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Abstract.

Advances in ambient environmental monitoring technologies are enabling concerned communities and citizens to collect

data to better understand their local environment and potential exposures. These mobile, low-cost tools make it possible to col-

lect data with increased temporal and spatial resolution providing data on a large scale with unprecedented levels of detail. This

type of data has the potential to empower people to make personal decisions about their exposure and support the development5

of local strategies for reducing pollution and improving health outcomes.

However, calibration of these low-cost instruments has been a challenge. Often, a sensor package is calibrated via field

calibration. This involves colocating the sensor package with a high-quality reference instrument for an extended period, and

then applying machine learning or other model fitting technique such as multiple-linear regression to develop a calibration

model for converting raw sensor signals to pollutant concentrations. Although this method helps to correct for the effects of10

ambient conditions (e.g., temperature) and cross-sensitivities with non-target pollutants, there is a growing body of evidence

that calibration models can overfit to a given location or set of environmental conditions on account of the incidental correlation

between pollutant levels and environmental conditions, including diurnal cycles. As a result, a sensor package trained at a

field site may provide less reliable data when moved, or transferred, to a different location. This is a potential concern for

applications seeking to perform monitoring away from regulatory monitoring sites, such as personal mobile monitoring or15

high-resolution monitoring of a neighborhood.

We performed experiments confirming that transferability is indeed a problem and show that it can be improved by collecting

data from multiple regulatory sites and building a calibration model that leverages data from a more diverse dataset. We

deployed three sensor packages to each of three sites with reference monitors (nine packages total), and then rotated the sensor

packages through the sites over time. Two sites were in San Diego, CA, with a third outside of Bakersfield, CA, offering20

varying environmental conditions, general air quality composition, and pollutant concentrations.

When compared to prior single-site calibration, the multi-site approach exhibits better model transferability for a range of

modeling approaches. Our experiments also reveal that random forest, is especially prone to overfitting, and confirms prior

results that transfer is a significant source of both bias and standard error. Linear regression on the other hand, although it
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exhibits relatively high error, does not degrade much in transfer. Bias dominated in our experiments, suggesting that transfer-

ability might be easily increased by detecting and correcting for bias.

Also, given that many monitoring applications involve the deployment of many sensor packages based on the same sensing

technology, there is an opportunity to leverage the availability of multiple sensors at multiple sites during calibration to lower

the cost of training and better tolerate transfer. We contribute a new neural network architecture model termed split-NN that5

splits the model into two-stages, in which the first stage corrects for sensor-to-sensor variation and the second stage uses the

combined data of all the sensors to build a model for a single sensor package. The split-NN modeling approach outperforms

multiple linear regression, traditional 2- and 4-layer neural network, and random forest models. Depending on the training

configuration, compared to random forest the split-NN method reduced error 0-11% for NO2 and 6-13% for O3.

1 Introduction10

As the use of low-cost sensor systems for citizen science and community-based research expands, improving the robustness

of calibration for low-cost sensors will support these efforts by ensuring more reliable data and enabling a more effective use

of the often-limited resources of these groups. These next-generation technologies have the potential to reduce the cost of air

quality monitoring instruments by orders of magnitude, enabling the collection of data at higher spatial and temporal resolution,

providing new options for both personal exposure monitoring and communities concerned about their air quality (Snyder et al.,15

2013). High resolution data collection is important because air quality can vary on small temporal and spatial scales (Monn

et al., 1997; Wheeler et al., 2008). This variability can make it difficult to estimate exposure or understand the impact of local

sources using data from existing monitoring networks (Wilson et al., 2005), which provide information at a more regional scale.

Furthermore, studies have highlighted instances where air quality guidelines have been exceeded on small spatial scales, in so

called ‘hot spots’ (Wu et al., 2012). This may be of particular concern for environmental justice communities, where residents20

are unknowingly exposed to higher concentrations of pollutants due to a lack of proximity to local monitoring stations. One

group using low-cost sensors to provide more detailed and locally specific air quality information is the Imperial County

Community Air Monitoring Network (English et al., 2017). The goal of this network of particulate monitors is to help inform

local action (e.g., keeping kids with asthma inside), or open the door to conversations with regulators (English et al., 2017).

In another example, researchers are investigating the potential for wearable monitors to improve personal exposure estimates25

(Jerrett et al., 2017).

The increasing use of low-cost sensors is driving a growing concern regarding data quality (Clements et al., 2017). Low-

cost sensors, particularly those designed to detect gas-phase pollutants, are often cross-sensitive to changing environmental

conditions (e.g., temperature, humidity, and barometric pressure) and other pollutant species. Much work has gone into ex-

ploring calibration methods, models, and techniques that incorporate corrections for these cross-sensitivities to make accurate30

measurements in complex ambient environments (Spinelle et al., 2014, 2015b, 2017; Cross et al., 2017; Sadighi et al., 2018;

Zimmerman et al., 2018). While the methods of building (or training) calibration models differ, these studies have all utilized

colocations with high-quality reference instruments in the field, instruments such as Federal Reference Method or Federal
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Equivalent Method monitors (FRM/FEM) (Spinelle et al., 2014, 2015b, 2017; Cross et al., 2017; Sadighi et al., 2018; Zim-

merman et al., 2018). This colocated data allows accurate calibration models to be built for the conditions that the sensors

will experience in the field (e.g., diurnal environmental trends and background pollutants). A recurring observation has been

that laboratory calibrations, while valuable for characterizing a sensor’s abilities, perform poorly compared to field calibrations

likely due to an inability to replicate complex conditions in a chamber (Piedrahita et al., 2014; Castell et al., 2017).5

Recently, researchers have begun to explore calibrating sensors in one location and testing them in another, called transfer.

Often, a decrease in performance is seen in new locations where conditions are likely to differ from the conditions of calibration.

In one study, researchers testing a field calibration for electrochemical SO2 sensors from one location in Hawaii and at another

location also in Hawaii found a small drop in correlation between the reference and converted sensor data (Hagan et al.,

2018). This was attributed to the testing location being a generally less polluted environment (Hagan et al., 2018). In a study10

that involved calibration techniques for low-cost metal-oxide O3 sensors and non-dispersive infrared CO2 sensors in different

environments (e.g., typical urban vs. a rural area impacted by oil and gas activity), researchers found that simpler calibration

models (i.e., linear models), although generally lower in accuracy, performed more consistently (i.e., transferred better) when

faced with significant extrapolations in time or typical pollutant levels and sources(Casey and Hannigan, 2018). In contrast,

more complex models (i.e.,artificial neural networks) only transferred well when there was little extrapolation in time or15

pollutant sources. A study utilizing electrochemical CO, NO, NO2, and O3 sensors found that performance varied spatially

and temporally according to changing atmospheric composition and meteorological conditions (Castell et al., 2017). This team

also found calibration model parameters differed based on where exactly a single sensor node was colocated (i.e., a site on a

busy street verses a calm street), supporting the idea that these models are being specialized to the environment where training

occurred (Castell et al., 2017). In a recent study targeting this particular issue with low-cost sensors, electrochemical NO and20

NO2 sensors were calibrated at a rural site using multivariate linear regression model, support vector regression models, and

a random forest regression model. The performance of these models was then examined at two urban sites (one background

urban site and one near-traffic urban site). For both sensor types, random forests were found to be the best-performing models,

resulting in mean average errors between 2–4 parts per billion (ppb) and relatively useful information in the new locations (Bigi

et al., 2018). One important note from the authors is that both sensor signals were included in the models for NO and NO225

respectively, potentially helping to mitigate cross interference effects (Bigi et al., 2018). In another recent study, researchers

also compared several different calibration model types, as well as the use of individualized verses generalized models and

how model performance is affected when sensors are deployed to a new location (Malings et al., 2018). An individualized

model is a model for a sensor based on its own data, whereas a generalized model combines the data from all the sensors of the

same type being calibrated. The researchers found that the best-performing and most robust model types varied by sensor type;30

for example, simpler regression models performed best for electrochemical CO sensors, whereas more complicated models,

such as artificial neural networks and random forest models, resulted in the best performance for NO2. Despite the varied

results, in terms of the best performing model types, the researchers observed that across the different sensor types tested,

generalized models resulted in more consistent performance at new sites than individualized models despite having slightly
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poorer performance during the initial calibration (Malings et al., 2018). If this observation holds across sensor types and the

use in other locations, it could help solve the problem of scaling up sensor networks allowing for much larger deployments.

The mixed results and varying experimental conditions of these studies highlight the need for a more comprehensive un-

derstanding of how and why calibration performance degrades when sensors are moved. A better understanding could inform

potential strategies to mitigate these effects. As recent research has successfully applied advanced machine learning techniques5

to improve sensor calibration models (Zimmerman et al., 2018; De Vito et al., 2009; Casey et al., 2018), we believe these

techniques could also be leveraged in innovative ways to improve the transferability of calibration models.

This paper contributes an extensive transferability study as well as new techniques for data collection and model construction

to improve transferability. We hypothesize that transferability is an important issue for sensors that exhibit cross-sensitivities.

Based on the hypothesis that the increased errors under transfer are due to overfitting, we propose that training a calibration10

model on multiple sites will improve transfer. Finally, we propose that transfer can be further improved with a new modeling

method, split-NN, that can use the data from multiple sensor packages trained at multiple sites to train a two-stage model with

a global component that incorporates information from several different sensors and locations and a sensor-specific model that

transforms an individual sensor’s measurements to a form that can be input to the global model

As many previous studies studied colocation with reference measurements in one location and a validation at a second loca-15

tion, we designed a deployment that included triplicates of sensor packages colocated at three different reference monitoring

stations and then rotated through the three sites – two near the city of San Diego, CA and one in a rural area outside of Bak-

ersfield, CA. This allows for further isolating the variable of a new deployment location. The analysis focuses on data from

electrochemical O3 and NO2 sensors, although other sensor types were deployed and used in the calibration, analogous to Bigi

et al.( 2018). These pollutants are often of interest to individuals and communities given the dangers associated with ozone20

exposure (Brunekreef and Holgate, 2002), and nitrogen dioxide’s role in ozone formation. In studying these pollutants, we

are adding to the existing literature by examining the transferability issue in relation to electrochemical O3 and NO2 sensors,

which are known to exhibit cross-sensitive effects (Spinelle et al., 2015a). We compare the transferability of multiple linear

regression models, neural networks, and random forest models. Based on these results, we introduce a new training method

that trains all the sensors using a “split” neural network that consists of a global model and sensor-specific models that account25

for the differing behaviors among the individual sensors. Sharing data holds the promise to lower training costs while at the

same time lower prediction error.

2 Methods

2.1 The MetaSense System

2.1.1 Hardware Platform30

A low-cost air quality sensing platform was developed to interface with commercially available sensors, initially described

in Chan et al. (2017). The platform was designed to be mobile, modular, and extensible, enabling end users to configure the
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platform with sensors suited to their monitoring needs. It interfaces with the Particle Photon or Particle Electron platforms,

which contain a 24 MHz ARM Cortex M3 microprocessor and a Wi-Fi or 3G cellular module, respectively. In addition, a

Bluetooth Low Energy (BLE) module supports energy efficient communication with smartphones and other hubs with BLE

connectivity. The platform can interface with any sensor that communicates using standard communication protocols (i.e.

analog, I2C, SPI, UART) and supports an input voltage of 3.3 V or 5.0 V. The platform can communicate results to nearby5

devices using BLE or directly to the cloud using Wi-Fi or 2G/3G cellular, depending on requirements. USB is also provided

for purposes of debugging, charging, and flashing the firmware. The firmware can also be flashed or configured remotely if a

wireless connection is available. An SD card slot provides the option for storing measurements locally, allowing for completely

disconnected and low-power operation.

Our configuration utilized electrochemical sensors for traditional air quality indicators (NO2, CO, O3), nondispersive infrared10

sensors for CO2, photoionization detectors for volatile organic compounds (VOCs), and a variety of environmental sensors

(temperature, humidity, barometric pressure). The electrochemical sensors (NO2: Alphasense NO2-A43F, O3: Alphasense O3-

A431, and CO: Alphasense CO-A4) are mounted to a companion analog front end (AFE) from Alphasense, which assists with

voltage regulation and signal amplification. Each sensing element has two electrodes which give analog outputs for the working

electrode (WE) and auxiliary electrodes (AE). The difference in signals is approximately linear with respect to the ambient15

target gas concentration but have dependencies with temperature, humidity, barometric pressure, and cross-sensitivities with

other gases. The electrochemical sensors generate an analog output voltage, which is connected to a pair of analog-to-digital

converters (ADCs), specifically the TI ADS1115, and converted into a digital representation of the measured voltage, which is

later used as inputs for our machine learning models.

Modern low-cost electrochemical sensors offer a low cost and low power method to measure pollutants, but currently avail-20

able sensors are more optimized for industrial applications than air pollution monitoring: the overall sensing range is too wide

and the noise levels are too high. For example, the AlphaSense A4 sensors for NO2, O3, and CO have a measurement range

of 20, 20, and 500 ppm, respectively, which is significantly higher than the unhealthy range proposed by the United States Air

Quality Index. Unhealthy levels for NO2 at 1-hour exposure range from 0.36 – 0.65 ppm, O3 at 1-hour exposure from 0.17 –

0.20 ppm, and CO at 8-hour exposure from 12.5 – 15.4 ppm (Uniform Air Quality Index (AQI) and Daily Reporting, ). Along25

with the high range, the noise levels of the sensors make it difficult to distinguish whether air quality is good. Using the analog

front end (AFE) offered by Alphasense, the noise levels for NO2, O3, and CO have standard deviations of 7.5 ppb, 7.5 ppb, and

10 ppb, respectively. These standard deviations are large compared to observed signal levels for NO2 and O3 measurements,

which ranged between 0 – 35 ppb and 12 – 60 ppb, respectively, during the 6 month testing period.

The ambient environmental sensors accurately measure temperature, humidity, and pressure and are important for correcting30

the environmentally related offset in electrochemical sensor readings. The TE Connectivity MS5540C is a barometric pressure

sensor capable of measuring across a 10 to 1100 mbar range with 0.1 mbar resolution. Across 0 C to 50 C, the sensor is accurate

to within 1 mbar and has a typical drift of +/- 1 mbar per year. The Sensiron SHT11 is a relative humidity sensor capable of

measuring across the full range of relative humidity (0 to 100% RH) with ±3% RH accuracy. Both sensors come equipped
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with temperature sensors with ±0.8 C and ±0.4 C accuracy, respectively. The sensors stabilize to environmental changes in

under 30 seconds, which is sufficiently fast to accurately capture changes in the local environment.

In order to improve the robustness of the boards to ambient conditions, the electronics were conformally coated with silicone

and placed into an enclosure as shown in Figure 2. The housing prevents direct contact with the sensors by providing ports

over the electrochemical sensors and a vent near the ambient environmental sensors. The system relies on passive diffusion of5

pollutants into the sensors due to the high power cost of active ventilation. However, as described in Sect. 2.3, for this study

the housed sensor packages were placed in an actively ventilated container.

2.1.2 Software Infrastructure

We developed two applications for Android smartphones that leverage the BLE connection of the MetaSense platform. The

first application, the MetaSense Configurator app, enables users to configure the hardware for particular deployment scenarios,10

adjusting aspects such as sensing frequency, power gating of specific sensors connected, and the communication networks

utilized. The second application, simply called the MetaSense app, collects data from the sensor via BLE and uploads all

readings to a remote database. Each sensor reading is stamped with time and location information, supporting data analysis

for mobile use cases. Moreover, users can read the current air quality information on their device, giving them immediate and

personalized insight into their exposure to pollutants.15

The remote measurements database is supported by the MetaSense cloud application and built on Amazon’s AWS cloud.

Not only can the MetaSense app connect to this cloud, but the MetaSense boards can be configured to connect directly to it

using Wi-Fi or 3G. The measurement data can be processed by machine learning algorithms in virtual machines in AWS or

the data can be downloaded to be analyzed offline. The aforementioned over-the-air firmware updates are handled through

Particle’s cloud, which also allows remotely monitoring, configuring and resetting boards. These direct-to-cloud features are20

key to supporting a long-term, wide-scale deployment like the one presented in this paper.

2.2 Sampling Sites

For this deployment, our team coordinated with two regulatory agencies (the San Diego and San Joaquin Valley Air Pollution

Control Districts) in order to access three regulatory monitoring sites. Sensor packages were then rotated through each site over

the course of approximately six months. Each monitoring site included reference instruments for NO2 and O3, among others.25

The first site was in El Cajon, CA, located at an elementary school east of San Diego, CA (El Cajon Site). This site is classified

by the SDAPCD as being in the middle of a major population center, primarily surrounded by residences (Shina and Canter,

2016); expected influences at this site include transported emissions from the heavily populated coastal region to the west as a

well as emissions from a major transportation corridor (Shina and Canter, 2016). The second site was approximately 15 miles

to the south east of San Diego, located at the entrance to a correctional facility (Donovan Site). This site is not located in a30

high density residential or industrial area and does not have many influences very near to the site; it is expected to provide air

quality information for the south east area of the county (Shina and Canter, 2016). Additionally, this site is approximately two

miles from a border crossing utilized by heavy duty vehicles commercial vehicles - the Otay Mesa Port of Entry. The third site
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was located on a the roof of a DMV in the rural community of Shafter, CA, 250 miles to the north near Bakersfield (Shafter

Site). The SJVAPCD lists the following potential sources of air pollution for this community: rural sources (agricultural and

oil and gas production), mobile (including highways and railroads), and local sources (commercial cooking, gas stations, and

consumer products) (SJVAPCD Website). Given the differences in location, land use, and nearby sources we expect to see

differences in both the environmental (i.e., temperature, humidity, and barometric pressure) and pollutant profiles at each sites.5

For example, the Shafter site is considerably more inland, where weather would be more dominated by the desert ecosystem

rather than the ocean ecosystem as compared to the two San Diego sites. In addition to being further inland, the Shafter site

is rural and has a unique nearby source (i.e., oil and gas production), which might also result in a unique pollutant profile and

differing composition of background pollutants when compared to the San Diego sites. Similarly, given the differences in land

use and expected influences at the two San Diego sites, we may expect to see different trends in ozone chemistry. For example,10

given that the El Cajon site is a highly residential area, while the Donovan site is near the Otay Mesa border crossing, there

may be more local heavy duty vehicle emissions at the second site. Comparing the historical data from these sites provides

some support for this idea. In the 2016 Network Plan by the SDAPCD we see that the El Cajon site had a slightly higher

maximum 8-hr ozone average than the Donovan site, at 0.077 ppm and 0.075 ppm respectively. While the Donovan site had a

higher maximum 1-hr nitrogen dioxide average than the El Cajon site, at 0.067 ppm and 0.057 ppm respectively. It is possible15

that this difference in peak levels at each site may be driven by the sources influencing each site, in particular the nitrogen

dioxide levels, which may be tied to heavy-duty vehicle traffic. In terms of the differences between regions, the San Joaquin

Valley has consistently had more days where the 8-hr ozone standard has been exceeded than San Diego County from 2000 -

2015 (Shina and Canter, 2016; San Joaquin Valley Air Pollution Control District, 2016). In this instance the higher frequency

of ozone elevations in the San Joaquin Valley may be evidence for different climate, meteorology, and sources driving different20

ozone trends. This variety of environmental and emissions profiles would allow us to meaningfully test for transferability, in

particular to assess to what degree a calibration model trained on one site would overfit for the other sites.

2.3 Data Collection

In ordinary use cases, the air quality sensors would be mounted to a backpack, bike, or other easily transportable item as

shown in Figure 2. A calibration algorithm located either on the sensor or a Bluetooth-compatible smartphone would convert25

the raw voltage readings from the sensors and ambient environmental conditions to a prediction of the current pollutant levels

in real time. In order to develop these calibration models, we gathered data from air quality sensors and co-located regulatory

monitoring sites over a 6-month deployment period.

To support a long-term deployment in potentially harsh conditions where no human operator would be able to monitor the

sensors on a regular basis, the sensors were placed into environmentally robust containers, shown in Figure 3, bottom right. The30

container was a dry box, measuring 27.4 x 25.1 x 12.4 cm, that was machined to have two sets of two vents on opposing walls.

Louvers were installed with two 5 V, 50 mm square axial fans expelling ambient air from one wall and two louvers allowing air

to enter the opposite side. The configuration allowed the robust container to equilibrate with the local environment for accurate

measurement of ambient pollutants. Each container could hold up to three MetaSense boards with cases and complementary
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hardware. Due to the long timeframe of the deployment, a USB charging hub was installed into the container to power the

fans, the air quality sensors, and either a BLU Android phone or Wi-Fi cellular hotspot. The phones and hot spots were used to

connect the sensors to the cloud; therefore, we could remotely monitor the sensors’ status in real-time and perform preliminary

data analysis and storage. Each board also had an SD card to record all measurements locally, increasing the reliability of

data storage. It is important to note that end users of the air quality sensors would not need to perform this lengthy calibration5

procedure. End users will either received pre-calibrated devices or can perform calibration by co-locating their sensor with

existing, calibrated sensors.

A container holding three MetaSense Air Quality Sensors was placed at each regulatory site, such that each site had one

container of sensors for simultaneous measurement of conditions at all three regulatory sites. After a period of time, the

containers were rotated to a new site. After three rotations, each sensor had taken measurements at each site. Table 1 lists the10

dates for each rotation as well as where each sensor system was located for each rotation. The dates are approximate due to

the logistics of gaining access to regulatory field sites and the distances traveled to deploy sensors. Also of note is that the

deployments were not of equal length. This does not affect the results reported below because we ran all combinations of

training and testing sites, and training set sizes were normalized to remove the influence of training set size.

The data from the reference monitors was provided by the cooperating air quality districts in the form of minute-averaged15

O3 and NO2 concentrations for the time period that our sensor packages were deployed. We removed reference data collected

during calibration periods as well as any data flagged during initial quality assurance/control by the regulatory agency who

supplied the data. The reference data is not final ratified data as the timing of our study did not allow us to wait that long.

2.4 Preprocessing

Prior to using the dataset for training the calibration models, we performed a preprocessing step. First, we programmatically fil-20

tered out data samples that contained anomalous values that might have occurred due to a temporary sensor board malfunction

(e.g., due to condensation). Specifically, we searched for temperature and voltage spikes that were outside the realm of reason-

able values (i.e., temperature values above 60 degrees Celsius or ADC readings above 5 volts) and removed the corresponding

measurements. Each removed group of samples was visually inspected to ensure data was not being erroneously removed.

422,551 samples removed from the 17,948,537 collected samples, 2.4% of the total. For the remaining data, a simple average25

was computed over each one-minute window so as to match the time resolution of the data from the reference monitors. If an

entire minute of data is missing due to a crashed sensor or preprocessing, no minute-averaged value is generated. Although

we gathered sensor voltage measurements from both the auxilliary (AE) and working electrodes (WE) of the electrochemical

sensors, we used the difference between the two (AE−WE) as the representative voltage for each sensor since the auxilliary

voltage is meant to serve as a reference voltage for the working electrode. This treatment is consistent with the methodology30

of Zimmerman et al. (2018), and we validated that the performance of the calibration models did not differ between tests with

both electrodes and test with the difference as input features. As a final step, the resulting minute-averaged readings were

time-matched with the reference data, removing readings that had no corresponding reference reading. The resulting data set

over the three rounds at the three site contains 1,100,000 minute-averaged measurements.
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Furthermore, after receiving and examining the reference data we were able to verify our hypothesis in Sect. 2.2 that we

would observe varied environmental and pollutant conditions among the sites. Again, this hypothesis was based on site charac-

teristics and data/statistics from reports available from the respective regulatory agencies. Generally higher ozone values were

reported at Shafter, whereas generally higher NO2 values were reported at Donovan. Higher humidity values were reported at

the Donovan and El Cajon sites, as compared to Shafter. Some of the lowest temperature values were reported at Shafter. For5

more information see the distribution plots in Appendix A.

2.5 Baseline Calibration Methods

Sensor calibration is the process of developing and training models to convert a sensor voltage into a pollutant concentration.

We formulate sensor calibration as a regression problem with input features x and e representing signals from the electrochem-

ical sensors (O3 voltage, NO2 voltage, CO voltage) and environmental factors (temperature, pressure, humidity), respectively,10

for a total of 6 features. These features are input to a calibration function hθ(x,e) that estimates target values y representing

pollutant concentrations (O3 ppb and NO2 ppb).

In our regression problem, we seek a function such that hθ(x,e)≈ y, which we formulate as an optimization where we

minimize a measure of error over a training data set {xn,en,yn}Nn=1 according to a loss function L(hθ(x,e),y), i.e.

θ∗ = argmin
θ

1

N

N∑
n=1

L(hθ(xn,en),yn) (1)15

For most of the modeling techniques we minimize the mean squared error (MSE), except for Random Forest where we min-

imize the variance, which behaves similar to MSE. Models trained in this way assume that at inference time, predictions are

made on data sampled from the training distribution. While this assumption holds true when the air quality sensors are trained

and tested at the same site, the distribution of pollutants and environmental conditions changes when the sensors are moved to

a new location.20

We investigated the performance of three calibration models: multiple linear regression, neural networks (sometimes called

deep learning), and random forest. These methods vary in their ability to accurately model complex behaviors, otherwise

known as capacity, with linear regression having relatively low capacity and neural nets and random forests having substantial

capacity. The price of high capacity is the potential to overfit the training distribution, which is a failure to generalize beyond

the training data. Models that overfit will incur significant error when predicting on out-of-distribution examples. Overfitting25

can be mitigated with regularization and by reducing the model capacity, but this can only go so far if the testing distribution

is substantially different from the train distribution. All of these methods have been previously applied to ambient pollutant

estimation by various research groups (Piedrahita et al., 2014; Spinelle et al., 2015b, 2017; Sadighi et al., 2018; Zimmerman

et al., 2018; Casey and Hannigan, 2018) and are generally common predictive modeling methods. For neural nets, we inves-

tigated three variants: two-layer, four-layer, and four-layer with a "split" architecture, which we motivate and describe in the30

next subsection.

Our baseline models were trained using the Scikit-Learn Python package, and the model parameters for each baseline model

can be seen below:
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1. Linear regression: we assume the functional form h(x), wTx+ b, and fit the parameters in closed form. We use no

regularization or polynomial features.

2. Two-layer neural network: we fit a two-hidden layer (200 wide) multilayer perceptron with rectified-linear unit acti-

vation functions and a final linear layer. We train this neural network using the Adam optimizer (β0 = 0.9,β1 = 0.999)

and a learning rate of 10−3.5

3. Four-layer neural network: Same as two-layer neural network, but four hidden layers of width 200 instead of two.

4. Random forest: We divide our data into five folds and train a random forest of size 100 on each fold, resulting in 500

trees. We aim to reproduce the strategy of Zimmerman et al. (2018) as closely as possible.

2.6 Split Neural Network Method

Overfitting is a problem for high capacity models with a limited distribution in training data, resulting in poor performance10

when a model is transferred to new locations and environments. One method to improve model transferability would be to

collect more training data that includes the test distribution. However, colocating a sensor at multiple different regulatory field

sites in order to capture a sufficiently wide distribution is prohibitive in terms of cost and time. An alternative solution is to

deploy a set of sensors based on the same technology across multiple sites and then pool their data. However, there can be

substantial sensor-to-sensor variance in performance that would amplify prediction errors.15

Recent work in sensor calibration has produced architectures that split model training into global and sensor-specific training

phases, primarily for metal oxide (MOX) gas sensors produced in an industrial setting. The process involves training a global

or master model on a small subset of devices over a wide range of environmental conditions. The master model translates raw

sensor readings (i.e. voltage or current measurements) to a target pollutant. MOX sensors, similar to electrochemical sensors,

are sensitive to ambient conditions, so a wide range of conditions and combinations are explored in the master calibration20

phase. While it can produce very accurate calibration models, the time and expense of gathering calibration data over a wide

range of conditions is prohibitively expensive in the industrial manufacturing process for low-cost sensors. To overcome this,

a limited number of master models are created, and then an affine transformation is generated between individual sensors and

the master sensors. The affine transformation effectively transforms the sensors readings of individual sensors to match that of

the master, after which, the master calibration model can be used. A variety of methods have been developed to this end. Zhang25

et al. (2011) propose a method to calibrate a MOX sensor for detecting volatile organic compounds using a neural network

to capture the complexity of the master model and an affine transform and a Kennard-Stone sample selection algorithm to

develop a linear model between individual sensors and the master sensor. Other research has utilized windowed piecewise

direct standardization to transform the sensor readings from a slave sensor to a calibrated master for single gas concentrations

(Yan and Zhang, 2015) and direct standardization for a range of gases and concentrations over a longer timeframe (Fonollosa30

et al., 2016). While previous efforts utilized single master sensors, Solórzano et al. (2018) showed that including multiple

master sensors in a calibration model can improve the robustness of the overall model. Similar findings were reached by Smith

et al. (2017) when investigating sensor drift whereby an ensemble model was generated by training models for multiple sensors
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and the prediction was reported as the cluster median. These two-stage calibrations have primarily been performed in controlled

laboratory settings, but not in real-world conditions where ambient conditions and cross-sensitivities may impact results. In

addition, these studies train models in a piecewise fashion, training master and sensor-specific models separately.

We propose end-to-end training of a global and sensor-specific models. In particular, we propose a training architecture that

consists of two sets of models: a global calibration model that leverages the data from a set of similar sensors spread across5

different training environments and sensor-specific calibration models that detect and correct the differences between sensors.

In the previous subsection, we associated each board i with a calibration function hθi(x) and fit this calibration function with

its colocated data. Taking into consideration a collection of many air quality sensors, we propose an alternate architecture based

on transfer learning (Goodfellow et al., 2016, p. 535). We propose using a calibration function split into two distinct steps: first,

pollutant sensor voltages x are input into a sensor-specific model, sθi(x), a function parameterized by θi, which outputs a fixed10

dimensional vector u. This intermediate representation u is concatenated with environmental data e, which is then passed into

a global calibration model cφ([u|e]). For a single air quality sensor, our final calibration function is cφ([sθi(x)|e]). Figure 4

depicts the use of such a model. Such a model is called a split neural network model (split-NN) since neural networks are

generally used for both the sensor-specific models and the global calibration models. In our experiments, the sensor-specific

model sθi is either a linear regressor or neural network; cφ is a two-layer, 100-wide neural network.15

The purpose of the split-NN model is that sθi corrects for differences in air quality sensor i’s performance relative to the

other sensors, thus normalizing the values and making the behavior of all the sensors compatible with the global model cφ. The

performance of the estimates from cφ should be superior to those from an individual sensor model because it has been trained

on the (normalized) data of all the boards as opposed to just a single board.

The split model can be trained efficiently with stochastic gradient descent. Specifically, we first collect N data sets for each20

board Di = {x(i),e(i),y(i)}Ni=1. We ensure each of these data sets is the same size by sampling each with replacement to

artificially match the largest data set. We then pool the data sets together into one data set from which we sample mini-batches.

While each sensor-specific model sθi is trained only on data collected by its sensor, the regression with the other sθi sensor-

specific models is designed to detect and correct its bias, outputting an intermediate representations u that is normalized with

the others. The global calibration model is trained on the normalized data from all air quality sensors.25

Although training this neural network will take longer than training one for a single board, it has several key advantages over

conventional calibration techniques. The first is its ability to share information across multiple boards. Suppose Board A is

trained on Location 1 and Board B is trained on Location 2. Pooling the data sets and using a shared model enables the global

calibration model to predict well in both locations, and the calibration models for both boards will have information about the

other locations in them, in theory improving transferability. The second is more efficient utilization of data. By pooling data30

and training jointly, we effectively multiply our data size by the number of boards. Alternatively, field deployments can be

shortened.

Calibrating a New Board without a Full Training. Field calibration is traditionally performed by colocating a sensor pack-

age with reference monitors and then training to match pollutant concentrations. But, suppose we already had a fleet of low-cost

sensor packages already deployed. A simpler method not requiring coordination with regulatory agencies would be to colocate35
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it with a calibrated sensor package and train a model to match its predicted pollutant levels. This risks compounding errors

across models, however. The split-NN model enables calibrating a new sensor package by colocating to match representation

instead of predictions, as learned representations can often improve generalization in transfer learning problems (Goodfellow

et al., 2016, p. 536).

We propose calibrating sensor package N +1 to match the intermediate representation output of a colocated, previously-5

calibrated sensor package. Specifically, we train modelN+1 to minimize L(uN ,uN+1), or the loss between the two packages’

intermediary outputs. These intermediate representations are designed to be robust to changes in location so training to match

these representation so it is expected that it will result in a robust calibration model. We analyze this potential calibration

technique by holding out a board from our data sets and training a split model. We then simulate calibrating the held out board

by training a sensor model to match the representations produced by another board it was colocated with. We then use this new10

sensor model with the global calibration function to produce pollutant values.

3 Results and Discussion

3.1 Robustness of Different Calibration Techniques Across New Locations

We evaluated a set of four baseline models described in Sect. 2.5: multiple linear regression, two-layer neural network (NN-2),

four-layer neural network (NN-4), and random forest (RF). With each of these four models, we performed a suite of identical15

calibration benchmarks that measure the robustness of models to out-of-distribution data. We split all data sets uniformly at

random into training and testing subsets, reserving 20% of each board’s data for testing. In each benchmark, we progressively

widened the training distribution by combining training data from more locations (using subsampling to maintain the training

set size), while keeping the testing set data set from one location. We have four “levels” of such benchmarks:

– Level 0: Train a model on one location and test on the same location. Several studies, discussed in Sect. 1, have previously20

assessed this configuration (Zimmerman et al., 2018; Spinelle et al., 2015b, 2017; Cross et al., 2017).

– Level 1: Train a model on one location and test on another location. Some recent studies, also discussed in Sect. 1, have

previously studied this configuration (Hagan et al., 2018; Casey and Hannigan, 2018; Bigi et al., 2018; Malings et al.,

2018).

– Level 2: Train a model on two locations and test on a third location.25

– Level 3: Train a model on three locations and test on one of the three locations.

In the Level 0 and Level 3 benchmarks, the training and testing data distributions have explicit overlap, whereas in Level 1

and 2, there is no explicit overlap. We expect performance on Level 0 to be the best, as the training and testing distributions are

identical. We expect performance on Level 3 to be similar, due to the overlap in training and testing distributions. We expect

performance on Level 1 to be the worst, as the training distribution is the narrowest and with no explicit overlap, whereas we30
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expect performance on Level 2 to be between Level 1 and Level 3, for although there is no explicit overlap, the overall training

distribution will be wider, forcing the models to be more general and possibly affording more implicit overlap. Furthermore,

we expect higher capacity models to overfit more to the training data set, and as a result, have the largest gap between Level 0

and Level 1. Thus, we expect linear regression to have more consistent performance across the benchmarks, albeit at relatively

high error, followed by the 2-layer neural network, 4-layer neural network, and finally the random forest.5

We ran each benchmark across all possible permutations of location and sensor package, measuring six metrics in order to

facilitate comparisons in the literature: mean squared error (MSE), root mean squared error (rMSE, also known as the standard

error), centered root mean squared error (crMSE), mean absolute error (MAE), the coefficient of variation of mean absolute

error (CvMAE), mean bias error (MBE), and coefficient of determination (R2). Predictions were made in parts per billion

(ppb), thus MSE is reported in ppb2, and the other errors are reported in ppb. CvMAE and R2 are dimensionless. The results10

for MAE of the baseline models are plotted in Figure 6. Details can be explored further in Appendix C.

From Figure 6 we observe that on average, as model capacity increases, Level 0 error decreases. This is consistent across both

NO2 and O3 prediction and reflects the ability of the model to fit the training distribution. Concerning model transferability, we

find that consistently, all models exhibit relatively high error when tested on different locations. The Level 1 and 2 benchmarks

test the ability of a model to generalize to a distribution it hasn’t seen before, and we see in these benchmarks that errors are15

much higher and the gaps between models are much smaller. Furthermore, Level 2 error is slightly lower on average than Level

1 error. By adding data from another site, effectively widening the training distribution, the models are slightly more robust to

the unseen testing distribution. Level 3 performance aligns closely with Level 0 performance, which is to be expected, since in

both cases the training distribution contains the testing distribution.

Across baselines, we observe that on average, linear regression has the highest error on all the benchmarks. However, its20

errors across the Level benchmarks are more consistent than the other models, suggesting that low-capacity linear regression

is more robust to transfer. On the other hand, random forests have on average the lowest error, but have the most inconsistent

results across the Levels. The results indicate a tradeoff between model capacity and robustness to transfer, consistent with our

intuitions about model overfitting and generalization. Neural networks lie in between linear regression and random forests, and

offer a tradeoff between low error and consistent error.25

To better understand how model performance degrades, we produced target plots, which visualize the tradeoff between

centered error (crMSE) and bias error (MBE) (Figure 7). The target plots indicate that while error approximately doubles when

there is no explicit overlap in the distribution, the increase in model bias is many times more. When considering the two types

of error examined, the crMSE may be of greater concern when considering sensor performance in new locations as compared

to error due to bias. Sensor data exhibiting errors due to bias may still provide useful information regarding the diurnal trends30

of pollutants or relatively large enhancements. Despite the higher capacity models showing better error and bias in a Level 0

benchmark, the models have similar error-bias tradeoffs in a Level 1 benchmark, indicating that a high-capacity model cannot

avoid this performance degradation. Finally, in comparing the Level 1 and Level 2 plots, we observe that adding an additional

(no-overlapping) site primarily reduces bias. The Level 3 plots are very similar to the Level 0 plots and are excluded from

Figure 7 for brevity.35
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In general, however, we observe that model performance degrades non-trivially when moved to different locations. This

decrease in performance could result in overconfidence in a sensor’s readings, potentially affecting downstream decisions. We

briefly analyze the properties of our data that could result in overfitting by first investigating how data distributions across

sites and times differ. Over each location and round, pollutant values can be highly variable. This is reflected, for example,

in Figure A3 where Shafter has higher values of NO2 in Round 1 and 2 but lower in Round 3. Furthermore, in Figure A4,5

the distribution of O3 changes remarkably across round and location. Similarly, temperature and humidity change significantly

across location and round, which can be seen in Figure A1 and Figure A2.

A question that remains is to what degree overfitting or unique (non-overlapping) distributions of environmental data at the

sites is contributing to the failure of the high capacity models to transfer well. In an effort to better understand what may be

driving the drop in performance of the high capacity models when boards are moved, we examined error density plots for10

temperature and humidity for the Level 1 benchmarks. In these types of plots, one of the predictors, such as temperature or

humidity, is plotted against the error for all three sites in a single plot. Figure 8 displays the error density plots in MAE for

absolute humidity against the error for the O3 estimation, for both the linear regression and random forest models. These plots

illustrate how the magnitude of error varies with respect to higher or lower predictor values as well as how different pairs of

training and testing sites compare. There are a couple of things we can derive from this collection of plots. First, we observe15

that the pollutant concentrations at the Shafter site are difficult to predict, except for random forest when trained at Shafter

itself (Figure 8f). The Shafter site was spatially far from the other sites and likely had a unique composition of background

pollutants and ambient environmental conditions. Second, we observe that when training a random forest model at one site and

testing it at a different site (Figure 8, bottom row), the error density plots look similar to the results from the linear regression

models (Figure 8, top row) despite the higher capacity of random forest models. Furthermore, comparing panels a and d, the20

errors at Shafter seem comparable to those at El Cajon for the random forest model, whereas for the linear regression model

the errors seem greater at Shafter versus the second San Diego site. This difference potentially indicates that linear regression

models are better at transferring between more similar environments, which has been observed by other researchers as well

(Casey and Hannigan, 2018). We also observe that the greater errors at the Shafter site are occurring at humidity values that

were seen in the training data set (more centrally in the plot), as is evident by their representation in the Donovan data. This25

implies that these errors did not occur at humidity values that have been extrapolated beyond the original training data set, but

rather from overfitting at values in the distribution. This leads us to conclude that overfitting is the reason random forest’s net

performance in transfer is not much better than linear regression.

3.2 Benefits of Sharing Data Across Sensor Packages

In this section, we evaluate the split-NN model architecture’s utility for improving the transferability of a calibration model.30

The novelty of the split-NN model for calibrating a board’s model is its ability include (normalized) data from other boards.

Given that the resources for calibration are limited, the research questions for split-NN revolve around how boards could be

best distributed to available field sites. For a standard modeling technique like random forest, a board has to be placed at three

sites for three rounds to experience the wide training distribution that achieves the exceptional transferability observed in the
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Level 3 benchmarks. However, with the split-NN model, multiple boards can be deployed for just one round, divided equally

across the sites. Then the data from their boards can be normalized and shared to produce models that we hypothesize to be of

similar quality to a Level 3 benchmark, but in one-third the time, in a single round.

To help reveal the value of calibrating multiple boards at once, we performed three one-round benchmarks: 1 board at each

of the three sites, 2 boards at each of the three sites, and 3 boards at each of the three sites. In each of these conditions, a5

board is trained from a single round of data and tested on the other locations, not its own. In this vein, these are all Level

1 benchmarks, thus we compare the resulting models against our Level 1 baselines. We expect the split-NN to outperform

Level 1 random forest, as the inclusion of more data helps reduce bias. In the situation that there are more boards to calibrate

than there are training sites, there is an opportunity to also incorporate data additional boards at the same site. We expect that

a greater multiplicity of boards at each site will produce slightly better models, but with diminishing returns. We evaluated10

this effect by including training split-NN’s with increasing numbers of boards at each site, indicated by the variants Split-NN

(3), Split-NN (6), and Split-NN (9), corresponding to having one board at each site, two boards at each site, and three boards

at each site. Figure 6 depicts how the voltages collected from one board in the Split-NN (9) condition are translated into

predictions, both plotted against the corresponding reference data points. We perform a similar assessment with two-round

(Level 2) benchmarks, still testing only on sites that a board hasn’t been trained on. As previously, we control for the total15

amount of data, simulating an abbreviated deployment for the Level 2 benchmarks.

Figure 10a-b shows that the split-NN model on average has slightly lower MAE in the Level 1 benchmarks when compared

to the random forest model. We see in and Figure 10c-d that the gap widens with the Level 2 benchmark, indicating that

the Split-NN model is able to better capitalize on the additional data. The results also support our hypothesis that we receive

diminishing returns with additional data. Detailed results are provided in Appendix D.20

The marginal improvement seen in the Level 1 benchmarks has two possible causes. One possibility is that the difference

in behavior between sensors is non-linear. To test this, we implemented a full neural network as the first stage. The results

were comparable with a linear regression first stage with only slight improvement, suggesting that the relationship between the

sensors is well represented by a linear model. The other possibility is that the pollution distributions have insufficient overlap

across sites, compromising the first-stage linear regression to for correct bias. The fact that using two rounds of data (Level 2)25

does much better suggests that this lack of overlap is a likely culprit.

3.3 Discussion

As low-cost sensor studies move from understanding sensor signal performance to how this performance is affected by moving

sensors to new sampling locations or utilizing them in new applications, it is important that the results are translated into

best practices to support the collection of usable high quality data. This is particularly important given the interest in sensors30

by community-based organizations and citizen scientists. Although the present study examined only electrochemical O3 and

NO2 sensors and the sampling sites were limited to three in California, it adds to a body of evidence that location matters in

the calibration of low-cost sensors because the background environmental conditions matter. With this in mind, we make the

following observations and recommendations.
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We observed how prediction performance degrades when a sensor is moved to a new location, especially for high-capacity

modeling techniques. In particular, training a complex random forest calibration model will likely result in relatively low error

at a colocated site but can incur relatively high error at a different site. Although their predictions at a new site will have lower

error than linear regression, the error they exhibit at the training site will likely not be representative of their error in practice.

A linear model, on the other hand, despite not predicting as well at the training site, will not have substantially greater error at5

testing time. Thus, if it is important to know the likely error of your calibration model under transfer, it would be best to use a

low-capacity method like linear regression.

When we drilled down to investigate the contributors to error when changing location, we found that bias error was a

significant contributor in many cases. This is interesting because bias error indicates a loss of accuracy (a non-random additive

error) rather than a loss of precision (random noise). This suggests that when moving a sensor to a new location, if the bias10

can somehow be detected, then it may be possible to make a bias correction to improve model performance. This result also

motivates the use of the split neural network architecture, which has a model-specific correction stage that is designed to learn

unbiased representations of sensor measurements.

We had expected that training at multiple sites would provide much better transferability, but the improvements were not

substantial, suggesting that the high-capacity models were mostly improving due to implicit overlap in distributions and not15

actual generalization. This suggests that calibration should be directed at capturing the widest conditions possible, for example

using many field sites with varying conditions, so as to create an overlap between the distributions of training and use. This

recommendation is further supported by the observation that the Level 3 benchmarks performed nearly as well as the Level 0

benchmarks, in spite of carrying the load of a much wider distribution in the models.

The split-NN approach provides a potentially economical approach to creating overlap in distributions since sensors can20

share their data for calibration. That is, when calibrating multiple sensors, rather than colocating multiple sensors at a field site

and rotating those sensors over time, it makes sense to distribute the sensors to as many field sites as possible to capture the

widest distribution of conditions. The split-NN method has the additional benefit of being able to train a calibration model for a

sensor that has never been colocated with a reference instrument. By simply colocating an uncalibrated sensor with a calibrated

sensor and training the sensor-specific model to match the intermediate output of the calibrated sensor, the uncalibrated sensor25

can leverage the same global calibration model. More study will be required to see how well the split-NN approach scales as

the training data distribution increases and to determine the bounds on calibration without reference colocation.

4 Conclusion

As low-cost gas-phase sensors are increasingly being adopted for citizen science efforts and community-based studies, there is

a need to better understand what contributes to accurate sensing. A key question is how a change in background environmental30

or pollutant conditions, often unique to a location, affects accuracy. A rotating deployment strategy enabled benchmarking the

transferability of models and investigating how to improve accuracy.

For our setting and conditions, we found that:
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– Model error increased under transfer for all the modeling techniques investigated, demonstrating that overfitting is a

concern. The effects are most dramatic when transferring high-capacity models like random forest that are trained with

data that will not be representative of the conditions of use. The lower-capacity linear regression method deteriorated

much less. This suggests that the predicted model error for linear regression will be more accurate under transfer, making

it attractive when knowing the predicted error is important for the intended application.5

– Tantalizingly, much of the error introduced by transfer was bias. Given the simple structure of bias error, this suggests

that transferability might be increased by detecting and correcting for bias.

– When multiple sensors based on the same technology are being trained at the same time, we found that a split neural

network architecture modestly decreases prediction error under transfer by giving a sensor’s model access to normalized

data from other sensors at other locations, hence widening the distribution without requiring additional data collection.10

Depending on the training configuration, compared to random forest the split-NN method reduced error 0-11% for NO2

and 6-13% for O3. This method also enables calibrating new sensors against existing calibrated sensors at incremental

cost.

– For all the modeling techniques investigated, widening the data distribution proved a good strategy to reduce prediction

error under transfer, even for the lower-capacity liner regression method. Notably, markedly better results were achieved15

when training distribution contained the distribution encountered in use. In other words, for the setting and conditions

investigated, training with representative data trumped algorithms.

In the future work we will be extending this work to answer open questions that we believe are relevant to the future of

low-cost sensor calibration. One, the split neural network method underperformed our expectations, so we believe techniques

of this sort warrant additional investigation. Two, there are questions about the effect of temporal resolution on accuracy.20

Currently, our MetaSense sensors are sampled every five seconds, but the ground-truth data provided from reference monitors

is minute-averaged. By averaging our own sensor measurements every minute, we discard data that could be relevant for

calibration. Recent advances in recurrent neural networks for sequence prediction might help leverage the high-resolution data

for more robust prediction. On the other hand, noise will be more of a factor at this resolution, and the sensor can take up

to 30 seconds to stabilize in new environmental conditions (See 2.1.1). Three, a potential application of low-cost sensing is25

truly mobile sensing with person- or vehicle-mounted sensors. Deployments such as these will raise questions about the effects

of mobility on sensing accuracy, such as rapidly changing conditions, with few studies to date (Arfire et al., 2016). Finally,

we will be examining the possible use of infrastructure data (e.g., knowledge of pollution sources) to infer the likelihood of

specific pollutants, providing the potential to control for cross-sensitivity.
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Figure 1. Labeled MetaSense Air Quality Sensing Platform. (Left) Modular, extensible platform in standard configuration with NO2, O3,

and CO electrochemical sensors. (Right) Additional modules that can be added to the board for additional measurement capabilities.
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Figure 2. An enclosure was 3D printed for the MetaSense Air Quality Sensing Platform with top-side ports above the electrochemical sensors

and a side port next to the ambient environmental sensors. The sensor is sized to be portable and has velcro straps that can be used to mount

it to backpacks, bicycles, etc.
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Figure 3. Map and images of deployment locations. Shafter DMV (red) was located 250 mi away from Donovan (blue) and El Cajon (yellow),

which were located in San Diego, CA. (bottom right) Deployment containers configuration for the extended deployment. Each container has

active ventilation to keep the internal conditions equivalent to the ambient environment.
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Figure 4. Architecture of the split-NN model in deployment (testing). Each air quality sensor has a board-specific model sθi(x) that nor-

malizes a given sensor’s output (x) to an intermediate representation from all sensors (u). The intermediate representation is combined with

environmental data (e) and input to the global model cφ.
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Figure 5. Graphical depiction of training versus testing for the Level 0 through Level 3 benchmarks. The Level 0 and 3 benchmarks test on

a training site using held out data. The Level 1 and 2 benchmarks train and test on different sites, also using held out data for consistency.
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Figure 6. Mean absolute error (MAE) boxplots for NO2 and O3, for the Level 0 through Level 3 benchmarks.
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Figure 7. Target plots for Level 0 through Level 2 for both NO2 and O3. In each panel, the centered error is plotted on the x-axis, while the

bias error (MBE) is plotted on the y-axis. The differing colors then illustrate the performance of each calibration model at each level and for

these metrics. Each point in the plot corresponds to a different individual benchmark (i.e., a unique round, location, and board).
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Figure 8. Error density plots for O3 versus normalized absolute humidity for both Linear Regression (LR) and Random Forest (RF) in a

Level 1 benchmark.

29



Figure 9. A single board comparison (Board 12) of the relationship between the raw sensor values and target pollutant concentrations (left)

and the predicted and target pollutant concentrations after the model was run (right) for the Level 1 Split-NN (9) condition. The solid black

line is a linear trend line and the dashed lines represent the 95th percentile.
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Figure 10. Results of evaluating the split-NN model with a linear regression first stage, compared against the RF model in both Level 1 and

Level 2 comparisons. The split-NN model has a lower mean and median error in all conditions. Boxplots are pictured without outliers for

clarity.
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Table 1. Board locations and dates for each round.

Round 1 Round 2 Round 3

9/26/17 - 10/19/17 10/19/17 - 12/21/17 12/21/17 - 3/5/18

Board 17 El Cajon Shafter Donovan

Board 19 El Cajon Shafter Donovan

Board 21 El Cajon Shafter Donovan

Board 11 Shafter Donovan El Cajon

Board 12 Shafter Donovan El Cajon

Board 13 Shafter Donovan El Cajon

Board 15 Donovan El Cajon Shafter

Board 18 Donovan El Cajon Shafter

Board 20 Donovan El Cajon Shafter
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Appendix A: Environment and Pollutant Distributions (based on reference data)

The following graphs summarize the distributions of pollutants and environment variables provided from the reference sen-

sors at the three sites during the three rounds of the study. Each bar represents the total proportion of measurements at the

given temperature or humidity (a histogram plot). The lines are a visualization of the kernel density estimation of the raw

measurements.5
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Figure A1. Temperature distributions for each location, by round.
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Figure A2. Humidity distributions for each location, by round.
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Figure A3. NO2 distributions for each location, by round.
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Figure A4. O3 distributions for each location, by round.
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Appendix B: Summaries of Data for each Location and Round
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Table B1. Summary of data set grouped by location

epa-no2 epa-o3 temperature pressure humidity

Location

Donovan count 100780 100780 100780 100780 100780

mean 10.434 33.742 24.170 991.767 45.936

std 10.807 15.378 5.624 3.226 21.966

min 0.000 0.000 13.900 982.820 4.086

25% 3.000 24.000 20.100 989.530 27.244

50% 7.000 35.000 22.620 991.460 49.511

75% 14.000 43.000 27.000 993.610 64.394

max 157.000 96.000 49.710 1004.160 92.753

El Cajon count 97412 97412 97412 97412 97412

mean 12.914 29.331 24.342 997.288 43.923

std 9.732 19.337 8.232 3.507 20.077

min 0.000 1.000 5.430 989.230 2.733

25% 5.000 11.000 18.570 994.880 28.623

50% 10.000 31.000 23.380 996.890 45.053

75% 20.000 43.000 29.700 999.450 61.166

max 66.000 95.000 49.790 1010.480 85.827

Shafter count 119785 119785 119785 119785 119785

mean 12.578 26.357 22.101 1003.883 45.804

std 9.079 20.739 8.184 5.596 18.072

min 0.000 0.000 4.010 872.756 6.349

25% 4.700 7.800 16.156 999.750 30.585

50% 10.800 22.300 21.040 1003.990 46.763

75% 19.000 41.200 27.200 1007.400 60.965

max 594.600 110.400 47.700 1019.580 85.047
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Table B2. Summary of data set grouped by round

epa-no2 epa-o3 temperature pressure humidity

Round

1 count 49771 49771 49771 49771 49771

mean 5.509 36.010 26.062 994.459 48.322

std 5.472 13.869 6.777 4.787 19.539

min 0.000 1.300 13.100 872.756 9.644

25% 2.000 28.000 20.900 990.920 31.790

50% 3.700 37.300 24.600 995.240 50.507

75% 6.600 45.000 30.130 997.640 61.525

max 57.000 110.400 47.700 1002.940 92.753

2 count 75129 75129 75129 75129 75129

mean 11.916 36.974 25.953 995.989 41.511

std 9.583 21.259 7.577 6.075 19.757

min 0.000 0.000 12.000 982.820 4.420

25% 5.000 19.200 20.000 990.990 23.461

50% 8.000 36.000 24.400 995.420 41.539

75% 17.900 53.000 31.710 1000.710 56.961

max 82.000 96.000 48.180 1009.890 87.562

3 count 193077 193077 193077 193077 193077

mean 13.708 25.093 21.791 999.732 45.946

std 10.225 17.807 7.276 6.708 20.013

min 0.000 0.000 4.010 986.770 2.733

25% 5.100 8.000 17.190 994.300 30.192

50% 11.600 24.700 21.000 999.090 48.470

75% 20.000 38.500 25.780 1004.690 63.450

max 594.600 87.900 49.790 1019.580 85.440
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Appendix C: Raw Results for the Baseline Calibration Models

The following tables are the complete error results for the baseline models across the various conditions. In these tables, the

modeling methods are labeled as MLR for multiple linear regression, NN-2 for 2-layer neural network, NN-4 for 4-layer

neural network, and RF for random forest, as described in Sect. 2.5. Likewise, the error measures are labeled as MAE for

mean absolute error, CvMAE for coefficient of variation of the mean absolute error, MBE for mean bias error, MSE for mean5

standard error, R2 is the coefficient of determination, crMSE for centered root mean square error, and rMSE for root mean

squared error. MSE is reported in parts per billion squared. All other errors are reported in parts per billion. CvMAE and R2

are dimensionless. The results are disaggregated by train and test sites, and averaged across the sensor packages.
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Table C1. Level 0 train results for NO2 (train and test on the same data set).

Train Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon MLR 3.860 0.256 1.163e-14 28.094 0.685 5.259 5.259

Donovan MLR 5.520 0.567 1.528e-15 73.035 0.312 8.374 8.374

Shafter MLR 4.671 0.354 3.628e-15 40.945 0.492 6.380 6.380

El Cajon NN-2 2.003 0.135 0.127 8.137 0.905 2.831 2.844

Donovan NN-2 3.134 0.328 0.093 27.100 0.733 5.175 5.189

Shafter NN-2 2.648 0.200 0.051 17.439 0.787 4.131 4.135

El Cajon NN-4 1.109 0.074 0.076 2.976 0.967 1.700 1.704

Donovan NN-4 1.946 0.213 0.033 13.955 0.835 3.527 3.548

Shafter NN-4 1.755 0.133 -0.054 8.541 0.895 2.868 2.872

El Cajon RF 0.477 0.032 -0.011 0.673 0.993 0.808 0.808

Donovan RF 0.999 0.112 -0.022 3.705 0.956 1.870 1.871

Shafter RF 0.514 0.039 -0.016 1.513 0.981 1.193 1.193
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Table C2. Level 0 test results for NO2.

Train Site Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon El Cajon MLR 3.869 0.256 0.015 28.999 0.683 5.333 5.333

Donovan Donovan MLR 5.573 0.556 0.160 75.037 0.315 8.504 8.512

Shafter Shafter MLR 4.671 0.353 0.004 38.467 0.511 6.191 6.191

El Cajon El Cajon NN-2 2.074 0.140 0.127 9.185 0.895 3.006 3.018

Donovan Donovan NN-2 3.390 0.345 0.204 31.458 0.696 5.559 5.581

Shafter Shafter NN-2 2.694 0.203 0.052 15.772 0.802 3.942 3.946

El Cajon El Cajon NN-4 1.465 0.098 0.076 5.524 0.938 2.327 2.331

Donovan Donovan NN-4 2.739 0.288 0.105 24.875 0.729 4.907 4.924

Shafter Shafter NN-4 2.089 0.158 -0.060 10.702 0.865 3.252 3.256

El Cajon El Cajon RF 0.972 0.064 -0.028 2.929 0.968 1.683 1.683

Donovan Donovan RF 2.010 0.216 0.031 15.113 0.830 3.794 3.797

Shafter Shafter RF 1.028 0.078 -0.041 3.822 0.951 1.943 1.943
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Table C3. Level 0 train results for O3 (train and test on the same data set).

Train Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon MLR 6.010 0.245 1.647e-14 60.276 0.827 7.666 7.666

Donovan MLR 6.916 0.193 -1.881e-15 85.486 0.584 9.131 9.131

Shafter MLR 5.882 0.239 9.460e-15 63.567 0.841 7.877 7.877

El Cajon NN-2 2.810 0.112 -0.150 16.200 0.954 3.940 3.947

Donovan NN-2 4.237 0.117 -0.270 35.055 0.821 5.824 5.855

Shafter NN-2 3.498 0.141 0.013 24.929 0.939 4.895 4.909

El Cajon NN-4 1.369 0.055 -0.092 4.418 0.987 2.053 2.064

Donovan NN-4 2.781 0.077 -0.212 21.314 0.874 4.055 4.102

Shafter NN-4 2.184 0.090 0.001 10.817 0.973 3.248 3.251

El Cajon RF 0.598 0.024 0.006 0.962 0.997 0.976 0.976

Donovan RF 1.341 0.037 0.014 4.938 0.971 1.988 1.988

Shafter RF 0.643 0.027 0.011 1.176 0.997 1.083 1.083

44



Table C4. Level 0 test results for O3.

Train Site Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon El Cajon MLR 6.038 0.245 0.040 61.471 0.822 7.744 7.744

Donovan Donovan MLR 6.931 0.195 -0.255 85.324 0.604 9.116 9.124

Shafter Shafter MLR 5.877 0.240 0.020 63.379 0.842 7.857 7.858

El Cajon El Cajon NN-2 2.919 0.115 -0.133 17.626 0.950 4.113 4.118

Donovan Donovan NN-2 4.516 0.126 -0.488 40.687 0.802 6.193 6.253

Shafter Shafter NN-2 3.568 0.145 0.020 26.052 0.937 4.999 5.011

El Cajon El Cajon NN-4 1.903 0.075 -0.068 9.252 0.974 2.966 2.974

Donovan Donovan NN-4 3.830 0.107 -0.330 33.794 0.825 5.399 5.456

Shafter Shafter NN-4 2.672 0.109 -0.012 17.052 0.959 4.050 4.052

El Cajon El Cajon RF 1.217 0.049 0.015 3.987 0.988 1.987 1.987

Donovan Donovan RF 2.723 0.076 -0.103 19.179 0.897 3.931 3.934

Shafter Shafter RF 1.284 0.054 0.024 4.651 0.988 2.155 2.155
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Table C5. Level 1 train results for NO2 (train and test on the same data set).

Train Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon MLR 3.869 0.256 0.015 28.999 0.683 5.333 5.333

Donovan MLR 5.573 0.556 0.160 75.037 0.315 8.504 8.512

Shafter MLR 4.671 0.353 0.004 38.467 0.511 6.191 6.191

El Cajon NN-2 2.074 0.140 0.127 9.185 0.895 3.006 3.018

Donovan NN-2 3.390 0.345 0.204 31.458 0.696 5.559 5.581

Shafter NN-2 2.694 0.203 0.052 15.772 0.802 3.942 3.946

El Cajon NN-4 1.465 0.098 0.076 5.524 0.938 2.327 2.331

Donovan NN-4 2.739 0.288 0.105 24.875 0.729 4.907 4.924

Shafter NN-4 2.089 0.158 -0.060 10.702 0.865 3.252 3.256

El Cajon RF 0.972 0.064 -0.028 2.929 0.968 1.683 1.683

Donovan RF 2.010 0.216 0.031 15.113 0.830 3.794 3.797

Shafter RF 1.028 0.078 -0.041 3.822 0.951 1.943 1.943
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Table C6. Level 1 test results for NO2.

Train Site Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon Donovan MLR 7.994 0.841 -4.447 119.171 -0.304 8.782 10.639

El Cajon Shafter MLR 7.495 0.565 -1.816 103.831 -0.303 8.871 9.990

Donovan El Cajon MLR 6.383 0.436 1.998 69.142 0.179 6.801 8.203

Donovan Shafter MLR 8.860 0.676 0.639 132.238 -0.711 8.201 11.351

Shafter El Cajon MLR 7.472 0.504 1.940 115.789 -0.303 9.532 10.366

Shafter Donovan MLR 8.553 0.856 0.904 143.748 -0.309 10.080 11.542

El Cajon Donovan NN-2 6.552 0.688 -1.875 98.026 -0.063 8.628 9.641

El Cajon Shafter NN-2 5.367 0.405 -0.491 52.894 0.334 7.077 7.189

Donovan El Cajon NN-2 9.960 0.649 2.435 282.631 -1.896 13.732 14.872

Donovan Shafter NN-2 8.567 0.662 2.822 173.652 -1.359 10.145 11.805

Shafter El Cajon NN-2 9.623 0.642 3.077 269.781 -2.158 13.186 14.291

Shafter Donovan NN-2 9.446 0.918 2.953 250.758 -1.049 11.432 13.326

El Cajon Donovan NN-4 6.164 0.632 -1.301 83.675 0.163 8.663 9.103

El Cajon Shafter NN-4 5.771 0.436 -0.298 58.188 0.266 7.473 7.601

Donovan El Cajon NN-4 7.702 0.500 -0.698 132.834 -0.385 10.342 10.622

Donovan Shafter NN-4 7.947 0.614 1.850 148.190 -0.995 10.032 10.690

Shafter El Cajon NN-4 8.609 0.563 -0.022 156.109 -0.689 11.210 11.768

Shafter Donovan NN-4 8.358 0.827 -0.362 176.864 -0.769 12.024 12.658

El Cajon Donovan RF 5.813 0.598 -1.477 72.216 0.291 8.005 8.414

El Cajon Shafter RF 5.560 0.420 -0.604 50.668 0.364 6.887 7.065

Donovan El Cajon RF 5.904 0.384 -1.458 61.572 0.346 7.186 7.597

Donovan Shafter RF 6.579 0.505 -1.846 79.515 -0.048 7.700 8.645

Shafter El Cajon RF 7.182 0.487 -0.148 198.620 -1.665 10.882 11.411

Shafter Donovan RF 7.220 0.725 -1.549 153.445 -0.642 11.112 11.635
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Table C7. Level 1 train results for O3 (train and test on the same data set).

Train Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon MLR 6.038 0.245 0.040 61.471 0.822 7.744 7.744

Donovan MLR 6.931 0.195 -0.255 85.324 0.604 9.116 9.124

Shafter MLR 5.877 0.240 0.020 63.379 0.842 7.857 7.858

El Cajon NN-2 2.919 0.115 -0.133 17.626 0.950 4.113 4.118

Donovan NN-2 4.516 0.126 -0.488 40.687 0.802 6.193 6.253

Shafter NN-2 3.568 0.145 0.020 26.052 0.937 4.999 5.011

El Cajon NN-4 1.903 0.075 -0.068 9.252 0.974 2.966 2.974

Donovan NN-4 3.830 0.107 -0.330 33.794 0.825 5.399 5.456

Shafter NN-4 2.672 0.109 -0.012 17.052 0.959 4.050 4.052

El Cajon RF 1.217 0.049 0.015 3.987 0.988 1.987 1.987

Donovan RF 2.723 0.076 -0.103 19.179 0.897 3.931 3.934

Shafter RF 1.284 0.054 0.024 4.651 0.988 2.155 2.155
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Table C8. Level 1 test results for O3.

Train Site Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon Donovan MLR 11.383 0.319 8.605 227.071 -0.176 10.340 14.065

El Cajon Shafter MLR 9.812 0.415 5.474 182.938 0.509 11.107 12.920

Donovan El Cajon MLR 8.384 0.327 0.173 118.977 0.671 10.163 10.488

Donovan Shafter MLR 13.931 0.614 4.485 304.950 0.096 11.566 16.753

Shafter El Cajon MLR 9.819 0.400 -0.489 187.609 0.448 12.064 13.055

Shafter Donovan MLR 13.205 0.373 6.385 321.685 -0.639 13.259 16.624

El Cajon Donovan NN-2 10.910 0.305 4.597 231.519 -0.184 13.095 14.476

El Cajon Shafter NN-2 8.799 0.358 0.850 138.822 0.659 11.204 11.562

Donovan El Cajon NN-2 11.993 0.492 -5.201 300.587 0.088 14.488 15.944

Donovan Shafter NN-2 12.644 0.547 -4.902 276.752 0.186 14.168 15.888

Shafter El Cajon NN-2 14.346 0.630 -7.165 565.238 -0.780 17.245 19.883

Shafter Donovan NN-2 16.290 0.447 0.309 533.943 -1.188 15.973 20.250

El Cajon Donovan NN-4 11.144 0.311 5.321 233.599 -0.182 13.149 14.506

El Cajon Shafter NN-4 9.151 0.376 1.102 148.600 0.623 11.621 12.024

Donovan El Cajon NN-4 12.290 0.506 -5.953 294.927 0.099 14.143 16.031

Donovan Shafter NN-4 17.186 0.773 -10.780 597.851 -0.945 17.224 21.627

Shafter El Cajon NN-4 11.177 0.480 -3.281 271.195 0.156 14.606 15.313

Shafter Donovan NN-4 13.084 0.372 3.730 325.781 -0.556 15.852 17.251

El Cajon Donovan RF 10.679 0.302 6.487 189.558 0.051 11.079 13.496

El Cajon Shafter RF 9.739 0.401 1.367 157.403 0.601 11.999 12.406

Donovan El Cajon RF 11.458 0.469 -4.232 206.904 0.381 12.335 13.735

Donovan Shafter RF 14.236 0.608 -4.891 300.792 0.165 14.834 17.082

Shafter El Cajon RF 8.610 0.364 -1.488 120.284 0.640 10.315 10.841

Shafter Donovan RF 11.045 0.311 6.332 182.582 0.156 11.390 13.459
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Table C9. Level 2 train results for NO2 (train and test on the same data set).

Train Sites Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, Shafter} MLR 5.277 0.416 0.046 56.139 0.400 7.429 7.429

{Donovan, El Cajon} MLR 4.480 0.326 0.042 44.649 0.585 6.559 6.559

{El Cajon, Shafter} MLR 4.829 0.332 0.021 43.007 0.514 6.531 6.531

{Donovan, Shafter} NN-2 2.935 0.231 0.212 23.237 0.755 4.755 4.765

{Donovan, El Cajon} NN-2 2.629 0.192 0.178 19.636 0.820 4.327 4.338

{El Cajon, Shafter} NN-2 2.665 0.183 -0.014 15.152 0.829 3.871 3.877

{Donovan, Shafter} NN-4 2.026 0.159 0.079 12.776 0.865 3.531 3.537

{Donovan, El Cajon} NN-4 1.763 0.129 0.077 10.645 0.901 3.192 3.195

{El Cajon, Shafter} NN-4 1.823 0.126 0.070 8.225 0.906 2.857 2.860

{Donovan, Shafter} RF 1.284 0.101 -0.044 7.900 0.918 2.741 2.743

{Donovan, El Cajon} RF 1.154 0.084 -0.030 6.068 0.945 2.370 2.371

{El Cajon, Shafter} RF 1.102 0.076 -0.039 4.081 0.954 2.017 2.017
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Table C10. Level 2 test results for NO2.

Train Sites Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, Shafter} El Cajon MLR 5.880 0.408 1.644 65.552 0.202 7.514 7.901

{Donovan, El Cajon} Shafter MLR 7.243 0.547 -2.411 90.821 -0.153 8.164 9.373

{El Cajon, Shafter} Donovan MLR 7.312 0.759 -2.242 101.530 -0.043 8.570 9.915

{Donovan, Shafter} El Cajon NN-2 7.881 0.513 -1.165 243.984 -1.583 11.727 12.331

{Donovan, El Cajon} Shafter NN-2 5.013 0.380 0.434 47.193 0.402 6.699 6.829

{El Cajon, Shafter} Donovan NN-2 5.786 0.592 -0.804 77.869 0.242 8.167 8.693

{Donovan, Shafter} El Cajon NN-4 8.579 0.554 -1.420 281.996 -1.869 12.447 12.951

{Donovan, El Cajon} Shafter NN-4 5.864 0.445 0.069 62.582 0.203 7.721 7.883

{El Cajon, Shafter} Donovan NN-4 5.991 0.606 -0.629 92.061 0.068 9.122 9.332

{Donovan, Shafter} El Cajon RF 5.510 0.376 -0.670 61.713 0.255 7.271 7.561

{Donovan, El Cajon} Shafter RF 5.312 0.402 -0.096 47.764 0.396 6.733 6.863

{El Cajon, Shafter} Donovan RF 5.533 0.567 -0.883 74.962 0.255 8.271 8.562
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Table C11. Level 2 train results for O3 (train and test on the same data set).

Train Sites Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, Shafter} MLR 6.396 0.249 -0.034 73.967 0.785 8.493 8.494

{Donovan, El Cajon} MLR 6.702 0.227 0.005 75.618 0.788 8.640 8.640

{El Cajon, Shafter} MLR 6.312 0.271 0.006 71.620 0.811 8.385 8.385

{Donovan, Shafter} NN-2 3.857 0.150 -0.050 30.588 0.911 5.487 5.493

{Donovan, El Cajon} NN-2 3.721 0.127 0.169 28.691 0.919 5.332 5.344

{El Cajon, Shafter} NN-2 3.508 0.150 0.082 25.892 0.934 5.041 5.048

{Donovan, Shafter} NN-4 2.447 0.096 0.046 14.251 0.959 3.763 3.765

{Donovan, El Cajon} NN-4 2.355 0.080 0.116 13.973 0.961 3.716 3.721

{El Cajon, Shafter} NN-4 2.210 0.094 0.104 11.863 0.969 3.408 3.412

{Donovan, Shafter} RF 1.499 0.059 0.069 6.184 0.982 2.480 2.482

{Donovan, El Cajon} RF 1.466 0.050 0.041 5.897 0.984 2.421 2.422

{El Cajon, Shafter} RF 1.325 0.057 0.023 4.921 0.987 2.216 2.216
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Table C12. Level 2 test results for O3.

Train Sites Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, Shafter} El Cajon MLR 8.981 0.362 -1.747 136.139 0.607 10.070 11.263

{Donovan, El Cajon} Shafter MLR 10.436 0.447 6.596 195.691 0.452 10.844 13.384

{El Cajon, Shafter} Donovan MLR 11.842 0.332 8.646 234.924 -0.168 10.887 14.470

{Donovan, Shafter} El Cajon NN-2 8.585 0.353 -0.863 142.215 0.581 10.743 11.402

{Donovan, El Cajon} Shafter NN-2 8.227 0.338 -0.202 120.049 0.694 10.390 10.844

{El Cajon, Shafter} Donovan NN-2 9.896 0.278 5.069 180.978 0.103 11.353 12.892

{Donovan, Shafter} El Cajon NN-4 9.708 0.391 -1.786 187.381 0.466 12.179 12.983

{Donovan, El Cajon} Shafter NN-4 9.019 0.374 -0.536 139.776 0.638 11.293 11.721

{El Cajon, Shafter} Donovan NN-4 9.802 0.274 4.557 159.778 0.249 11.398 12.544

{Donovan, Shafter} El Cajon RF 7.892 0.327 -1.715 100.997 0.702 9.286 9.875

{Donovan, El Cajon} Shafter RF 9.568 0.397 0.597 150.607 0.613 11.533 12.148

{El Cajon, Shafter} Donovan RF 9.133 0.259 4.811 135.414 0.351 9.986 11.571
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Table C13. Level 3 train results for NO2 (train and test on the same data set).

Train Sites Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, El Cajon, Shafter} MLR 5.505 0.478 -0.585 66.057 0.257 7.474 7.805

{Donovan, El Cajon, Shafter} NN-2 3.205 0.276 0.024 26.908 0.711 4.929 4.967

{Donovan, El Cajon, Shafter} NN-4 1.916 0.164 0.006 10.234 0.883 3.083 3.095

{Donovan, El Cajon, Shafter} RF 0.971 0.090 -0.102 3.344 0.961 1.628 1.648
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Table C14. Level 3 test results for NO2.

Train Sites Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, El Cajon, Shafter} El Cajon MLR 4.458 0.296 0.560 37.307 0.585 6.001 6.060

{Donovan, El Cajon, Shafter} Donovan MLR 6.819 0.707 -2.001 91.429 0.074 8.431 9.428

{Donovan, El Cajon, Shafter} Shafter MLR 5.156 0.390 -0.060 48.853 0.381 6.928 6.961

{Donovan, El Cajon, Shafter} El Cajon NN-2 2.595 0.175 -0.063 13.555 0.845 3.655 3.669

{Donovan, El Cajon, Shafter} Donovan NN-2 4.108 0.420 0.050 47.008 0.556 6.660 6.765

{Donovan, El Cajon, Shafter} Shafter NN-2 3.064 0.231 0.120 20.686 0.742 4.473 4.486

{Donovan, El Cajon, Shafter} El Cajon NN-4 1.837 0.123 -0.041 7.837 0.912 2.772 2.782

{Donovan, El Cajon, Shafter} Donovan NN-4 3.167 0.335 -0.075 38.583 0.542 5.784 5.812

{Donovan, El Cajon, Shafter} Shafter NN-4 2.108 0.159 0.016 10.459 0.868 3.220 3.225

{Donovan, El Cajon, Shafter} El Cajon RF 1.079 0.072 -0.039 3.634 0.959 1.885 1.886

{Donovan, El Cajon, Shafter} Donovan RF 2.583 0.277 -0.302 20.818 0.768 4.453 4.495

{Donovan, El Cajon, Shafter} Shafter RF 1.358 0.103 -0.035 5.324 0.933 2.281 2.287
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Table C15. Level 3 train results for O3 (train and test on the same data set).

Train Sites Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, El Cajon, Shafter} MLR 7.893 0.277 1.474 117.623 0.509 9.553 10.226

{Donovan, El Cajon, Shafter} NN-2 4.547 0.157 0.426 43.025 0.834 6.216 6.309

{Donovan, El Cajon, Shafter} NN-4 2.509 0.088 0.174 14.705 0.938 3.611 3.660

{Donovan, El Cajon, Shafter} RF 1.379 0.044 0.308 5.251 0.976 1.865 1.936
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Table C16. Level 3 test results for O3.

Train Sites Test Site Method MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, El Cajon, Shafter} El Cajon MLR 6.859 0.278 -0.920 81.607 0.764 8.628 8.865

{Donovan, El Cajon, Shafter} Donovan MLR 9.870 0.276 5.047 169.555 0.141 10.236 12.282

{Donovan, El Cajon, Shafter} Shafter MLR 6.727 0.275 0.400 82.576 0.796 8.831 8.891

{Donovan, El Cajon, Shafter} El Cajon NN-2 3.732 0.148 -0.018 28.075 0.920 5.208 5.224

{Donovan, El Cajon, Shafter} Donovan NN-2 5.826 0.162 1.373 65.155 0.690 7.610 7.934

{Donovan, El Cajon, Shafter} Shafter NN-2 4.210 0.168 -0.039 36.454 0.914 5.843 5.855

{Donovan, El Cajon, Shafter} El Cajon NN-4 2.375 0.095 -0.069 13.066 0.963 3.552 3.572

{Donovan, El Cajon, Shafter} Donovan NN-4 4.541 0.126 1.132 46.867 0.757 6.182 6.402

{Donovan, El Cajon, Shafter} Shafter NN-4 2.669 0.109 -0.106 15.932 0.961 3.937 3.945

{Donovan, El Cajon, Shafter} El Cajon RF 1.391 0.056 0.019 5.064 0.985 2.233 2.234

{Donovan, El Cajon, Shafter} Donovan RF 3.504 0.096 1.142 28.621 0.849 4.594 4.837

{Donovan, El Cajon, Shafter} Shafter RF 1.853 0.072 0.105 8.391 0.980 2.775 2.783
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Appendix D: Raw Results for the Split Neural Network Models

The following tables are error results for the split-NN models of size 3 and size 9. The error measures are labeled as MAE for

mean absolute error, CvMAE for coefficient of variation of the mean absolute error, MBE for mean bias error, MSE for mean

standard error, R2 is the coefficient of determination, crMSE for centered root mean square error, and rMSE for root mean

squared error. The results are disaggregated by train and test sites, and averaged across the sensor packages. However, because5

these are split models, both the the global model and the board-specific models are trained on all the sites. However, the trained

board was not placed at the test site during training.
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Table D1. Test results for split-NN level 1, size 3 (NO2).

Train Site Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon Donovan 5.838 0.601 -0.775 90.006 0.054 8.787 9.123

El Cajon Shafter 5.246 0.397 0.284 51.872 0.345 6.909 7.142

Donovan El Cajon 7.177 0.484 -0.676 118.001 -0.311 9.916 10.295

Donovan Shafter 6.515 0.497 0.941 87.773 -0.143 8.652 9.130

Shafter El Cajon 7.544 0.484 0.452 183.866 -0.923 10.592 11.094

Shafter Donovan 7.516 0.736 -0.530 155.259 -0.307 10.295 11.056
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Table D2. Test results for split-NN level 1, size 9 (NO2).

Train Site Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon Donovan 5.713 0.590 -1.012 78.898 0.206 8.326 8.800

El Cajon Shafter 5.011 0.379 0.007 48.441 0.390 6.726 6.896

Donovan El Cajon 6.426 0.436 0.016 88.722 -0.018 8.797 9.180

Donovan Shafter 6.272 0.478 -0.493 78.929 -0.028 8.441 8.760

Shafter El Cajon 6.333 0.410 0.961 77.864 0.168 7.881 8.569

Shafter Donovan 6.924 0.681 -1.288 110.268 0.039 9.319 10.083
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Table D3. Test results for split-NN level 1, size 3 (O3).

Train Site Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon Donovan 10.278 0.287 4.704 188.996 0.060 11.801 13.266

El Cajon Shafter 8.280 0.336 0.862 125.486 0.692 10.668 10.982

Donovan El Cajon 10.706 0.420 -3.206 225.276 0.355 13.079 14.170

Donovan Shafter 11.369 0.486 -3.829 230.534 0.351 13.619 14.783

Shafter El Cajon 10.857 0.480 -3.101 380.840 -0.227 14.472 15.351

Shafter Donovan 12.195 0.343 4.319 302.175 -0.297 14.332 15.918
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Table D4. Test results for split-NN level 1, size 9 (O3).

Train Site Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

El Cajon Donovan 10.414 0.291 6.012 187.446 0.057 10.945 13.250

El Cajon Shafter 8.234 0.335 1.909 123.068 0.696 10.482 10.872

Donovan El Cajon 10.244 0.394 -2.838 192.420 0.459 12.167 13.186

Donovan Shafter 9.980 0.416 -0.463 177.129 0.534 12.147 13.237

Shafter El Cajon 9.709 0.423 -2.282 211.003 0.344 12.567 13.295

Shafter Donovan 11.240 0.317 5.503 216.113 -0.003 12.947 14.428
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Table D5. Test results for split-NN level 2, size 3 (NO2).

Train Sites Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, Shafter} El Cajon 5.915 0.392 -1.035 91.805 -0.013 8.458 8.739

{Donovan, El Cajon} Shafter 4.884 0.370 0.576 46.812 0.406 6.558 6.793

{El Cajon, Shafter} Donovan 5.362 0.543 -0.373 73.628 0.302 8.108 8.411
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Table D6. Test results for split-NN level 2, size 9 (NO2).

Train Sites Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, Shafter} El Cajon 4.923 0.337 -0.648 48.985 0.424 6.500 6.795

{Donovan, El Cajon} Shafter 4.749 0.360 0.676 43.165 0.453 6.221 6.497

{El Cajon, Shafter} Donovan 5.301 0.538 -0.330 69.482 0.352 7.881 8.198
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Table D7. Test results for split-NN level 2, size 3 (O3).

Train Sites Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, Shafter} El Cajon 8.285 0.336 -1.515 139.473 0.596 10.573 11.204

{Donovan, El Cajon} Shafter 8.079 0.331 -0.189 115.897 0.708 10.153 10.577

{El Cajon, Shafter} Donovan 9.356 0.262 4.033 155.842 0.250 11.020 12.172
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Table D8. Test results for split-NN level 2, size 9 (O3).

Train Sites Test Site MAE CvMAE MBE MSE R^2 crMSE rMSE

{Donovan, Shafter} El Cajon 7.434 0.297 -0.910 105.619 0.695 9.443 9.977

{Donovan, El Cajon} Shafter 7.819 0.320 0.372 110.537 0.723 9.774 10.314

{El Cajon, Shafter} Donovan 9.022 0.253 4.190 141.869 0.313 10.427 11.654
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