However T1.3 shows considerable enhancements in q above the ground (up to approximately 

30 m), which was possibly due to a transient updraft. Meanwhile, the UAV2 flight surveys in Fig. 76, many of which took 

place approximately 100 m from the source, show large enhancements in q across the flux plane, up to approximately 15 m 

above the ground. Enhancements of q in Fig. 76 can also be seen at a much greater lateral distance from the source, projected 

onto the sampling plane. This is likely a consequence of many UAV2 flight surveys sampling at a greater distance from the 

source than UAV1 flight surveys, which gave the time-invariant plume more time to disperse. On the other hand, UAV1 

flight surveys, which took place nearer to the source, show that UAV1 intersected the time-invariant plume less often. Thus, 

it may appear that the UAV flight track was not centred downwind of the source, when in practice erratic variations in the 

position of the time-invariant plume -centre made it appear this way, as the time-invariant plume did not have time to 

disperse. 

3.34 Flux quantification 

Calculated q from each flight survey was used to derive an emission flux (in units of kg s-1) using the near-field Gaussian 

plume inversion (NGI) flux quantification technique (see Shah et al. (2019)). In principle, the NGI method accounts for 

turbulent wind variations in wind using Gaussian statistics. The method also takes into account sampling on a slightly offset 

sampling plane (compared to the plane perpendicular to mean wind direction) by introducing a third dimension to the 

traditional two-dimensional Gaussian plume model. The NGI method uses a least-squares approach to compare measured 

and modelled values of q. Residuals in q are minimised to output model parameters, which include an initial flux estimate 

(Fe). 

 

Full details of the NGI method can be found in our previous study in Shah et al. (2019). We provide a brief overview here. 

The size of the time-averaged plume is assumed to increase linearly with distance from the source, by assuming q to 
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decrease according to the inverse square law with distance (an assumption which is valid over short distances). Therefore 

instead of using constant crosswind and vertical dispersion terms, these terms are allowed to increase with distance from the 

source, with both terms being fixed at a one metre distance. The crosswind dispersion term (at 1 m) is characterised using 

measurements of q, rather than assumptions of atmospheric stability, as these assumptions are valid for time-averaged 

plumes characterised by dispersion, rather than turbulent advection. In addition, the centre of the time-averaged plume in the 

crosswind direction is derived from measurements of q, as the precise position of the source may be unknown. The vertical 

dispersion term (at 1 m) and Fe can then be acquired by inverting modelled values of q, derived by minimising residuals, as 

described above. 

 

A measurement flux uncertainty (σF) is calculated by combining the uncertainties in individual E and WS(z) values. A lower 

uncertainty bound (σ-) is calculated using residuals between modelled and measured q values. An upper uncertainty bound 

(σ+) is calculated by incorporating σ- with the potential effects of negative flux bias due to under-sampling, using a random 

walk simulation. The simulation is repeated 180 times for each flight survey. In each simulation, a static Gaussian plume 

(simulating a prescribed arbitrary target flux) is sampled across three dimensions, where sampling is constrained to the 

spatial limits of UAV sampling and is limited to the UAV sampling duration. The NGI method is used to derive a flux from 

these random walk simulations. The average fractional target flux underestimation from these simulations can be 

incorporated into σ+. Random walk flux underestimation occurs due to limited spatial sampling coverage (i.e. sampling gaps) 

and limited spatial sampling extent. This simulation step therefore gives an important indication of the systematic error due 

to potential under-sampling. All Fe, σ-, σ+ and σF values for each flight survey are given in Table S5. 

4 Flux results and discussion 

Calculated NGI emission fluxes were compared to the known (controlled) emission fluxes, using the ratio between the NGI 

flux uncertainty range and F0 (see Fig. 87). As this was a blind flux analysis, F0 was not revealed to the analysis team prior 

to calculating the NGI flux uncertainty range. Fig. 87 shows that the NGI flux uncertainty range agrees well with F0, for 

most flight surveys. Only three surveys (T2.1, T1.1 and T1.7) had a flux uncertainty range that fell short of F0. Although no 

flux uncertainty range exceeded F0, T2.3 spanned a large flux range, much of which fell above F0. Flux underestimation may 

be explained using the plots shown in Fig. 65 and Fig. 76, which demonstrate the following: a limited sampling duration 

made it possible to almost entirely avoid the time-invariant emission plume, thus resulting in low flux results; similarly, 

some flights intersected the time-invariant emission plume multiple times resulting in flux overestimation in cases, although 

large NGI uncertainty ranges can conservatively account for this effect. Therefore it is clear that the Fe value obtained using 

the NGI method must not be taken at face value and the full NGI flux uncertainty range must be considered. Furthermore, 

the flux ranges in Fig. 87 represent uncertainty bounds of one standard deviation; it is statistically realistic to expect some 

discrepancy between F0 and the NGI flux uncertainty range. 

 

The flux uncertainty ranges given in Fig. 87 are asymmetric, although the magnitude of this asymmetry was different for 

flight experiments conducted by the different UAVs. σ+ was (0.33±0.14(1σ)) times larger than σ- for UAV2 but was only 

(0.08±0.03(1σ)) times larger for UAV1. This is because UAV2 sampled further from the source, on average, and on a similar 

sized sampling plane to UAV1. As UAV2 was further from the emission source, the time-invariant plume had a greater 

likelihood of extending beyond the sampling plane and being missed (beyond the horizontal edges of the sampling plane), 

due to spatially limited sampling extent. This potential loss of in-plume sampling may have otherwise contributed towards 

the overall flux, thus enhancing σ+. Therefore σ+ is comparatively larger than σ- for flights conducted by UAV2. 
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The suitability of our experimental sampling methodology can be assessed by quantifying σF as a fraction of Fe, which was 

on average (±45±8)%. To assess the dominant sources of σF, the contribution of WS(z) and E uncertainty components 

towards it were analysed (see SI for details and results). As σF is derived by combining individual components in quadrature, 

this analysis was conducted by assuming other uncertainties to be zero. The test showed that if wind speed was the only 

source of uncertainty, it would on average result in (±90±8)% of σF, therefore representing a dominant source of uncertainty. 

The standard deviation variability in cell temperature and cell pressure within each flight survey (see Table 5) was, on 

average, far smaller than maximal cell temperature changes (2.9° C) and cell pressure changes (3.5 mbar) observed during 

the MGGA Allan variance test. The average cell temperature and cell pressure during each flight survey was also derived 

(see Fig. S18 and Fig. S19) with averages given in Table 5. The values in Table 5 are not dissimilar to conditions during 

calibrations (plotted in Fig. S18 and Fig. S19). As there was no discernible correlation between [X] and cell temperature and 

cell pressure from the MGGA Allan variance test and considering dominance of winds contributing towards σF, one can 

assume that variation in cell temperature and cell pressure had negligible net effect on σF. Furthermore, the (poorly 

correlated) temperature trend from the MGGA Allan variance test reveals a maximum uncertainty of 20 ppb for the MGGA 

and 14 ppb for the pMGGA (derived from the maximum difference between average calibration cell temperature and 

average UAV sampling cell temperature). These uncertainty values are far smaller than the average mole fraction 

enhancement uncertainty (expressed as a dry mole fraction) within each flight survey of (55±47) ppb (see Table S7 for 

individual values), though further laboratory testing would be needed to better characterise these effects (see sect. 2.5). 

 

It is important to recognise the magnitude of the NGI uncertainty ranges in Fig. 87, relative to F0, which are due to the 

difficulties in inverting sparse spatial sampling to derive an emission flux, following the NGI method. These uncertainties 

reflect the limited sampling duration and the effects of variability in wind. While we fully acknowledge that flux uncertainty 

ranges in Fig. 87 are large, we believe that the true value of the NGI method with UAV sampling is to derive snap-shot rapid 

flux estimates at low cost, with an order-of-magnitude level precision, for subsequent flux investigation using more precise 

approachesflux quantification techniques. Although longer periods of sampling periods in each flight survey may reduce the 

uncertainties in Fig. 87, this is practically difficult with limited UAV battery life, with little additional benefit. Tethered 

power or multiple UAV flights may alternatively be used, as was the case with UAV1, but wind conditions can quickly 

change when sampling for prolonged periods with too many lengthy intervals between flights. 

 

Some flux results (T1.1 for example) intersected the time-invariant plume more often than others (T1.2 for example) but 

resulted in a lower NGI flux range. On closer inspection of the mole fraction time series given in Fig. 4, flight surveys such 

as T1.2 sampled higher mole fraction enhancements (and hence q), than T1.1., However, as the time-invariant plume may 

have largely been centred near to the ground, it can be more difficult to distinguish from a simple plot of the flux density 

UAV flight track. The comparative magnitude of mole fraction enhancements is clear, on examination of the mole fraction 

time series. Thus it is important to take into account both the number of plume intersections and the magnitude of q during 

each plume intersection, when assessing NGI flux results. 

 

In order to assess whether multiple flight surveys could be used effectively to capture the known controlled emission flux, 

within uncertainty, the upper and lower NGI uncertainty bounds were averaged for all surveys (see penultimate row of Fig. 

87). The average lower NGI flux uncertainty bound as a fraction of F0 (F-ഥ ) was 0.2±0.1(1σ) and the average upper NGI flux 

uncertainty bound as a fraction of F0 (F+തതത) was 2±1(1σ), for all surveys. Thus F0 (i.e. 1 in Fig. 87) falls comfortably within 

the average NGI flux uncertainty range, over 22 independent flight surveys. F-ഥ  and F+തതത were also calculated for surveys 

conducted by UAV1 and UAV2, separately. These separate F-ഥ  and F+തതത values for each UAV also comfortably overlap with 

the F-ഥ  and F+തതത values for all surveys combined. This suggests that the sampling strategies employed by UAV1 and UAV2 
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were both UAVs were capable of deriving the known emission flux, with a similar degree of both lower and upper 

uncertainty. The percentage standard error in F-ഥ  and F+തതത, over all 22 flight surveys, was 12% and 9%, respectively. The large 

standard errors in F-ഥ  and F+തതത may be reduced with more surveys, in order to better constrain the NGI flux uncertainty range. 

However more precise flux estimates can be obtained using other approaches such as tracer dispersion methods. Although 

we recognise that the F-ഥ  and F+തതത uncertainty averages are large, we emphasise that our methodology has been adapted for 

rapid flux analysis, rather than precise flux estimates for inventory publication. 

 

The ability of the NGI method to calculate a target emission flux was further assessed by calculating the central flux estimate 

as a fraction of F0 (Fc) for each flight survey, using Eq. (13). Fc is distinct from Fe (as a fraction of F0), in that Fc finds the 

centre of an asymmetric flux uncertainty, whereas Fe is an initial flux estimate calculated using the NGI method, which does 

not take into account the potential effects of under-sampling, which may result in a potential negative flux bias. 

(13)  Fc = 
Fe + ቀ

σ+ - σ-
2

ቁ

F0
 

The mean of Fc (Fcതതത) and the mean standard error in Fcതതത for the 22 surveys (see bottom row of Fig. 87) treats each survey as an 

independent quantification of the flux, with no weighting for sampling time (as flight times were broadly similar). This 

clearly demonstrates the improvement in flux accuracy (for a constant source) that can be obtained with greater sampling 

time or repeated flights, as expected. Fcതതത was also calculated for surveys conducted by UAV1 and UAV2 separately: these 

separate Fcതതത values both overlap with the combined Fcതതത value for all flight surveys (within one standard deviation); there is no 

discernible difference in the NGI flux result results obtained by either UAV. This suggests that both UAV sampling 

strategies were equally capable of delivering the same emission flux estimate, by taking the average of multiple flight 

surveys. 

 

The overlap of the standard deviation in Fcതതത (shown in Fig. 87) with the known emission flux (i.e. 1 in Fig. 87) also suggests 

that there was no apparent flux bias (within uncertainty) in this study. This indicates that we have successfully overcome the 

causes of positive biases reported in our previous study (Shah et al., 2019). Shah et al. (2019) sampled downwind of a 

controlled emission source and actively pursued the time-invariant emission plume (projected onto the sampling plane) using 

mid-flight knowledge of its position, inferred by releasing smoke grenades during flight surveys. However in this current 

work, manual sampling was avoided by either flying UAV1 using pre-programmed waypoints or by flying UAV2 using 

lateral transects in course-lock. Both of the approaches presented here successfully avoided biased sampling. 

 

To conclude, UAV sampling can be used to practically derive unbiased snap-shot emission fluxes with the NGI method, with 

an order-of-magnitude precision, by sampling on a plane perpendicular to wind direction from at least approximately 50 m 

away from the source. Although typical flux uncertainties were high, NGI UAV fluxes serve as an important tool for snap-

shot source identification and flux quantification. Our UAV methodology fills an important gap between cheap leak 

detection techniques (such as infrared cameras), which do not provide fluxes, and reliable flux quantification techniques 

(such as the tracer dispersion method), which require expensive instrumentation and may be more difficult to organise. For 

example, tracer methods can be problematic in cases where site access for tracer release is impossible or in cases where the 

plume may be lofted. The UAV methodology we describe is highly suitable for regulatory leak detection and source 

isolation, with the added capability to gauge the severity of flux leaks, for subsequent investigation using other approaches. 

We anticipate a combination of UAV sampling with a tracer release, where both a target gas (in this case methane) and a 

proxy tracer can be measured simultaneously downwind, taking advantage of vertical sampling enabled by UAVs, as a 

powerful future toolkit for precise facility-scale flux quantification. 
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5 Conclusions 

Two UAVs were used to test the near-field Gaussian plume inversion technique for flux quantification. One UAV was 

connected to the MGGA on the ground using a tether, while the other carried a new ABB pMGGA prototype instrument on-

board. Both instruments measured atmospheric methane mole fraction, which was calibrated and corrected for the influence 

of water vapour, following laboratory testing under ambient conditions, assuming the effects of cell temperature and cell 

pressure to be small. 

 

The flux approach was tested for 22 UAV flight surveys, by deriving fluxes from a controlled release of methane gas. This 

yielded successful results, with 19 out of 22 fluxes falling within the UAV-derived flux uncertainty range. This demonstrates 

that the near-field Gaussian plume inversion methodology used here could be used to derive emission fluxes from UAV 

sampling of plumes from facility-scale (point) sources, where such sources are relatively invariant over the period of such 

UAV sampling. The lower flux uncertainty bound was, on average, 17%±10(1σ)% of the controlled emission flux and the 

upper flux uncertainty bound was, on average, 227%±98(1σ)% of the controlled emission flux. Thus the known emission 

flux was comfortably encapsulated by the UAV flux results, within uncertainty. 

 

A key advantage of the methodology used here is the ability to sample downwind of sources to obtain off-site mole fraction 

measurements. Such sampling allows for independent and portable studies of methane emissions without the need for heavy 

infrastructure, special permissions, runway access or prior notification. We conclude that the near-field Gaussian plume 

inversion flux quantification method can be used confidently in future with UAV sampling to derive snap-shot methane 

emission fluxes from relatively constant facility-scale sources such as oil and gas extraction infrastructure, livestock 

agriculture and landfill sites. An exciting future application may be the incorporation of UAV sampling within thea tracer 

release methodology, where simultaneous measurement of a target gas and a proxy tracer can take advantage of vertical 

sampling enabled by UAVs. This avoids the limitation of current mobile vehicle sampling which cannot sample lofted 

plumes. Together, this may represent a powerful future toolkit for precise and efficient flux quantification. 
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Figure 1. Allan variance for the MGGA plotted against integration time on logarithmic axes. 
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Figure 2. Allan variance for the pMGGA plotted against integration time on logarithmic axes. 
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Figure 3. The two fields used for UAV sampling. The map extends 0.71 km horizontally and 0.50 km vertically. The 

controlled release points are marked by labelled crosses (see Table S3 for details). The background image is taken 

from Google Maps (imagery (2017): DigitalGlobe, GetMapping plc, Infoterra Ltd & Bluesky, The GeoInformation 

Group). 
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Figure 4. [X] measurements acquired by the MGGA and the pMGGA, as a function of sampling duration, for each 

flight survey, with sampling height above ground level also plotted (coloured dots). A logarithmic colour legend has 

been used. Vertical blue lines indicate an interruption in continuous sampling. 
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Figure 5. A photograph of UAV1 and UAV2, indicating the position of the air inlet relative to the base of the UAV. 
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Figure 6. UAV1 flight tracks (coloured dots), with the colour corresponding to q. Periods in which the tubing inlet 

kinked have been removed. A logarithmic colour legend has been used. The position of the source projected on the 

plane perpendicular to mean wind direction has been set to a reference of 0 m. The controlled emission flux and the 

parallel distance of the sampling plane from the source (weighted to the position of q enhancements) are given in 

brackets. 
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Figure 7. UAV2 flight tracks (coloured dots), with the colour corresponding to q. The position of the source projected 

on the plane perpendicular to mean wind direction has been set to a reference of 0 m. The controlled emission flux 

and the parallel distance of the sampling plane from the source (weighted to the position of q enhancements) are 

given in brackets. 
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Figure 8. NGI flux uncertainty range (thick cyan bars), for each method testing flight survey, as a fraction of F0. The 

σF uncertainty range (horizontal blue lines) is given on either side of Fe (vertical blue lines). Fcതതത and F-ഥ  and F+തതതത 

averages (vertical blue lines) are plotted for UAV1, UAV2 and for all flight surveys. Standard deviation uncertainty 

ranges (horizontal blue lines) and standard error uncertainty ranges (thick yellow bars) are given on either side of Fcതതത, 

F-ഥ  and F+തതതത values. 
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 MGGA pMGGA 
Mass 4.8 kg 3.4 kg 
Length 0.35 m 0.33 m 
Width 0.30 m 0.20 m 
Depth 0.15 m 0.13 m 
Power consumption 35 W 32 W 
Operating DC voltage 10 V – 30 V 10 V – 28 V 
Cell pressure atmospheric pressure controlled to 0.61 bar 
E-folding time (1.6±0.2) s (3.0±0.1) s 
Volumetric flow rate (27.90±0.05) cm3 s-1 (5.08±0.02) cm3 s-1 
Maximum sampling frequency 10 Hz 5 Hz 
σn ±2.71 ppb ±5.44 ppb 
1 Hz Allan deviation ±0.71 ppb ±2.2 ppb 
0.1 Hz Allan deviation ±0.24 ppb ±0.72 ppb 
Optimum integration time (20±3) s (70±10) s 
Table 1: General properties of the MGGA and the pMGGA. 
  



35 

 MGGA pMGGA 
a -0.000312 molwater mol-1 +0.000195 molwater mol-1 
b -0.000193 molwater mol-1 ppm-1 -0.0000257 molwater mol-1 ppm-1 
α -1.556 mol molwater

-1 -1.640 mol molwater
-1 

β -12.25 mol2 molwater
-2 -1.208 mol2 molwater

-2 
σν 0.0004253 0.0002613 
Table 2: Water correction coefficients for the MGGA and pMGGA, required to obtain ν using Eq. (4) and σν. 
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 MGGA pMGGA 
G±σG 0.9970±0.00023 0.9869±0.00028 
C±σC (+0.0132±0.0020) ppm (-0.0019±0.0015) ppm 
Table 3: Calibration coefficients for the MGGA and pMGGA. 
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 UAV1 UAV2 
Flights per survey 2 1 
Distance of sampling plane from 
source 

47 m – 50 m 64 m – 114 m 

Take-off and landing Manual Manual 
Flight control Waypoints Manual (course lock) 
Average velocity across the sampling 
plane 

(1.5±0.1) m s-1 (2.8±0.6) m s-1 

Payload PFA tubing and inlet, wind sensor pMGGA 
Height of plane of propellers 0.540 m 0.680 m 
Height of air inlet 0.845 m 0.370 m 
Table 4: A comparison between UAV1 and UAV2.   
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 UAV1 UAV2 
Instrument MGGA pMGGA 
Average cell temperature standard 
deviation within flight surveys 

(±0.16±0.09)° C (±0.28±0.28)° C 

Average cell pressure standard 
deviation within flight surveys 

(±1.15±0.86) mbar (±0.40±0.01) mbar 

Average cell temperature mean 
across flight surveys 

(25±2)° C (22±4)° C 

Average cell pressure mean across 
flight surveys 

(1025.6±5.4) mbar (614.4±0.1) mbar 

Table 5: Average cell temperature and cell pressure standard deviation variability within each UAV flight survey, 
recorded by the MGGA and the pMGGA. The average cell temperature and cell pressure mean is also given. 
 


