
General comment 

The authors have replied to all comments and taken into account all suggestions for 

additional analyses. The paper is improved to a large extent, due both to the added 

discussions, as well as the re-structured content. I recommend acceptance of the 

manuscript after the following minor revisions: 

Response: 

We appreciate these positive comments, it is your valuable comments that make this 

manuscript improved. The specific corrections that are addressed below. 

 

Specific comments 

(line numbers refer to the marked-up version of the revised manuscript) 

Lines 107-111: the added discussion on MODIS C6 should be moved to the end of 

this paragraph, i.e. after the discussion on validation studies concerning C5. 

R: We thanks for your insight comments. The modification has been made in Lines 

107-111: 

“To acquire ADRF, the inputs (aerosol optical depth (AOD), SSA, ASY, albedo, etc.) to 

the radiative transfer model were determined from a combination of satellite and 

reanalysis datasets. AOD was derived from Collection 6 (C6) of MODIS Level 2 

products over land (10-km resolution at the nadir) from the Terra satellite (Levy et al., 

2013). MODIS AOD retrieval primarily employs three spectral channels, centered at 

0.47, 0.66, and 2.1 μm and is interpolated at 0.55 μm (Kaufman et al., 1997). Li et al. 

(2003) demonstrated that the MODIS AOD Level 2 product is appropriate in eastern 

China and exhibits high precision. Compared with C5, MODIS C6 mainly updated the 

cloud mask to allow heavy smoke retrievals and fine-tuned the assignments for aerosol 

types as function of season and location over the land. Levy et al. (2013) made a 

comparison between MODIS C5, C6 and AERONET, and found that the correlation 

coefficient of C6/AERONET increases slightly, and the slope and offset of the regression 

curve only changed slightly compared with C5/AERONET. In addition, He et al. (2010) 

found that MODIS AOD was highly correlated with sunphotometer (CE318) 

measurements at 7 sites in the Yangtze River Delta (YRD) region (118°-123°E, 29°-



33°N), with a correlation coefficient of 0.85 and with 90% of cases falling in the range 

of ΔAOD = ± 0.05 ± 0.20 AOD (Chu et al., 2002). Thus, the uncertainty in the AOD is 

regarded as 20% in this study.” 
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Lines 235-237: these two sentences belong to the figure caption and should be 

removed from the main text. 

R: Thanks for your suggestion. The two sentences about the descriptions of Figure 3 

(Lines 235-237) has been removed from the revised manuscript. 

 

Lines 420-421: “AOD is much larger than these cities/regions” is repeated in the 

same sentence. Please rephrase. 

R: Thanks for your careful advice. The sentence has been rephrased: 



“The main reason is that AOD in East China is much larger than these cities, since 

East China has experienced rapid urbanization and economic development in the past 

17 years and a robust increase can be found in anthropogenic emissions.” 

 

Line 471: Figure 8 shows that AOD and ADRF are anti-correlated. Shouldn’t a 

negative value of the correlation coefficient be expected? 

R: We are sorry to make the mistakes about that. The correlation coefficient of AOD 

and ADRF is negative, with the value of -0.72. The according modification has been 

corrected in the revised manuscript. 

 

Figure 8: Please mention in the figure caption that these data are deseasonalized. 

The legend is also probably wrong (continuous red line should be AOD?), and the 

red dashed line (AOD fitting trend) seems to match exactly the zero line. Please 

check. 

R: Thanks for your careful suggestion. The caption in Figure 8 has added that “these 

data are deseasonalized”. The legends have been corrected, that is, continuous red line 

is AOD, dashed line represent the AOD fitting trend. The red dashed line seems to 

match the zero line, this is because the AOD trend is about 0.3068 × 10−4 month-1, 

this value is nearly close to zero. This modification has been done in the revised 

manuscript. 

“MK trends of ADRF and AOD are both positive but insignificant at 90% confident 

level, especially for AOD trend, the value is nearly close to zero. It shows AOD and 

ADRF did not change significantly during 2000-2016 in East China.” 



 

Figure 8: Time series of monthly mean ADRF (blue) and AOD (red) in East China from 2000 

to 2016. These data are deseasonalized. Dashed lines represent the Mann-Kendell (MK) 

fitting trend of ADRF and AOD. 
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Abstract. Atmospheric aerosols play a crucial role in regional radiative budgets. Previous studies on 

clear-sky aerosol direct radiative forcing (ADRF) have mainly been limited to site-scale observations or 

model simulations for short-term cases, and long-term distributions of ADRF in China has not been 

portrayed yet. In this study, an accurate fine-resolution ADRF estimate at the surface was proposed. 

Multiplatform datasets, including satellite (MODIS aboard Terra and Aqua) and reanalysis datasets, 

served as inputs to the Santa Barbara Discrete Atmospheric Radiative Transfer (SBDART) model for 

ADRF simulation with consideration of aerosol vertical profile over East China during 2000-2016. 

Specifically, single scattering albedo (SSA) from the Modern-Era Retrospective Analysis for Research 

and Application, version 2 (MERRA-2) was validated with sunphotometers over East China. The gridded 

asymmetry parameter (ASY) was then simulated by matching the calculated top-of-atmosphere (TOA) 

radiative fluxes from the radiative transfer model with satellite observations (Clouds and the Earth’s 

Radiant Energy System (CERES)). The high correlation and small discrepancy (6-8 W m-2) between 

simulated and observed radiative fluxes at three sites (Baoshan, Fuzhou, and Yong’an) indicated that 

ADRF retrieval is feasible and has high accuracy over East China. Then this method was applied in each 

grid of East China, and the overall picture of ADRF distributions over East China during 2000-2016 was 
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displayed. ADRF ranges from -220 to -20 W m-2, and annual mean ADRF is -100.21 W m-2, implying 

that aerosols have strong cooling effect at the surface in East China. With the economic development 

and rapid urbanization, the spatiotemporal changes of ADRF during past 17 years are mainly attributed 

to the changes of anthropogenic emissions in East China. Our method provides the long-term ADRF 

distribution over East China for the first time, highlighting the importance of aerosol radiative impact 

under climate change. 

1 Introduction 

Atmospheric aerosols play a significant role in air quality, regional/global climate and human health 

(Wang et al., 2018; Wang et al., 2019). Aerosols can directly absorb and scatter solar radiation, and 

indirectly affect cloud formation and precipitation by acting as cloud condensation nuclei or ice nuclei 

(Twomey, 1977; Rosenfeld, 1999). Large amounts of scattering aerosols can generally attenuate 

incoming solar radiation. This reduction in surface radiation significantly impacts the surface 

temperature, crop growth and solar energy availability (Chameides, 1999; Liao et al., 2015). On the other 

hand, highly absorbing aerosols, such as black carbon, can warm the atmosphere, alter regional 

atmospheric stability, and even influence the large-scale circulation and hydrologic cycle with significant 

regional climate effects (Menon et al., 2002; Wang, J. et al., 2009). Aerosol direct radiative forcing 

(ADRF) is a good metric for evaluating the impact of aerosols to radiation by absorption and scattering, 

and is defined as the difference between the net radiative flux of earth-atmosphere systems with and 

without aerosols. Anthropogenic aerosols produce a global mean negative direct radiative forcing of -

0.35±0.5 W m-2 of ADRF, which has dampened the warming effect of greenhouse gases (IPCC, 2013). 

However, the current assessment of ADRF remains highly uncertain. This uncertainty mainly results 

from the large variations in aerosol concentrations, chemical compositions, optical properties, mixing 

states, and vertical profiles (Haywood and Boucher, 2000; Tian et al., 2018a). Therefore, an accurate and 

feasible method for ADRF retrieval is greatly required. 

Reduction in these uncertainties requires the integration of different techniques and datasets (e.g., surface 

measurement, model simulation, and satellite remote sensing) (Yu et al., 2006). To better understand 

aerosol optical properties and their radiative effect, several ground-based networks have been established 

worldwide, such as the AEROsol Robotic Network (AERONET) (Holben et al., 2001), Global 



Atmosphere Watch-Precision Filter Radiometer network (GAW-PFR) (Nyeki et al., 2015), China 

Aerosol Remote Sensing Network (CARSNET) (Che et al., 2009) and Chinese Sun Hazemeter Network 

(CSHNET) (Xin et al., 2007). Moreover, intensive field experiments have been carried out over China, 

such as Beijing, Xianghe, Taihu, Wuhan, Shanghai, Lanzhou (Li et al., 2003; He et al., 2012a; Wang et 

al., 2014; Yu et al.,2016a; Gong et al., 2017; Zhang et al.,2018). Such measurements are conducive to 

the wider knowledge of aerosol properties, which are helpful for improving the performance of satellite 

and model simulations through synthesis. Nevertheless, available measurements are usually restricted in 

terms of spatial and temporal coverage. In addition to surface measurements, model simulations play an 

indispensable role in the estimation of the aerosol radiative effect at the global scale and excel in 

predicting past or future trends of ADRF (Chang and Liao, 2009; Qiu et al., 2017). Meanwhile, model 

simulations are subject to large uncertainties in terms of emissions, transport, and physical and chemical 

parametrization schemes (José A. et al., 2013). 

Compared to the above methods, satellite remote sensing has an outstanding advantage of delivering 

aerosol information with higher spatial resolution and larger spatial coverage. Using solely satellite data 

or a combination with model simulations and observations constraint, many methods have been 

developed to retrieve global and regional ADRF estimates (e.g., Yu et al., 2004; Bellouin et al., 2005; 

De Graaf et al., 2013). However, these studies have mainly concentrated on the top-of-atmosphere (TOA) 

radiation budget. Thus far, long-term estimates of the surface ADRF distribution have rarely been 

addressed and few studies gave a full picture of surface ADRF over land (e.g.: Thomas et al., 2013; 

Chung et al., 2016). This lack of research is because satellites are unable to measure surface-level 

radiative fluxes directly. Furthermore, the retrieval of aerosol microphysical parameters remains 

challenging, including single scattering albedo (SSA, see Table 1 for the acronyms) and asymmetry 

parameter (ASY). Many attempts have been made to solve this key problem. For instance, Thomas et al. 

(2013) adopted prescribed aerosol properties from the literature to estimate surface ADRF. Fu et al. (2017) 

took aerosol optical parameters from some AERONET sites as representative of the entire region to 

conduct grid-cell ADRF simulations. Undoubtedly, additional uncertainty was introduced by the 

assumption of aerosol optical representativeness in the temporal and spatial dimensions. Some studies 

also nudged global model simulations towards AERONET SSA to obtain the aerosol parameters (Chung 

et al., 2016). With the rapid development of satellite technology, more satellites are providing more 

detailed aerosol optical products via instruments such as the Polarization and Directionality of the Earth’s 



Reflectance instrument (POLDER), and the Ozone Monitoring Instrument (OMI) (Levelt, et al., 2006; 

Tilstra and Stammes, et al., 2007). However, the accuracy of the SSA and ASY products over China still 

needs to be improved (Oikawa et al., 2013; Dubovik, et al., 2019). Recently, using satellite and 

observational data assimilated into the Goddard Earth Observing System, version 5 (GEOS-5), the 

National Aeronautics and Space Administration (NASA) has extended the Modern-Era Retrospective 

Analysis for Research and Application, version 2 (MERRA-2). Compared with its predecessor 

(MERRA-1), MERRA-2 offers important improvements in aerosol assimilations (Gelaro et al., 2017). 

The new dataset has the potential to provide improved estimates of aerosol microphysical parameters, 

such as SSA, and can be further used in the ADRF estimation. After SSA is determined, ASY, the only 

unknow model input, can be retrieved by matching the simulated radiative fluxes with satellite 

measurements from Clouds and the Earth’s Radiant Energy System (CERES). Overall, based on the 

satellite and reanalysis datasets, including MERRA-2, the MODerate Resolution Imaging 

Spectroradiometer (MODIS) and CERES, the objective of this study is to  provide quantitative estimates 

of fine-resolution ADRF distributions under the clear skies using a radiative transfer model over East 

China (114°-124°E, 24°-38°N, shown in the Figure 1). Additionally, the aerosol vertical profiles in each 

grid, which were not considered in previous studies, are used to obtain more accurate ADRF. In our study, 

aerosol vertical profiles are determined by the Weather Research and Forecasting Model (WRF, version 

3.2.1) and the National Centers for Environmental Prediction-Final Operational Global Analysis (NCEP-

FNL). The detailed algorithm of aerosol profiles can be found in Section 2. Other data acquisition is also 

presented in Section 2, and Section 3 introduces the method of ADRF simulations. Section 4 includes 

the retrieval of aerosol optical properties, validation of surface radiative fluxes with pyranometers, and 

detailed discussion of the error sources. Then this method is applied in each grid of East China during 

2000-2016, and the uncertainty in the retrieval method is also discussed in Section 4. The conclusion is 

presented in Section 5. 

2 Data 

To acquire ADRF, the inputs (aerosol optical depth (AOD), SSA, ASY, albedo, etc.) to the radiative 

transfer model were determined from a combination of satellite and reanalysis datasets. AOD was derived 

from Collection 6 (C6) of MODIS Level 2 products over land (10-km resolution at the nadir) from the 

Terra satellite (Levy et al., 2013). Compared with C5, MODIS C6 mainly updated the cloud mask to 



allow heavy smoke retrievals and fine-tuned the assignments for aerosol types as function of season and 

location over the land. Levy et al. (2013) made a comparison between MODIS C5, C6 and AERONET, 

and found that the correlation coefficient of C6/AERONET increases slightly, and the slope and offset 

of the regression curve only changed slightly compared with C5/AERONET. MODIS AOD retrieval 

primarily employs three spectral channels, centered at 0.47, 0.66, and 2.1 μm and is interpolated at 0.55 

μm (Kaufman et al., 1997). Li et al. (2003) demonstrated that the MODIS AOD Level 2 product is 

appropriate in eastern China and exhibits high precision. Compared with C5, MODIS C6 mainly updated 

the cloud mask to allow heavy smoke retrievals and fine-tuned the assignments for aerosol types as 

function of season and location over the land. Levy et al. (2013) made a comparison between MODIS 

C5, C6 and AERONET, and found that the correlation coefficient of C6/AERONET increases slightly, 

and the slope and offset of the regression curve only changed slightly compared with C5/AERONET. In 

addition, He et al. (2010) found that MODIS AOD was highly correlated with sunphotometer (CE318) 

measurements at 7 sites in the Yangtze River Delta (YRD) region (118°-123°E, 29°-33°N), with a 

correlation coefficient of 0.85 and with 90% of cases falling in the range of ΔAOD = ± 0.05 ± 0.20 AOD 

(Chu et al., 2002). Thus, the uncertainty in the AOD is regarded as 20% in this study. 

Hourly SSA product was provided by MERRA-2. MERRA-2 combines GEOS-5 and the three-

dimensional variational data assimilation (3DVar) Gridpoint Statistical Interpolation analysis system 

(GSI). GEOS-5 is coupled to the Goddard Chemistry, Aerosol, Radiation and Transport (GOCART) 

aerosol module, which includes five particulate species (sulfate, dust, sea salt, organic and black carbon) 

(Colarco et al., 2010). The optical properties of these aerosols are primarily from the Optical Properties 

of Aerosols and Clouds (OPAC) dataset, in which aerosol optical parameters are calculated based on the 

microphysical data (size distribution and spectral refractive index) under the assumption of spherical 

particles and they are given for up to 61 wavelengths between 0.25 and 40 μm (Hess et al., 1998). 

MERRA-2 provides SSA data at 0.55 μm. It is calculated by the ratio of total aerosol scattering aerosol 

optical thickness (AOT) to total aerosol extinction AOT at 0.55 μm, and these two are the outputs of 

GOCART model (Colarco et al., 2010). More details of the aerosol module in MERRA-2 can be found 

in Randles et al. (2017) and Buchard et al. (2017). The new dataset has been used in many recent studies 

and is appropriate for environmental and atmospheric research (Song et al., 2018). The input SSA was 

interpolated to other wavelength in SBDART, which will be discussed detailly in the Methodology 

(Section 3). 



The upward radiative flux at TOA was used to constrain and determine the ASY. The shortwave (SW, 

0.3-5 μm) TOA flux was acquired by CERES Single Scanner Footprint (SSF) level 2 product from Terra 

satellite. CERES SSF measures the instantaneous reflected SW radiance under clear-sky conditions. To 

convert from radiance to flux, angular distribution models (ADM) were used in the CERES SSF product 

(Loeb et al., 2003). The CERES file contains one hour of data, and the CERES SSF footprint nadir 

resolution is approximately 20 km. According to Su et al. (2015), the uncertainty of TOA SW flux is 1.6% 

over clear land. 

Another important parameter for ADRF simulations is the surface albedo, and it was derived from daily 

MODIS MCD43C3 black-sky albedo product (C6). Surface albedo product includes seven narrow bands 

and three broadbands (visible (0.3-0.7 μm), near-infrared (0.7-5.0 μm), and SW (0.3-5 μm)).  Here, 

albedo product in SW band was used in our study.  Each file contains 16 days of combined Level 3 data 

from the satellites Aqua and Terra, with a spatial resolution of 0.05°. It also contains the data quality 

information, that is, the proportion of inversion retrieval information in each pixel. For example, data 

quality index 0 represents the best quality (100% with full inversion and no fill values), this index 

increases with the decrease of the proportion of inversion retrieval pixel, and 4 represents 50% or less 

fill values. Notably, to ensure accuracy, only the albedo values with high quality index (0-4) were used. 

The uncertainty in the high-quality MODIS albedo is less than 5% (Cescatti et al., 2012). 

The total column ozone, total column water vapor and atmospheric profile data were from the ERA-

Interim (European Center for Medium-Range Weather Forecast (ECMWF) Interim Reanalysis). 

Specifically, the atmospheric profile includes the altitude, temperature, water vapor density, and ozone 

density at 37 pressure levels (1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100 to 250 at 25-hPa intervals, 300 to 750 

at 50-hPa intervals, and 775 to 1000 at 25-hPa intervals). The data quality of the ERA-Interim reanalysis 

data can be found in Dee et al. (2011). 

The aerosol vertical profile plays a non-negligible role in aerosol radiative forcing.  In SBDART, aerosol 

vertical profile is shaped by aerosol density and the according altitude. The aerosol density is a proportion 

of AOD in different altitude, and the overall profile is scaled by AOD. The aerosol density is set to fall 

exponentially between two altitudes by default. In our study, aerosol vertical profile in SBDART was 

derived from two-layer aerosol vertical distribution model, which is proposed by He et al. (2008). In this 

two-layer aerosol model (Figure S1), aerosol extinction coefficient is assumed to decrease exponentially 

with altitude above the top of the planet boundary layer (PBL) and the extinction coefficient keeps 



uniform below the PBL. Based on this aerosol model, two inputs of aerosol vertical profile need to be 

determined, PBL and aerosol layer height (ALH).  ALH is defined as the level where the aerosol 

extinction coefficient decreases to 1/e (scaling height) of that at the top of the PBL. PBL and ALH input 

to SBDART along with the according aerosol density. In this study, PBL was simulated using a three-

domain, two-way nested simulation of the WRF Model (version 3.2.1). ALH can be influenced by the 

transport of air mass and the convective dispersion of aerosols, both of which are usually associated with 

large-scale weather systems. Based on the different meteorological conditions, an automated workflow 

algorithm of ALH was constructed, and ALH was estimated by the meteorological parameters (relative 

humidity, temperature, wind speed and wind direction) from NCEP-FNL. The detailed algorithm and the 

according calculations of PBL and ALH retrieval can be found in the He et al. (2016). The aerosol profiles 

were utilized to calculate the surface-level visibility from AOD, and the long-term spatial comparison 

with surface measurements over East China displayed that 90% of the samples exhibited correlation 

coefficients greater than 0.6 and that 68% of the samples exhibited correlation coefficients greater than 

0.7 (He et al., 2016).  

All of these multiplatform datasets with their spatial and temporal resolutions were summarized in Table 

2. In this study, bilinear interpolation was used in these datasets, and these datasets were interpolated to 

a spatial resolution of 0.1°×0.1° to collocate with the MODIS/AOD data. The ADRF simulation was also 

performed in each 0.1°×0.1° grid over East China. For temporal resolution, AOD and TOA radiation 

fluxes were from the MODIS and CERES sensor aboard the Terra satellite respectively, and they are 

available once per day. Both SSA and ERA-Interim are hourly means, surface albedo product in daily 

means. The ADRF simulations were only performed at the passing over of the Terra satellite under clear 

skies. The temporal coverage is from 2000 to 2016. The research area and surface measurement sites for 

validation are shown in Figure 1.  

3 Methodology 

Clear-sky ADRF in the SW (0.25-4 μm) spectral region was simulated by the Santa Barbara Discrete 

Atmospheric Radiative Transfer (SBDART) model (Ricchiazzi et al., 1998). This model has been widely 

adopted for the estimation of aerosol radiative forcing and validated with high accuracy (Li et al., 2010). 

In this study, SBDART model was used to estimate broadband SW (0.25-4 μm) surface irradiances and 

ADRF over East China. It is on the basis of the DISORT radiative transfer model, the low-resolution 



band models developed for LOWTRAN 7 atmospheric transmission, and the Mie scattering results for 

light scattering by water droplets and ice crystals (Ricchiazzi et al., 1998). Here, LOWTRAN 7 (Low 

Resolution Atmospheric Transmittance 7) solar spectrum was adopted in SBDART. This radiative 

transfer model also includes the standard aerosol models derived from Shettle and Fenn (1975), in which 

aerosol optical parameters are wavelength dependence and the scattering parameters depend on the 

surface relative humidity. Users can also define different aerosol parameters in different wavelength. The 

default of the according spectral information is interpolated/extrapolated to all wavelengths using linear 

fitting on SSA/ASY, and using Ångstrom coefficients on AOD. According to Wang, P. et al. (2009), the 

input of aerosol parameters has very minor effect on the accuracy of irradiance simulation when using 

spectrally averaged values compared with detail spectral information. Therefore, aerosol parameters 

(AOD, SSA, ASY) at 0.55 μm were used in the radiative transfer model. As for surface albedo, it is 

simply assumed that angular distribution of surface-reflected radiation is completely isotropic in the 

model. In our study, MODIS SW MCD43C3 (0.3-5 μm) product is used as albedo input, and it is nearly 

consistent with wavelength coverage (0.25-4 μm) of the output surface irradiances in SBDART.  

As shown in Figure 2, the main inputs of SBDART model include aerosol properties (AOD from MODIS; 

SSA from MERRA-2; ASY from the retrieval (Section 4.2)), surface albedo (from MODIS), aerosol 

vertical profile (from NCEP), atmospheric profiles (from ECMWF), total column ozone and water vapor 

(from ECMWF). The main outputs are radiative fluxes at the surface and TOA with and without aerosols. 

ADRF is defined as the difference in net radiative flux (downward minus upward) between aerosol and 

no-aerosol conditions. Here, we mainly concentrated on ADRF at the surface: 

ADRFsur = (𝐹 ↓ −𝐹 ↑) − (𝐹0 ↓ −𝐹0 ↑),         (1) 

where 𝐹 and 𝐹0 represent radiative fluxes with and without the aerosol at the surface, respectively. The 

upward and downward arrows denote the directions of the radiative fluxes, which can be obtained by the 

outputs of SBDART. For simplicity, the upward radiative fluxes at the TOA are called F_u_toa, and the 

downward/upward radiative fluxes at the surface are called F_d_sur and F_u_sur, respectively (see Table 

1 for the acronyms). 

Besides above, Mann-Kendell (MK) test (Mann, 1945; Kendall, 1975) was used to calculate the trend of 

ADRF time series and its significance level (above 90%) in our study. It identifies that whether 

monotonic trends exist in a time series and is widely employed for trend analysis of aerosol data. The 

detailed analysis produce can be found in Li et al. (2014). Prior to trend analysis, ADRF data were 



deseasonalized by subtracting the monthly mean during 2000-2016 to eliminate the influence of annual 

and seasonal cycles. 

4 Results and discussion 

4.1 Retrieval of aerosol properties  

Before ADRF simulation, the accuracy of MERRA-2 SSA product, was evaluated firstly. In East China, 

six sunphotometer sites, Xuzhou (117.14ºE, 34.22ºN), Shouxian (116.78ºE, 32.56ºN), Hefei (117.16ºE, 

31.91ºN), Taihu (120.22ºE, 31.42ºN), Pudong (121.79ºE, 31.05ºN) and Hangzhou (120.16ºE, 30.29ºN) 

(Figure 3a), were chosen for comparison with MERRA-2 SSA data..  The location of the 

sunphotometers was shown in Figure 3(a), and their geographical characteristics, observing periods, 

sample numbers as well as the fitted regression equation between MERRA-2 and sunphotometer SSA 

were presented in Table 3. Five sites (Xuzhou, Shouxian, Hefei, Taihu and Hangzhou) are AERONET 

sites and Level 1.5 inversion data of AERONET were used. The uncertainty of AERONET products can 

be found in Dubovik and King (2000). Another sunphotometer (CE318, Cimel Electronique, France) in 

Pudong was calibrated annually and maintained routinely, and a detailed description of calibration was 

presented in Cheng et al. (2015). The sunphotometer spectral products are available at wavelengths of 

440, 675, 870, and 1020 nm, and they were interpolated at 0.55 μm to match MERRA-2 SSA. The 

collection time was constrained from 09:00 to 14:00 (local time), covering the overpass time of the Terra 

satellite. Meanwhile, the relatively high solar zenith in this period avoids possible inversion errors and 

improves the data accuracy (Tian et al., 2018b). Additionally, the specific MERRA-2 grid cell containing 

the sunphotometer was selected, and sunphotometer SSA was hourly averaged to match the MERRA-2 

SSA product. The detailed comparisons at Xuzhou, Shouxian and Hefei were shown in Figure 3b. Orange 

dots represent Xuzhou samples and orange line is the according fitting curve, while the green represents 

Shouxian, and the black is Hefei. Figure 3c displays the comparison results at Taihu, Pudong and 

Hangzhou. Red denotes Taihu, the purple is Pudong and the yellow is Hangzhou. As shown in Figure 3, 

dashed lines are the range of ±10% relative error, all samples in Taihu, Pudong, Hefei, 94% of samples 

in Xuzhou, 93% in Shouxian and 98% in Hangzhou fall within the ±10% error. This finding suggests 

that MERRA-2 SSA agrees well with the sunphotometer data, even though few SSA samples are beyond 

the error range. Furthermore, the slopes of linear fitting curve are less than 1 at all sites except Shouxian 

(Table 3), and it reveals that MERRA-2 SSA has systematic biases at most area of East China. The 



primary reason for the discrepancy is the simple aerosol model assumption in MERRA-2 (Buchard et al., 

2017). Only five aerosol types (sulfate, dust, sea salt, organic and black carbon) are involved; the lack of 

nitrate aerosols, which are highly scattering aerosols, may result in the underestimation of MERRA-2 

SSA. In addition, the calibration errors among these instruments should be considered. Generally, the 

evaluation results in six sites show that the accuracy of MERRA-2 SSA product is acceptable in East 

China, with ±10% uncertainty. 

After SSA was determined, ASY is the only unknown input parameter. ASY is the key to portraying the 

scattering direction of aerosols. ASY=1 denotes completely forward scattering, and ASY=0 is symmetric 

(Rayleigh) scattering. Here, gridded ASY was simulated by matching observed F_u_toa (from CERES) 

with simulated F_u_toa (from SBDART). The sensitivity test indicates that F_u_toa, just similar with 

F_u_sur (shown in Figure S3b), is a monotonically increasing function of ASY with other fixed inputs. 

Consequently, only one F_u_toa can be obtained by one specific ASY. In this premise, a binary search 

was applied to approximate ASY to improve calculation efficiency (Chang, 2013). The goal of the binary 

search is to find the ASY when the simulated F_u_toa is close to the observed F_u_toa. To accomplish 

this, the ranges of F_u_toa are repeatedly diminished by taking the middle ASY as one of the boundary 

values, and when the difference between the F_u_toa observed by CERES and calculated by SBDART 

is less than 1, the corresponding approximation of ASY is finally obtained. The detailed scheme is 

illustrated in Figure 4. First, the value for ASY is initially assumed in the reasonable range of 0.1-0.9, 

and the upper and lower boundaries of ASY, along with other parameters, are input to SBDART to yield 

the initial range of calculated F_u_toa_a and F_u_toa_b. Then, this range is checked to determine 

whether it includes the F_u_toa (observed by CERES) by multiplying ((F_u_toa_a- 

F_u_toa)*( F_u_toa_b- F_u_toa)). If the multiplication result is negative, meaning that ASY falls within 

this range (ASYa, ASYb), the average of F_u_toa_a and F_u_toa_b is set as a new boundary (F_u_toa_c). 

Otherwise, this case is discarded, and the retrieval is not continued (ASY=NaN), perhaps due to 

inappropriate inputs. Next, for cases in which the multiplication result is negative, the multiplication 

process is applied to the new boundary ((F_u_toa_a- F_u_toa)*( F_u_toa_c- F_u_toa)). If this 

multiplication result is negative, the ASY falls within this range (ASYa, ASYc). Then, ASYc is set to 

represent ASYb. Otherwise, ASYc is set to represent ASYa. This process represents the scope-narrowing 

of the ASY boundary discussed above. With several iterations of narrowing the scope, the boundaries of 

the simulated F_u_toa become close to the true value of F_u_toa (observed by CERES). When the 



difference between the simulated F_u_toa boundary and the observed F_u_toa is less than 1, the 

corresponding ASY is considered as one approximation. In this process, the input parameters, including 

AOD (from MODIS), SSA (from MERRA-2), surface albedo (from MODIS), aerosol vertical profile 

(from NCEP), atmospheric profiles (from ECMWF), total column ozone and water vapor (from 

ECMWF), were input into the SBDART together in every iteration. All these inputs from 2000-2016 

were used to simulate ADRF in each grid of East China. All calculations were performed on the Linux 

system. Following this method, ASY was retrieved in each grid cell over East China. The range of 

retrieved ASY is 0.50-0.80, and the mean ASY is 0.63, which is consistent with the observation site 

(Taihu) in East China (Xia et al., 2007). According to Mie theory, ASY is determined by the size 

distribution and the complex refractive index of aerosols. Therefore, the difference of ASY in East China 

can be partly related with the difference of fine mode radius. Xia et al. (2007) has reported that the fine 

mode volume median radius at Taihu site averages 0.181 μm over a range of AOD from 0.6-1.0, while 

it is 0.168 μm in northern China. In ASY retrieval, ASY is assumed to vary enough to match F_u_toa 

with ensuring the accuracy of all other inputs (e.g. AOD, SSA). This assumption can deviate from the 

reality if there are obvious differences between real and retrieval values of other inputs. This above 

condition can easily occur in the process of ASY retrieval, when ASY cannot be retrieved (ASY=NaN). 

Even if ASY can be obtained, ASY can be inaccurate when other inputs have large biases. The 

uncertainty of ASY caused by the other inputs (AOD, SSA, albedo, CERES F_u_toa) will be quantified 

in the following uncertainty analysis (Section 4.3). 

After aerosol optical properties were obtained, these parameters from multiplatform datasets can be input 

into the SBDART model to simulate surface radiative fluxes and ADRF in East China according to the 

methodology in Section 3. 

4.2 Validation of the method 

Before conducting ADRF simulation in each grid of East China during 2000-2016, this method was first 

applied in the three grids of selected sites to assess the performance of ADRF retrieval. Three radiation 

sites in Baoshan (121.45°E, 31.4°N), Fuzhou (119.29°E, 26.08°N), Yong’an (117.37°E, 25.98°N) were 

chosen to make the comparisons between calculated F_d_sur and surface observation by the 

pyranometers (FS-S6, China) during 2014-2016. Red circles in Figure 1 denote the specific locations of 

pyranometers. Baoshan and Fuzhou are urban and coastal sites while Yong’an represents suburb and 



inland sites. The different aerosol concentration levels and abundant aerosol types in these sites can 

represent the most of aerosol properties in East China. These pyranometers had regular maintenance and 

were calibrated annually through intercomparisons with the basic-reference station. Additionally, quality 

control has been performed at these sites according to Long and Shi (2008), including the removal of 

physical possible limits as determined by Baseline Surface Radiation Network (BSRN) and use of 

configurable limits based on climatological analysis of measurement data. The uncertainty in the 

pyranometers is expected to be 5% (Song, 2013). Simulated F_d_sur was averaged in the scope of a 40 

km side length with the center at the pyranometer, and the measured F_d_sur was averaged within 30 

min of the satellite overpass (Ichoku, et al., 2002). 

Figure 5 displays the comparison results between simulated F_d_sur and observed F_d_sur by 

pyranometers at three sites. The simulated F_d_sur is fairly consistent with the observations, with 

correlation coefficients of 0.87 in Baoshan (Figure 5a) and Fuzhou (Figure 5b) and 0.90 in Yong’an 

(Figure 5c). Root mean squared error (RMSE) is a good indicator for measuring the discrepancy between 

observed and simulated F_d_sur data. The RMSE is 7.9 W m-2 in Baoshan, 7.5 W m-2 in Fuzhou and 5.6 

W m-2 in Yong’an. This discrepancy only accounts for 3-5% of ADRF, indicating that this retrieval 

method has a relatively higher accuracy than those in other studies (e.g., Thomas et al., 2013; Fu et al., 

2017). Additionally, all slopes are less than 1, which implies that the method has systematic biases at 

these sites.  A similar tendency was found in the comparison between MODIS AOD andsunphotometers 

in East China by He et al. (2010); it is speculated the main systematic error in ADRF simulation may 

come from the input, MODIS AOD. Nevertheless, satisfactory comparison results indicate the suitability 

and feasibility of ADRF retrieval in the off/near the sea and urban/suburb sites of East China, although 

the type of underlying surface and aerosol properties are evidently different in these areas. 

To further assess the discrepancy between simulated F_d_sur and the observations, the relative errors of 

each case at the three sites were calculated. The results suggest that underestimated cases (negative 

relative errors) account for 61% of the total cases and overestimated cases (positive relative errors) 

account for 39%. According to the validation results, the sources of error in the simulation may be 

attributed to the following reasons: 

Cloud contamination: An examination of cloudiness was carried out at the three sites. According to the 

empirical clear-sky detection method, one-hour radiation data of a pyranometer was used to discriminate 

clear-sky observations (Xia et al., 2007). The red dots in Figure 5 represent the cloudiness case detected 



by the pyranometer. Meanwhile, from the MODIS true color map composed by channels 1, 4 and 3 (not 

shown), the olive green dots denote the specific case in which the site is completely covered by clouds. 

Taking one olive green cases (Baoshan, October 18, 2014) for an example. As shown in the Figure S2, 

it is obvious that a large amount of cloud exists in the area of 29°N-31°N and 120°E-122°E, and Baoshan 

site is at the edge of the cloud. In this case, MODIS AOD was overestimated compared with 

sunphotometer AOD, this because some cloud effects were not completely removed from the 

MODIS/AOD calculation. Therefore, a large discrepancy can occur in these cases between simulated 

F_d_sur and observation. The cloud effect, especially residual thin cirrus clouds, is difficult to 

completely remove from MODIS AOD (Kaufman et al., 2005). Moreover, the cloud mask algorithm in 

MODIS aerosol inversion sometimes fails to distinguish fog or haze in high-humidity conditions. Many 

more fog days can be observed in Fuzhou than the other two sites, and fogginess can significantly reduce 

the accuracy of the simulation (Ye et al. 2010). In addition, the error source of MODIS AOD is also from 

errors in the aerosol model assumption and surface reflectivity (Xie et al., 2011). 

Different spatial and temporal representativeness: In the validation, the area measurement (satellite 

and reanalysis data) was compared to point measurements (pyranometer). For temporal matching, the 

pyranometer can capture the process of perturbation induced by air mass movement within one hour, 

whereas satellite can only provide the instantaneous condition. Hence, this comparison method inevitably 

introduces some degree of uncertainty. 

Instrument and radiative transfer errors: One error source in pyranometers is the thermal offset effect. 

This spurious signal is due to the difference in temperature between the inner dome and the detector of a 

pyranometer and can lead to additional errors in the irradiance measurements, especially diffuse 

irradiance (Sanchez et al., 2015). To reduce this effect, a pyranometer should be installed in a transparent 

ventilation hood. Alternatively, several statistical methods have also been proposed to suppress the 

thermal offset effect (e.g., Song, 2013; Cheng et al., 2014). In this study, the correction of the thermal 

offset was not performed because of the lack of additional observation data. Aside from the instrument 

error, the model simulation discrepancy also depends on the radiative transfer models. They are based 

on some simplifications, including the sphericity of aerosol particles and the directional reflectance of 

the surface. Derimian et al. (2016) found that neglecting aerosol particle nonsphericity can overestimate 

the aerosol cooling effect. Furthermore, simulation results vary slightly among different models due to 

their different assumptions in radiative transfer. For instance, Yu et al. (2007) compared three models 



(second simulation of the satellite signal in the solar spectrum (6S), Moderate resolution atmospheric 

Transmission (MODTRAN) and SBDART) at Xianghe station and showed that approximately 80% of 

the cases simulated by SBDART were lower than the surface observations, while the 6S simulation 

results were higher. 

4.3 Sensitivity test and uncertainty analysis 

To determine the uncertainty of the method for ADRF simulation caused by each input parameter, a 

sensitivity test for input parameters was carried out. A specific case in Shanghai on October 11, 2015, 

was used with the following values: AOD = 0.62, SSA = 0.85, ASY = 0.69, surface albedo = 0.13, total 

column water vapor = 0.69 g/cm2, and total column ozone = 0.28 atm-cm. Figure S3 portrays the 

responses of F_d_sur, F_u_sur and ADRF to changes in one parameter while holding the other 

parameters constant. To remove the impact of units, all the parameters are dimensionless; that is, the 

ratio of the input to the actual value is used as the x-axis value. The absolute value of every slope 

describes the impact of every parameter on the dependent variables (F_d_sur, F_u_sur and ADRF). 

Figure S3 presents the actual condition of this case when the value of the x-axis equals 1, in which 

F_d_sur is 629.15 W m-2, F_u_sur is 83.52 W m-2, and ADRF is -149.39 W m-2. This situation denotes a 

strong cooling effect of aerosols at the surface. Apparently, different parameters impose diverse 

influences on the radiative values (F_d_sur, F_u_sur, and ADRF). As depicted in Figure S3, AOD, SSA, 

and ASY are three crucial parameters that greatly influence F_d_sur. Wang, P. et al. (2009) conducted 

the radiative closure experiment in the Netherlands and further found that, AOD can affect the changes 

of direct/diffuse irradiation, while SSA and ASY only affect the diffuse irradiance. For F_u_sur, albedo, 

AOD, and SSA are more important parameters. The impact of surface albedo is much larger than the 

others because albedo actually determines how much of the irradiance is reflected by the surface. For 

ADRF, SSA, AOD, and ASY are major factors in determining ADRF. Additionally, only a large AOD 

produces much cooler at the surface, whereas increases in SSA and ASY can result in decreases in the 

aerosol cooling effect. In general, sensitivity test shows that ADRF depends highly on AOD, SSA, ASY 

and albedo. Two parameters (atmospheric profile and aerosol vertical profile) are not discussed because 

these parameters have little impact on clear-sky ADRF in the above case. The atmospheric profile has a 

minor effect on the perturbations of ADRF compared with the total columns of atmospheric component 

(water vapor and ozone). This result has also been proven by Yu et al. (2007) and Li et al. (2016). As for 



aerosol profile, two typical shapes were input to SBDART for the sensitivity test. The first type (type I) 

has an elevated aerosol layer, and the second type (type II) is the two-layer aerosol model as mentioned 

above (Figure S1). The changes of the elevated layer height (type I) or PBL/ABL (type II) have very 

little impact on ADRF, and the according maximum value of ADRF difference only can reach 0.5 W m-

2. This conclusion is consistent with Guan et al. (2009). However, this impact becomes much stronger in 

the presence of absorbing aerosols, especially in some extreme cases such as dust storms and biomass 

burning (Wang and Christopher, 2006). Reddy et al. (2013) also demonstrated that surface aerosol 

radiative forcing can be enhanced by 25% due to the insertion of the extinction profile of absorbing 

aerosols to replace the default profile. 

On the basis of these four high-sensitivity factors, the uncertainties in ASY and ADRF due to these 

parameters were quantitatively assessed. According to data uncertainty mentioned in Section 2 and the 

SSA validation, the relative errors of AOD, SSA, albedo, and CERES F_u_toa are 20%, 10%, 5% and 

1.6%, respectively. This lower/upper limit of parameter errors was input to the ADRF calculation, and 

the associated uncertainty was calculated by the difference between the simulated radiative flux with 

parameter errors and without errors. Notably, the uncertainty analysis is based on extreme conditions, 

and the associated errors are much larger than the actual values. As displayed in Table 4, the uncertainty 

in ASY induced by SSA can reach up to 23%, indicating that SSA is a decisive factor in ASY retrieval 

when using CERES F_u_toa constraint. SSA also has the largest effect in regulating aerosol radiative 

forcing, which is consistent with the research on dust aerosols by Huang et al. (2009). AOD contributes 

uncertainties of 3.7% in ASY and 15.4% in ADRF. Albedo introduces 1.7~3.7% uncertainty in ASY and 

approximately 3% in ADRF. The error of CERES product produces approximately 1.7% uncertainty in 

ASY and 1.5% in ADRF. The results of uncertainty analysis agree well with those of previous studies. 

For example, Xia et al. (2016) revealed that AOD and SSA together can account for 94% of surface 

ADRF. Zhuang et al. (2018) further noted that the error sources from the absorbing component of AOD 

and coarse-aerosol SSA contributed to the greater uncertainty in the ADRF. Therefore, improving the 

precision of the input parameter is helpful for obtaining reliable ADRF estimation. As Michalsky et al. 

(2006) demonstrated, when using high-quality measurements as inputs to model, the biases between 

modeled and measured irradiance can decrease to 1.9%. In addition to these factors, Wang and Martin 

(2007) also revealed the effects of aerosol hygroscopicity on the aerosol phase function and the increase 

in SSA with RH enhancement, suggesting that relative humidity (RH) is also closely related to ADRF. 



4.4 Long-term ADRF retrieval in East China 

The above evaluations show the method for ADRF simulation is feasible and high-accuracy in East China, 

thus this method was further applied in each grid cell of East China to obtain a full coverage of ADRF 

during 2000-2016. Figure 6 outlines an overall picture of annual mean ADRF at the surface over East 

China during the past 17 years. It provides valuable information about aerosol radiative effect not only 

in the urban areas with intensive human activities, but also in the suburb with unavailable observational 

data. ADRFs in all grids are negative, ranging from -220 W m-2 to -20 W m-2, implying that aerosols 

have cooling effect at the surface over East China. The yearly mean ADRF is -100.21 W m-2. The 

magnitude of ADRF is higher than most cities in the world, such as Spain (Esteve et al., 2014), Gasan 

(Kim et al., 2006) and Karachi (Alam et al., 2011). The main reason is that AOD in East China is much 

larger than these cities, since East China has experienced rapid urbanization and economic development 

in the past 17 years and a robust increase can be found in anthropogenic emissions. AOD is much larger 

than these regions. For example, mean AOD in East China is 0.62 in this study during 2003-2011 while 

AOD is 0.19 in Spain during 2003-2011 (Esteve et al., 2014). Red area denotes the high absolute value 

of ADRF (Figure 6), which are found in the densely populated and industrialized areas, including the 

western Shandong Province, YRD and Poyang Lake Plain. Low value (blue area) is observed in the 

Southern part, such as Fujian and southern Zhejiang Province. Obvious difference of ADRF distributions 

is found between the northern and southern part of East China, and the magnitude of ADRF increases 

from South to North. This pattern is consistent with site observations in Che et al., (2018), in which 

surface ADRF ranges from -150 to -100 W m-2 in the northern sites of East China (Huainan and Hefei in 

Anhui Province) while ADRF ranges from -100 to -50 W m-2 in the southern sites of East China (Jiande, 

ChunAn and Tonglu in Zhejiang Province). To further explore this difference, East China was divided 

into two parts: the North and South, with the boundary of 30°N. The occurrence frequencies of annual 

ADRF for each grid cell in the North and South were calculated in the Figure S4. The occurrence 

frequency shows a broad range from -300 W m-2 to 0 and the interval is 20 W m-2. In the North, the 

largest proportion of ADRF, with the value of 76.47%, fall in the range of -100~-80 W m-2, while the 

largest proportion (64.71%) of ADRF fall in the range of -60~-40 W m-2 in the South. The extreme value 

over -250 W m-2 may result from severe haze in the winter. Aerosol cooling radiative effect can sharply 

increase with large aerosol loadings. According to Yu et al. (2016b), surface ADRF can reach up to -263 



W m-2 in the haze days, while in the non-haze days, it can decrease to -45 W m-2 in Beijing on January 

2013. Usually in the heavy haze, the enhanced surface cooling, combined with atmosphere heating, can 

result in a more stable environment. It is unfavourable for the diffusion and dispersion of the aerosols, 

can further make air accumulation and enhance aerosol ADRF (Wu et al., 2016). Meanwhile, positive 

ADRF also found in few grid cells, although it is not shown in the Figure S4. This condition occurs over 

bright surface in East China especially with the abundance of absorbing aerosols (Sundström et al., 2015).  

According to the uncertainty analysis, ADRF is closely associated with the inputs (SSA and AOD). Based 

on this, comparison was conducted among the mean spatial distribution of ADRF, AOD and SSA during 

2000-2016 (Figure 7). It is clear to see that ADRF pattern is very similar to the negative phase of AOD 

pattern, that is, the areas of high AOD have low ADRF. As for SSA, the higher value can be found in the 

South than the North, which indicating the aerosols in the South are generally more scattering than the 

North. Therefore, the large difference between North and South can be mainly attributed to the difference 

in AOD. The industry locations and topography between the North and South are obviously different. 

With the development of economy and urbanization, large amounts of anthropogenic aerosols in the 

North can impose strong cooling radiative effect in the past two decades. It is worth noting that, although 

western Shandong has lower urbanization compared with YRD, aerosol cooling effect in western 

Shandong is even larger than in YRD. This is because Yimeng mountain (these mentioned places are all 

shown in Figure 1) located in the middle of Shandong,  blocks the west flow, leading to the enhancement 

of the aerosol accumulations and high AOD near its western border (He et al., 2012b). Meanwhile, 

Shandong is also easily impacted by air pollution transported from North China. In addition, high 

absolute value of ADRF is also found in Poyang Lake in Jiangxi with abundance of anthropogenic 

aerosols, and these areas are surrounded by the mountains, the poor ventilation condition makes aerosols 

enhanced. Compared with the North, the South is characterized by more extensive vegetation coverage 

and less human activities, and AOD is relatively lower in the South (Figure 7b) and aerosols have weaker 

cooling effect.  

Apart from spatial changes, temporal changes of ADRF during 2000-2016 were also analysed. Figure 8 

displays the time series of monthly mean ADRF and AOD. For comparison, blue line represents ADRF 

and red line denotes AOD. They both show a fluctuation pattern, and they have an obvious negative 

phase with the correlation coefficient of -0.72. It indicates that the temporal change of ADRF is mainly 

attributed to the change of AOD. MK trends of ADRF and AOD are both positive but insignificant at 



90% confident level, especially for AOD trends, the value is nearly close to zero. It showsing AOD and 

ADRF did not change significantly during 2000-2016 in East China. Paulot et al. (2018) also proved this 

insignificant trend of ADRF in China based on chemical-climate models. About AOD, Zhang et al. (2017) 

found that AOD trend increases since 2000-2007 and then decreases in the eastern China based on 

satellite observations. It is well known that the changes of AOD is closely linked with the change of 

anthropogenic emissions, especially in the developing country. Che et al. (2019) calculated that SO2 is 

the dominant anthropogenic emissions factors to AOD in China during past few decades. Furtherly, 

model simulations also indicate the changes of sulfate aerosols are the largest contributor to AOD and 

aerosol effect in China (Paulot et al., 2018). MK trends of monthly mean ADRF in each grid cell during 

2000-2016 were also calculated (Figure 9). Hatched regions indicate those exceeding the 90% 

significance level. It can be found high positive trend in Anhui and Jiangxi, indicating the aerosol cooling 

effect is weaker in this region during 2000-2016. However, a few regions experience the stronger of this 

cooling effect, especially in the northeast and south area of Yimeng mountain in Shandong. In general, 

the changes of ADRF during the past 17 years are mainly due to the anthropogenic emissions in East 

China. In addition, Paulot et al. (2018) further pointed that there is a nonlinear relationship between 

anthropogenic emissions and AOD/ADRF when considering the mix and oxidation of different emissions. 

5 Conclusion 

In this study, based on multiplatform datasets, high-accuracy ADRF distributions over East China during 

2000-2016 were protrayed. MERRA-2 SSA data were first compared with sunphotometer data (Taihu, 

Xuzhou, Pudong), and the validation result shows that the relative error of the MERRA-2 SSA is 10% 

over East China. Then, ASY in each grid was retrieved by matching the simulated F_u_toa by SBDART 

with satellite observations. Then, aerosol optical properties (AOD from MODIS, SSA from MERRA-2, 

and ASY from the retrieval), surface albedo (from MODIS), aerosol vertical profile (from NCEP), 

atmospheric profiles (from ECMWF), total column ozone and water vapor (from ECMWF) served as 

input parameters for SBDART to simulate ADRF in each grid cell of East China during 2000-2016. The 

validation result of this method at three sites (Baoshan, Fuzhou, and Yong’an) reveals that simulated 

F_d_sur is highly correlated with the pyranometer data during 2014-2016, with correlation coefficients 

of 0.87 in Baoshan and Fuzhou and 0.90 in Yong’an. The RMSEs are 7.9 W m-2 in Baoshan, 7.5 W m-2 

in Fuzhou and 5.6 W m-2 in Yong’an. It shows that ADRF retrieval is feasible and has high accuracy 



over East China. In addition, associated factors, including cloud contamination, instrument and radiative 

transfer errors, as well as different spatial and temporal representativeness, were confirmed to produce 

additional uncertainty in ADRF simulations.  Sensitivity test shows that ADRF depends highly on AOD, 

SSA, ASY and albedo. Uncertainty analysis shows the uncertainty in ADRF retrieval induced by SSA is 

calculated 24% and that by AOD is 15.4%. Finally, ADRF simulation was conducted in each grid of East 

China during 2000-2016. Long-term ADRF distributions over East China were presented for the first 

time. ADRFs in all grids are negative, the range of ADRF is between -220 W m-2 and -20 W m-2, implying 

that aerosols have cooling effect on surface over East China. Aerosols are found to have stronger cooling 

effect in the North compared with the South. ADRF spatial pattern is consistent with the negative phase 

of AOD pattern, and the temporal changes of ADRF also have a close relationship with AOD. They 

indicate that the changes of ADRF in East China can mainly attributed to the changes of AOD. 

Furthermore, the spatiotemporal changes of AOD and ADRF are controlled by anthropogenic emissions, 

especially sulfate emissions in East China during past 17 years. 

In summary, this study suggests that the method for ADRF retrieval is feasible in East China. Especially 

in suburbs with no monitoring resources, our study offers valuable information of direct radiative impact 

of aerosols. It is noted that, in our study, ADRF was calculated during the time that satellite passes by 

rather than the whole day. More additional observation data from the sites, are needed to further verify 

the performance of the ADRF retrieval and constrain these multiplatform datasets to improve the ADRF 

accuracy. In addition, it is necessary to improve the satellite instruments and the retrieval algorithm of 

aerosol properties; more novel methods, such as machine learning, can be involved in the ADRF 

estimates (Yin, 2010; Yu and Song, 2013). In the future work, aerosol-induced changes in the surface 

radiation under climate change and agricultural economic impact will be studied. This work can provide 

a deep understanding of aerosol radiative effects and is also helpful for aerosol modeling over East China. 

Data availability. AOD from MODIS is available at http://ladsweb.nascom.nasa.gov/data/search.html, 

albedo is also from MODIS (https://e4ftl01.cr.usgs.gov/MOTA/MCD43C3.006/). SSA from MERRA-2 

is available at https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl. TOA flux is from CERES 

(https://ceres.larc.nasa.gov/products.php?product=SSF-Level2). Atmospheric aerosol profile is retrieval 

from NCEP/NCAR (http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html). Total 

column ozone, total column water vapor and atmospheric profile are from ECMWF 

http://ladsweb.nascom.nasa.gov/data/search.html
https://e4ftl01.cr.usgs.gov/MOTA/MCD43C3.006/
https://disc.gsfc.nasa.gov/daac-bin/FTPSubset2.pl
https://ceres.larc.nasa.gov/products.php?product=SSF-Level2
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html


(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim). The SSA from 

AERONET sites are available at http://aeronet.gsfc.nasa.gov/.  
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Table 1: Summary of the acronyms. 

ADRF Aerosol direct radiative forcing (W m-2)  

SSA Single scattering albedo (unit less) 

ASY Asymmetry parameter (unit less) 

AOD Aerosol optical depth (unit less) 

F_u_toa Upward radiative fluxes at the top of atmosphere (W m-2) 

F_d_sur Downward radiative fluxes at the surface (W m-2) 

F_u_sur Upward radiative fluxes at the surface (W m-2) 

  



 Table 2: Satellite and reanalysis datasets used in the study. 

   

Parameters Products Sensors/Models Spatial Resolution Temporal Resolution  

AOD MOD04 L2 Terra MODIS 0.1°×0.1° instantaneous   

SSA tavg1_2d_aer_Nx MERRA-2 0.625°×0.5°  hourly   

Surface albedo MCD43C3 Terra+Aqua MODIS 0.05°×0.05° daily  

Upward TOA radiative flux SSF Terra CERES 20km instantaneous  

Meteorological data ERA-Interim ECMWF 0.125°×0.125° hourly  



Table 3: The geographical characteristics, observing period, sample number of sunphotometer 

sites. The fitted regression equations between MERRA-2 and sunphotometer SSA are also shown 

here. In the equation, x represents SSA sample, y represents fitted value of SSA. 

 

Location Lon/Lat Observing 

period 

Sample 

number 

Fitted regression 

equation between 

MERRA-2 and 

sunphotometer SSA 

Xuzhou 

(Urban) 

117.14°E/34.22°N 2013.8-2016.12 514 y=0.02+0.94x 

Shouxian 

(Rural) 

116.78°E/32.56°N 2008.5-2008.12 26 y=-0.45+1.46x 

Hefei 

(Urban) 

117.16°E/31.91°N  2005.11-

2005.12 

2008.1-2008.11 

19 y=0.09+0.85x 

Taihu 

(Rural) 

120.22°E/31.42°N 2005.1-2012.12 

2015.1-2016.12 

230 y=0.2+0.75x 

Pudong 

(Urban) 

121.79°E/31.05°N  2010.12-

2012.10 

2014.1-2015.11 

84 y=0.49+0.46x 

Hangzhou 

(Urban) 

120.16°E/30.29°N 2008.4-2009.2 45 y=0.38+0.57x 

 

  



Table 4: Errors induced by different input parameters in ASY, radiative flux (F_d_sur, F_u_sur) 

and ADRF. Here, the uncertainties of input parameters (AOD, Albedo, CERES F_u_toa) are from 

literatures and the uncertainty of SSA is from validation in Section 4. 

Parameter Uncertainty Errors in ASY Errors in F_d_sur Errors in F_u_sur Errors in ADRF 

AOD ±20%a -3.7%~1.7% ~4.5% ~4.4% ~15.4% 

SSA ±10% -19%~23% ~12% ~12% ~24% 

Albedo ±5%b -3.7%~1.7% ~0.7% ~5.9% ~3% 

CERES F_u_toa ±1.6%c -1.8%~1.7% ~0.4% ~0.4% ~1.5% 

a He et al. (2010). 

b Cescatti et al. (2012). 

c Su et al. (2015).  



  

 

Figure 1: The map of research area, topography, major lakes and mountains in East China. The 

red circles denotes the locations of three pyranometers (Baoshan, Fuzhou and Yong’an). This 

figure was generated by ArcGIS, version 10.2. Map source: Map World (National Platform for 

Common Geospatial Information Services, www.tianditu.gov.cn).  
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Figure 2: A schematic diagram to simulate ADRF based on satellite and reanalysis datasets. 

  



 

Figure 3: (a) The location of six sunphotometer sites over East China. (b) The scatter plots of SSA 

between MERRA-2 and sunphotometer in Xuzhou, Shouxian and Hefei. Orange dots represent 

Xuzhou samples and orange line is the fitting curve of Xuzhou samples while green represents 

Shouxian and black represents Hefei. Dashed lines are the range of ±10% relative error. (c) The 

scatter plots of SSA between MERRA-2 and sunphotometer in Taihu, Pudong and Hangzhou. Red 

dots represent Taihu samples and red line is the fitting curve of Taihu samples while purple 

represents Pudong and yellow represents Hangzhou. Dashed lines are the range of ±10% relative 

error. 

  



 

Figure 4: A detailed workflow of binary search used in ASY retrieval. 

  



 

Figure 5: The scatter plots between observed F_d_sur by pyranometers and simulated F_d_sur by 

SBDART in Baoshan, Fuzhou, and Yong’an. The blue line the is fitting curve and the dashed line 

represents y=x. The red dots denote the specific case in which the pyranometer captures the 

fluctuation of F_d_sur by clouds during one hour. The olive green dots denote the specific case in 

which the site is completely covered by clouds, deduced from MODIS true color map composed by 

1, 4 and 3 channels. The blue dots represent the other ordinary case. 

  



 

 

 

Figure 6: Yearly mean ADRF distributions during 2000-2016 over East China (unit: W m-2).  

  



 

Figure 7: Averaged spatial distribution of (a)ADRF (unit: W m-2), (b)AOD and (c)SSA during 

2000-2016 in the East China. 

 

  



 

 

 

Figure 8: Time series of monthly mean ADRF (blue) and AOD (red) in East China from 2000 to 

2016. These data are deseasonalized.  Dashed lines represent the Mann-Kendell (MK) fitting 

trend of ADRF and AOD. 

  



 

Figure 9: The spatial distribution of ADRF trend in East China during 2000-2016 (unit: W m-2 

month-1). Hatched regions represent those exceeding the 90% significance level.  
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This Supplementary Information (SI) includes 4 figures. 

Supplementary Figures: 

Figure S1. Sketch map of aerosol vertical profile.  

Figure S2. MODIS Terra true color map composed by 1, 4, and 3 channels on October 18, 2014 

(https://worldview.earthdata.nasa.gov/ ). 

Figure S3. The response of downward radiative fluxes at the surface (F_d_sur), upward radiative fluxes 

at the surface (F_u_sur), aerosol direct radiative forcing (ADRF) to different parameters (AOD, SSA, 

ASY, albedo, columnar water vapor and ozone) in the sensitivity test. 

Figure S4. The occurrence frequency of annual ADRF for each grid cell in the North and South of East 

China during 2000-2016. 
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Figure S1. Sketch map of aerosol vertical profile (He et al., 2008). Two-layer aerosol model is 

characterized by aerosol well-mixed in the PBL and exponential decay of the aerosol extinction 

coefficient with altitude above the top of PBL.  

  



 

 

Figure S2. MODIS Terra true color map composed by 1, 4, and 3 channels on October 18, 2014 

(https://worldview.earthdata.nasa.gov/). The red rectangle box (40*40km) is the MODIS AOD 

average window in Baoshan pyranometers site. 

 



 

Figure S3. The response of downward radiative fluxes at the surface (F_d_sur), upward radiative 

fluxes at the surface (F_u_sur), aerosol direct radiative forcing (ADRF) to different parameters 

(AOD, SSA, ASY, albedo, columnar water vapor and ozone) in the sensitivity test. The X-axis value 

shows the ratio of the input to the actual value to dimensionalize the parameters for comparison. 



 

Figure S4. The occurrence frequency of annual ADRF for each grid cell in the North and South of 

East China during 2000-2016.  

 

 


