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manuscript relevant to the related comment.) 

 

Response to Reviewer 1: 

 

Comment: “This manuscript describes the assessment of several approaches that could be used to improve both the 

performance and the transferability of low cost gas phase sensor system calibrations. This is a crucial step in the 

enabling of these technologies for use air pollution monitoring, and this work is a valuable contribution to the 

growing body of literature on this major remaining challenge for these technologies. Previous work 

has demonstrated that although successful calibrations can be derived for low cost sensors through co-location with 

reference grade instruments, these calibrations do not hold if the sensors are moved to a new location, or even at the 

same location under significantly different chemical or meteorological conditions, and are prone to model over-

fitting. The lack of a robust and transferrable calibration strategy is most likely due to variations in the multiple 

environmental parameters, both chemical and physical, that effect sensor signals. The authors of this work propose 

that by using the data from multiple low cost sensors systems co-located with reference instruments in different 

locations the resultant calibration will be more generalized. This approach has been suggested previously, however, 

to this reviewers knowledge this is the most extensive investigation of this approach for gas phase electrochemical 

sensors to date. The authors also propose a novel two-stage “split-NN” approach to address the challenge 

of sensor to sensor variability when creating a global calibration. The analysis presented in this manuscript is 

thorough and well written, and although the generalized calibration models developed still maintain large sensor 

errors the methods do show promise. I therefore recommend publication after the following minor comments have 

been addressed.” 

 

Response: We thank reviewer 1 for their thoughtful and detailed comments.  We believe we have completely 

addressed the reviewer’s comments through revisions, as discussed below.  We are grateful to reviewer 1 for their 

help in markedly improving the paper.  

 

Minor Comments 

 

Comment: “Sect. 2.3 pg 9 lines 13-15: It would be useful to the reader to know how much data was removed during 

the preprocessing steps.” 

 

Response: Thanks for noting this omission.  We have added details about how much data was filtered to Section 2.4 

Preprocessing, in particular that 2.4% of the 5-second data was filtered. 

 

Comment: “Sect. 2.5: The split-NN is a novel approach for correcting for sensor-to-sensor variability in sensor 

signal and response to target compound concentrations. If I am not mistaken however, the environmental variables 

such as temperature are only used in the second stage of the process. As individual sensors are known to have 

different responses to their target compound it is more than likely that they will also differ in their responses to 

interfering compounds and environmental factors (this has been shown previously e.g. Smith et al. 2017). Would the 

authors not therefore get an improved result if the environmental parameters were included in both stages of the 

split-NN procedure? The authors should provide further justification of the variables chosen for each step in the 

split-NN.” 

 

Response: The environmental parameters contribute to training both stages through the process of backpropagation, 

as the sensor-specific model and the generic model are trained together.  The concept is that, during training, the 

model-in-development generates a prediction, which determines an error with respect to the ground truth.  

Backpropagation pushes this error back into the network and the weights in the neurons in each layer are 

adjusted.  As a consequence, even though the environmental parameters are injected downstream, their effects are 

felt upstream.  We hesitated to provide this kind of detail in the article, leaving that for the cited literature on 

machine learning.  However, if a more detailed account is desired, we’ll be happy to accommodate. 



 

Comment: “Fig. 6: Needs units on y-axis.” 

 

Response: Units have been added to the figure and the units for all metrics have been clarified in the text both where 

the metrics are introduced and in Appendix C. 

 

Comment: “Fig. 7: Needs units on plot axes and the time averaging used for the data points needs to be stated in the 

fig. Caption.” 

 

Response: Units have been added to the figure.  The details on minute-averaging have been elaborated in Section 2.4 

Preprocessing, and apply to all the analyses, so we feel it is better centralized here.  However, we believe that your 

comment was also directed at what each point in the target plot represents, so we have clarified that in the caption, 

saying that each point in the plot corresponds to a different individual benchmark (i.e., a unique round, location, and 

board). 

 

Comment: “Sect. 3.1 pg 15 lines 7-8: The sentence “The increase in bias is more pronounced in the higher capacity 

models” does not seem to be strongly supported by the data presented in Fig. 7. This statement needs supporting 

quantitatively or removing.” 

 

Response: True, nor do the results of the paper depend on this sentence.  It has been removed. 

 

Comment: “Sect. 3.2: It would be interesting to see the performance improvements from each stage of the split-NN 

approach. The addition of error plots similar to Fig. 7 for a single sensor after both stages of the process would help 

visualize the power of the approach.” 

 

Response: Unfortunately, a Split-NN provides ppb predictions only in the final stage.  The earlier stage provides a 

set of latent variables that are learned from the input variables. 

 

Comment: “Fig. 9: Needs units on y-axis.” 

 

Response: Units have been added to the figure. 

 

Comment: “Discussion: The authors are open about the limited success of the transferable calibration approaches 

investigated. It would, however, be beneficial to the field if the authors were to expand further on possible reasons 

for this and potential ways to improve the methods moving forward.” 

 

Response:  In the Conclusion we mention one direction for future work, using the higher resolution data of our 

sensor.  We have now added two others (improvements to split-NN and use of infrastructure data).  In section 

Discussion we do discuss some of these issues, including taking a closer look at bias error (3rd paragraph). But as of 

now, we’re thinking of this as a pretty strong tradeoff between transferability and accuracy that can only be 

addressed through more diverse measurement (4th paragraph of Discussion).  We still hold out some hope for split-

NN as an economical approach to gaining more diverse measurement (5th paragraph).   

 

References: Smith K. R., Edwards P. M., Evans M. J., Lee J. D., Shaw M. D., Squires F., Wilde S. and Lewis A. C.: 

Clustering approaches to improve the performance of low cost air pollution sensors. Faraday Discuss, 15, 1-15, 

2017. 

 

Response: Thank you. This work and several others were added in a related work paragraph in Section 2.6. 

Although the methods were trained similarly, it is important to note that in the intended use case, the MetaSense 

sensors would be generating a prediction about their current location, which would be wherever the end user 

happened to carry the sensor. It would be unlikely that they would be near other sensors. 

 

Response to Reviewer 2:  



Comment: “General overview: This paper is a well thought through experiment and has some exciting ideas about 

the building of sensor networks and data processing to improve or understand error and bias in the systems. It uses a 

coherent approach, and develops a new statistical method which is mostly well described and accessible to the 

atmospheric scientist 

reader. There are a few major areas for improvements which are suggested below.” 

 

Response: We thank reviewer 2 for their thoughtful and detailed review and suggestions.  We have made substantial 

and detailed revisions to address the comments, as discussed below. We are grateful to reviewer 2 for their help in 

substantially improving the paper.  

  

 

Major Comments 

 

Comment: “Presentation of measured data: Measurement data: despite doing a great job in statically analysis of 

sensor data, this paper lacks a figure with the epa and low cost sensor measurement data, ideally 1 panel with initial 

error envelope and 1 with final error envelope. For example no2 sensor measurement (+MAE+95th 

percentile MAE) (-MAE-95th percentile MAE) (I.e. from Figure 9 level2) - the authors may have better suggestions 

but if the paper and sensor systems data are to be used by scientists, citizens and community groups this is the 

information which needs to be presented.”  

 

Response: Thanks for this idea.  We have developed the suggested graphic and integrated it into Section 3.2 before 

the old Figure 9 (now Figure 10).  To implement the before/after comparison, we used the collected voltages for the 

“before” data.  If you have other or different ideas for the presentation and discussion, we are open to it. 

 

Comment: “Use of reference station data Generally the authors seem to treat the data from the reference station as 

not existing outside of the experiment and repeatedly make comments about the results in this paper showing new 

information about pollutant variation at the test sites. This shows a lack of forethought and analysis of existing 

data. The chemical climate for no2 and ozone at the sites is measured by the reference station, presumably for some 

years. The information to calculate the variability therefore is already collected and reported somewhere (e.g. EPA 

or San Diego authority reports) . The authors should use existing knowledge to inform their data analysis 

and interpretation rather than present the data in a knowledge vacuum. For example the speculation about the 

chemical climatology (my phrase not used in manuscript) of Shafer shows a clear disregard for existing evidence 

outside their experiment which is really avoidable.” 

 

Response: The authors thank the reviewer for this observation and have revised the manuscript to address this 

oversight. In Section 2.1, we have added information on the classification of sites as well as expected influences as 

defined by the respective air pollution control districts. Additionally, the authors have reviewed several documents 

from the respective air pollution control districts (including recent monitoring plans) in order to better understand 

the historic and typical pollutant levels and trends at these sites. A discussion of some of this information has also 

been added to Section 2.1, providing better context for our understanding of the data throughout the paper.  

 

Comment: “Terminology: The error terminology is not applied consistently through the paper. “Error” is used a lot 

without it being clear whether it is overall error, expanded uncertainty, a replacement for Mean Absolute Error. 

Terminology is only introduced on p14 in the results section and then it is only sparsely used after that with terms 

such as centred error and bias error being added in (p15 line 6) This lack of clarity in the terminology 

leads to more questions than are answered in the manuscript e.g. â˘A ´c How do the authors assess the total error 

with the set of benchmarks â˘A ´c When the difference in error is discussed (e.g. p14 line 11), which difference is 

being discussed? â˘A´c In the discussion the authors do not specify which error they are referring to e.g. p16 line 6 

onwards. Difference in error is discussed in qualitative terms despite there being quantitative data in the work. 

Significance of differences are not discussed. Overall the authors should revise with a consistent terminology and 

perhaps a table glossary. Also only MAE is shown in the main paper (Figure 6), please could the 

authors add the equivalent plots in the same figure for each of the benchmark errors. It is hard to assimilate the many 

tables in the Appendix with the results. The tables potentially should be moved into the main manuscript.” 

 

Response: We apologize for causing confusion.  We have made several edits throughout the paper to clarify which 

error we are referring to, when relevant.  Although we present several errors in the tables to support direct 



comparison with multiple previous works, in general, we expect the various errors to track each other in relative, if 

not absolute, magnitude.  Thus, any conclusion that we make using one error could be reached using one of the 

others. 

 

Comment: “Discussion of cost Interestingly I think there are 2 points from this paper: the new NN splitting method 

offers improvements for incrementally built networks and the Simple linear algorithmic gives the best understanding 

of changes. The former involves large amounts of expensive model development and potentially lack of clarity as to 

why the model works to improve sensor data (to a non-scientist sensor user). The cost implications 

for what is now not low cost at all (enclosures, powered fans, telemetry, expert algorithm development and 

maintenance) seem to be not openly explored, rather a nebulous “small cost increment for new nodes” offered as a 

positive: Could the authors perhaps discuss whether there is unconcious bias in their cost increment assessment?” 

 

Response: One of the goals of the low-cost sensing community is that eventually both the hardware and software 

will be available more or less “off the shelf”, mitigating their costs for end-users.  Today, however, many of the 

sensors and most of the accompanying software are research prototypes that are designed more for open-ended 

experimentation than end-use sensing.   To support the ongoing transition to practice, we have now published an 

archival repository containing all of our hardware plans, software, and raw data, and cited it at the end of the 

Introduction.  We have also made several changes to Section 2 to make it clearer what infrastructure is used for 

research versus calibration versus application.  This includes an added picture on the right side of Figure 2 and an 

extended introduction to Section 2.3 Data Collection. If it is believed that the paper should be more explicit on the 

intended meaning of low-cost sensors, we could add a footnote to the Introduction. 

 

Minor Comments and Corrections 

 

Comment: “Abstract Could do with quantitative analysis of results in abstract e.g. how much does N-N improve 

model?” 

 

Response: The results in the abstract have been made more precise both qualitatively and quantitatively, particularly 

for the split-NN model.  In general, however, because so many models and training configurations were evaluated, a 

concise quantitative summary is difficult, and ultimately we found reference to the box plots served best.  If there 

are ideas for a more concise quantitative summary, we are open to it. 

 

Comment: “Introduction - Well written and readable. P4 lines 20-35: the list of the results does not fit in the 

introduction” 

 

Response: We have moved the list of results to the conclusion (replacing and integrating the straight prose) and 

added additional detail supported by the body of the paper. 

 

Comment: “Methods - Section 2.1 sampling sites: the authors describe the sampling sites “expected profile” in 

descriptive terms. Given that the sites are regulatory local environmental and emission metadata for the site is 

probably available in the EPA station records. No references for the regulatory station information or data is 

provided or links to EPA reports using site data.” 

 

Response: As described in response to the major comment regarding the use of reference station data, we have 

added information from the appropriate air pollution control districts, including references to official documents.  

 

Comment: “P6 line 13: “over the air” what does that mean?” 

 

Response: We apologize, it means wirelessly.  We have replaced this phrase with something more descriptive. 

 

Comment: “P6 line 34: the noise on the signals and SD are discussed cf the sensor data. It would be useful to have 

the statistics of the raw (level 0) data and the “cleaned” or level 1 data for each sensor deployment as per epa site 

format used in Appendix B- or in a table inthe main paper as it is critical for understanding the data processing 

effects” 

 



Response: Thanks for noting this omission.  We have added details about how much data was filtered to Section 2.4 

Preprocessing, in particular that 2.4% of the 5-second data was filtered.  It was not meaningful to report this in 

Appendix B, since that reports minute-level data. 

 

Comment: “P7 line 6 is the sensiron accurate to 0.05% rh or is it just the data resolution on readout. Please could the 

accuracy/precision be stated. Resolution is not really useful.” 

 

Response: The accuracy of the humidity sensor was added. Thank you for the feedback. 

 

Comment: “Section 2.2.1 and 2.3 : the passive electrochemical samplers are placed in an actively ventilated housing 

“for this study”. If truly for only this study and the sensors would be deployed differently under a normal operation, 

how are the results relevant to different setups?” 

 

Response: The expected use case for deployment for the sensors is that they will be exposed to ambient conditions 

and not placed in a larger enclosure with limited airflow. In real-world use cases, when the sensors are attached to 

backpacks, bikes, etc., the air flow would be sufficient for the sensors to sample ambient conditions. In our extended 

deployment, the sensors were placed inside of larger enclosures with small ports, so active ventilation was used to 

push air into the box.  We have clarified these details in section 2. 

 

Comment: “2.3 Data is stored in the cloud: are they available for the public? What is the archive for data (and data 

identifier)?” 

 

Response: We have created a separate repository that is now linked in the paper in Section 6, after the 

acknowledgements.  It also includes are hardware plans and software. 

 

Comment: “P9 line 9: was the data from the reference station provisional or final ratified, I.e. regulatory automatic 

network data is ratified on a cycle. What was the date of data provision and data capture statistics for those periods? 

It is not enough to just say they came from the EPA. Data should be referenced properly.” 

 

Response: The reference site data utilized in this analysis was not final ratified data as the timing of our study did 

not allow us to wait for this version of the data. Regarding the reference data, we did remove data collected during 

calibration periods as well as any data flagged during initial QA/QC by the regulatory agency who supplied the data. 

We have added these details to the end of Section 2.3 Data Collection.  We have also added a note clarifying that the 

reference data used had not undergone complete QA/QC procedures and therefore is not final data from these 

stations in Section 6 Code and Data Availability. 

 

Comment: “Results: p14 line 15 is the difference between level 2 error vs level 1 statistically significant? It looks 

quite small on the Figure. 

 

Response: In this and the following sentence, we are emphasizing the *slight* improvement for Level 2, conveying 

that we feel that the effect size is small.  Although the difference is likely significant given the size of the datasets, it 

would convey the wrong message since the effect is not especially impressive.  However, we’d be glad to add this 

detail if it’s desired. 

 

Comment: “P9: averaging of minute data: arithmetic mean, time weighted average? How are data gaps in a minute 

treated?” 

 

Response: To make the sentence in 2.4 Preprocessing clear on these questions, we rewrote it as follows: “For the 

remaining data, a simple average was computed over each one-minute window so as to match the time resolution of 

the data from the reference monitors.  If an entire minute of data is missing due to a crashed sensor or preprocessing, 

no minute-averaged value is generated.” 

 

Response: “Data filtering: filtering for “the realm of reasonable values” probably needs explaining more completely. 

Please list the QA filter steps in the appendix. Just to note, short lived plumes do not give reasonable values when 

you are normally used to looking at average values, but they may be real and relevant. What does +5V represent for 

each parameter? Probably the filtering is fine, but from the paper I cannot tell that.” 



 

Response: We believe we have sufficiently described these steps in section 2.4 Preprocessing, as they are simple 

threshold filters.  The filtered data are not just spikes, but values that are simply not possible, either physically not 

possible or literally out of range for the sensor and represent a hardware or software failure. 

 

Comment: “P10 lines 1-5: you can tell that that would be overlap from the reference site data. Not necessary to 

confirm it with sensor measurements. 

 

Response: We apologize for the confusion generated by this section. Here we intended to state that the hypothesis 

(i.e., that the pollutant trends would vary between the different reference sites) had been verified by examining the 

distributions of the reference data. Furthermore, that the expected trends seemed to be reflected during the period of 

our deployment. The wording in Section 2.4 has been adjusted to clarify this point.   

 

Comment: “P15: It is interesting so see the change in bias between level 1 and 2 and I feel it should warrant further 

discussion in the manuscript. How many extra levels would be need to achieve an acceptable bias?” 

 

Response: This is a great observation by the reviewer, one that we feel emphasizes an important take-away in the 

paper. Based on the reviewer's comment we have enhanced the discussion in Section 3.1, following Figure 7 to 

better highlight the importance of error due to bias vs overall error. Regarding the question of how many levels 

would be necessary to achieve an acceptable bias, we feel that determining the precise number of levels is somewhat 

beyond the scope of this paper - given that we do not have enough reference sites to continue exploring the question 

beyond 2 levels. That being said, this would be a valuable question to explore in future work.  

 

Comment: “Figure 7: this figure needs a more complete caption to describe the graphs” 

 

Response: A more detailed description of the target plots has been added to Figure 7. 

 

Comment: “P16 line 10: which error metric?” 

 

Response: We added “in MAE” to clarify that error is reported in MAE. 

 

Comment: “Figure 8: no x-axis label” 

 

Response: Fixed. 

 

Comment: “Figure 9: please match scales on the two NO2 graphs and the two O3 graphs for ease of comparison. 

Also putting zero or an integer at the origin would be good practice.” 

 

Response: Thanks for catching this mistake.  We have normalized the axes and 0-based them. 

 

Comment: “P20 line 16. The authors mention using the 5s data to get more information and improve data quality 

despite the response time of the system likely to be not 5s (not quantified in this paper) and no reference given to 

show that this would a likely significant improvement rather than addition of more noise. It would be useful if the 

authors expanded on why they are optimistic about this.” 

 

Response: We didn’t mean to express optimism, only potential.  We have added a comment about the possible 

impacts of noise and the system response time, citing back to section 2.1.1. 

 

Comment: “Fig A1-A3: Figure captions could be more explanatory. What is the line vs the bars? 

 

Response: These have been clarified in the text.  Each bar represents the total proportion of measurements at the 

given temperature or humidity (a histogram plot).  The lines are a visualization of the kernel density estimation of 

the raw measurements. 

 

Comment: “Appendix B too many decimal places in the tables!” 

 



Response:  Good point.  We have trimmed them down to three decimal places to match the later tables and removed 

the decimals for the integer values. 

 

Edited Manuscript  



Evaluating and Improving the Reliability of Gas-Phase Sensor
System Calibrations Across New Locations for Ambient
Measurements and Personal Exposure Monitoring
Sharad Vikram 1, Ashley Collier-Oxandale 2, Michael Ostertag 1, Massimiliano Menarini 1, Camron
Chermak 1, Sanjoy Dasgupta 1, Tajana Rosing 1, Michael Hannigan 2, and William G. Griswold 1

1Department of Computer Science & Engineering, University of California, San Diego
2Environmental Engineering Program, University of Colorado, Boulder

Correspondence: William B. Griswold (wgg@cs.ucsd.edu)

Abstract.

Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect

data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to col-

lect data with increased temporal and spatial resolution providing data on a large scale with unprecedented levels of detail. This

type of data has the potential to empower people to make personal decisions about their exposure and support the development5

of local strategies for reducing pollution and improving health outcomes.

However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field

calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period, and

then applying machine learning or other model fitting technique such as multiple-linear regression to develop a calibration

model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of10

ambient conditions (e.g., temperature) and cross-sensitivities with non-target pollutants, there is a growing body of evidence

that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation

between pollutant levels and environmental conditions, including diurnal cycles. As a result, a sensor package trained at a

field site may provide less reliable data when moved, or transferred, to a different location. This is a potential concern for

applications seeking to perform monitoring away from regulatory monitoring sites, such as personal mobile monitoring or15

high-resolution monitoring of a neighborhood.

We performed experiments confirming that transferability is indeed a problem and show that it can be improved by collecting

data from multiple regulatory sites and building a calibration model that leverages data from a more diverse dataset. We

deployed three sensor packages to each of three sites with reference monitors (nine packages total), and then rotated the sensor

packages through the sites over time. Two sites were in San Diego, CA, with a third outside of Bakersfield, CA, offering20

varying environmental conditions, general air quality composition, and pollutant concentrations.

When compared to prior single-site calibration, the multi-site approach exhibits better model transferability for a range of

modeling approaches. Our experiments also reveal that random forest, is especially prone to overfitting, and confirms prior

results that transfer is a significant source of both bias and standard error. Linear regression on the other hand, although it
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exhibits relatively high error, does not degrade much in transfer. Bias dominated in our experiments, suggesting that transfer-

ability might be easily increased by detecting and correcting for bias.

Also, given that many monitoring applications involve the deployment of many sensor packages based on the same sensing

technology, there is an opportunity to leverage the availability of multiple sensors at multiple sites during calibration to lower

the cost of training and better tolerate transfer. We contribute a new neural network architecture model termed split-NN that5

splits the model into two-stages, in which the first stage corrects for sensor-to-sensor variation and the second stage uses the

combined data of all the sensors to build a model for a single sensor package. The split-NN modeling approach outperforms

multiple linear regression, traditional 2- and 4-layer neural network, and random forest models. Depending on the training

configuration, compared to random forest the split-NN method reduced error 0-11% for NO2 and 6-13% for O3.

1 Introduction10

As the use of low-cost sensor systems for citizen science and community-based research expands, improving the robustness

of calibration for low-cost sensors will support these efforts by ensuring more reliable data and enabling a more effective use

of the often-limited resources of these groups. These next-generation technologies have the potential to reduce the cost of air

quality monitoring instruments by orders of magnitude, enabling the collection of data at higher spatial and temporal resolution,

providing new options for both personal exposure monitoring and communities concerned about their air quality (Snyder et al.,15

2013). High resolution data collection is important because air quality can vary on small temporal and spatial scales (Monn

et al., 1997; Wheeler et al., 2008). This variability can make it difficult to estimate exposure or understand the impact of local

sources using data from existing monitoring networks (Wilson et al., 2005), which provide information at a more regional scale.

Furthermore, studies have highlighted instances where air quality guidelines have been exceeded on small spatial scales, in so

called ‘hot spots’ (Wu et al., 2012). This may be of particular concern for environmental justice communities, where residents20

are unknowingly exposed to higher concentrations of pollutants due to a lack of proximity to local monitoring stations. One

group using low-cost sensors to provide more detailed and locally specific air quality information is the Imperial County

Community Air Monitoring Network (English et al., 2017). The goal of this network of particulate monitors is to help inform

local action (e.g., keeping kids with asthma inside), or open the door to conversations with regulators (English et al., 2017).

In another example, researchers are investigating the potential for wearable monitors to improve personal exposure estimates25

(Jerrett et al., 2017).

The increasing use of low-cost sensors is driving a growing concern regarding data quality (Clements et al., 2017). Low-

cost sensors, particularly those designed to detect gas-phase pollutants, are often cross-sensitive to changing environmental

conditions (e.g., temperature, humidity, and barometric pressure) and other pollutant species. Much work has gone into ex-

ploring calibration methods, models, and techniques that incorporate corrections for these cross-sensitivities to make accurate30

measurements in complex ambient environments (Spinelle et al., 2014, 2015b, 2017; Cross et al., 2017; Sadighi et al., 2018;

Zimmerman et al., 2018). While the methods of building (or training) calibration models differ, these studies have all utilized

colocations with high-quality reference instruments in the field, instruments such as Federal Reference Method or Federal
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Equivalent Method monitors (FRM/FEM) (Spinelle et al., 2014, 2015b, 2017; Cross et al., 2017; Sadighi et al., 2018; Zim-

merman et al., 2018). This colocated data allows accurate calibration models to be built for the conditions that the sensors

will experience in the field (e.g., diurnal environmental trends and background pollutants). A recurring observation has been

that laboratory calibrations, while valuable for characterizing a sensor’s abilities, perform poorly compared to field calibrations

likely due to an inability to replicate complex conditions in a chamber (Piedrahita et al., 2014; Castell et al., 2017).5

Recently, researchers have begun to explore calibrating sensors in one location and testing them in another, called transfer.

Often, a decrease in performance is seen in new locations where conditions are likely to differ from the conditions of calibration.

In one study, researchers testing a field calibration for electrochemical SO2 sensors from one location in Hawaii and at another

location also in Hawaii found a small drop in correlation between the reference and converted sensor data (Hagan et al.,

2018). This was attributed to the testing location being a generally less polluted environment (Hagan et al., 2018). In a study10

that involved calibration techniques for low-cost metal-oxide O3 sensors and non-dispersive infrared CO2 sensors in different

environments (e.g., typical urban vs. a rural area impacted by oil and gas activity), researchers found that simpler calibration

models (i.e., linear models), although generally lower in accuracy, performed more consistently (i.e., transferred better) when

faced with significant extrapolations in time or typical pollutant levels and sources(Casey and Hannigan, 2018). In contrast,

more complex models (i.e.,artificial neural networks) only transferred well when there was little extrapolation in time or15

pollutant sources. A study utilizing electrochemical CO, NO, NO2, and O3 sensors found that performance varied spatially

and temporally according to changing atmospheric composition and meteorological conditions (Castell et al., 2017). This team

also found calibration model parameters differed based on where exactly a single sensor node was colocated (i.e., a site on a

busy street verses a calm street), supporting the idea that these models are being specialized to the environment where training

occurred (Castell et al., 2017). In a recent study targeting this particular issue with low-cost sensors, electrochemical NO and20

NO2 sensors were calibrated at a rural site using multivariate linear regression model, support vector regression models, and

a random forest regression model. The performance of these models was then examined at two urban sites (one background

urban site and one near-traffic urban site). For both sensor types, random forests were found to be the best-performing models,

resulting in mean average errors between 2–4 parts per billion (ppb) and relatively useful information in the new locations (Bigi

et al., 2018). One important note from the authors is that both sensor signals were included in the models for NO and NO225

respectively, potentially helping to mitigate cross interference effects (Bigi et al., 2018). In another recent study, researchers

also compared several different calibration model types, as well as the use of individualized verses generalized models and

how model performance is affected when sensors are deployed to a new location (Malings et al., 2018). An individualized

model is a model for a sensor based on its own data, whereas a generalized model combines the data from all the sensors of the

same type being calibrated. The researchers found that the best-performing and most robust model types varied by sensor type;30

for example, simpler regression models performed best for electrochemical CO sensors, whereas more complicated models,

such as artificial neural networks and random forest models, resulted in the best performance for NO2. Despite the varied

results, in terms of the best performing model types, the researchers observed that across the different sensor types tested,

generalized models resulted in more consistent performance at new sites than individualized models despite having slightly
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poorer performance during the initial calibration (Malings et al., 2018). If this observation holds across sensor types and the

use in other locations, it could help solve the problem of scaling up sensor networks allowing for much larger deployments.

The mixed results and varying experimental conditions of these studies highlight the need for a more comprehensive un-

derstanding of how and why calibration performance degrades when sensors are moved. A better understanding could inform

potential strategies to mitigate these effects. As recent research has successfully applied advanced machine learning techniques5

to improve sensor calibration models (Zimmerman et al., 2018; De Vito et al., 2009; Casey et al., 2018), we believe these

techniques could also be leveraged in innovative ways to improve the transferability of calibration models.

This paper contributes an extensive transferability study as well as new techniques for data collection and model construction

to improve transferability. We hypothesize that transferability is an important issue for sensors that exhibit cross-sensitivities.

Based on the hypothesis that the increased errors under transfer are due to overfitting, we propose that training a calibration10

model on multiple sites will improve transfer. Finally, we propose that transfer can be further improved with a new modeling

method, split-NN, that can use the data from multiple sensor packages trained at multiple sites to train a two-stage model with

a global component that incorporates information from several different sensors and locations and a sensor-specific model that

transforms an individual sensor’s measurements to a form that can be input to the global modelsingle sensor’s model.

As many previous studies studied colocation with reference measurements in one location and a validation at a second loca-15

tion, we designed a deployment that included triplicates of sensor packages colocated at three different reference monitoring

stations and then rotated through the three sites – two near the city of San Diego, CA and one in a rural area outside of Bak-

ersfield, CA. This allows for further isolating the variable of a new deployment location. The analysis focuses on data from

electrochemical O3 and NO2 sensors, although other sensor types were deployed and used in the calibration, analogous to Bigi

et al. Bigi et al. (2018). These pollutants are often of interest to individuals and communities given the dangers associated with20

ozone exposure (Brunekreef and Holgate, 2002), and nitrogen dioxide’s role in ozone formation. In studying these pollutants,

we are adding to the existing literature by examining the transferability issue in relation to electrochemical O3 and NO2 sensors,

which are known to exhibit cross-sensitive effects (Spinelle et al., 2015a). We compare the transferability of multiple linear

regression models, neural networks, and random forest models. Based on these results, we introduce a new training method

that trains all the sensors using a “split” neural network that consists of a global model and sensor-specific models that account25

for the differing behaviors among the individual sensors. Sharing data holds the promise to lower training costs while at the

same time lower prediction error.

Based on these measurements and comparisons, we contribute the following results:
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2 Methods

2.1 The MetaSense System

2.1.1 Hardware Platform

A low-cost air quality sensing platform was developed to interface with commercially available sensors, initially described

in Chan et al. (2017). The platform was designed to be mobile, modular, and extensible, enabling end users to configure the5

platform with sensors suited to their monitoring needs. It interfaces with the Particle Photon or Particle Electron platforms,

which contain a 24 MHz ARM Cortex M3 microprocessor and a Wi-Fi or 3G cellular module, respectively. In addition, a

Bluetooth Low Energy (BLE) module supports energy efficient communication with smartphones and other hubs with BLE

connectivity. The platform can interface with any sensor that communicates using standard communication protocols (i.e.

analog, I2C, SPI, UART) and supports an input voltage of 3.3 V or 5.0 V. The platform can communicate results to nearby10

devices using BLE or directly to the cloud using Wi-Fi or 2G/3G cellular, depending on requirements. USB is also provided

for purposes of debugging, charging, and flashing the firmware. The firmware can also be flashed or configured over the air

remotely if a wireless connection is available. An SD card slot provides the option for storing measurements locally, allowing

for completely disconnected and low-power operation.

Our configuration utilized electrochemical sensors for traditional air quality indicators (NO2, CO, O3), nondispersive infrared15

sensors for CO2, photoionization detectors for volatile organic compounds (VOCs), and a variety of environmental sensors

(temperature, humidity, barometric pressure). The electrochemical sensors (NO2: Alphasense NO2-A43F, O3: Alphasense O3-

A431, and CO: Alphasense CO-A4) are mounted to a companion analog front end (AFE) from Alphasense, which assists with

voltage regulation and signal amplification. Each sensing element has two electrodes which give analog outputs for the working

electrode (WE) and auxiliary electrodes (AE). The difference in signals is approximately linear with respect to the ambient20

target gas concentration but have dependencies with temperature, humidity, barometric pressure, and cross-sensitivities with

other gases. The electrochemical sensors generate an analog output voltage, which is connected to a pair of analog-to-digital

converters (ADCs), specifically the TI ADS1115, and converted into a digital representation of the measured voltage, which is

later used as inputs for our machine learning models.

Modern low-cost electrochemical sensors offer a low cost and low power method to measure pollutants, but currently avail-25

able sensors are more optimized for industrial applications than air pollution monitoring: the overall sensing range is too wide

and the noise levels are too high. For example, the AlphaSense A4 sensors for NO2, O3, and CO have a measurement range

of 20, 20, and 500 ppm, respectively, which is significantly higher than the unhealthy range proposed by the United States Air

Quality Index. Unhealthy levels for NO2 at 1-hour exposure range from 0.36 – 0.65 ppm, O3 at 1-hour exposure from 0.17 –

0.20 ppm, and CO at 8-hour exposure from 12.5 – 15.4 ppm (Uniform Air Quality Index (AQI) and Daily Reporting, ). Along30

with the high range, the noise levels of the sensors make it difficult to distinguish whether air quality is good. Using the analog

front end (AFE) offered by Alphasense, the noise levels for NO2, O3, and CO have standard deviations of 7.5 ppb, 7.5 ppb, and
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Figure 1. Labeled MetaSense Air Quality Sensing Platform. (Left) Modular, extensible platform in standard configuration with NO2, O3,

and CO electrochemical sensors. (Right) Additional modules that can be added to the board for additional measurement capabilities.

10 ppb, respectively. These standard deviations are large compared to observed signal levels for NO2 and O3 measurements,

which ranged between 0 – 35 ppb and 12 – 60 ppb, respectively, during the 6 month testing period.

The ambient environmental sensors accurately measure temperature, humidity, and pressure and are important for correcting

the environmentally related offset in electrochemical sensor readings. The TE Connectivity MS5540C is a barometric pressure

sensor capable of measuring across a 10 to 1100 mbar range with 0.1 mbar resolution. Across 0 C to 50 C, the sensor is5

accurate to within 1 mbar and has a typical drift of +/- 1 mbar per year. The Sensiron SHT11 is a relative humidity sensor

capable of measuring across the full range of relative humidity (0 to 100% RH) with a 0.05% RH resolution±3% RH accuracy.

Both sensors come equipped with temperature sensors with ±0.8 C and ±0.4 C accuracy, respectively. The sensors stabilize to

environmental changes in under 30 seconds, which is sufficiently fast to accurately capture changes in the local environment.

In order to improve the robustness of the boards to ambient conditions, the electronics were conformally coated with silicone10

and placed into an enclosure as shown in Figure 2. The housing prevents direct contact with the sensors by providing ports

over the electrochemical sensors and a vent near the ambient environmental sensors. The system relies on passive diffusion of

pollutants into the sensors due to the high power cost of active ventilation. However, as described in Section 2.3, for this study

the housed sensor packages were placed in an actively ventilated container.

2.1.2 Software Infrastructure15

We developed two applications for Android smartphones that leverage the BLE connection of the MetaSense platform. The

first application, the MetaSense Configurator app, enables users to configure the hardware for particular deployment scenarios,

adjusting aspects such as sensing frequency, power gating of specific sensors connected, and the communication networks

utilized. The second application, simply called the MetaSense app, collects data from the sensor via BLE and uploads all
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Figure 2. An enclosure was 3D printed for the MetaSense Air Quality Sensing Platform with top-side ports above the electrochemical sensors

and a side port next to the ambient environmental sensors. The sensor is sized to be portable and has velcro straps that can be used to mount

it to backpacks, bicycles, etc.

readings to a remote database. Each sensor reading is stamped with time and location information, supporting data analysis

for mobile use cases. Moreover, users can read the current air quality information on their device, giving them immediate and

personalized insight into their exposure to pollutants.

The remote measurements database is supported by the MetaSense cloud application and built on Amazon’s AWS cloud.

Not only can the MetaSense app connect to this cloud, but the MetaSense boards can be configured to connect directly to it5

using Wi-Fi or 3G. The measurement data can be processed by machine learning algorithms in virtual machines in AWS or

the data can be downloaded to be analyzed offline. The aforementioned over-the-air firmware updates are handled through

Particle’s cloud, which also allows remotely monitoring, configuring and resetting boards. These direct-to-cloud features are

key to supporting a long-term, wide-scale deployment like the one presented in this paper.

2.2 Sampling Sites10

For this deployment, we coordinated with three regulatory monitoring sites and rotated sensor packages through each site over

the course of approximately six months. Each monitoring site included reference instruments for NO2 and O3, among others.

The first site was in El Cajon, CA, in a suburban area east of San Diego, CA near an elementary school and a major highway (El

Cajon Site). The second site was directly south 15 miles in the south east corner of San Diego, a more rural area approximately

two miles from the border crossing for heavy duty vehicles at Otay Mesa (Donovan Site). The third site was in rural Shafter,15

CA, 250 miles to the north near Bakersfield. It is considerably inland compared to the other sites with nearby agriculture as well

as oil and gas extraction activities. We also expected to see unique emission profiles among the sites. Donovan was expected

to show higher truck emissions due to the presence of heavy duty vehicles, potentially idling for long periods of time, while

Shafter was expected to be affected by emissions from its nearby oil and gas activity. We expected the El Cajon site’s emissions

profile to resemble that of a typical urban/suburban site. This variety of environmental and emissions profiles would allow us to20

7



meaningfully test for transferability, in particular to assess to what degree a calibration model trained on one site would overfit

for the other sites.

For this deployment, our team coordinated with two regulatory agencies (the San Diego and San Joaquin Valley Air Pollution

Control Districts) in order to access three regulatory monitoring sites. Sensor packages were then rotated through each site over

the course of approximately six months. Each monitoring site included reference instruments for NO2 and O3, among others.5

The first site was in El Cajon, CA, located at an elementary school east of San Diego, CA (El Cajon Site). This site is classified

by the SDAPCD as being in the middle of a major population center, primarily surrounded by residences (Shina and Canter,

2016); expected influences at this site include transported emissions from the heavily populated coastal region to the west as a

well as emissions from a major transportation corridor (Shina and Canter, 2016). The second site was approximately 15 miles

to the south east of San Diego, located at the entrance to a correctional facility (Donovan Site). This site is not located in a10

high density residential or industrial area and does not have many influences very near to the site; it is expected to provide air

quality information for the south east area of the county (Shina and Canter, 2016). Additionally, this site is approximately two

miles from a border crossing utilized by heavy duty vehicles commercial vehicles - the Otay Mesa Port of Entry. The third site

was located on a the roof of a DMV in the rural community of Shafter, CA, 250 miles to the north near Bakersfield (Shafter

Site). The SJVAPCD lists the following potential sources of air pollution for this community: rural sources (agricultural and15

oil and gas production), mobile (including highways and railroads), and local sources (commercial cooking, gas stations, and

consumer products) (SJVAPCD Website). Given the differences in location, land use, and nearby sources we expect to see

differences in both the environmental (i.e., temperature, humidity, and barometric pressure) and pollutant profiles at each sites.

For example, the Shafter site is considerably more inland, where weather would be more dominated by the desert ecosystem

rather than the ocean ecosystem as compared to the two San Diego sites. In addition to being further inland, the Shafter site20

is rural and has a unique nearby source (i.e., oil and gas production), which might also result in a unique pollutant profile and

differing composition of background pollutants when compared to the San Diego sites. Similarly, given the differences in land

use and expected influences at the two San Diego sites, we may expect to see different trends in ozone chemistry. For example,

given that the El Cajon site is a highly residential area, while the Donovan site is near the Otay Mesa border crossing, there

may be more local heavy duty vehicle emissions at the second site. Comparing the historical data from these sites provides25

some support for this idea. In the 2016 Network Plan by the SDAPCD we see that the El Cajon site had a slightly higher

maximum 8-hr ozone average than the Donovan site, at 0.077 ppm and 0.075 ppm respectively. While the Donovan site had a

higher maximum 1-hr nitrogen dioxide average than the El Cajon site, at 0.067 ppm and 0.057 ppm respectively. It is possible

that this difference in peak levels at each site may be driven by the sources influencing each site, in particular the nitrogen

dioxide levels, which may be tied to heavy-duty vehicle traffic. In terms of the differences between regions, the San Joaquin30

Valley has consistently had more days where the 8-hr ozone standard has been exceeded than San Diego County from 2000 -

2015 (Shina and Canter, 2016; San Joaquin Valley Air Pollution Control District, 2016). In this instance the higher frequency

of ozone elevations in the San Joaquin Valley may be evidence for different climate, meteorology, and sources driving different

ozone trends. This variety of environmental and emissions profiles would allow us to meaningfully test for transferability, in

particular to assess to what degree a calibration model trained on one site would overfit for the other sites.35
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2.3 Data Collection

In ordinary use cases, the air quality sensors would be mounted to a backpack, bike, or other easily transportable item as

shown in Figure 2. A calibration algorithm located either on the sensor or a Bluetooth-compatible smartphone would convert

the raw voltage readings from the sensors and ambient environmental conditions to a prediction of the current pollutant levels

in real time. In order to develop these calibration models, we gathered data from air quality sensors and co-located regulatory5

monitoring sites over a 6-month deployment period.

To support a long-term deployment in potentially harsh conditions where no human operator would be able to monitor the

sensors on a regular basis, the sensors were placed into environmentally robust containers, shown in Figure 3, bottom right. The

container was a dry box, measuring 27.4 x 25.1 x 12.4 cm, that was machined to have two sets of two vents on opposing walls.

Louvers were installed with two 5 V, 50 mm square axial fans expelling ambient air from one wall and two louvers allowing air10

to enter the opposite side. The configuration allowed the robust container to equilibrate with the local environment for accurate

measurement of ambient pollutants. Each container could hold up to three MetaSense boards with cases and complementary

hardware. Due to the long timeframe of the deployment, a USB charging hub was installed into the container to power the

fans, the air quality sensors, and either a BLU Android phone or Wi-Fi cellular hotspot. The phones and hot spots were used to

connect the sensors to the cloud; therefore, we could remotely monitor the sensors’ status in real-time and perform preliminary15

data analysis and storage. Each board also had an SD card to record all measurements locally, increasing the reliability of

data storage. It is important to note that end users of the air quality sensors would not need to perform this lengthy calibration

procedure. End users will either received pre-calibrated devices or can perform calibration by co-locating their sensor with

existing, calibrated sensors.

Each container holding three MetaSense sensor packages was placed at one of three regulatory monitoring sites, such that20

each site had one container of sensors for simultaneous measurement of conditions at all three regulatory sites. After a period

of time the containers were rotated to a new site such that every package spent a period of time at every site. We performed

three rotations such that every sensor was returned to its original site for the final collection, but we disregarded the data from

the initial round 0, except to verify that sensor performance had not changed measurably between the beginning and the end

of the deployments. Table 1 lists the dates for each rotation as well as where each sensor system was located for each rotation.25

The dates are approximate due to the logistics of gaining access to regulatory field sites and the distances traveled to deploy

sensors. Also of note is that the deployments are not of equal length. This does not affect the results reported below because we

ran all combinations of training and testing sites, and training set sizes were normalized to remove the influence of training set

size. The data from the reference monitors was provided by the cooperating air quality districts in the form of minute-averaged

O3 and NO2 concentrations for the time period that our sensor packages were deployed.30

A container holding three MetaSense Air Quality Sensors was placed at each regulatory site, such that each site had one

container of sensors for simultaneous measurement of conditions at all three regulatory sites. After a period of time, the

containers were rotated to a new site. After three rotations, each sensor had taken measurements at each site. Table 1 lists the

dates for each rotation as well as where each sensor system was located for each rotation. The dates are approximate due to
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Figure 3. Map and images of deployment locations. Shafter DMV (red) was located 250 mi away from Donovan (blue) and El Cajon (yellow),

which were located in San Diego, CA. (bottom right) Deployment containers configuration for the extended deployment. Each container has

active ventilation to keep the internal conditions equivalent to the ambient environment.

the logistics of gaining access to regulatory field sites and the distances traveled to deploy sensors. Also of note is that the

deployments were not of equal length. This does not affect the results reported below because we ran all combinations of

training and testing sites, and training set sizes were normalized to remove the influence of training set size.

The data from the reference monitors was provided by the cooperating air quality districts in the form of minute-averaged

O3 and NO2 concentrations for the time period that our sensor packages were deployed. We removed reference data collected5

during calibration periods as well as any data flagged during initial quality assurance/control by the regulatory agency who

supplied the data. The reference data is not final ratified data as the timing of our study did not allow us to wait that long.

2.4 Preprocessing

Prior to using the dataset for training the calibration models, we performed a preprocessing step. First, we programmatically fil-

tered out data samples that contained anomalous values that might have occurred due to a temporary sensor board malfunction10

(e.g., due to condensation). Specifically, we searched for temperature and voltage spikes that were outside the realm of reason-

able values (i.e., temperature values above 60 degrees Celsius or ADC readings above 5 volts) and removed the corresponding

measurements. Each removed group of samples was visually inspected to ensure data was not being erroneously removed.

422,551 samples removed from the 17,948,537 collected samples, 2.4% of the total. The remaining data was averaged over a
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Table 1. Board locations and dates for each round.

Round 1 Round 2 Round 3

9/26/17 - 10/19/17 10/19/17 - 12/21/17 12/21/17 - 3/5/18

Board 17 El Cajon Shafter Donovan

Board 19 El Cajon Shafter Donovan

Board 21 El Cajon Shafter Donovan

Board 11 Shafter Donovan El Cajon

Board 12 Shafter Donovan El Cajon

Board 13 Shafter Donovan El Cajon

Board 15 Donovan El Cajon Shafter

Board 18 Donovan El Cajon Shafter

Board 20 Donovan El Cajon Shafter

minute window to match the time resolution of the data from the reference monitors. For the remaining data, a simple average

was computed over each one-minute window so as to match the time resolution of the data from the reference monitors. If an

entire minute of data is missing due to a crashed sensor or preprocessing, no minute-averaged value is generated. Although

we gathered sensor voltage measurements from both the auxilliary (AE) and working electrodes (WE) of the electrochemical

sensors, we used the difference between the two (AE−WE) as the representative voltage for each sensor since the auxilliary5

voltage is meant to serve as a reference voltage for the working electrode. This treatment is consistent with the methodology

of Zimmerman et al. (2018), and we validated that the performance of the calibration models did not differ between tests with

both electrodes and test with the difference as input features. As a final step, the resulting minute-averaged readings were

time-matched with the reference data, removing readings that had no corresponding reference reading. The resulting data set

over the three rounds at the three site contains 1,100,000 minute-averaged measurements.10

With this data, Furthermore, after receiving and examining the reference data we were able to verify our hypothesis in

Section 2.2 that we would observe varied environmental and pollutant conditions among the sites. Again, this hypothesis was

based on site characteristics and data/statistics from reports available from the respective regulatory agencies. Generally higher

ozone values were reported at Shafter, whereas generally higher NO2 values were reported at Donovan. Higher humidity values

were reported at the Donovan and El Cajon sites, as compared to Shafter. Some of the lowest temperature values were reported15

at Shafter. For more information see the distribution plots in Appendix A.

2.5 Baseline Calibration Methods

Sensor calibration is the process of developing and training models to convert a sensor voltage into a pollutant concentration.

We formulate sensor calibration as a regression problem with input features x and e representing signals from the electrochem-

ical sensors (O3 voltage, NO2 voltage, CO voltage) and environmental factors (temperature, pressure, humidity), respectively,20
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for a total of 6 features. These features are input to a calibration function hθ(x,e) that estimates target values y representing

pollutant concentrations (O3 ppb and NO2 ppb).

In our regression problem, we seek a function such that hθ(x,e)≈ y, which we formulate as an optimization where we

minimize some measure of error over a training data set {xn,en,yn}Nn=1 according to a loss function L(hθ(x,e),y), i.e.

θ∗ = argmin
θ

1

N

N∑
n=1

L(hθ(xn,en),yn) (1)5

For most of the modeling techniques we minimize the mean squared error (MSE), except for Random Forest where we min-

imize the variance, which behaves similar to MSE. Models trained in this way assume that at inference time, predictions are

made on data sampled from the training distribution. While this assumption holds true when the air quality sensors are trained

and tested at the same site, the distribution of pollutants and environmental conditions changes when the sensors are moved to

a new location.10

We investigated the performance of three calibration models: multiple linear regression, neural networks (sometimes called

deep learning), and random forest. These methods vary in their ability to accurately model complex behaviors, otherwise

known as capacity, with linear regression having relatively low capacity and neural nets and random forests having substantial

capacity. The price of high capacity is the potential to overfit the training distribution, which is a failure to generalize beyond

the training data. Models that overfit will incur significant error when predicting on out-of-distribution examples. Overfitting15

can be mitigated with regularization and by reducing the model capacity, but this can only go so far if the testing distribution

is substantially different from the train distribution. All of these methods have been previously applied to ambient pollutant

estimation by various research groups (Piedrahita et al., 2014; Spinelle et al., 2015b, 2017; Sadighi et al., 2018; Zimmerman

et al., 2018; Casey and Hannigan, 2018) and are generally common predictive modeling methods. For neural nets, we inves-

tigated three variants: two-layer, four-layer, and four-layer with a "split" architecture, which we motivate and describe in the20

next subsection.

Our baseline models were trained using the Scikit-Learn Python package, and the model parameters for each baseline model

can be seen below:

1. Linear regression: we assume the functional form h(x), wTx+ b, and fit the parameters in closed form. We use no

regularization or polynomial features.25

2. Two-layer neural network: we fit a two-hidden layer (200 wide) multilayer perceptron with rectified-linear unit acti-

vation functions and a final linear layer. We train this neural network using the Adam optimizer (β0 = 0.9,β1 = 0.999)

and a learning rate of 10−3.

3. Four-layer neural network: Same as two-layer neural network, but four hidden layers of width 200 instead of two.

4. Random forest: We divide our data into five folds and train a random forest of size 100 on each fold, resulting in 50030

trees. We aim to reproduce the strategy of Zimmerman et al. (2018) as closely as possible.
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2.6 Split Neural Network Method

Overfitting is a problem for high capacity models with a limited distribution in training data, resulting in poor performance

when a model is transferred to new locations and environments. One method to improve model transferability would be to

collect more training data that includes the test distribution. However, colocating a sensor at multiple different regulatory field

sites in order to capture a sufficiently wide distribution is prohibitive in terms of cost and time. An alternative solution is to5

deploy a set of sensors based on the same technology across multiple sites and then pool their data. However, there can be

substantial sensor-to-sensor variance in performance that would amplify prediction errors.

Recent work in sensor calibration has produced architectures that split model training into global and sensor-specific training

phases, primarily for metal oxide (MOX) gas sensors produced in an industrial setting. The process involves training a global

or master model on a small subset of devices over a wide range of environmental conditions. The master model translates raw10

sensor readings (i.e. voltage or current measurements) to a target pollutant. MOX sensors, similar to electrochemical sensors,

are sensitive to ambient conditions, so a wide range of conditions and combinations are explored in the master calibration

phase. While it can produce very accurate calibration models, the time and expense of gathering calibration data over a wide

range of conditions is prohibitively expensive in the industrial manufacturing process for low-cost sensors. To overcome this,

a limited number of master models are created, and then an affine transformation is generated between individual sensors and15

the master sensors. The affine transformation effectively transforms the sensors readings of individual sensors to match that of

the master, after which, the master calibration model can be used. A variety of methods have been developed to this end. Zhang

et al. (2011) propose a method to calibrate a MOX sensor for detecting volatile organic compounds using a neural network

to capture the complexity of the master model and an affine transform and a Kennard-Stone sample selection algorithm to

develop a linear model between individual sensors and the master sensor. Other research has utilized windowed piecewise20

direct standardization to transform the sensor readings from a slave sensor to a calibrated master for single gas concentrations

(Yan and Zhang, 2015) and direct standardization for a range of gases and concentrations over a longer timeframe (Fonollosa

et al., 2016). While previous efforts utilized single master sensors, Solórzano et al. (2018) showed that including multiple

master sensors in a calibration model can improve the robustness of the overall model. Similar findings were reached by Smith

et al. (2017) when investigating sensor drift whereby an ensemble model was generated by training models for multiple sensors25

and the prediction was reported as the cluster median. These two-stage calibrations have primarily been performed in controlled

laboratory settings, but not in real-world conditions where ambient conditions and cross-sensitivities may impact results. In

addition, these studies train models in a piecewise fashion, training master and sensor-specific models separately.

We propose end-to-end training of a global and sensor-specific models. In particular, we propose a training architecture that

consists of two sets of models: a global calibration model that leverages the data from a set of similar sensors spread across30

different training environments and sensor-specific calibration models that detect and correct the differences between sensors.

In the previous subsection, we associated each board i with a calibration function hθi(x) and fit this calibration function with

its colocated data. Taking into consideration a collection of many air quality sensors, we propose an alternate architecture based

on transfer learning (Goodfellow et al., 2016, p. 535). We propose using a calibration function split into two distinct steps: first,
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Figure 4. Architecture of the split-NN model in deployment (testing). Each air quality sensor has a board-specific model sθi(x) that nor-

malizes a given sensor’s output (x) to an intermediate representation from all sensors (u). The intermediate representation is combined with

environmental data (e) and input to the global model cφ.

pollutant sensor voltages x are input into a sensor-specific model, sθi(x), a function parameterized by θi, which outputs a fixed

dimensional vector u. This intermediate representation u is concatenated with environmental data e, which is then passed into

a global calibration model cφ([u|e]). For a single air quality sensor, our final calibration function is cφ([sθi(x)|e]). Figure 4

depicts the use of such a model. Such a model is called a split neural network model (split-NN) since neural networks are

generally used for both the sensor-specific models and the global calibration models. In our experiments, the sensor-specific5

model sθi is either a linear regressor or neural network; cφ is a two-layer, 100-wide neural network.

The purpose of the split-NN model is that sθi corrects for differences in air quality sensor i’s performance relative to the

other sensors, thus normalizing the values and making the behavior of all the sensors compatible with the global model cφ. The

performance of the estimates from cφ should be superior to those from an individual sensor model because it has been trained

on the (normalized) data of all the boards as opposed to just a single board.10

The split model can be trained efficiently with stochastic gradient descent. Specifically, we first collect N data sets for each

board Di = {x(i),e(i),y(i)}Ni=1. We ensure each of these data sets is the same size by sampling each with replacement to

artificially match the largest data set. We then pool the data sets together into one data set from which we sample mini-batches.

While each sensor-specific model sθi is trained only on data collected by its sensor, the regression with the other sθi sensor-

specific models is designed to detect and correct its bias, outputting an intermediate representations u that is normalized with15

the others. The global calibration model is trained on the normalized data from all air quality sensors.

Although training this neural network will take longer than training one for a single board, it has several key advantages over

conventional calibration techniques. The first is its ability to share information across multiple boards. Suppose Board A is

trained on Location 1 and Board B is trained on Location 2. Pooling the data sets and using a shared model enables the global

calibration model to predict well in both locations, and the calibration models for both boards will have information about the20

other locations in them, in theory improving transferability. The second is more efficient utilization of data. By pooling data
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and training jointly, we effectively multiply our data size by the number of boards. Alternatively, field deployments can be

shortened.

Calibrating a New Board without a Full Training. Field calibration is traditionally performed by colocating a sensor pack-

age with reference monitors and then training to match pollutant concentrations. But, suppose we already had a fleet of low-cost

sensor packages already deployed. A simpler method not requiring coordination with regulatory agencies would be to colocate5

it with a calibrated sensor package and train a model to match its predicted pollutant levels. This risks compounding errors

across models, however. The split-NN model enables calibrating a new sensor package by colocating to match representation

instead of predictions, as learned representations can often improve generalization in transfer learning problems (Goodfellow

et al., 2016, p. 536).

We propose calibrating sensor package N +1 to match the intermediate representation output of a colocated, previously-10

calibrated sensor package. Specifically, we train modelN+1 to minimize L(uN ,uN+1), or the loss between the two packages’

intermediary outputs. These intermediate representations are designed to be robust to changes in location so training to match

these representation so it is expected that it will result in a robust calibration model. We analyze this potential calibration

technique by holding out a board from our data sets and training a split model. We then simulate calibrating the held out board

by training a sensor model to match the representations produced by another board it was colocated with. We then use this new15

sensor model with the global calibration function to produce pollutant values.

3 Results and Discussion

3.1 Robustness of Different Calibration Techniques Across New Locations

We evaluated a set of four baseline models described in Section 2.5: multiple linear regression, two-layer neural network (NN-

2), four-layer neural network (NN-4), and random forest (RF). With each of these four models, we performed a suite of identical20

calibration benchmarks that measure the robustness of models to out-of-distribution data. We split all data sets uniformly at

random into training and testing subsets, reserving 20% of each board’s data for testing. In each benchmark, we progressively

widened the training distribution by combining training data from more locations (using subsampling to maintain the training

set size), while keeping the testing set data set from one location. We have four “levels” of such benchmarks:

– Level 0: Train a model on one location and test on the same location. Several studies, discussed in Section 1, have25

previously assessed this configuration (Zimmerman et al., 2018; Spinelle et al., 2015b, 2017; Cross et al., 2017).

– Level 1: Train a model on one location and test on another location. Some recent studies, also discussed in Section 1,

have previously studied this configuration (Hagan et al., 2018; Casey and Hannigan, 2018; Bigi et al., 2018; Malings

et al., 2018).

– Level 2: Train a model on two locations and test on a third location.30

– Level 3: Train a model on three locations and test on one of the three locations.
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(a) Level 0 (b) Level 1 (c) Level 2 (d) Level 3

Figure 5. Graphical depiction of training versus testing for the Level 0 through Level 3 benchmarks. The Level 0 and 3 benchmarks test on

a training site using held out data. The Level 1 and 2 benchmarks train and test on different sites, also using held out data for consistency.

In the Level 0 and Level 3 benchmarks, the training and testing data distributions have explicit overlap, whereas in Level 1

and 2, there is no explicit overlap. We expect performance on Level 0 to be the best, as the training and testing distributions are

identical. We expect performance on Level 3 to be similar, due to the overlap in training and testing distributions. We expect

performance on Level 1 to be the worst, as the training distribution is the narrowest and with no explicit overlap, whereas we

expect performance on Level 2 to be between Level 1 and Level 3, for although there is no explicit overlap, the overall training5

distribution will be wider, forcing the models to be more general and possibly affording more implicit overlap. Furthermore,

we expect higher capacity models to overfit more to the training data set, and as a result, have the largest gap between Level 0

and Level 1. Thus, we expect linear regression to have more consistent performance across the benchmarks, albeit at relatively

high error, followed by the 2-layer neural network, 4-layer neural network, and finally the random forest.

We ran each benchmark across all possible permutations of location and sensor package, measuring six metrics in order to10

facilitate comparisons in the literature: mean squared error (MSE), root mean squared error (rMSE, also known as the standard

error), centered root mean squared error (crMSE), mean absolute error (MAE), the coefficient of variation of mean absolute

error (CvMAE), mean bias error (MBE), and coefficient of determination (R2). Predictions were made in parts per billion

(ppb), thus MSE is reported in ppb2, and the other errors are reported in ppb. CvMAE and R2 are dimensionless. The results

for MAE of the baseline models are plotted in Figure 6. Details can be explored further in Appendix C.15

From Figure 6 we observe that on average, as model capacity increases, Level 0 error decreases. This is consistent across both

NO2 and O3 prediction and reflects the ability of the model to fit the training distribution. Concerning model transferability, we

find that consistently, all models suffer significant exhibit relatively high error when tested on different locations. The Level

1 and 2 benchmarks reflect test the ability of a model to generalize to a distribution it hasn’t seen before, and we see in these

benchmarks that errors are much higher and the gaps between models are much smaller. Furthermore, Level 2 error is slightly20

lower on average than Level 1 error. By adding data from another site, effectively widening the training distribution, the models

are slightly more robust to the unseen testing distribution. Level 3 performance aligns closely with Level 0 performance, which

is to be expected, since in both cases the training distribution contains the testing distribution.
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(a) NO2 (b) O3

Figure 6. Mean absolute error (MAE) boxplots for NO2 and O3, for the Level 0 through Level 3 benchmarks.

Across baselines, we observe that on average, linear regression has the highest error on all the benchmarks. However, its

errors across the Level benchmarks are more consistent than the other models, suggesting that low-capacity linear regression

is more robust to transfer. On the other hand, random forests have on average the lowest error, but have the most inconsistent

results across the Levels. The results indicate a tradeoff between model capacity and robustness to transfer, consistent with our

intuitions about model overfitting and generalization. Neural networks lie in between linear regression and random forests, and5

offer a tradeoff between low error and consistent error.

To better understand how model performance degrades, we produced target plots, which visualize the tradeoff between

centered error (crMSE) and bias error (MBE) (Figure 7). The target plots indicate that while error approximately doubles when

there is no explicit overlap in the distribution, the increase in model bias is many times more. The increase in crMSE is more

pronounced in the higher capacity models When considering the two types of error examined, the crMSE may be of greater10

concern when considering sensor performance in new locations as compared to error due to bias. Sensor data exhibiting errors

due to bias may still provide useful information regarding the diurnal trends of pollutants or relatively large enhancements.

Despite the higher capacity models showing better error and bias in a Level 0 benchmark, the models have very similar error-

bias tradeoffs in a Level 1 benchmark, indicating that even a high-capacity model cannot avoid this performance degradation.

Finally, in comparing the Level 1 and Level 2 plots, we observe that adding an additional (no-overlapping) site primarily15

reduces bias. The Level 3 plots are very similar to the Level 0 plots and are excluded from Figure 7 for brevity.

In general, however, we observe that model performance degrades non-trivially when moved to different locations. This

decrease in performance could result in overconfidence in a sensor’s readings, potentially affecting downstream decisions. We

briefly analyze the properties of our data that could result in overfitting by first investigating how data distributions across

sites and times differ. Over each location and round, pollutant values can be highly variable. This is reflected, for example,20
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(a) Level 0 (NO2) (b) Level 1 (NO2) (c) Level 2 (NO2)

(d) Level 0 (O3) (e) Level 1 (O3) (f) Level 2 (O3)

Figure 7. Target plots for Level 0 through Level 2 for both NO2 and O3. In each panel, the centered error is plotted on the x-axis, while the

bias error (MBE) is plotted on the y-axis. The differing colors then illustrate the performance of each calibration model at each level and for

these metrics. Each point in the plot corresponds to a different individual benchmark (i.e., a unique round, location, and board).

in Figure A3 where Shafter has higher values of NO2 in Round 1 and 2 but lower in Round 3. Furthermore, in Figure A4,

the distribution of O3 changes remarkably across round and location. Similarly, temperature and humidity change significantly

across location and round, which can be seen in Figure A1 and Figure A2.

A question that remains is to what degree overfitting or unique (non-overlapping) distributions of environmental data at the

sites is contributing to the failure of the high capacity models to transfer well. In an effort to better understand what may be5

driving the drop in performance of the high capacity models when boards are moved, we examined error density plots for

temperature and humidity for the Level 1 benchmarks. In these types of plots, one of the predictors, such as temperature or

humidity, is plotted against the error for all three sites in a single plot. Figure 8 displays the error density plots in MAE for

absolute humidity against the error for the O3 estimation, for both the linear regression and random forest models. These plots

illustrate how the magnitude of error varies with respect to higher or lower predictor values as well as how different pairs of10

training and testing sites compare. There are a couple of things we can derive from this collection of plots. First, we observe

that the pollutant concentrations at the Shafter site are difficult to predict, except for random forest when trained at Shafter

itself (Figure 8f). The Shafter site was spatially far from the other sites and likely had a unique composition of background
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(a) LR, trained at Donovan (b) LR, trained at El Cajon (c) LR, trained at Shafter

(d) RF, trained at Donovan (e) RF, trained at El Cajon (f) RF, trained at Shafter

Figure 8. Error density plots for O3 versus normalized absolute humidity for both Linear Regression (LR) and Random Forest (RF) in a

Level 1 benchmark.

pollutants and ambient environmental conditions. Second, we observe that when training a random forest model at one site and

testing it at a different site (Figure 8, bottom row), the error density plots look similar to the results from the linear regression

models (Figure 8, top row) despite the higher capacity of random forest models. Furthermore, comparing panels a and d, the

errors at Shafter seem comparable to those at El Cajon for the random forest model, whereas for the linear regression model

the errors seem greater at Shafter versus the second San Diego site. This difference potentially indicates that linear regression5

models are better at transferring between more similar environments, which has been observed by other researchers as well

(Casey and Hannigan, 2018). We also observe that the greater errors at the Shafter site are occurring at humidity values that

were seen in the training data set (more centrally in the plot), as is evident by their representation in the Donovan data. This

implies that these errors did not occur at humidity values that have been extrapolated beyond the original training data set, but

rather from overfitting at values in the distribution. This leads us to conclude that overfitting is the reason random forest’s net10

performance in transfer is not much better than linear regression.
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3.2 Benefits of Sharing Data Across Sensor Packages

In this section, we evaluate the split-NN model architecture’s utility for improving the transferability of a calibration model.

The novelty of the split-NN model for calibrating a board’s model is its ability include (normalized) data from other boards.

Given that the resources for calibration are limited, the research questions for split-NN revolve around how boards could be

best distributed to available field sites. For a standard modeling technique like random forest, a board has to be placed at three5

sites for three rounds to experience the wide training distribution that achieves the exceptional transferability observed in the

Level 3 benchmarks. However, with the split-NN model, multiple boards can be deployed for just one round, divided equally

across the sites. Then the data from their boards can be normalized and shared to produce models that we hypothesize to be of

similar quality to a Level 3 benchmark, but in one-third the time, in a single round.

To help reveal the value of calibrating multiple boards at once, we performed three one-round benchmarks: 1 board at each10

of the three sites, 2 boards at each of the three sites, and 3 boards at each of the three sites. In each of these conditions, a

board is trained from a single round of data and tested on the other locations, not its own. In this vein, these are all Level

1 benchmarks, thus we compare the resulting models against our Level 1 baselines. We expect the split-NN to outperform

Level 1 random forest, as the inclusion of more data helps reduce bias. In the situation that there are more boards to calibrate

than there are training sites, there is an opportunity to also incorporate data additional boards at the same site. We expect that15

a greater multiplicity of boards at each site will produce slightly better models, but with diminishing returns. We evaluated

this effect by including training split-NN’s with increasing numbers of boards at each site, indicated by the variants Split-NN

(3), Split-NN (6), and Split-NN (9), corresponding to having one board at each site, two boards at each site, and three boards

at each site. Figure 6 depicts how the voltages collected from one board in the Split-NN (9) condition are translated into

predictions, both plotted against the corresponding reference data points. We perform a similar assessment with two-round20

(Level 2) benchmarks, still testing only on sites that a board hasn’t been trained on. As previously, we control for the total

amount of data, simulating an abbreviated deployment for the Level 2 benchmarks.

Figure 10a-b shows that the split-NN model on average has slightly lower MAE in the Level 1 benchmarks when compared

to the random forest model. We see in and Figure 10c-d that the gap widens with the Level 2 benchmark, indicating that

the Split-NN model is able to better capitalize on the additional data. The results also support our hypothesis that we receive25

diminishing returns with additional data. Detailed results are provided in Appendix D.

The marginal improvement seen in the Level 1 benchmarks has two possible causes. One possibility is that the difference

in behavior between sensors is non-linear. To test this, we implemented a full neural network as the first stage. The results

were comparable with a linear regression first stage with only slight improvement, suggesting that the relationship between the

sensors is well represented by a linear model. The other possibility is that the pollution distributions have insufficient overlap30

across sites, compromising the first-stage linear regression to for correct bias. The fact that using two rounds of data (Level 2)

does much better suggests that this lack of overlap is a likely culprit.
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Figure 9. A single board comparison (Board 12) of the relationship between the raw sensor values and target pollutant concentrations (left)

and the predicted and target pollutant concentrations after the model was run (right) for the Level 1 Split-NN (9) condition. The solid black

line is a linear trend line and the dashed lines represent the 95th percentile.

3.3 Discussion

As low-cost sensor studies move from understanding sensor signal performance to how this performance is affected by moving

sensors to new sampling locations or utilizing them in new applications, it is important that the results are translated into

best practices to support the collection of usable high quality data. This is particularly important given the interest in sensors

by community-based organizations and citizen scientists. Although the present study examined only electrochemical O3 and5

NO2 sensors and the sampling sites were limited to three in California, it adds to a body of evidence that location matters in

the calibration of low-cost sensors because the background environmental conditions matter. With this in mind, we make the

following observations and recommendations.

We observed how prediction performance degrades when a sensor is moved to a new location, especially for high-capacity

modeling techniques. In particular, training a complex random forest calibration model will likely result in very relatively low10

error at a colocated site but can incur significant relatively high error at a different site. Although their predictions at a new

site will have lower error than linear regression, the error they have exhibit at the training site will likely not be representative
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(a) Level 1 NO2 (b) Level 1 O3

(c) Level 2 NO2 (d) Level 2 O3

Figure 10. Results of evaluating the split-NN model with a linear regression first stage, compared against the RF model in both Level 1 and

Level 2 comparisons. The split-NN model has a lower mean and median error in all conditions. Boxplots are pictured without outliers for

clarity.

of their error in practice. A linear model, on the other hand, despite not predicting as well at the training site, will not have

significantly more substantially greater error at testing time. Thus, if it is important to know the likely error of your calibration

model under transfer, it would be best to use a low-capacity method like linear regression.

When we drilled down to investigate the contributors to error when changing location, we found that bias error was a

significant contributor in many cases. This is interesting because bias error indicates a loss of accuracy (a non-random additive5

error) rather than a loss of precision (random noise). This suggests that when moving a sensor to a new location, if the bias

can somehow be detected, then it may be possible to make a bias correction to improve model performance. This result also

motivates the use of the split neural network architecture, which has a model-specific correction stage that is designed to learn

unbiased representations of sensor measurements.

We had expected that training at multiple sites would provide much better transferability, but the improvements were not10

substantial, suggesting that the high-capacity models were mostly improving due to implicit overlap in distributions and not

actual generalization. This suggests that calibration should be directed at capturing the widest conditions possible, for example
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using many field sites with varying conditions, so as to create an overlap between the distributions of training and use. This

recommendation is further supported by the observation that the Level 3 benchmarks performed nearly as well as the Level 0

benchmarks, in spite of carrying the load of a much wider distribution in the models.

The split-NN approach provides a potentially economical approach to creating overlap in distributions since sensors can

share their data for calibration. That is, when calibrating multiple sensors, rather than colocating multiple sensors at a field site5

and rotating those sensors over time, it makes sense to distribute the sensors to as many field sites as possible to capture the

widest distribution of conditions. The split-NN method has the additional benefit of being able to train a calibration model for a

sensor that has never been colocated with a reference instrument. By simply colocating an uncalibrated sensor with a calibrated

sensor and training the sensor-specific model to match the intermediate output of the calibrated sensor, the uncalibrated sensor

can leverage the same global calibration model. More study will be required to see how well the split-NN approach scales as10

the training data distribution increases and to determine the bounds on calibration without reference colocation.

4 Conclusion

As low-cost gas-phase sensors are increasingly being adopted for citizen science efforts and community-based studies, there is

a need to better understand what contributes to accurate sensing. A key question is how a change in background environmental

or pollutant conditions, often unique to a location, affects accuracy. A rotating deployment strategy enabled benchmarking the15

transferability of models and investigating how to improve accuracy. We found that overfitting is a concern, especially when

transferring high-capacity models like random forest that are trained with data that will not be representative of the conditions

of use. Our benchmarks indicate that widening the data distribution is a good strategy to make models more robust to transfer,

but that the best results require the training distribution to contain the distribution encountered in use. A tantalizing result

is that much of the error introduced by transfer was bias, which may be correctable. When multiple sensors based on the20

same technology are being trained at the same time, we found that a split neural network architecture increases the robustness

of model transfer by giving a sensor’s model access to normalized data from other sensors, even at other locations, hence

widening the distribution without requiring additional data collection. This method also enables accurately calibrating new

sensors against existing calibrated sensors at incremental cost.

For our setting and conditions, we found that:25

– Model error increased under transfer for all the modeling techniques investigated, demonstrating that overfitting is a

concern. The effects are most dramatic when transferring high-capacity models like random forest that are trained with

data that will not be representative of the conditions of use. The lower-capacity linear regression method deteriorated

much less. This suggests that the predicted model error for linear regression will be more accurate under transfer, making

it attractive when knowing the predicted error is important for the intended application.30

– Tantalizingly, much of the error introduced by transfer was bias. Given the simple structure of bias error, this suggests

that transferability might be increased by detecting and correcting for bias.
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– When multiple sensors based on the same technology are being trained at the same time, we found that a split neural

network architecture modestly decreases prediction error under transfer by giving a sensor’s model access to normalized

data from other sensors at other locations, hence widening the distribution without requiring additional data collection.

Depending on the training configuration, compared to random forest the split-NN method reduced error 0-11% for NO2

and 6-13% for O3. This method also enables calibrating new sensors against existing calibrated sensors at incremental5

cost.

– For all the modeling techniques investigated, widening the data distribution proved a good strategy to reduce prediction

error under transfer, even for the lower-capacity liner regression method. Notably, markedly better results were achieved

when training distribution contained the distribution encountered in use. In other words, for the setting and conditions

investigated, training with representative data trumped algorithms.10

In the future work we will be extending this work to answer open questions that we believe are relevant to the future of low-

cost sensor calibration. One, the split neural network method underperformed our expectations, so we believe techniques of

this sort warrant additional investigation. Two, As one example, there are questions about the effect of temporal resolution on

accuracy. Currently, our MetaSense sensors are sampled every five seconds, but the ground-truth data provided from reference

monitors is minute-averaged. By averaging our own sensor measurements every minute, we discard data that could be relevant15

for calibration. Recent advances in recurrent neural networks for sequence prediction might help leverage the high-resolution

data for more robust prediction. On the other hand, noise will be more of a factor at this resolution, and the sensor can take up to

30 seconds to stabilize in new environmental conditions (See 2.1.1). As a second exampleThree, a potential application of low-

cost sensing is truly mobile sensing with person- or vehicle-mounted sensors. Deployments such as these will raise questions

about the effects of mobility on sensing accuracy, such as rapidly changing conditions, with few studies to date (Arfire et al.,20

2016). Finally, we will be examining the possible use of infrastructure data (e.g., knowledge of pollution sources) to infer the

likelihood of specific pollutants, providing the potential to control for cross-sensitivity.
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Appendix A: Environment and Pollutant Distributions (based on reference data)

The following graphs summarize the distributions of pollutants and environment variables provided from the reference sen-

sors at the three sites during the three rounds of the study. Each bar represents the total proportion of measurements at the

given temperature or humidity (a histogram plot). The lines are a visualization of the kernel density estimation of the raw

measurements.5

(a) Round 1

.

(b) Round 2 (c) Round 3

Figure A1. Temperature distributions for each location, by round.

(a) Round 1 (b) Round 2 (c) Round 3

Figure A2. Humidity distributions for each location, by round.
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(a) Round 1 (b) Round 2 (c) Round 3

Figure A3. NO2 distributions for each location, by round.

(a) Round 1 (b) Round 2 (c) Round 3

Figure A4. O3 distributions for each location, by round.
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Appendix B: Summaries of Data for each Location and Round

epa-no2 epa-o3 temperature pressure humidity

Location

Donovan count 100780 100780 100780 100780 100780

mean 10.434 33.742 24.170 991.767 45.936

std 10.807 15.378 5.624 3.226 21.966

min 0.000 0.000 13.900 982.820 4.086

25% 3.000 24.000 20.100 989.530 27.244

50% 7.000 35.000 22.620 991.460 49.511

75% 14.000 43.000 27.000 993.610 64.394

max 157.000 96.000 49.710 1004.160 92.753

El Cajon count 97412 97412 97412 97412 97412

mean 12.914 29.331 24.342 997.288 43.923

std 9.732 19.337 8.232 3.507 20.077

min 0.000 1.000 5.430 989.230 2.733

25% 5.000 11.000 18.570 994.880 28.623

50% 10.000 31.000 23.380 996.890 45.053

75% 20.000 43.000 29.700 999.450 61.166

max 66.000 95.000 49.790 1010.480 85.827

Shafter count 119785 119785 119785 119785 119785

mean 12.578 26.357 22.101 1003.883 45.804

std 9.079 20.739 8.184 5.596 18.072

min 0.000 0.000 4.010 872.756 6.349

25% 4.700 7.800 16.156 999.750 30.585

50% 10.800 22.300 21.040 1003.990 46.763

75% 19.000 41.200 27.200 1007.400 60.965

max 594.600 110.400 47.700 1019.580 85.047

Table B.1. Summary of data set grouped by location
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epa-no2 epa-o3 temperature pressure humidity

Round

1 count 49771 49771 49771 49771 49771

mean 5.509 36.010 26.062 994.459 48.322

std 5.472 13.869 6.777 4.787 19.539

min 0.000 1.300 13.100 872.756 9.644

25% 2.000 28.000 20.900 990.920 31.790

50% 3.700 37.300 24.600 995.240 50.507

75% 6.600 45.000 30.130 997.640 61.525

max 57.000 110.400 47.700 1002.940 92.753

2 count 75129 75129 75129 75129 75129

mean 11.916 36.974 25.953 995.989 41.511

std 9.583 21.259 7.577 6.075 19.757

min 0.000 0.000 12.000 982.820 4.420

25% 5.000 19.200 20.000 990.990 23.461

50% 8.000 36.000 24.400 995.420 41.539

75% 17.900 53.000 31.710 1000.710 56.961

max 82.000 96.000 48.180 1009.890 87.562

3 count 193077 193077 193077 193077 193077

mean 13.708 25.093 21.791 999.732 45.946

std 10.225 17.807 7.276 6.708 20.013

min 0.000 0.000 4.010 986.770 2.733

25% 5.100 8.000 17.190 994.300 30.192

50% 11.600 24.700 21.000 999.090 48.470

75% 20.000 38.500 25.780 1004.690 63.450

max 594.600 87.900 49.790 1019.580 85.440

Table B.2. Summary of data set grouped by round

Appendix C: Raw Results for the Baseline Calibration Models

The following tables are the complete error results for the baseline models across the various conditions. In these tables, the

modeling methods are labeled as MLR for multiple linear regression, NN-2 for 2-layer neural network, NN-4 for 4-layer

neural network, and RF for random forest, as described in Section 2.5. Likewise, the error measures are labeled as MAE for

mean absolute error, CvMAE for coefficient of variation of the mean absolute error, MBE for mean bias error, MSE for mean5

standard error, R2 is the coefficient of determination, crMSE for centered root mean square error, and rMSE for root mean

squared error. MSE is reported in parts per billion squared. All other errors are reported in parts per billion. CvMAE and R2

are dimensionless. The results are disaggregated by train and test sites, and averaged across the sensor packages.
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Train Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon MLR 3.860 0.256 1.163e-14 28.094 0.685 5.259 5.259

donovan MLR 5.520 0.567 1.528e-15 73.035 0.312 8.374 8.374

shafter MLR 4.671 0.354 3.628e-15 40.945 0.492 6.380 6.380

elcajon NN-2 2.003 0.135 0.127 8.137 0.905 2.831 2.844

donovan NN-2 3.134 0.328 0.093 27.100 0.733 5.175 5.189

shafter NN-2 2.648 0.200 0.051 17.439 0.787 4.131 4.135

elcajon NN-4 1.109 0.074 0.076 2.976 0.967 1.700 1.704

donovan NN-4 1.946 0.213 0.033 13.955 0.835 3.527 3.548

shafter NN-4 1.755 0.133 -0.054 8.541 0.895 2.868 2.872

elcajon RF 0.477 0.032 -0.011 0.673 0.993 0.808 0.808

donovan RF 0.999 0.112 -0.022 3.705 0.956 1.870 1.871

shafter RF 0.514 0.039 -0.016 1.513 0.981 1.193 1.193

Table C.1. Level 0 train results for NO2 (train and test on the same data set).

Train Site Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon elcajon MLR 3.869 0.256 0.015 28.999 0.683 5.333 5.333

donovan donovan MLR 5.573 0.556 0.160 75.037 0.315 8.504 8.512

shafter shafter MLR 4.671 0.353 0.004 38.467 0.511 6.191 6.191

elcajon elcajon NN-2 2.074 0.140 0.127 9.185 0.895 3.006 3.018

donovan donovan NN-2 3.390 0.345 0.204 31.458 0.696 5.559 5.581

shafter shafter NN-2 2.694 0.203 0.052 15.772 0.802 3.942 3.946

elcajon elcajon NN-4 1.465 0.098 0.076 5.524 0.938 2.327 2.331

donovan donovan NN-4 2.739 0.288 0.105 24.875 0.729 4.907 4.924

shafter shafter NN-4 2.089 0.158 -0.060 10.702 0.865 3.252 3.256

elcajon elcajon RF 0.972 0.064 -0.028 2.929 0.968 1.683 1.683

donovan donovan RF 2.010 0.216 0.031 15.113 0.830 3.794 3.797

shafter shafter RF 1.028 0.078 -0.041 3.822 0.951 1.943 1.943

Table C.2. Level 0 test results for NO2.
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Train Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon MLR 6.010 0.245 1.647e-14 60.276 0.827 7.666 7.666

donovan MLR 6.916 0.193 -1.881e-15 85.486 0.584 9.131 9.131

shafter MLR 5.882 0.239 9.460e-15 63.567 0.841 7.877 7.877

elcajon NN-2 2.810 0.112 -0.150 16.200 0.954 3.940 3.947

donovan NN-2 4.237 0.117 -0.270 35.055 0.821 5.824 5.855

shafter NN-2 3.498 0.141 0.013 24.929 0.939 4.895 4.909

elcajon NN-4 1.369 0.055 -0.092 4.418 0.987 2.053 2.064

donovan NN-4 2.781 0.077 -0.212 21.314 0.874 4.055 4.102

shafter NN-4 2.184 0.090 0.001 10.817 0.973 3.248 3.251

elcajon RF 0.598 0.024 0.006 0.962 0.997 0.976 0.976

donovan RF 1.341 0.037 0.014 4.938 0.971 1.988 1.988

shafter RF 0.643 0.027 0.011 1.176 0.997 1.083 1.083

Table C.3. Level 0 train results for O3 (train and test on the same data set).

Train Site Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon elcajon MLR 6.038 0.245 0.040 61.471 0.822 7.744 7.744

donovan donovan MLR 6.931 0.195 -0.255 85.324 0.604 9.116 9.124

shafter shafter MLR 5.877 0.240 0.020 63.379 0.842 7.857 7.858

elcajon elcajon NN-2 2.919 0.115 -0.133 17.626 0.950 4.113 4.118

donovan donovan NN-2 4.516 0.126 -0.488 40.687 0.802 6.193 6.253

shafter shafter NN-2 3.568 0.145 0.020 26.052 0.937 4.999 5.011

elcajon elcajon NN-4 1.903 0.075 -0.068 9.252 0.974 2.966 2.974

donovan donovan NN-4 3.830 0.107 -0.330 33.794 0.825 5.399 5.456

shafter shafter NN-4 2.672 0.109 -0.012 17.052 0.959 4.050 4.052

elcajon elcajon RF 1.217 0.049 0.015 3.987 0.988 1.987 1.987

donovan donovan RF 2.723 0.076 -0.103 19.179 0.897 3.931 3.934

shafter shafter RF 1.284 0.054 0.024 4.651 0.988 2.155 2.155

Table C.4. Level 0 test results for O3.
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Train Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon MLR 3.869 0.256 0.015 28.999 0.683 5.333 5.333

donovan MLR 5.573 0.556 0.160 75.037 0.315 8.504 8.512

shafter MLR 4.671 0.353 0.004 38.467 0.511 6.191 6.191

elcajon NN-2 2.074 0.140 0.127 9.185 0.895 3.006 3.018

donovan NN-2 3.390 0.345 0.204 31.458 0.696 5.559 5.581

shafter NN-2 2.694 0.203 0.052 15.772 0.802 3.942 3.946

elcajon NN-4 1.465 0.098 0.076 5.524 0.938 2.327 2.331

donovan NN-4 2.739 0.288 0.105 24.875 0.729 4.907 4.924

shafter NN-4 2.089 0.158 -0.060 10.702 0.865 3.252 3.256

elcajon RF 0.972 0.064 -0.028 2.929 0.968 1.683 1.683

donovan RF 2.010 0.216 0.031 15.113 0.830 3.794 3.797

shafter RF 1.028 0.078 -0.041 3.822 0.951 1.943 1.943

Table C.5. Level 1 train results for NO2 (train and test on the same data set).
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Train Site Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon donovan MLR 7.994 0.841 -4.447 119.171 -0.304 8.782 10.639

elcajon shafter MLR 7.495 0.565 -1.816 103.831 -0.303 8.871 9.990

donovan elcajon MLR 6.383 0.436 1.998 69.142 0.179 6.801 8.203

donovan shafter MLR 8.860 0.676 0.639 132.238 -0.711 8.201 11.351

shafter elcajon MLR 7.472 0.504 1.940 115.789 -0.303 9.532 10.366

shafter donovan MLR 8.553 0.856 0.904 143.748 -0.309 10.080 11.542

elcajon donovan NN-2 6.552 0.688 -1.875 98.026 -0.063 8.628 9.641

elcajon shafter NN-2 5.367 0.405 -0.491 52.894 0.334 7.077 7.189

donovan elcajon NN-2 9.960 0.649 2.435 282.631 -1.896 13.732 14.872

donovan shafter NN-2 8.567 0.662 2.822 173.652 -1.359 10.145 11.805

shafter elcajon NN-2 9.623 0.642 3.077 269.781 -2.158 13.186 14.291

shafter donovan NN-2 9.446 0.918 2.953 250.758 -1.049 11.432 13.326

elcajon donovan NN-4 6.164 0.632 -1.301 83.675 0.163 8.663 9.103

elcajon shafter NN-4 5.771 0.436 -0.298 58.188 0.266 7.473 7.601

donovan elcajon NN-4 7.702 0.500 -0.698 132.834 -0.385 10.342 10.622

donovan shafter NN-4 7.947 0.614 1.850 148.190 -0.995 10.032 10.690

shafter elcajon NN-4 8.609 0.563 -0.022 156.109 -0.689 11.210 11.768

shafter donovan NN-4 8.358 0.827 -0.362 176.864 -0.769 12.024 12.658

elcajon donovan RF 5.813 0.598 -1.477 72.216 0.291 8.005 8.414

elcajon shafter RF 5.560 0.420 -0.604 50.668 0.364 6.887 7.065

donovan elcajon RF 5.904 0.384 -1.458 61.572 0.346 7.186 7.597

donovan shafter RF 6.579 0.505 -1.846 79.515 -0.048 7.700 8.645

shafter elcajon RF 7.182 0.487 -0.148 198.620 -1.665 10.882 11.411

shafter donovan RF 7.220 0.725 -1.549 153.445 -0.642 11.112 11.635

Table C.6. Level 1 test results for NO2.
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Train Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon MLR 6.038 0.245 0.040 61.471 0.822 7.744 7.744

donovan MLR 6.931 0.195 -0.255 85.324 0.604 9.116 9.124

shafter MLR 5.877 0.240 0.020 63.379 0.842 7.857 7.858

elcajon NN-2 2.919 0.115 -0.133 17.626 0.950 4.113 4.118

donovan NN-2 4.516 0.126 -0.488 40.687 0.802 6.193 6.253

shafter NN-2 3.568 0.145 0.020 26.052 0.937 4.999 5.011

elcajon NN-4 1.903 0.075 -0.068 9.252 0.974 2.966 2.974

donovan NN-4 3.830 0.107 -0.330 33.794 0.825 5.399 5.456

shafter NN-4 2.672 0.109 -0.012 17.052 0.959 4.050 4.052

elcajon RF 1.217 0.049 0.015 3.987 0.988 1.987 1.987

donovan RF 2.723 0.076 -0.103 19.179 0.897 3.931 3.934

shafter RF 1.284 0.054 0.024 4.651 0.988 2.155 2.155

Table C.7. Level 1 train results for O3 (train and test on the same data set).
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Train Site Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon donovan MLR 11.383 0.319 8.605 227.071 -0.176 10.340 14.065

elcajon shafter MLR 9.812 0.415 5.474 182.938 0.509 11.107 12.920

donovan elcajon MLR 8.384 0.327 0.173 118.977 0.671 10.163 10.488

donovan shafter MLR 13.931 0.614 4.485 304.950 0.096 11.566 16.753

shafter elcajon MLR 9.819 0.400 -0.489 187.609 0.448 12.064 13.055

shafter donovan MLR 13.205 0.373 6.385 321.685 -0.639 13.259 16.624

elcajon donovan NN-2 10.910 0.305 4.597 231.519 -0.184 13.095 14.476

elcajon shafter NN-2 8.799 0.358 0.850 138.822 0.659 11.204 11.562

donovan elcajon NN-2 11.993 0.492 -5.201 300.587 0.088 14.488 15.944

donovan shafter NN-2 12.644 0.547 -4.902 276.752 0.186 14.168 15.888

shafter elcajon NN-2 14.346 0.630 -7.165 565.238 -0.780 17.245 19.883

shafter donovan NN-2 16.290 0.447 0.309 533.943 -1.188 15.973 20.250

elcajon donovan NN-4 11.144 0.311 5.321 233.599 -0.182 13.149 14.506

elcajon shafter NN-4 9.151 0.376 1.102 148.600 0.623 11.621 12.024

donovan elcajon NN-4 12.290 0.506 -5.953 294.927 0.099 14.143 16.031

donovan shafter NN-4 17.186 0.773 -10.780 597.851 -0.945 17.224 21.627

shafter elcajon NN-4 11.177 0.480 -3.281 271.195 0.156 14.606 15.313

shafter donovan NN-4 13.084 0.372 3.730 325.781 -0.556 15.852 17.251

elcajon donovan RF 10.679 0.302 6.487 189.558 0.051 11.079 13.496

elcajon shafter RF 9.739 0.401 1.367 157.403 0.601 11.999 12.406

donovan elcajon RF 11.458 0.469 -4.232 206.904 0.381 12.335 13.735

donovan shafter RF 14.236 0.608 -4.891 300.792 0.165 14.834 17.082

shafter elcajon RF 8.610 0.364 -1.488 120.284 0.640 10.315 10.841

shafter donovan RF 11.045 0.311 6.332 182.582 0.156 11.390 13.459

Table C.8. Level 1 test results for O3.
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Train Sites Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, shafter} MLR 5.277 0.416 0.046 56.139 0.400 7.429 7.429

{donovan, elcajon} MLR 4.480 0.326 0.042 44.649 0.585 6.559 6.559

{elcajon, shafter} MLR 4.829 0.332 0.021 43.007 0.514 6.531 6.531

{donovan, shafter} NN-2 2.935 0.231 0.212 23.237 0.755 4.755 4.765

{donovan, elcajon} NN-2 2.629 0.192 0.178 19.636 0.820 4.327 4.338

{elcajon, shafter} NN-2 2.665 0.183 -0.014 15.152 0.829 3.871 3.877

{donovan, shafter} NN-4 2.026 0.159 0.079 12.776 0.865 3.531 3.537

{donovan, elcajon} NN-4 1.763 0.129 0.077 10.645 0.901 3.192 3.195

{elcajon, shafter} NN-4 1.823 0.126 0.070 8.225 0.906 2.857 2.860

{donovan, shafter} RF 1.284 0.101 -0.044 7.900 0.918 2.741 2.743

{donovan, elcajon} RF 1.154 0.084 -0.030 6.068 0.945 2.370 2.371

{elcajon, shafter} RF 1.102 0.076 -0.039 4.081 0.954 2.017 2.017

Table C.9. Level 2 train results for NO2 (train and test on the same data set).

Train Sites Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, shafter} elcajon MLR 5.880 0.408 1.644 65.552 0.202 7.514 7.901

{donovan, elcajon} shafter MLR 7.243 0.547 -2.411 90.821 -0.153 8.164 9.373

{elcajon, shafter} donovan MLR 7.312 0.759 -2.242 101.530 -0.043 8.570 9.915

{donovan, shafter} elcajon NN-2 7.881 0.513 -1.165 243.984 -1.583 11.727 12.331

{donovan, elcajon} shafter NN-2 5.013 0.380 0.434 47.193 0.402 6.699 6.829

{elcajon, shafter} donovan NN-2 5.786 0.592 -0.804 77.869 0.242 8.167 8.693

{donovan, shafter} elcajon NN-4 8.579 0.554 -1.420 281.996 -1.869 12.447 12.951

{donovan, elcajon} shafter NN-4 5.864 0.445 0.069 62.582 0.203 7.721 7.883

{elcajon, shafter} donovan NN-4 5.991 0.606 -0.629 92.061 0.068 9.122 9.332

{donovan, shafter} elcajon RF 5.510 0.376 -0.670 61.713 0.255 7.271 7.561

{donovan, elcajon} shafter RF 5.312 0.402 -0.096 47.764 0.396 6.733 6.863

{elcajon, shafter} donovan RF 5.533 0.567 -0.883 74.962 0.255 8.271 8.562

Table C.10. Level 2 test results for NO2.
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Train Sites Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, shafter} MLR 6.396 0.249 -0.034 73.967 0.785 8.493 8.494

{donovan, elcajon} MLR 6.702 0.227 0.005 75.618 0.788 8.640 8.640

{elcajon, shafter} MLR 6.312 0.271 0.006 71.620 0.811 8.385 8.385

{donovan, shafter} NN-2 3.857 0.150 -0.050 30.588 0.911 5.487 5.493

{donovan, elcajon} NN-2 3.721 0.127 0.169 28.691 0.919 5.332 5.344

{elcajon, shafter} NN-2 3.508 0.150 0.082 25.892 0.934 5.041 5.048

{donovan, shafter} NN-4 2.447 0.096 0.046 14.251 0.959 3.763 3.765

{donovan, elcajon} NN-4 2.355 0.080 0.116 13.973 0.961 3.716 3.721

{elcajon, shafter} NN-4 2.210 0.094 0.104 11.863 0.969 3.408 3.412

{donovan, shafter} RF 1.499 0.059 0.069 6.184 0.982 2.480 2.482

{donovan, elcajon} RF 1.466 0.050 0.041 5.897 0.984 2.421 2.422

{elcajon, shafter} RF 1.325 0.057 0.023 4.921 0.987 2.216 2.216

Table C.11. Level 2 train results for O3 (train and test on the same data set).

Train Sites Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, shafter} elcajon MLR 8.981 0.362 -1.747 136.139 0.607 10.070 11.263

{donovan, elcajon} shafter MLR 10.436 0.447 6.596 195.691 0.452 10.844 13.384

{elcajon, shafter} donovan MLR 11.842 0.332 8.646 234.924 -0.168 10.887 14.470

{donovan, shafter} elcajon NN-2 8.585 0.353 -0.863 142.215 0.581 10.743 11.402

{donovan, elcajon} shafter NN-2 8.227 0.338 -0.202 120.049 0.694 10.390 10.844

{elcajon, shafter} donovan NN-2 9.896 0.278 5.069 180.978 0.103 11.353 12.892

{donovan, shafter} elcajon NN-4 9.708 0.391 -1.786 187.381 0.466 12.179 12.983

{donovan, elcajon} shafter NN-4 9.019 0.374 -0.536 139.776 0.638 11.293 11.721

{elcajon, shafter} donovan NN-4 9.802 0.274 4.557 159.778 0.249 11.398 12.544

{donovan, shafter} elcajon RF 7.892 0.327 -1.715 100.997 0.702 9.286 9.875

{donovan, elcajon} shafter RF 9.568 0.397 0.597 150.607 0.613 11.533 12.148

{elcajon, shafter} donovan RF 9.133 0.259 4.811 135.414 0.351 9.986 11.571

Table C.12. Level 2 test results for O3.
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Train Sites Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, elcajon, shafter} MLR 5.505 0.478 -0.585 66.057 0.257 7.474 7.805

{donovan, elcajon, shafter} NN-2 3.205 0.276 0.024 26.908 0.711 4.929 4.967

{donovan, elcajon, shafter} NN-4 1.916 0.164 0.006 10.234 0.883 3.083 3.095

{donovan, elcajon, shafter} RF 0.971 0.090 -0.102 3.344 0.961 1.628 1.648

Table C.13. Level 3 train results for NO2 (train and test on the same data set).

Train Sites Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, elcajon, shafter} elcajon MLR 4.458 0.296 0.560 37.307 0.585 6.001 6.060

{donovan, elcajon, shafter} donovan MLR 6.819 0.707 -2.001 91.429 0.074 8.431 9.428

{donovan, elcajon, shafter} shafter MLR 5.156 0.390 -0.060 48.853 0.381 6.928 6.961

{donovan, elcajon, shafter} elcajon NN-2 2.595 0.175 -0.063 13.555 0.845 3.655 3.669

{donovan, elcajon, shafter} donovan NN-2 4.108 0.420 0.050 47.008 0.556 6.660 6.765

{donovan, elcajon, shafter} shafter NN-2 3.064 0.231 0.120 20.686 0.742 4.473 4.486

{donovan, elcajon, shafter} elcajon NN-4 1.837 0.123 -0.041 7.837 0.912 2.772 2.782

{donovan, elcajon, shafter} donovan NN-4 3.167 0.335 -0.075 38.583 0.542 5.784 5.812

{donovan, elcajon, shafter} shafter NN-4 2.108 0.159 0.016 10.459 0.868 3.220 3.225

{donovan, elcajon, shafter} elcajon RF 1.079 0.072 -0.039 3.634 0.959 1.885 1.886

{donovan, elcajon, shafter} donovan RF 2.583 0.277 -0.302 20.818 0.768 4.453 4.495

{donovan, elcajon, shafter} shafter RF 1.358 0.103 -0.035 5.324 0.933 2.281 2.287

Table C.14. Level 3 test results for NO2.

Train Sites Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, elcajon, shafter} MLR 7.893 0.277 1.474 117.623 0.509 9.553 10.226

{donovan, elcajon, shafter} NN-2 4.547 0.157 0.426 43.025 0.834 6.216 6.309

{donovan, elcajon, shafter} NN-4 2.509 0.088 0.174 14.705 0.938 3.611 3.660

{donovan, elcajon, shafter} RF 1.379 0.044 0.308 5.251 0.976 1.865 1.936

Table C.15. Level 3 train results for O3 (train and test on the same data set).
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Train Sites Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, elcajon, shafter} elcajon MLR 6.859 0.278 -0.920 81.607 0.764 8.628 8.865

{donovan, elcajon, shafter} donovan MLR 9.870 0.276 5.047 169.555 0.141 10.236 12.282

{donovan, elcajon, shafter} shafter MLR 6.727 0.275 0.400 82.576 0.796 8.831 8.891

{donovan, elcajon, shafter} elcajon NN-2 3.732 0.148 -0.018 28.075 0.920 5.208 5.224

{donovan, elcajon, shafter} donovan NN-2 5.826 0.162 1.373 65.155 0.690 7.610 7.934

{donovan, elcajon, shafter} shafter NN-2 4.210 0.168 -0.039 36.454 0.914 5.843 5.855

{donovan, elcajon, shafter} elcajon NN-4 2.375 0.095 -0.069 13.066 0.963 3.552 3.572

{donovan, elcajon, shafter} donovan NN-4 4.541 0.126 1.132 46.867 0.757 6.182 6.402

{donovan, elcajon, shafter} shafter NN-4 2.669 0.109 -0.106 15.932 0.961 3.937 3.945

{donovan, elcajon, shafter} elcajon RF 1.391 0.056 0.019 5.064 0.985 2.233 2.234

{donovan, elcajon, shafter} donovan RF 3.504 0.096 1.142 28.621 0.849 4.594 4.837

{donovan, elcajon, shafter} shafter RF 1.853 0.072 0.105 8.391 0.980 2.775 2.783

Table C.16. Level 3 test results for O3.
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Appendix D: Raw Results for the Split Neural Network Models

The following tables are error results for the split-NN models of size 3 and size 9. The error measures are labeled as MAE for

mean absolute error, CvMAE for coefficient of variation of the mean absolute error, MBE for mean bias error, MSE for mean

standard error, R2 is the coefficient of determination, crMSE for centered root mean square error, and rMSE for root mean

squared error. The results are disaggregated by train and test sites, and averaged across the sensor packages. However, because5

these are split models, both the the global model and the board-specific models are trained on all the sites. However, the trained

board was not placed at the test site during training.

Train Site Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon donovan 5.838 0.601 -0.775 90.006 0.054 8.787 9.123

elcajon shafter 5.246 0.397 0.284 51.872 0.345 6.909 7.142

donovan elcajon 7.177 0.484 -0.676 118.001 -0.311 9.916 10.295

donovan shafter 6.515 0.497 0.941 87.773 -0.143 8.652 9.130

shafter elcajon 7.544 0.484 0.452 183.866 -0.923 10.592 11.094

shafter donovan 7.516 0.736 -0.530 155.259 -0.307 10.295 11.056

Table D.1. Test results for split-NN level 1, size 3 (NO2).

Train Site Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon donovan 5.713 0.590 -1.012 78.898 0.206 8.326 8.800

elcajon shafter 5.011 0.379 0.007 48.441 0.390 6.726 6.896

donovan elcajon 6.426 0.436 0.016 88.722 -0.018 8.797 9.180

donovan shafter 6.272 0.478 -0.493 78.929 -0.028 8.441 8.760

shafter elcajon 6.333 0.410 0.961 77.864 0.168 7.881 8.569

shafter donovan 6.924 0.681 -1.288 110.268 0.039 9.319 10.083

Table D.2. Test results for split-NN level 1, size 9 (NO2).

42



Train Site Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon donovan 10.278 0.287 4.704 188.996 0.060 11.801 13.266

elcajon shafter 8.280 0.336 0.862 125.486 0.692 10.668 10.982

donovan elcajon 10.706 0.420 -3.206 225.276 0.355 13.079 14.170

donovan shafter 11.369 0.486 -3.829 230.534 0.351 13.619 14.783

shafter elcajon 10.857 0.480 -3.101 380.840 -0.227 14.472 15.351

shafter donovan 12.195 0.343 4.319 302.175 -0.297 14.332 15.918

Table D.3. Test results for split-NN level 1, size 3 (O3).

Train Site Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

elcajon donovan 10.414 0.291 6.012 187.446 0.057 10.945 13.250

elcajon shafter 8.234 0.335 1.909 123.068 0.696 10.482 10.872

donovan elcajon 10.244 0.394 -2.838 192.420 0.459 12.167 13.186

donovan shafter 9.980 0.416 -0.463 177.129 0.534 12.147 13.237

shafter elcajon 9.709 0.423 -2.282 211.003 0.344 12.567 13.295

shafter donovan 11.240 0.317 5.503 216.113 -0.003 12.947 14.428

Table D.4. Test results for split-NN level 1, size 9 (O3).

Train Sites Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, shafter} elcajon 5.915 0.392 -1.035 91.805 -0.013 8.458 8.739

{donovan, elcajon} shafter 4.884 0.370 0.576 46.812 0.406 6.558 6.793

{elcajon, shafter} donovan 5.362 0.543 -0.373 73.628 0.302 8.108 8.411

Table D.5. Test results for split-NN level 2, size 3 (NO2).

Train Sites Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, shafter} elcajon 4.923 0.337 -0.648 48.985 0.424 6.500 6.795

{donovan, elcajon} shafter 4.749 0.360 0.676 43.165 0.453 6.221 6.497

{elcajon, shafter} donovan 5.301 0.538 -0.330 69.482 0.352 7.881 8.198

Table D.6. Test results for split-NN level 2, size 9 (NO2).
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Train Sites Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, shafter} elcajon 8.285 0.336 -1.515 139.473 0.596 10.573 11.204

{donovan, elcajon} shafter 8.079 0.331 -0.189 115.897 0.708 10.153 10.577

{elcajon, shafter} donovan 9.356 0.262 4.033 155.842 0.250 11.020 12.172

Table D.7. Test results for split-NN level 2, size 3 (O3).

Train Sites Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

{donovan, shafter} elcajon 7.434 0.297 -0.910 105.619 0.695 9.443 9.977

{donovan, elcajon} shafter 7.819 0.320 0.372 110.537 0.723 9.774 10.314

{elcajon, shafter} donovan 9.022 0.253 4.190 141.869 0.313 10.427 11.654

Table D.8. Test results for split-NN level 2, size 9 (O3).

44


