
Revision and response to Anonymous Referee 1

Comments by Referee 1 and authors’ response
1. Generally speaking the paper is well written but it is clear that the

authors do not have English as their mother language. In particular,
oftentimes articles are missing in the sentence. This does not hinder
the understanding of the text so I will not go through the list of what
I have spotted but a conscious correction should be performed prior
to publication

In the new iteration of the manuscript, we made several language corrections
with special attention on the articles. With our previous papers in Copernicus
publications, we’ve had a good experience with the last language check phase in
helping with the final language corrections.

2. My main concern is with the method used for the clustering. To
my understanding, the k-means algorithm expect all clusters to be
of similar size. This is an unreasonable assumption in the case of
weather phenomena since there are processes that are fairly common
whereas others happen rarely. The authors, rightly, do not make any
a-priori attempt to balance the data but I suspect that leads to classes
that are a mix of various phenomena and hence difficult to link to
specific microphysical processes. Other clustering methods such as
Expectation Maximization (EM) clustering may be more adequate for
the sort of data at hand.

The definition of cluster size is important here. By cluster size, the Referee 1
may refer to at least two different cluster properties: either the d-dimensional
area occupied by the cluster, where d is the number of features (in our case,
the number of principal components, d=30), or the cardinality. In k-means
clustering, neighbouring clusters will occupy similar areas. However, the density
of the points in the PCA space, and thus the cardinalities, may be different
between the classes. Such is the case with the classification models presented in
this manuscript; e.g. class S9 has 619 members while class S15 has only 16.

Using a clustering method that tends to produce classes occupying similar
areas in the PCA space indeed involves a risk of suboptimal separation of the
microphysical processes. In the study, we make an effort to address this problem
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by allowing a rather large number of initial classes and proposing that similar
classes may be combined by identifying archetypes based on known fingerprints
of the processes.

In the two classification models there are classes which may represent a mix
of dendritic growth and secondary ice production. On the other hand, further
examination of such profiles revealed that KDP signatures appearing both in
the DGL and in the H-M region within the same profile is not uncommon, as
described in the manuscript.

We added further discussion on these considerations in the revised manuscript.

3. Given that microphysical processes in the solid phase of precipitation
are highly dependent on the ambient temperature and the authors
have available an estimate of the temperature profile via the NCEP
GDAS I would be very interested in having a look at the results of
the clustering when including the full temperature profile instead of
just the surface temperature.

There are various interesting and potentially useful ways in which the classifica-
tion method introduced in this manuscript may be modified. However, the aim
of this study is not to make a comprehensive comparison of several promising
methods, but rather, presenting a reasoned but simple method as a starting
point in studying vertical profiles through unsupervised classification and for its
future applications.

In the revised manuscript we mention the use of alternative clustering methods
and full temperature profiles as potential ways of further development of the
method.

4. I am a bit surprised by the choice of algorithm to compute KDP. The
Maesaka algo- rithm targets primarily the liquid layer of precipitation
and works under the assumption that there is a monotone increase of
PhiDP. In my opinion this algorithm is not adequate to compute KDP
in the solid precipitation. Negative KDP can be linked to important
phenomena such as electrification.

The Maesaka algorithm should be avoided when studying phenomena linked to
negative KDP, which, however, is not the case in this study. In the present study,
the main focus is on identification of processes typically occuring in stratiform
precipitation, such as dendritic growth and the H-M process, for which negative
KDP is not relevant, as explained in the revised manuscript.

5. It is not clear to me what the authors do if the values of the polarimetric
variables fall out of the range provided for the normalization. It is
also not clear to me how gaps in the data are treated.

The normalized values are not capped to 1, which is now explained in the text.
There were no gaps in the measurements during the studied precipitation events.
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Since the classification is unaware of the temporal evolution of the profiles, a
missing profile would not affect the ability to classify any other profile.
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Abstract. Vertical profiles of polarimetric radar variables can be used to identify fingerprints of snow growth processes. In

order to systematically study such manifestations of precipitation processes, we have developed an unsupervised classification

method. The method is based on k-means clustering of vertical profiles of polarimetric radar variables, namely reflectivity,

differential reflectivity and specific differential phase. For rain events, the classification is applied to radar profiles truncated at

the melting layer top. For the snowfall cases, the surface air temperature is used as an additional input parameter. The proposed5

unsupervised classification was applied to 3.5 years of data collected by the Finnish Meteorological Institute Ikaalinen radar.

The vertical profiles of radar variables were computed above the University of Helsinki Hyytiälä station, located 64 km east of

the radar. Using these data, we show that the profiles of radar variables can be grouped into 10 and 16 classes for rainfall and

snowfall events respectively. These classes seem to capture most important snow growth and ice cloud processes. Using this

classification, main features of the precipitation formation processes, as observed in Finland, are presented.10

1 Introduction

Globally, majority of precipitation both during winter and summer originates from ice clouds (Field and Heymsfield, 2015). At

higher latitudes winter precipitation occurs in the form of snow, which can have a dramatic impact on human life (Juga et al.,

2012). There are a number of challenges in remote sensing of winter precipitation or ice clouds, i.e. quantitative estimation of

ice water content or precipitation rate (von Lerber et al., 2017), identification of dangerous weather conditions, etc. To address15

these challenges, advances in identifying and documenting the processes that take place in ice clouds are needed.

There are several pathways by which ice particles grow, such as vapor deposition, aggregation and riming. Occurrence of

these processes depends on environmental conditions. Interpretation of radar observations is based on our understanding of the

link between microphysical and scattering properties of hydrometeors. By identifying particle types in observations, we may

conclude what processes took place. Currently, dual-polarization radar observations are used in fuzzy logic classification to20

identify dominant hydrometeor type present in a radar volume (e.g. Chandrasekar et al., 2013; Thompson et al., 2014). Such

methods work very well for classification of hydrometeors of summer precipitations and some features of winter precipitation

types. The main challenge is the lack of distinction in dual-polarization radar variables between some ice particle habits. For

example, large low-density aggregates and graupel may have similar radar characteristics. Furthermore, these methods perform
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classification on radar volume by volume basis, without taking into account surrounding observations. Recently, a modification25

for the hydrometeor classifiers was proposed to make the algorithms aware of the surrounding by incorporating measurements

from neighbouring radar volumes (Bechini and Chandrasekar, 2015; Grazioli et al., 2015b). This step has greatly improved

classification robustness, but aims to identify particle types instead of fingerprints of microphysical processes.

In the past 10 years, a number of studies reported signatures of ice growth processes in dual polarization radar observations.

Kennedy and Rutledge (2011) have reported bands of increased values of specific differential phase, Kdp, and differential30

reflectivity, ZDR in Colorado snow storms. These bands took place at altitudes where ambient air temperature was around

-15 ◦C and their occurrence was attributed to growth of dendritic crystals. Andrić et al. (2013) have implemented a simple

steady state single column snow growth model to explain main features of the bands. It was also observed that the occurrence

of Kdp bands can be linked to heavier surface precipitation (Kennedy and Rutledge, 2011; Bechini et al., 2013). Moisseev

et al. (2015) have advocated that the Kdp bands occur only in precipitation systems with high enough cloud tops heights,35

where a large number of ice crystals can be generated either by heterogeneous or homogeneous ice nucleation. Using a larger

dataset, Griffin et al. (2018) have shown that the Kdp bands can be linked to formation of ice by homogeneous ice nucleation

at cloud tops. Furthermore, it was shown that the Kdp bands can be linked to onset of aggregation (Moisseev et al., 2015)

which tend to occur more frequent in higher water vapor content environments (Schneebeli et al., 2013). In addition to the

above-listed studies different aspects of these bands were presented by Trömel et al. (2014); Oue et al. (2018); Kumjian and40

Lombardo (2017). Besides Kdp bands in the dendritic growth zone, several studies (e.g. Grazioli et al., 2015a; Sinclair et al.,

2016; Kumjian et al., 2016; Giangrande et al., 2016) have reported Kdp observations in the temperature region where Hallett-

Mossop (H-M; Hallett and Mossop, 1974) rime splintering secondary ice production takes place (Field et al., 2016). Sinclair

et al. (2016) have shown that such observations can be used to test representation of the secondary ice production in numerical

weather prediction models. Other dual-polarization observations that show notable features are high ZDR regions at the top of45

ice clouds that can be linked to presence of super-cooled liquid water (Williams et al., 2015; Oue et al., 2016) and surrounding

the cores of snow generating cells (Kumjian et al., 2014).

As presented above the fingerprints of snow growth processes can occur in the form of bands, either embedded in the

precipitation or on top of a cloud, or in the form of generating cells. To identify and document such features, a classification

method that uses vertical profiles of dual-polarization radar observations can be used. In this study we have developed such50

unsupervised classification method based on k-means clustering of vertical profiles of polarimetric radar variables, namely

reflectivity, differential reflectivity and specific differential phase. The proposed classification is applied to 3.5 years of data

collected with the Finnish Meteorological Institute Ikaalinen radar.

The paper is structured as follows. Section 2 describes polarimetric radar and temperature data and their preprocessing. The

unsupervised classification method is presented in Sect. 3. Section 4 is dedicated for the analysis and interpretation of the55

classification results and Sect. 5 presents the conclusions.
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2 Data

In this study, we use vertical profiles of polarimetric radar observables of precipitation over Hyytiälä forestry station in Juu-

pajoki, Finland collected using Ikaalinen weather radar, hereafter IKA. The radar is located 64 km west from the station. The

measurements have been performed between January 2014 and May 2017, partly during the Biogenic Aerosols – Effects on60

Clouds and Climate (BAECC; Petäjä et al., 2016) field campaign which took place at the measurement site in 2014.

The classification training material includes all precipitation events from this period, whereafter preprocessing
:
,
::::
after

::::::::::::
preprocessing,

there were no major data quality problems identified. Since synoptic conditions may be similar even in cases where there are

gaps in observed precipitation, we define any two precipitation events separate if a continuous gap in reflectivity between

them exceeds 12 hours. See Sect. 4 for more discussion. During the observation period, we have identified 74 snow and 12365

rain events. Generally, the full temporal extent of an event includes radar profiles in which precipitation have not reached the

ground. A list of the precipitation events is given in supplement S1.

In order to link features identified in vertical profiles of radar variables to precipitation processes, information on the ambient

temperature is needed. For this purpose we use vertical profiles of temperature from the National Center for Environmental

Prediction (NCEP) Global Data Assimilation System (GDAS) output for Hyytiälä interpolated to match the temporal and70

vertical resolution of the vertical profiles of radar variables used in this study.
:::
The

::::::
original

::::::::
temporal

:::::::::
resolution

::
of

:::
the

::::::
NCEP

:::::
GDAS

::::
data

::::
over

::::::::
Hyytiälä

::
is

:
3
::::::

hours,
:::
and

::::
the

::::::
vertical

:::::::::
resolution

::
is

::
25

::::
hPa

:::::::
between

:::
the

:::::
1000

:::
and

::::
900

:::
hPa

::::::
levels,

::::
and

::
50

::::
hPa

::::::::
elsewhere.

:

2.1 Vertical profiles of dual-polarization radar observables

The radar profiles are extracted from IKA C-band radar range height indicator (RHI) measurements. IKA performs RHI scans75

directly towards Hyytiälä station every 15 minutes. The values of the radar profiles above Hyytiälä are estimated as horizontal

medians in linear space over a range of 1 km from the station. The medians are taken over constant altitudes using
::::
linear

:
spatial

interpolation between rays.
:::
the

::::
rays.

::::
The

:::::
target

:::
bin

:::
size

::
of

:::
the

::::::
height

:::::::::::
interpolation

:
is
:::
50

:::
m.

In this investigation, vertical profiles of equivalent reflectivity factor,Ze, differential reflectivity,ZDR, and specific differential

phase, Kdp are considered in the classification. The Kdp values were computed using the Maesaka et al. (2012) method as80

implemented in the Python ARM Radar Toolkit (Py-ART) (Helmus and Collis, 2016)
:::::::::::::::::::::::::::::
(Py-ART; Helmus and Collis, 2016).

::::
The

::::::
method

:::::::
assumes

::::
that

::::::::::
propagation

:::::::::
differential

:::::
phase,

:::::
φDP,

:::::::
increases

::::::::::::
monotonically

::::
with

:::::::::
increasing

:::::
range

::::
from

:::
the

:::::
radar.

::
In

::::
this

:::::
study,

:::
we

::::::
mainly

:::::
focus

:::
on

:::::::::::
precipitation

::::::::
processes

::::::::
typically

:::::::
occuring

:::
in

::::::::
stratiform

::::::::::::
precipitation,

:::::
where

::::::::
negative

:::
Kdp::

is
::::

not

::::::::
important.

::::
The

::::::::::::::::::
Maesaka et al. (2012)

::::::::
algorithm

::::::
should

::
be

:::::::
avoided

:::::
when

::::::::
studying

::::::::::
precipitation

::::::
events

::::
with

::::::::
lightning

:::::::
activity,

:::::
where

:::::::
negative

::::
Kdp ::::

may
:::::
occur

:::
due

::
to

::::::::::::
electrification.

::::
The

::::
total

:::::::
fraction

::
of

:::::::
profiles

:::::::
analyzed

::
in
::::
this

:::::
study

:::
that

::::::::
represent

::::::
strong85

::::::::
convective

:::::
cells

::::
with

:
a
:::::::::
possibility

:::
for

:::::::
lightning

:::::::
activity,

::
is

::::::::
expected

::
to

::
be

::::::::
marginal,

::
as

:::::::::
discussed

:::::
further

:::
in

::::
Sect.

:
4.
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2.2 Radar data preprocessing

Prior to training or using the polarimetric radar vertical profile data for the classification, noise and clutter filtering is applied,

which is followed by normalization and smoothing. Additionally, there are different preprocessing procedures for rain and

snow events that allow taking ambient temperature into account in the classification. This section describes the mentioned90

preprocessing steps in more detail.

2.2.1 Profile truncation

This paper focuses on identifying, characterizing and investigating the frequencies of different types of vertical structures

of dual polarization radar variables specifically from the perspective of detecting, documenting and studying ice processes.

Therefore, before the classification, vertical profiles of radar variables are truncated at the top of melting layer (ML), if one is95

present. Cases where melting layer signatures were not identified and surface air temperature was 1 ◦C or lower, are placed in

the snowfall category and investigated separately.

Following Wolfensberger et al. (2015), who have used gradient detection on a combination of normalized ZH and ρhv for

ML detection, we combine ρhv and standardized Ze and ZDR into a melting layer indicator:

IML = ẐeẐDR(1− ρhv) (1)100

The same standardization of Ze and ZDR is used here as in classification, as described in Sect. 3.1. In this study, instead

of gradient detection, we use peak detection on smoothed IML to find the ML. Peaks are defined as any sample whose direct

neighbors have a smaller amplitude, and are found in three steps:

1. Peak detection is performed with thresholds for absolute peak amplitude and prominence
::::::
(HIML ;

::
as

::::::::
described

::::::
below),

with chosen values of 2 and 0.3, respectively.
:::
The

::::::
SciPy

::::::::::::::::::::::::::
(Version 1.3; Jones et al., 2019)

:::::::::::::
implementation

::
of

:::
the

:::::
peak105

:::::::
detection

:::::::::
algorithm

:
is
:::::
used

::::
here.

:

2. Median ML height, h̃ML, is computed as the weighted median of the peak altitudes, hi, using the product of peak

absolute amplitude and prominence
::::
HIML:

as weights. Peaks above a chosen height threshold of 4200 m
:::::::::::::
hthresh = 4200m

are ignored in this step, as we do not expect melting above this altitude.

3. Step 1 is run again, this time only considering data within h̃ML±∆hML with a chosen ∆hML value of 1500 m. If multiple110

peaks exceed the threshold values within a profile, the one with the highest amplitude is used.

The ML top height hML,top is estimated as the altitude corresponding to 30 % peakprominence level above the peak
:::
the

:::::::
0.3HIML :::::

upper
::::::
contour

:::
of

:::
the

:::::
peak.

::::
Peak

:::::::::::
prominence,

:::
H ,

:
is
::

a
:::::::
measure

::
of

::::
how

:::::
much

::
a
::::
peak

::::::
stands

:::
out

::::
from

:::
the

:::::::::::
surrounding

:::::::
baseline

::::
value

::::
and

::
is

::::::
defined

::
as

:::
the

:::::::::
difference

:::::::
between

:::
the

::::
peak

:::::
value

:::
and

:::
its

:::::::
baseline.

::::
The

:::::::
baseline

::
is

:::
the

::::::
lowest

::::::
contour

::::
line

::
of

:::
the

::::
peak

::::::::
encircling

::
it
:::
but

:::::::::
containing

::
no

::::::
higher

::::
peak

::::::::::::::::
(Jones et al., 2019)

:
.115

:
It
::::::
should

:::
be

:::::
noted

:::
that

::
in

:::::
steps

::
2.

:::
and

:::
3.,

:::
the

:::::::
analysis

:::::
height

::
is
:::::::
limited

::
to

:::::
reflect

:::
the

::::::::::
climatology

:::
of

::::::::::
temperature

::::::
profiles

:::
on

::
the

::::::::::::
measurement

:::
site.

::
In

::::
step

:::
2.,

::
we

:::::::
assume

:::
ML

::
to

::
be

::::::
always

::::::
below

:::::
hthresh,

::::
and

::
in

:::
step

:::
3.,

:::
we

:::::
expect

:::::::
melting

::::
layer

::::::
height

:::
not

::
to
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::::::
change

::::
more

::::
than

::::::
∆hML :::::

during
:::
an

:::::
event.

::::
Such

::::
use

::
of

::::::
domain

:::::::::
knowledge

::::::
allows

:::::
more

:::::
robust

:::
ML

::::::::
detection

::
in

::::::::
situations

::::::
where

:::
IML:::

has
::::
high

::::::
values

:::::::::
elsewhere.

::::
This

::::
may

:::::
occur

:::
e.g.

::
in

:::::::
dendritic

:::::::
growth

::::
layer

::::::
(DGL),

::::::
where

:::
the

::::::
crystals

::::
can

::
be

::::::
pristine

:::::::
enough

::
to

::::
cause

::
a
:::::::::
significant

:::::::
increase

::
in

::::
ZDR :::

and
::
a

:::::::
decrease

::
in

:
ρ.120

Sensitivity of the estimate
:::::::
retrieved

::::::
hML,top:is tested for small changes in peak detection parameters discarding inconsistent

values. A moving window median threshold filter is applied on time series of hML,top in order to discard rapid high amplitude

fluctuations caused by e.g. noise inZDR. A rolling triangle mean is used for smoothing. Finally, linear interpolation and constant

extrapolation is applied on hML,top on per precipitation event basis to make the estimate continuous. This robust, albeit fairly

complex procedure produces a smooth estimate for melting layer top height.125

The analysis of rain profiles is limited to a layer from ∆hmargin = 300 m to 10 km above hML,top. The purpose of the margin

∆hmargin is to prevent properties of the melting layer from leaking to the clustering features.
:::
The

:::::::::
truncation

::::::::
described

::
in

::::
this

::::::
section

:::
has

::
no

:::::
effect

:::
on

:::
the

:::::
height

:::
bin

::::
size.

:

2.2.2 Absence of melting layer

Cutting the rain profiles at the top of melting layer effectively provides information about the ambient temperature at the profile130

base. As temperature is a key factor driving the ice processes, such information should be included in the classification process

also when there is no ML present. In this study
::::
order

::
to

::::::::
introduce

:::::::::::::
corresponding

::::::::::
information

::
on

:::::::
ambient

:::::::::::
temperature

::
at

:::
the

:::::
profile

::::
base, we use surface temperature as an extra classification parameter for events with snowfall on the surface. While

it would be possible to use whole temperature profiles from soundings or numerical models as classification parameters, we

feel that this may not be feasible for many potential key use cases of the classification method. Furthermore, such approach135

would make the classification approaches for rainfall and snowfall cases very different. With the wide availability of surface

temperature observations in high temporal resolution and in real time, presumably this choice makes the classification method

more accessible especially for operational applications.

The analysis of snow profiles is limited to a 10 km layer from the surface
::::::
lowest

:::::::
elevation

:::
of

:::
200

::
m.

3 Classification method140

The unsupervised classification method used in this study is based on clustering of dual-polarization radar observations,
:::::::
namely

::::::
vertical

:::::::
profiles

::
of

::::
Kdp,

:::::
ZDR :::

and
:::
Ze. Feature extraction is performed by applying principal component analysis (PCA) on

standardized profiles. Clustering is applied on the principal components of the profiles using the k-means method (Lloyd,

1982). A flowchart of the whole process is shown in Fig. 1.

While the core method is identical for processing of all radar profiles, information on temperature is included in slightly145

different way based on if it is raining or snowing on the surface. These differences are explained in sections 2.2.1 and 2.2.2

and highlighted in Fig. 1: For rain events, the profiles are cut at top of melting layer, and for events without a ML, surface

temperature is included as an extra classification variable. Using this approach, information on profile base ambient temperature

is included in the classification process, and the analysis is limited to ice processes.
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Figure 1. Vertical profile clustering method for creating classification models for rain and snow events.

Table 1. Standardization of radar variables, [a,b] → [0,1].

Rainfall Snowfall

a b a b

Ze, dBZ -10 38 -10 34

ZDR, dB 0 3.1 0 3.3

Kdp, °km−1 0 0.25 0 0.11

3.1 Feature extraction150

The vertical resolution of the data is 50 m
::::::::::
interpolated

::::
data

::
is

:::
50

::
m

:
with bins from 200 m to 10 km altitude . With

:::
200

:::
m

::
to

::
10

::::
km

::::::
altitude

:::
for

:::::
snow

::::::
events

:::
and

:::::
from

::::
300

::
m

::
to

:::
10

:::
km

::::::
above

::::::
melting

:::::
layer

:::
top

:::
for

::::
rain

::::::
events.

::::::
Thus,

::::
with

:
the three

radar variables, each profile is described by a vector of 588 dimensions in total
:::
and

:::
582

::::::::::
dimensions

:::
for

:::::
snow

:::
and

::::
rain

::::::
events,

::::::::::
respectively. In this study, we apply PCA on standardized profiles of the polarimetric radar variables to extract features for the

clustering phase.155
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A standardization of the preprocessed polarimetric radar data is performed to allow adequate weights for each variable in

clustering. This was done separately for the snow and rain data sets in order to account for seasonal differences in the average

values. We used similar standardization as Wolfensberger et al. (2015), normalizing typical ranges of values [a,b]→ [0,1], with

the additional condition that the standardized variables should have approximately equal variances. The values a,b used in this

study are listed in Table 1. Without this step
::::
The

:::::
values

::
of

:::
the

:::::::::::
standardized

::::::::
variables

:::
are

:::
not

::::::
capped,

::::
but

:::::
values

::::::
greater

::::
than

::
1160

::
are

:::::::
allowed

:::::
when

:::
the

::::::::
unscaled

:::::
values

:::::::
exceed

:
b.
:::::::

Without
:::

the
:::::::::::::

standardization, the dominance of each variable in classification

would be determined by their variance.

The number of components explaining a significant portion of the total variance for the two training data sets was determined

considering the Scree test (Cattell, 1966), the Kaiser method and the component and cumulative explained variance criteria.

However, these criteria alone would allow such a low number of components, that the inverse transformation from principal165

component space to the original would result in unrealistic profiles. Thus, the number of components was increased such that,

visually, the inverse transformed profiles presented the significant features in the original profiles, up until to the point where

adding more components seemed start explaining trivial features such as noise.

For both rain and snow profile classification, the first 30 components are used as features.
:::
The

::::
high

:::::::
number

::
of

:::::::::
significant

::::::::::
components

:::::::
suggests

::::
that

:::::::
reducing

:::
the

:::::::::::::
dimensionality

::
of

:::::
radar

:::::::::::
observations

::
is

:::
not

::::::
trivial.

:::
An

:::::::::
advantage

::
of

:::::
using

:::::
PCA

::::
over170

:::::
simply

:::::::::
sampling

:::
the

::::::
profiles

:::
is

:::
that

::::
the

::::::
former

:::::::::::
interconnects

::::
data

:::::
from

:::::::
different

:::::::
heights

::::
and

::::
radar

::::::::
variables

:::::
such

::::
that

:::
the

::::::::::
components

:::::::::
effectively

::::::::
represent

:::::::
features

::
in

:::
the

::::::
profile

::::::
shapes,

:::::
while

::::::::
sampling

::::::
would

:::::
rather

::
be

::::::
driven

:::
by

:::::::
absolute

::::::
values

::
at

::
the

:::::::::
individual

::::::::
sampling

:::::::
heights.

With snow profile classification, a proxy of the surface temperature, P (Ts) = aTs, where a is a scaling parameter, is

used as an additional feature. Thus, essentially, σTs
within a cluster is decreased with increasing a. In this study, value of175

a was determined in an iterative process during the clustering phase, described in Sect. 3.2, such that, over the clusters,

median(2σTs)≈ 3◦C. Thus, assuming Ts is normally distributed within a given cluster, approximately 95 % of the values of

Ts would be typically within a range of 3 ◦C from the cluster mean. A value of a= 0.75 was used in this study.

3.2 Clustering

In the present study, the widely used k-means method was chosen for clustering. The algorithm is known for its speed and180

easy implementation and interpretation. Limitations of the method include the assumption of isotropic data space, sensitivity to

outliers (Raykov et al., 2016), and the possibility to converge into a local minimum which may result in counterintuitive results.

In our analysis, the anisotrophy of the data space is partly mitigated by the PCA transformation. After the transformation, there

is still anisotrophy, but the transitions in density of the data points in PCA space are smooth (not shown), such that k-means

seems to produce clusters of meaningful sizes and shapes. The problem of local minima is addressed using the k-means++185

method (Arthur and Vassilvitskii, 2007) to distribute the initial cluster seeds in a way that optimizes their spread. The k-

means++ is repeated 40 times and the best result in terms of sum of squared distances of samples to their closest cluster center

is used for seeding.
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3.3 Selecting the number of classes

An important but non-trivial consideration in using k-means clustering is the choice of number of clusters, k. A good model190

should explain the data well while being simple. Several methods exist for estimating the optimal number of classes. Never-

theless, often domain and problem specific criteria have to be applied for
::
the

:
best results.

The optimal number of clusters depends on variability in the data and correlations between different variables. The more

variability and degrees of freedom, the more clusters are generally needed to describe different features in a dataset. Since one

important use case for the method is ice process detection, particular attention is paid in separation of fingerprints of different195

processes between classes. An optimal set of classes would maximize this separation without introducing too many classes to

make their interpretation complicated.

As the problem of the number of classes is complex, it is difficult to find an unambiguous quantitative measure for evaluating

the correct number of classes. Attempts to create a scoring function for optimizing the separation of ice processes alone did

not yield satisfactory results, but were rather used to support the manual selection process.200

Silhouette analysis (Rousseeuw, 1987), which is a method for measuring how far each sample is from other clusters (sepa-

ration) compared to its own cluster (cohesion), was also considered for selecting k. The metric, silhouette coefficient s, takes

values between -1 and 1. The higher the value, the better the profile represents the cluster it is assigned to. A profile with s= 0

would be a borderline case between clusters, and negative values indicate that the profiles might have been assigned to wrong

clusters. Silhouette score s̄= 1
k

∑k
i=1 si can generally be used for choosing k. Unfortunately, when applied to the radar profile205

clustering results, s̄ decreases almost monotonically with increasing k in the ranges of k analysed, and thus did not prove very

useful for this purpose. Rather, in this study, we calculate s for each profile classification result individually as a measure of

how well the profile represents the class it is assigned to.

The process of selecting the number of rain and snow profile clusters, kR and kS , respectively, was as follows: First, the

k-means clustering was repeated 12 times for each k in [5,21] with 40 k-means++ initializations. This is where the above-210

described silhouette analysis was performed for each set of clusters and the stability of the initialization process was analyzed

for each k. Between the 12 repetitions, the clustering converges to identical results for each kR < 12 and kS < 10after which

:
.
::::
With

::::::
higher

:::::
values

:::
of

::
k,

:
there are multiple solutions to the clustering problem with

:::
only

:
minor differences between them.

Likewise, the cluster centroid profiles even with different k were highly consistent, such that clustering results with k and k+1

clusters would typically share k− 1 to k very similar cluster centroids.215

This stability of the clustering results makes it convenient to select k manually. In the second stage, we analysed each separate

clustering solution for differences between
:::
the

:
clusters from the point of view of snow processes and surface precipitation.

Specifically, an important criterion was to separate the typical Kdp signatures of dendritic growth (e.g. Kennedy and Rutledge,

2011) and the H-M process (Field et al., 2016) into different classes. On the other hand, the use of an unsupervised classification

method should also allow us to discover previously undocumented features in the radar profiles if they are present in the data220

in significant numbers.
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:::
The

::::
goal

:::
in

:::
this

::::
step

::
is
::
to
::::

find
:::

as
:::::
many

:::::::::
significant

::::::
unique

::::::::::
fingerprints

::::
with

:::
as

:::
low

::
k
:::
as

:::::::
possible

:::
by

::::::
manual

::::::::::
evaluation.

Significant differences between clusters in this context include variations in profile shapes and altitudes of characteristics such

as bands, clear differences in echo top heights, or differences of cluster centroid Ts of more than 3 ◦C. The most common

trivial difference between a pair of clusters was a difference in the intensity of polarimetric radar variables while the shapes of225

the cluster centroid profiles were almost identical. Altitude differences between fingerprints of overhanging precipitation were

also considered trivial.

::::::
During

:::
this

:::::::
process,

::::::::
allowing

::::
some

::::::
profile

::::::
classes

::::
with

:::::
only

:::::
trivial

::::::::::::
characteristics

:::
was

:::::::::
inevitable

::
in

:::::
order

::
to

::::::
include

::::::
others

::::
with

::::::::
significant

::::::
unique

:::::::::::
fingerprints.

:::
For

:::
this

::::::
reason,

:::::
some

::::::
classes

:::::
likely

::::::
reflect

::::::
natural

::::::::::
variatiability

::
of

:::
the

:::::
same

::::::::::::
microphysical

::::::
process

:::::
rather

:::::
than

::::::
unique

:::::::::
processes,

:::
and

:::::
need

::
to

:::
be

:::::::::
combined.

::::::::
However,

:::
the

:::::::
optimal

::::
way

:::
of

:::::::::
combining

:::
the

:::::::
classes

::::
may230

::::::
depend

::
on

:::
the

::::::::::
application.

:::::
Thus,

:::
we

::::::
present

:::
the

::::::
classes

:::::::::::
uncombined

::
in

:::
this

:::::
paper.

:

In snow profile clustering, Ts as an extra classification parameter adds a significant additional degree of freedom. Thus, a

larger number of snow profile classes are needed to meet the criteria described above. In clustering, there is a distinguishable

separation between clusters representing Ts close to 0 ◦C and around −10 ◦C. The vast majority of profiles belong to the

warmer group.235

Taking all the mentioned considerations into account, we chose to use 10 and 16 classes for rain and snow profiles, respec-

tively. In 12 of the snow profile class centroids, Ts >−5◦C. In this paper, the rain and snow profile classification models are

termed R-model and S-model, respectively.

::
In

:::
this

::::::
section

:::
we

::::
have

::::::::
described

::::
our

:::::::
approach

:::
for

:::::::::
optimizing

:::
the

:::::::
number

::
of

::::::
classes

::::
with

:::
the

:::::
main

::::::
criteria

::
of

:::::::::
separating

:::
the

::::
main

::::::
profile

::::::::::::
characteristics

:::
and

:::
the

::::::::::
fingerprints

::
of

:::
ice

::::::::
processes

:::
into

:::::::::
individual

:::::::
classes. It should be also noted

:::::
noted,

::::::::
however,240

that there is a large spectrum of research problems and operational applications where an unsupervised profile classification

method such as the one described in this paper could be potentially useful. The optimal number of classes , however, may

depend on the application.

4 Results

Class centroids of rain and snow profile classes are shown in Figs. 2 and 3, respectively. The centroid profiles of dual polariza-245

tion radar variables are inverse transformed from corresponding centroids in PCA space. Classes are numbered in the ascending

order by the value of the first principal component in the class centroids. The
::
By

:::::::::
definition,

:::
the first component has the largest

variance and has therefore the biggest influence on the clustering and classification results. The
::::
value

:::
of

:::
this

:
component is

strongly correlated with intensities of Kdp and Ze.

A number of class centroids in both classification models display distinct features in dual polarization radar variables often250

linked to snow processes, such as bands and gradients in Kdp and ZDR. Such features and their connection to other character-

istics in the vertical structure of the profiles, and finally to the precipitation processes are discussed in this section.

As a general pattern in Figs. 2 and 3 we see the anticorrelation of peak
:::
that

:::
the

::::::
highest

::::::
values

::
of

:
ZDR and

:::
are

:::::::::
associated

::::
with

:::
low

::::
echo

::::
tops

:::::
while

:::
the

::::::
highest Kdp values in the class centroids

:::::
occur

::
in

:::::
deeper

::::::
clouds. This is in line with the previously

9



Figure 2. Class centroid profiles of the R-model. Profile counts per class are shown at the bottom omitting the count for low-reflectivity class

R0. Between the panes, each class has been assigned a color code.

reported findings (Kennedy and Rutledge, 2011; Bechini et al., 2013; Moisseev et al., 2015; Schrom et al., 2015; Griffin et al.,255

2018) that echo tops in dendritic growth layer (DGL )
::::
DGL

:
are associated with high ZDR and low Kdp in the layer, whereas

high Kdp in the DGL with low ZDR is associated with echo tops in T <−37◦C where homogeneous freezing occurs. Using

the NCEP GDAS model output, we analyzed the echo top temperatures, Ttop, of each vertical profile radar observation. The

results, grouped by profile class, are visualized in Fig. 4. It should be noted, that in the summer, cold echo tops may be

caused by strong updrafts in convection, whereas during the winter, echo tops colder than approximately −37 ◦C are a more260

unambiguous indication of homogenous freezing. Inspecting the class centroids in Figs. 2 and 3, and comparing them to echo

top heights in Fig. 4, it is evident that Kdp bands, especially elevated ones, are strongly associated with high echo tops.

The clustering results expose a prominent seasonal difference in Kdp intensity: consistently lower values are present in snow

events. There are 4 rain profile classes in contrast to only 2 snow profile classes with peak cluster centroid Kdp exceeding

0.1°km−1. They represent total fractions of 13 % and 4 % of rain and snow profiles, respectively. Corresponding to this265

difference, in Figs. 2 , 3,
:::
and

::
3,

::
as

::::
well

:::
as

::
in

::::
Figs.

:
7 and 8

:::::::::
introduced

::::
later, Kdp is visualized in different ranges in relation to

rain and snow profiles. The seasonal differences in ZDR and Ze intensities are less prominent. High Kdp in the summer may be

linked to higher water content during the season.

:::::::::
Convection

::
in

:::
the

:::::::
summer,

:::::::::
especially

:
in
:::
the

::::::::
presence

::
of

::::
hail,

:
is
::::::
linked

::
to

:::::::
extreme

:::::
values

::
of

:::::
radar

:::::::
variables

:::
and

::::
high

::::
echo

:::::
tops,

:::::
which

::::
may

::::
also

::::
have

:
a
:::::

small
:::::::::::

contribution
::
to

:::
the

:::::::
seasonal

::::::::::
differences.

::::::::
However,

:::::::::
convective

::::
rain

::::::
storms

:::
are

::
of

:::::
short

::::::::
duration,270

:::
and

::::
thus

:::::::
typically

:::::::
present

::
in

:::
just

::
a
::::::
couple

::
of

::::::
profiles

::::
per

:
a
:::::::::
convective

::::
cell.

:::::::::
Therefore,

::::
their

::::::
impact

:::
on

:::
the

::::
class

:::::::::
properties

:::
are

10



Figure 3. Class centroid profiles of the S-model. Top panel shows class centroid surface temperatures. Profile counts per class are shown at

the bottom omitting the count for low-reflectivity class S0. Between the panes, each class has been assigned a color code.

Figure 4. Cloud top temperature distributions by class (gray) with green line marking the medians. For S-classes, also surface temperature

distribution is shown (blue) with red lines marking the class centroid and yellow lines marking the median. Boxes extend between the 1st

and the 3rd quantiles, and whiskers cover 95 % of the data.

:::::::
expected

::
to

::
be

:::::::
limited.

::::::
Manual

:::::::
analysis

:::::::
revealed

::::
that

::::::
classes

:::
R6

:::
and

:::
R9

::::
have

:::
the

::::::
highest,

::::
and

::
R5

:::
the

::::::
lowest

:::::::
fractions

::
of

:::::::
profiles

::::::::
measured

::
in

:::::::::
convective

::::
cells.

:::::::
Further

:::::
details

:::
of

:::
this

:::::::
analysis

:::
are

::::::::
presented

::
in

:::::
Sect.

:::
4.2.

:
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Figure 5. Class S13 centroid is visualized on the three rightmost panes. Individual class member profiles are marked with thin lines. The

pane on the left shows corresponding NCEP GDAS temperature profiles. The areas between the first and the third quantiles are shaded, radar

data in blue and GDAS in gray.

Class frequencies are presented in the bottom panels of the Figures 2 and 3. Classes S0 and R0 represent very low values ofZe

throughout the column, i.e. profiles with very weak or no echoes. Therefore their frequencies depend merely on the subjective275

selection of observation period boundaries, and are thus omitted in the figures. Boundaries of the precipitation events are partly

based on these two 0-classes. Events are considered independent and separate if between them there are profiles classified as

S0 or R0 continuously for at least 12 hours.

In
::::::
respect

::
of

::::
Kdp ::::::::

intensity,
::::::
classes

::
in the R-model , there are four low-Kdp classes,

:::
can

:::
be

::::::
divided

::::
into

::::
four

:::::::::
categories: R0

through R3 , with maximum centroid specific differential phase, max(Kdp,c)< 0.02°km−1. For
::::
with

::::::::
negligible

::::
Kdp,

::::::::
low-Kdp280

classes R4 and R5 the centroid maximum value is roughly 0.04 °km−1 and for
::::
with

:::::::::::::::::::::::
max(Kdp,c)≈ 0.04°km−1, high-Kdp

classes R6 through R9,
:::
and

:::
R7

::::
with

:
max(Kdp,c)> 0.11°km−1. Centroid Kdp of

:
,
:::
and

:
classes R6 and

:::
R8

:::
and

:
R9 peaks

roughly at 3 km, with 1st and 3rd quantiles at 2.1 km and 4.0 km for
::::::::::
representing

:::::::
extreme

::::::
values

:::::::::::::::::::::::
(max(Kdp,c)≈ 0.5°km−1).

:::
The

::::::::
subscript

:::
"c"

:::::::
denotes

:
a
:::::

class
:::::::
centroid

:::::
value

::
as

::::::::
opposed

::
to

::::::
values

::
in

:::::::::
individual

:::::::
profiles.

:::
The

:::::
peak

:::::
Kdp,c ::

of
::::
both

:
R6 and

at 2.1 km and 3.8 kmfor R9, respectively. Assuming T = 0◦C at ML top, and moist adiabatic lapse rate, 2.1 km and 4.0 km285

correspond to roughly −15 ◦C and −32 ◦C
:::
R9

::
is

::
at

:
3
::::

km,
::::::::::::
corresponding

:::
to

::::
class

:::::
mean

::::::
GDAS

:::::::::::
temperatures

:::
of

:::
-16

:::

◦C
::::
and

:::
-18

:::

◦C, respectively. Essentially, R6 and R9 represent profiles with
:::::
these

:::
two

::::::
classes

::::::::
represent

:::::
clear

:
Kdp in DGL or colder

temperatures
:::::
bands

::
in

:::
the

:::::
DGL.

Classes R7 and R8 feature considerable Kdp in 2–3 km thick layers right above ML, with centroid values slightly below

0.2 °km−1 and around 0.4 °km−1, respectively. Essentially, both classes represent Kdp signatures in both DGL and tempera-290

tures favored by the H-M process. Sinclair et al. (2016) found that the typical Kdp values for the H-M process are capped at

12



Figure 6. Comparing classes R5 (top panels) and S11 (bottom panels) shows evident similarities. Individual class member profiles are marked

with thin blue lines and the areas between the first and the third quantiles are shaded with blue.

0.2–0.3 °km−1 for C-band due to onset of aggregation. Based on this, it can be argued that R7 is a more likely indicator of

H-M than R8.

Classes R3 and R4 were found to often coexist in precipitation events. Both are characterized low Kdp and a band of ZDR in

DGL. In R3 profiles,
:::
Fig.

::
4,

:::
we

:::
see

::::
that the echo tops are lower

::
for

:::
the

:::
R3

:::::::
profiles, typically in the DGL. Therefore, we would295

expect growth of pristine crystals in low number concentrations, and consequently with no significant aggregation. This would

explain why peak ZDR values from 3 to 5 dB are common in relation with R3. Profiles classified as R4, on the other hand, have

slighly higher echo tops
:::::::::::
(T <−20◦C), which are expected to result in higher number concentrations, leading to aggregation.

The R4 profiles are characterized by much lower ZDR values.

In the S-model (Fig. 3), classes S0 through S3 represent profiles with low values of all three radar variables, each with300

max(Ze,c)< 0 dBZ, max(ZDR,c)< 1 dB and max(Kdp,c)< 0.01°km−1. These four low reflectivity classes represent different

surface temperatures, which is likely a major driver for the separation of these classes in the clustering process. Classes S4

and S5 represent low echo top profiles with high ZDR, with class centroid surface temperatures of −9.0 ◦C and −0.6 ◦C,

respectively. Further analysis of NCEP GDAS temperature profiles reveals that, across the board, there is an inversion layer
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present where radar profiles are classified as S4, typically with temperatures below −10 ◦C within the lowest kilometer. This305

corresponds well with the bump in ZDR,c close to the surface, suggesting possible growth of pristine dendrites within a strong

inversion layer. In contrast, there is no inversion in connection with profiles belonging to S5, and the enhancement in ZDR

occurs already at 2 to 3 km above the surface, where the median NCEP GDAS temperature for S5 profiles is roughly between

–18 and −10 ◦C. S5 is the second most common class in S-model classification results.

Classes S6 and S8 represent situations where precipitation is detached from the surface. These types of profiles are typically310

present in association with approaching frontal systems before the onset of surface precipitation. The most frequent class of

the S-model is S9 covering 13 % of the profiles. It represents moderate values of polarimetric radar variables and cloud top

height. The most extreme values of reflectivity andKdp values in the S-model are represented by classes S14 and S15. For both

classes, Kdp,c peaks above 3 km suggesting dendritic growth in the member profiles. Values of ZDR,c are significantly lower

compared to other high echo top classes with weaker Kdp,c.
::::
Class

::::
S15

:::
can

::
be

::::
seen

::
as

::
a

::::
more

:::::::
extreme

::::::
variant

::
of

::::
S14

::::
with

:::::
much315

:::::::
stronger

::::
Kdp,c::::

and
::::
Ze,c.

::
In

:::::::
addition,

::::
S15

::::::::
represents

:::::
lower

::::::
values

::
of

::::
ZDR ::::

near
:::
the

:::::
DGL.

:::::
These

:::::::::
differences

:::
are

:::::
likely

::::
due

::
to

::::
even

:::::
higher

:::
ice

:::::::
number

::::::::::::
concentrations

::
in

:::
S15

:::::::
profiles,

::::::
which

::::
lead

::
to

::::
more

::::::
intense

:::::::::::
aggregation.

Comparing class centroid Ts and class frequencies in Fig. 3 it can be seen that most snowfall occurs at Ts ≈ 0◦C. Further

analysis of GDAS temperature profiles for the snow events revealed that typically cold surface temperatures (Ts <−6◦C)

are heavily contributed by strong inversion layers. The centroid and members of S13 are visualized in Fig. 5, along with the320

member GDAS temperature profiles. The profile class is characterized by a thick layer of considerable Kdp from 2 to 3 km

to the surface, and Ts ≈−10◦C. As seen in the left panel of Fig. 5, S13 represents conditions where T typically falls below

−10◦C close to the surface. This finding suggests that a second DGL may occur in a strong inversion layer.

Sinclair et al. (2016) showed thatKdp at the -8 to−3 ◦C temperature range can be used for identifying the H-M process. Such

fingerprints are present especially in profiles classified as R7 or S12. However, manual analysis of the profile data revealed that325

both of these classes represent a mixture of fingerprints indicating H-M, dendritic growth or the co-presence of both processes.

In several events, there were continuous time frames of profiles classified as either R7 or S12 during which the altitude of the

Kdp signal was changing from profile to profile between DGL and 0 ◦C level, and was occasionally bimodal. One example of

such time frame is shown in Fig. 7 and discussed further in Sec
::::
Sect. 4.1.1.

:::::
Some

:::::::::
bimodality

::
is

::::::
present

::::
also

::
in
::::

the
:::::::
centroid

::::
Kdp,c::

of
:::::
both

::::::
classes,

:::::::::
suggesting

::::
that

:::
the

:::::::
elevated

:::::
Kdp,c :::::

values
:::

in
:::
the

::::
H-M

::::::
region

::::::
cannot

::
be

::::::::
explained

::::::
solely

::
by

:::::::::::
sedimenting330

:::::
planar

:::::::
crystals

::::::::
generated

:::::
aloft,

:::
but

:::
are

:::::::::
contributed

:::
by

:::
the

::::
H-M

:::::::
process.

While neither in rain nor snow profile classification, there are classes with clear-cut Kdp,c bands at altitudes corresponding

to temperatures preferred by the H-M process, there are, in contrast, several classes with strong elevated Kdp,c bands. The

proposal of Sinclair et al. (2016) that Kdp fingerprints of the H-M process are not very pronounced may explain the tendency

of the classification method not to produce more pure H-M classes. Nevertheless, R7 and S12 can be used as indicators for335

conditions where H-M may occur.

Despite the differences in the classification methods for rain and snow profiles, there are prominent similarities between the

two models and profile classes therein. Archetypal classes such as high echotops in the presence of elevated Kdp bands (R6,

R9, S14, S15) or high ZDR in shallow precipitation (R3, S4, S5) exist in both classification models. Frequent classes R5 and
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Figure 7. Classification analysis of a rain case with silhouette scores. The automatically detected melting layer is marked with a dashed line,

solid lines show NCEP GDAS temperature contours, colors between the panes denote classification results.

S11, visualized side by side in Fig. 6 can be considered direct counterparts of each other; The vertical structure of polarimetric340

radar variables above ML in R5 match strikingly well with S11. The two classes are characterized by weak Kdp and typical

values of ZDR slightly above 1 dB aloft, decreasing towards the altitude corresponding to 0 ◦C. Presumably, this indicates the

presence of aggregation.

4.1 Case studies

In Figures 2 and 3, each class is assigned a color code (between the panels). The same
::::
This

:
color coding is used in Figures345

7 and 8 to mark classification results in a rain and a snow case, respectively. Note, that the same set of colors are used for

denoting rain and snow profile classification, but they should not be confused with each other.

4.1.1 August 12, 2014

In Fig. 7, rain profile classification has been applied on a precipitation event from August 12, 2014. During this event, echo

tops repeatedly exceed 10 km. Only the parts of the profiles above melting layer top are analyzed here, since everything below350

that level is invisible to the classifier. The first two and the last two profiles shown in the figure are characterized by low Ze and

low Kdp, while ZDR has values around 1 dB. These profiles are classified as R5 (dark green). Between 2:30 and 3:00 UTC, a

significant increase in Kdp occurs followed with an increase in reflectivity and decrease in ZDR. The temperature (altitude) of

the downward increase in Kdp varies from −20 ◦C level to closer to ML. In this phase, there is also a small increase in ZDR

in the DGL whenever the increase of Kdp also occurs in the DGL. This phase in the event is sustained until around 5:00 UTC355

and is classified as R7 (dark red). It is followed by approximately an hour of a weaker elevated Kdp band at around 4 to 6 km
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Figure 8. Classification analysis of a snow case with silhouette scores. The automatically detected melting layer is marked with a dashed

line, solid lines show NCEP GDAS temperature contours, colors between the panes denote classification results.

altitude with profiles classified as class R6 (light green). The silhouette coefficient is positive throughout the event indicating

good confidence of the classification results. The silhouette of the profiles classified as R6 is not very high, though, which is

likely due to lower values of Ze compared to the class centroid.

Similar analysis of more rain events in the data set reveals that, similarly to the August 12 event, R7 typically coincides360

with an increase of Kdp in the DGL, H-M layer or both, often with varying altitude. Without in situ observations or analysis

of Doppler spectra, it is not trivial to tell whether this variability is due to co-presence of dendritic growth and H-M, or simply

fall streaks. Class R6, on the other hand, is more specific to a Kdp fingerprint in the DGL. The more infrequent profiles with

clear Kdp bands above the DGL are typically also classified as R6 or R9.

4.1.2 February 15–16, 2014365

Classification results for February 15–16, 2014 are shown in Fig. 8. The event has a clear structure of an approaching frontal

system. Between 17 and 18 UTC Ze is very low, corresponding to class S0, which is marked with white color between the

panels. Between 18 and 21 UTC, the event starts with overhanging precipitation, classified as S6 (light green). This is followed

by light precipitation with echo tops roughly 7 to 8 km, and relatively high ZDR near the echo top, decreasing downwards.

This corresponds well with class S11 (dark brown). After 23:30 UTC, The echo top height is decreased to roughly 6 km, ZDR370

is decreased and Kdp signals appear close to ground level. The increase in Kdp occurs within the -8 to −3 ◦C temperature

range suggesting the presence of the H-M process. Indeed, Kneifel et al. (2015) report needles, needles aggregates and rimed

particles on the surface at the measurement site during this period, and favorable conditions for rime splintering. Further, using
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Figure 9. Statistics on frequency of each profile class. Classes are identified by class centroid Ze at the top panels, class centroid Ts for snow

profile classes (b2), color codes between the panels and class IDs at the bottom. Class frequencies are given as relative class frequencies in

convective events compared to average (a2), percentage of events (a3, b3) and total durations (a4, b4) within events.

Weather Research and Forecast (WRF) model, Sinclair et al. (2016) showed that secondary ice processes are needed to explain

the observed number concentrations during this time period. The corresponding profiles are classified as S12 (light brown).375

Within this case study, two profiles, marked with dark purple color, are classified as S9, likely due to the momentary absence

of any strong Kdp or ZDR signals.

4.2 Statistics

Frequency statistics of the profile classes are presented in Fig. 9. We analyzed a subset of rain events as either convective or

stratiform using a number of sources of publicly available satellite and numerical model data. Out of 86
::
70 events analyzed,380

17
::
15 were convective and 69

::
55 stratiform. Panel (a2) in Fig. 9 shows the normalized frequency of the classes in convective

events. On average, twice as many profiles are classified as R6 and R9 in convective situations compared to their average

frequencies. Both classes are characterized by high echo tops and elevated Kdp bands. On the other hand, classes R7 and R8,

also representing high Kdp values, but closer to the melting layer than R6 and R9, appear in lower than average frequency in

convective situations. Class R5 is most pronouncedly characteristic for stratiform events, with frequency in convective events385

roughly one third of the average value.

Panels (a3) and (b3) of Fig. 9 show the fractions of independent precipitation events in which each class occurs. With rain

events, this frequency correlates inversely with Kdp,c. Rain profiles classified as R8 and R9, which represent the strongest Kdp
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signatures, occur in 20 % and 19 % of the events, respectively, with at least one of the two occurring in 25 % of the events.

Classes R6 and R7, which also represent considerable Kdp features, occur in 45 % and 57 % of cases, respectively, and the rest390

of the classes between 67 % and 92 % of the cases.

With snow events, the likelihood of a given class occurring within an event correlates not only with peak Kdp,c but also with

surface temperature. Any class representing low Kdp values and surface temperature close to 0 ◦C occurs in more than half of

the snow events.

The per precipitation event class persistence is visualized in the bottom panels of Fig. 9. Profile classes representing the395

highest values of Ze at the surface, namely R6–R9, S12, S14 and S15, are short-lived, whereas snow profile classes character-

ized by cold surface temperatures are the most persistent. Profiles classified as R0 or S0 omitted, the median durations of rain

and snow events in the data set are 5.5 h and 11.5 h, respectively. This difference explains why S-classes are on average more

persistent than R-classes.

5 Conclusions400

A novel method of dual polarization radar profile classification for investigating vertical structure of snow processes in the

profiles was presented in this paper. The method is based on clustering of data-driven features of vertical profiles of Kdp, ZDR

and Ze. It was applied on vertical profile data extracted from C-band RHI scans over Hyytiälä measurement station in Southern

Finland. We applied separate versions of the method based on if surface precipitation type was rain (R-model) or snow (S-

model). In the R-model, profiles are truncated at the melting layer top, and in the S-model, surface temperature is used as an405

additional classification feature. The content of the vertical profile classes was manually interpreted.

In the present investigation, some class centroids resembled textbook examples of previously documented snow process

fingerprints, while others may represent a mixture of different conditions. If temperature profiles from either soundings or

numerical models are available, the interpretation can be done in the absence of surface crystal type reports. Notably, this is

prequisite in cases of rainfall when direct observations of crystal types cannot be performed at the surface.410

The year-round variability in the vertical structure of Kdp, ZDR and Ze can be described using a total of 26 profile classes;

10 and 16 in the presence and absence of ML, respectively. One of the main goals of this study was to associate profile classes

with snow processes for their automated identification. It should be noted, though, that the profile classification is not based

on expressly selected characteristics of radar fingerprints of the processes, but rather the general, complete structure of the

profiles. Nevertheless, some profile classes seem to be strong indicators of specific processes or their combinations within the415

vertical profiles. From both classification models we can identify a total of 7 archetypes with the following characteristics:

1. Strong Kdp band in DGL, while ZDR band is not pronounced. Deep precipitation system with homogeneous freezing at

the cloud top. Associated with intensified dendritic growth leading to aggregation and high precipitation rate. (Classes

R6, R9, S14, S15)

2. Kdp signature between DGL and 0 ◦C level possibly due to simultaneous occurrence of dendritic growth and secondary420

ice production. Homogeneous freezing at the cloud top. (R7, R8, S12)
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3. High echo top, negligibleKdp, andZDR > 1 dB, which decreases closer to the melting level due to aggregation. Typically,

Ze < 20 dBZ. (R5, S11)

4. Cloud top between -30 and -20 ◦C level, with only a weak ZDR band at -15 ◦C level. Moderate Ze of roughly 20–30 dBZ,

and weak Kdp. (R4, S9)425

5. Strong ZDR of typically more than 1.5 dB at the cloud top at around -15 ◦C level associated with growth of pristine planar

crystals in low number concentrations. No Kdp is present, and low values of Ze indicate the absence of aggregation. (R3,

S5)

6. Echo detached from the surface due to snow particles either not having reached the surface yet or sublimating due to a

dry layer. (R2, S3, S6, S8)430

7. Weak or no Ze. (R0, S0–S2)

In addition to these archetypes found in both summer and winter storms, there are S-classes representing situations where

strong inversions interfere with snow processes. Notably, we found indications of dendritic growth in strong inversion layers,

manifested as class S13.
::
As

:::
the

:::::
colder

:::::
arctic

::
air

:::::
mass

::::::
seldom

::::::
occurs

::
in

:::::::
Southern

:::::::
Finland,

:::::::::::
Ts <−10◦C

:::
can

::::::
usually

:::
be

::::::::
attributed

::
to

:
a
::::::
strong

:::::
lower

::::
level

:::::::::
inversion.

::::
Such

:::::::::
inversions

::::
may

:::::
have

::
an

::::::::
important

::::::
effect

::
on

:::
the

:::::::::
frequency

::
of

::::::::::
occurrence

::
of

:::::
some

:::
ice435

::::::::
processes.

:::::::
Further,

:::
this

:::::::
implies

:::
that

::::::::::
temperature

::::::::::
information

::::
near

:::
the

::::::
surface

::
is
:::::::::
necessary

::
in

::::
order

::
to
:::::::::
determine

:::::::
whether

:
a
::::
low

::::::
altitude

::::
Kdp ::::::::

signature
::
in

:::
the

:::::
winter

::
is

::
an

::::::::::
implication

::
of

:::
the

::::
H-M

:::::::
process

::
or

::::::::
dendritic

::::::
growth.

:

Our approach to the classification problem is pronouncedly data-driven. This way, if the training material represents the

climatology of ice processes and their radar signatures, as was the aim in this study, the resulting classes will reflect the

statistical properties of this climatology. Hand picking the training material, on the other hand, would introduce human bias to440

the class boundaries.

However, there are possible drawbacks in the data-driven approach. The typical radar fingerprints of the H-M process were

found to be much more scarce than those of dendritic growth, and often less pronounced. This negatively affects how the

typical fingerprints of H-M process are represented in the classes. This could be enhanced by introducing a larger fraction of

H-M profiles in the training data.445

:::::::
Another

::::::::::
disadvantage

:::
in

:::
the

:::::::::
data-driven

::::::::
approach

::
is

:::
that

::::::::
covering

:
a
::::::::::
meaningful

::::::::
collection

:::
of

::::::
unique

:::::::::
fingerprints

:::::::
requires

::
a

::::
large

:::::::
number

::
of

:::::::
clusters,

:::::
some

::
of

:::::
which

:::
do

:::
not

::::::::
represent

::::::
unique

::::::::::::
microphysical

:::::::::
processes.

::::
This

:::::::
problem

::::
may

::
be

:::::::::
mitigated

::
to

::::
some

::::::
extent

::
by

::::::
further

:::::::::
optimizing

:::
the

::::::
scaling

::
of

:::
the

:::::
radar

:::::::
variables

::::
such

::::
that

:::
the

::::::::
clustering

::::::
would

::
be

:::
less

::::::
driven

::
by

::::::::::
differences

::
in

:::
the

::::::::
intensities

:::
of

:::
the

::::::::
signatures

::
in
:::::::

contrast
::
to
:::::

their
::::::
shapes.

:::::::
Another

::::
way

::
to

:::::::
address

:::
this

:::::
issue

::
is

::
to

::::::
simply

::::::::
combine

::::::
classes

:::
that

:::::
seem

::
to

::::::::
represent

:::
the

::::
same

:::::::::
processes,

::
in

::::
like

::::::
manner

::
of

:::
the

::::::::::
archetypes

::::::::
presented

::::::
above.

::::::::
Reducing

:::
the

::::::
number

:::
of

::::::
classes450

::
by

::::::
simply

::::::::
choosing

:
a
:::::::
smaller

:
k
:::

in
:::
the

:::::::
k-means

:::::::::
clustering

:::::
would

::::::
reduce

:::
the

:::::::
amount

::
of

::::::
manual

:::::
work

:::::::
involved

:::
in

:::::::
defining

:::
the

::::
class

:::::::::
boundaries

::
at

:::
the

::::
cost

::
of

::::::::
decreased

:::::
detail

:::
and

::::::::
accuracy

::
in

::::::::
separating

:::
the

:::::::::
processes.

::::
With

::
a

::::::
smaller

::
k,

:::
the

::::::::
clustering

::::::
would

::
be

::::::
driven

::
by

:::::
more

::::::
general

:::::::
features

:::
of

:::
the

::::::
profiles

::::
such

:::
as

:::
the

::::::
overall

:::::
shape

::::
and

:::::::
intensity

::
of

:::
the

:::::::::::
polarimetric

::::
radar

:::::::::
variables,

:::::::
whereas

::::::::
especially

:::
the

::::::
typical

::::::::::::
characteristics

::
of

:::
the

::::
H-M

:::::::
process

::::::::::
fingerprints

::::::
involve

:
a
::::::
higher

::::
level

::
of

::::::
detail.
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:::
The

:::::::::::
classification

:::::::
method

:::::::::
presented

::
in

::::
this

:::::
study

::::::
should

:::
be

:::::::::
considered

::
a
:::::::
starting

:::::
point

::
in

::::::::
studying

::::::
vertical

:::::::
profiles

:::
of455

::::
radar

::::::::
variables

:::::
using

:::::::::::
unsupervised

:::::::::::
classification.

:::
As

:::::
such,

:::::
there

::
is

:
a
::::
vast

:::::
range

::
of

:::::::::
potentially

::::::
useful

:::::::::::
opportunities

:::
for

::::::
further

::::::::::
development

::
of

:::
the

:::::::
method.

::::
The

::::::
method

::
is
::::
built

:::
on

:::::::
reasoned

:::
use

:::
of

::::
well

::::::
known,

::::::
proven

:::::::::
algorithms

::::
such

::
as

:::::
PCA

:::
and

::::::::
k-means.

:::
We

:::::::
showed

:::
that

::::
this

:::::::::::
combination

::
of

::::::::
machine

:::::::
learning

::::::::::
algorithms

::::::
allows

::::
both

::::::::::::
identification

::
of

::::::
known

::::::::::
fingerprints

::::
and

::
a

::::
more

::::::::::
explorative

::::::::
approach

::
in

::::::::
studying

:::
the

::::::::::::
characteristics

::
of

::
a
:::::::
regional

:::::::::::
climatology

::
of

:::::::::::
precipitation

:::::::::
processes.

::::::::
However,

::
a

::::::::::::
comprehensive

::::::::::
comparison

::
of

:::
the

::::::::
numerous

:::::::::
alternative

:::::::::
algorithms

::
is

::::::
outside

:::
the

:::::
scope

:::
of

:::
this

:::::
study.

:
460

::
In

:::
the

::::::
present

:::::::::::
classification

::::::::
method,

:::::::
ambient

::::::::::
temperature

::
is

::::::
known

::::
only

::
at
::::

the
:::::
profile

:::::
base.

:::::::::
Compared

::
to
::::

the
:::
use

::
of

::::
full

::::::::::
temperature

:::::::
profiles,

::::
this

::::::::
simplifies

:::
the

::::::::
method,

:::
and

:::::::
perhaps

:::::
even

:::::
more

::::::::::
importantly,

::::
the

:::::::::::
requirements

:::
for

:::
the

:::::
input

:::::
data.

::::::::
However,

:::::
future

::::::
studies

:::::
should

:::::::::
investigate

::
if

:::
the

:::
use

::
of

:::
full

::::::::::
temperature

::::::
profiles

::::::
allows

:::::
more

:::::::
accurate

::::::::
separation

::
of

:::::::::::
precipitation

::::::::
processes

:::
into

::::::::
different

::::::
classes.

:

:::
The

:::::::::::
unsupervised

::::::
nature

::
of

:::
the

:::::::::::
classification

:::::::
method

::
is

::::::::
expected

::
to

:::::
allow

::::::::
extending

:::
its

:::::::::
application

::
to
::::

the
:::::::
detection

:::
of

:::
ice465

::::::::
processes

:::
not

::::::
covered

::
in
::::
this

:::::
study.

::::::::
Recently,

:::::::::::::
Li et al. (2018)

::::::
showed

:::
that

::::::
certain

::::::::::::
combinations

::
of

:::
Ze,

::::
ZDR,

:::
and

::::
Kdp:::::::::

signatures

:::
can

:::::::::
potentially

::
be

::::
used

:::
for

::::::::
detecting

:::::
heavy

::::::
riming.

:::::::::::
Furthermore,

:::
the

:::::::
process

::
is

::::::::
frequently

::::::::
observer

:
if
::::::::
Finland,

::::::::::
highlighting

:::
the

:::::::
potential

::
of

:::::
using

::
an

:::::::::::
unsupervised

:::::::
method

:::
for

::
its

::::::::::::
identification.

The ability to describe a climatology of vertical stucture of dual polarization radar variables and, further, precipitation pro-

cesses using a finite number of classes has evident potential in improving quantitative precipitation estimation. We anticipate470

that automated detection of ice processes may allow the development of adaptive relation for snowfall rate S = S(Ze), in which

the parameters could be chosen based on the profile classification result. Adaptive S(Ze) relations, in turn, have potential in im-

proving vertical profile of reflectivity correction methods. Future work will be devoted to investigating the use of unsupervised

profile classification in such applications.

Data availability. The FMI radar and surface temperature data are available from the Finnish Meteorological Institute open data portal:475

https://en.ilmatieteenlaitos.fi/open-data-sets-available.
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