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Abstract. Atmospheric aerosols play a crucial role in regional radiative budgets. Previous studies on clear-sky aerosol direct 

radiative forcing (ADRF) have mainly been limited to site-scale observations or model simulations for short-term cases, and 

long-term distributions of ADRF in China has not been portrayed yet. In this study, an accurate fine-resolution ADRF estimate 20 

at the surface was proposed. Multiplatform datasets, including satellite (MODIS aboard Terra and Aqua) and reanalysis 

datasets, served as inputs to the Santa Barbara Discrete Atmospheric Radiative Transfer (SBDART) model for ADRF 

simulation with consideration of aerosol vertical profile over East China during 2000-2016. Specifically, single scattering 

albedo (SSA) from the Modern-Era Retrospective Analysis for Research and Application, version 2 (MERRA-2) was validated 

with sunphotometers over East China. The gridded asymmetry parameter (ASY) was then simulated by matching the calculated 25 

top-of-atmosphere (TOA) radiative fluxes from the radiative transfer model with satellite observations (Clouds and the Earth’s 

Radiant Energy System (CERES)). The high correlation and small discrepancy (6-8 W m-2) between simulated and observed 

radiative fluxes at three sites (Baoshan, Fuzhou, and Yong’an) indicated that ADRF retrieval is feasible and has high accuracy 

over East China. Then this method was applied in each grid of East China, and the overall picture of ADRF distributions over 

East China during 2000-2016 was displayed. ADRF ranges from -220 to -20 W m-2, and annual mean ADRF is -100.21 W m-30 

2, implying that aerosols have strong cooling effect at the surface in East China. With the economic development and rapid 

urbanization, the spatiotemporal changes of ADRF during past 17 years are mainly attributed to the changes of anthropogenic 

emissions in East China. Our method provides the long-term ADRF distribution over East China for the first time, highlighting 

the importance of aerosol radiative impact under climate change. 
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1 Introduction 35 

Atmospheric aerosols play a significant role in air quality, regional/global climate and human health (Wang et al., 2018; Wang 

et al., 2019). Aerosols can directly absorb and scatter solar radiation, and indirectly affect cloud formation and precipitation 

by acting as cloud condensation nuclei or ice nuclei (Twomey, 1977; Rosenfeld, 1999). Large amounts of scattering aerosols 

can generally attenuate incoming solar radiation. This reduction in surface radiation significantly impacts the surface 

temperature, crop growth and solar energy availability (Chameides, 1999; Liao et al., 2015). On the other hand, highly 40 

absorbing aerosols, such as black carbon, can warm the atmosphere, alter regional atmospheric stability, and even influence 

the large-scale circulation and hydrologic cycle with significant regional climate effects (Menon et al., 2002; Wang, J. et al., 

2009). Aerosol direct radiative forcing (ADRF) is a good metric for evaluating the impact of aerosols to radiation by absorption 

and scattering, and is defined as the difference between the net radiative flux of earth-atmosphere systems with and without 

aerosols. Anthropogenic aerosols produce a global mean negative direct radiative forcing of -0.35±0.5 W m-2 of ADRF, which 45 

has dampened the warming effect of greenhouse gases (IPCC, 2013). However, the current assessment of ADRF remains 

highly uncertain. This uncertainty mainly results from the large variations in aerosol concentrations, chemical compositions, 

optical properties, mixing states, and vertical profiles (Haywood and Boucher, 2000; Tian et al., 2018a). Therefore, an accurate 

and feasible method for ADRF retrieval is greatly required. 

Reduction in these uncertainties requires the integration of different techniques and datasets (e.g., surface measurement, model 50 

simulation, and satellite remote sensing) (Yu et al., 2006). To better understand aerosol optical properties and their radiative 

effect, several ground-based networks have been established worldwide, such as the AEROsol Robotic Network (AERONET) 

(Holben et al., 2001), Global Atmosphere Watch-Precision Filter Radiometer network (GAW-PFR) (Nyeki et al., 2015), China 

Aerosol Remote Sensing Network (CARSNET) (Che et al., 2009) and Chinese Sun Hazemeter Network (CSHNET) (Xin et 

al., 2007). Moreover, intensive field experiments have been carried out over China, such as Beijing, Xianghe, Taihu, Wuhan, 55 

Shanghai, Lanzhou (Li et al., 2003; He et al., 2012a; Wang et al., 2014; Yu et al.,2016a; Gong et al., 2017; Zhang et al.,2018). 

Such measurements are conducive to the wider knowledge of aerosol properties, which are helpful for improving the 

performance of satellite and model simulations through synthesis. Nevertheless, available measurements are usually restricted 

in terms of spatial and temporal coverage. In addition to surface measurements, model simulations play an indispensable role 

in the estimation of the aerosol radiative effect at the global scale and excel in predicting past or future trends of ADRF (Chang 60 

and Liao, 2009; Qiu et al., 2017). Meanwhile, model simulations are subject to large uncertainties in terms of emissions, 

transport, and physical and chemical parametrization schemes (José A. et al., 2013). 

Compared to the above methods, satellite remote sensing has an outstanding advantage of delivering aerosol information with 

higher spatial resolution and larger spatial coverage. Using solely satellite data or a combination with model simulations and 

observations constraint, many methods have been developed to retrieve global and regional ADRF estimates (e.g., Yu et al., 65 

2004; Bellouin et al., 2005; De Graaf et al., 2013). However, these studies have mainly concentrated on the top-of-atmosphere 

(TOA) radiation budget. Thus far, long-term estimates of the surface ADRF distribution have rarely been addressed and few 
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studies gave a full picture of surface ADRF over land (e.g.: Thomas et al., 2013; Chung et al., 2016). This lack of research is 

because satellites are unable to measure surface-level radiative fluxes directly. Furthermore, the retrieval of aerosol 

microphysical parameters remains challenging, including single scattering albedo (SSA, see Table 1 for the acronyms) and 70 

asymmetry parameter (ASY). Many attempts have been made to solve this key problem. For instance, Thomas et al. (2013) 

adopted prescribed aerosol properties from the literature to estimate surface ADRF. Fu et al. (2017) took aerosol optical 

parameters from some AERONET sites as representative of the entire region to conduct grid-cell ADRF simulations. 

Undoubtedly, additional uncertainty was introduced by the assumption of aerosol optical representativeness in the temporal 

and spatial dimensions. Some studies also nudged global model simulations towards AERONET SSA to obtain the aerosol 75 

parameters (Chung et al., 2016). With the rapid development of satellite technology, more satellites are providing more detailed 

aerosol optical products via instruments such as the Polarization and Directionality of the Earth’s Reflectance instrument 

(POLDER), and the Ozone Monitoring Instrument (OMI) (Levelt, et al., 2006; Tilstra and Stammes, et al., 2007). However, 

the accuracy of the SSA and ASY products over China still needs to be improved (Oikawa et al., 2013; Dubovik, et al., 2019). 

Recently, using satellite and observational data assimilated into the Goddard Earth Observing System, version 5 (GEOS-5), 80 

the National Aeronautics and Space Administration (NASA) has extended the Modern-Era Retrospective Analysis for 

Research and Application, version 2 (MERRA-2). Compared with its predecessor (MERRA-1), MERRA-2 offers important 

improvements in aerosol assimilations (Gelaro et al., 2017). The new dataset has the potential to provide improved estimates 

of aerosol microphysical parameters, such as SSA, and can be further used in the ADRF estimation. After SSA is determined, 

ASY, the only unknow model input, can be retrieved by matching the simulated radiative fluxes with satellite measurements 85 

from Clouds and the Earth’s Radiant Energy System (CERES). Overall, based on the satellite and reanalysis datasets, including 

MERRA-2, the MODerate Resolution Imaging Spectroradiometer (MODIS) and CERES, the objective of this study is to  

provide quantitative estimates of fine-resolution ADRF distributions under the clear skies using a radiative transfer model over 

East China (114°-124°E, 24°-38°N, shown in the Figure 1). Additionally, the aerosol vertical profiles in each grid, which were 

not considered in previous studies, are used to obtain more accurate ADRF. In our study, aerosol vertical profiles are 90 

determined by the Weather Research and Forecasting Model (WRF, version 3.2.1) and the National Centers for Environmental 

Prediction-Final Operational Global Analysis (NCEP-FNL). The detailed algorithm of aerosol profiles can be found in Section 

2. Other data acquisition is also presented in Section 2, and Section 3 introduces the method of ADRF simulations. Section 4 

includes the retrieval of aerosol optical properties, validation of surface radiative fluxes with pyranometers, and detailed 

discussion of the error sources. Then this method is applied in each grid of East China during 2000-2016, and the uncertainty 95 

in the retrieval method is also discussed in Section 4. The conclusion is presented in Section 5. 

2 Data 

To acquire ADRF, the inputs (aerosol optical depth (AOD), SSA, ASY, albedo, etc.) to the radiative transfer model were 

determined from a combination of satellite and reanalysis datasets. AOD was derived from Collection 6 (C6) of MODIS Level 

2 products over land (10-km resolution at the nadir) from the Terra satellite (Levy et al., 2013). Compared with C5, MODIS 100 
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C6 mainly updated the cloud mask to allow heavy smoke retrievals and fine-tuned the assignments for aerosol types as function 

of season and location over the land. Levy et al. (2013) made a comparison between MODIS C5, C6 and AERONET, and 

found that the correlation coefficient of C6/AERONET increases slightly, and the slope and offset of the regression curve only 

changed slightly compared with C5/AERONET. MODIS AOD retrieval primarily employs three spectral channels, centered 

at 0.47, 0.66, and 2.1 μm and is interpolated at 0.55 μm (Kaufman et al., 1997). Li et al. (2003) demonstrated that the MODIS 105 

AOD Level 2 product is appropriate in eastern China and exhibits high precision. In addition, He et al. (2010) found that 

MODIS AOD was highly correlated with sunphotometer (CE318) measurements at 7 sites in the Yangtze River Delta (YRD) 

region (118°-123°E, 29°-33°N), with a correlation coefficient of 0.85 and with 90% of cases falling in the range of ΔAOD = 

± 0.05 ± 0.20 AOD (Chu et al., 2002). Thus, the uncertainty in the AOD is regarded as 20% in this study. 

Hourly SSA product was provided by MERRA-2. MERRA-2 combines GEOS-5 and the three-dimensional variational data 110 

assimilation (3DVar) Gridpoint Statistical Interpolation analysis system (GSI). GEOS-5 is coupled to the Goddard Chemistry, 

Aerosol, Radiation and Transport (GOCART) aerosol module, which includes five particulate species (sulfate, dust, sea salt, 

organic and black carbon) (Colarco et al., 2010). The optical properties of these aerosols are primarily from the Optical 

Properties of Aerosols and Clouds (OPAC) dataset, in which aerosol optical parameters are calculated based on the 

microphysical data (size distribution and spectral refractive index) under the assumption of spherical particles and they are 115 

given for up to 61 wavelengths between 0.25 and 40 μm (Hess et al., 1998). MERRA-2 provides SSA data at 0.55 μm. It is 

calculated by the ratio of total aerosol scattering aerosol optical thickness (AOT) to total aerosol extinction AOT at 0.55 μm, 

and these two are the outputs of GOCART model (Colarco et al., 2010). More details of the aerosol module in MERRA-2 can 

be found in Randles et al. (2017) and Buchard et al. (2017). The new dataset has been used in many recent studies and is 

appropriate for environmental and atmospheric research (Song et al., 2018). The input SSA was interpolated to other 120 

wavelength in SBDART, which will be discussed detailly in the Methodology (Section 3). 

The upward radiative flux at TOA was used to constrain and determine the ASY. The shortwave (SW, 0.3-5 μm) TOA flux 

was acquired by CERES Single Scanner Footprint (SSF) level 2 product from Terra satellite. CERES SSF measures the 

instantaneous reflected SW radiance under clear-sky conditions. To convert from radiance to flux, angular distribution models 

(ADM) were used in the CERES SSF product (Loeb et al., 2003). The CERES file contains one hour of data, and the CERES 125 

SSF footprint nadir resolution is approximately 20 km. According to Su et al. (2015), the uncertainty of TOA SW flux is 1.6% 

over clear land. 

Another important parameter for ADRF simulations is the surface albedo, and it was derived from daily MODIS MCD43C3 

black-sky albedo product (C6). Surface albedo product includes seven narrow bands and three broadbands (visible (0.3-0.7 

μm), near-infrared (0.7-5.0 μm), and SW (0.3-5 μm)).  Here, albedo product in SW band was used in our study.  Each file 130 

contains 16 days of combined Level 3 data from the satellites Aqua and Terra, with a spatial resolution of 0.05°. It also contains 

the data quality information, that is, the proportion of inversion retrieval information in each pixel. For example, data quality 

index 0 represents the best quality (100% with full inversion and no fill values), this index increases with the decrease of the 

proportion of inversion retrieval pixel, and 4 represents 50% or less fill values. Notably, to ensure accuracy, only the albedo 
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values with high quality index (0-4) were used. The uncertainty in the high-quality MODIS albedo is less than 5% (Cescatti et 135 

al., 2012). 

The total column ozone, total column water vapor and atmospheric profile data were from the ERA-Interim (European Center 

for Medium-Range Weather Forecast (ECMWF) Interim Reanalysis). Specifically, the atmospheric profile includes the 

altitude, temperature, water vapor density, and ozone density at 37 pressure levels (1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100 to 250 

at 25-hPa intervals, 300 to 750 at 50-hPa intervals, and 775 to 1000 at 25-hPa intervals). The data quality of the ERA-Interim 140 

reanalysis data can be found in Dee et al. (2011). 

The aerosol vertical profile plays a non-negligible role in aerosol radiative forcing.  In SBDART, aerosol vertical profile is 

shaped by aerosol density and the according altitude. The aerosol density is a proportion of AOD in different altitude, and the 

overall profile is scaled by AOD. The aerosol density is set to fall exponentially between two altitudes by default. In our study, 

aerosol vertical profile in SBDART was derived from two-layer aerosol vertical distribution model, which is proposed by He 145 

et al. (2008). In this two-layer aerosol model (Figure S1), aerosol extinction coefficient is assumed to decrease exponentially 

with altitude above the top of the planet boundary layer (PBL) and the extinction coefficient keeps uniform below the PBL. 

Based on this aerosol model, two inputs of aerosol vertical profile need to be determined, PBL and aerosol layer height (ALH).  

ALH is defined as the level where the aerosol extinction coefficient decreases to 1/e (scaling height) of that at the top of the 

PBL. PBL and ALH input to SBDART along with the according aerosol density. In this study, PBL was simulated using a 150 

three-domain, two-way nested simulation of the WRF Model (version 3.2.1). ALH can be influenced by the transport of air 

mass and the convective dispersion of aerosols, both of which are usually associated with large-scale weather systems. Based 

on the different meteorological conditions, an automated workflow algorithm of ALH was constructed, and ALH was estimated 

by the meteorological parameters (relative humidity, temperature, wind speed and wind direction) from NCEP-FNL. The 

detailed algorithm and the according calculations of PBL and ALH retrieval can be found in the He et al. (2016). The aerosol 155 

profiles were utilized to calculate the surface-level visibility from AOD, and the long-term spatial comparison with surface 

measurements over East China displayed that 90% of the samples exhibited correlation coefficients greater than 0.6 and that 

68% of the samples exhibited correlation coefficients greater than 0.7 (He et al., 2016).  

All of these multiplatform datasets with their spatial and temporal resolutions were summarized in Table 2. In this study, 

bilinear interpolation was used in these datasets, and these datasets were interpolated to a spatial resolution of 0.1°×0.1° to 160 

collocate with the MODIS/AOD data. The ADRF simulation was also performed in each 0.1°×0.1° grid over East China. For 

temporal resolution, AOD and TOA radiation fluxes were from the MODIS and CERES sensor aboard the Terra satellite 

respectively, and they are available once per day. Both SSA and ERA-Interim are hourly means, surface albedo product in 

daily means. The ADRF simulations were only performed at the passing over of the Terra satellite under clear skies. The 

temporal coverage is from 2000 to 2016. The research area and surface measurement sites for validation are shown in Figure 165 

1.  
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3 Methodology 

Clear-sky ADRF in the SW (0.25-4 μm) spectral region was simulated by the Santa Barbara Discrete Atmospheric Radiative 

Transfer (SBDART) model (Ricchiazzi et al., 1998). This model has been widely adopted for the estimation of aerosol radiative 

forcing and validated with high accuracy (Li et al., 2010). In this study, SBDART model was used to estimate broadband SW 170 

(0.25-4 μm) surface irradiances and ADRF over East China. It is on the basis of the DISORT radiative transfer model, the low-

resolution band models developed for LOWTRAN 7 atmospheric transmission, and the Mie scattering results for light 

scattering by water droplets and ice crystals (Ricchiazzi et al., 1998). Here, LOWTRAN 7 (Low Resolution Atmospheric 

Transmittance 7) solar spectrum was adopted in SBDART. This radiative transfer model also includes the standard aerosol 

models derived from Shettle and Fenn (1975), in which aerosol optical parameters are wavelength dependence and the 175 

scattering parameters depend on the surface relative humidity. Users can also define different aerosol parameters in different 

wavelength. The default of the according spectral information is interpolated/extrapolated to all wavelengths using linear fitting 

on SSA/ASY, and using Ångstrom coefficients on AOD. According to Wang, P. et al. (2009), the input of aerosol parameters 

has very minor effect on the accuracy of irradiance simulation when using spectrally averaged values compared with detail 

spectral information. Therefore, aerosol parameters (AOD, SSA, ASY) at 0.55 μm were used in the radiative transfer model. 180 

As for surface albedo, it is simply assumed that angular distribution of surface-reflected radiation is completely isotropic in 

the model. In our study, MODIS SW MCD43C3 (0.3-5 μm) product is used as albedo input, and it is nearly consistent with 

wavelength coverage (0.25-4 μm) of the output surface irradiances in SBDART.  

As shown in Figure 2, the main inputs of SBDART model include aerosol properties (AOD from MODIS; SSA from MERRA-

2; ASY from the retrieval (Section 4.2)), surface albedo (from MODIS), aerosol vertical profile (from NCEP), atmospheric 185 

profiles (from ECMWF), total column ozone and water vapor (from ECMWF). The main outputs are radiative fluxes at the 

surface and TOA with and without aerosols. ADRF is defined as the difference in net radiative flux (downward minus upward) 

between aerosol and no-aerosol conditions. Here, we mainly concentrated on ADRF at the surface: 

ADRFsur = (𝐹 ↓ −𝐹 ↑) − (𝐹0 ↓ −𝐹0 ↑),         (1) 

where 𝐹 and 𝐹0 represent radiative fluxes with and without the aerosol at the surface, respectively. The upward and downward 190 

arrows denote the directions of the radiative fluxes, which can be obtained by the outputs of SBDART. For simplicity, the 

upward radiative fluxes at the TOA are called F_u_toa, and the downward/upward radiative fluxes at the surface are called 

F_d_sur and F_u_sur, respectively (see Table 1 for the acronyms). 

Besides above, Mann-Kendell (MK) test (Mann, 1945; Kendall, 1975) was used to calculate the trend of ADRF time series 

and its significance level (above 90%) in our study. It identifies that whether monotonic trends exist in a time series and is 195 

widely employed for trend analysis of aerosol data. The detailed analysis produce can be found in Li et al. (2014). Prior to 

trend analysis, ADRF data were deseasonalized by subtracting the monthly mean during 2000-2016 to eliminate the influence 

of annual and seasonal cycles. 
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4 Results and discussion 

4.1 Retrieval of aerosol properties  200 

Before ADRF simulation, the accuracy of MERRA-2 SSA product, was evaluated firstly. In East China, six sunphotometer 

sites, Xuzhou (117.14ºE, 34.22ºN), Shouxian (116.78ºE, 32.56ºN), Hefei (117.16ºE, 31.91ºN), Taihu (120.22ºE, 31.42ºN), 

Pudong (121.79ºE, 31.05ºN) and Hangzhou (120.16ºE, 30.29ºN) (Figure 3a), were chosen for comparison with MERRA-2 

SSA data..  The location of the sunphotometers was shown in Figure 3(a), and their geographical characteristics, observing 

periods, sample numbers as well as the fitted regression equation between MERRA-2 and sunphotometer SSA were presented 205 

in Table 3. Five sites (Xuzhou, Shouxian, Hefei, Taihu and Hangzhou) are AERONET sites and Level 1.5 inversion data of 

AERONET were used. The uncertainty of AERONET products can be found in Dubovik and King (2000). Another 

sunphotometer (CE318, Cimel Electronique, France) in Pudong was calibrated annually and maintained routinely, and a 

detailed description of calibration was presented in Cheng et al. (2015). The sunphotometer spectral products are available at 

wavelengths of 440, 675, 870, and 1020 nm, and they were interpolated at 0.55 μm to match MERRA-2 SSA. The collection 210 

time was constrained from 09:00 to 14:00 (local time), covering the overpass time of the Terra satellite. Meanwhile, the 

relatively high solar zenith in this period avoids possible inversion errors and improves the data accuracy (Tian et al., 2018b). 

Additionally, the specific MERRA-2 grid cell containing the sunphotometer was selected, and sunphotometer SSA was hourly 

averaged to match the MERRA-2 SSA product. The detailed comparisons at Xuzhou, Shouxian and Hefei were shown in 

Figure 3b. Orange dots represent Xuzhou samples and orange line is the according fitting curve, while the green represents 215 

Shouxian, and the black is Hefei. Figure 3c displays the comparison results at Taihu, Pudong and Hangzhou. Red denotes 

Taihu, the purple is Pudong and the yellow is Hangzhou. As shown in Figure 3, dashed lines are the range of ±10% relative 

error, all samples in Taihu, Pudong, Hefei, 94% of samples in Xuzhou, 93% in Shouxian and 98% in Hangzhou fall within the 

±10% error. This finding suggests that MERRA-2 SSA agrees well with the sunphotometer data, even though few SSA 

samples are beyond the error range. Furthermore, the slopes of linear fitting curve are less than 1 at all sites except Shouxian 220 

(Table 3), and it reveals that MERRA-2 SSA has systematic biases at most area of East China. The primary reason for the 

discrepancy is the simple aerosol model assumption in MERRA-2 (Buchard et al., 2017). Only five aerosol types (sulfate, dust, 

sea salt, organic and black carbon) are involved; the lack of nitrate aerosols, which are highly scattering aerosols, may result 

in the underestimation of MERRA-2 SSA. In addition, the calibration errors among these instruments should be considered. 

Generally, the evaluation results in six sites show that the accuracy of MERRA-2 SSA product is acceptable in East China, 225 

with ±10% uncertainty. 

After SSA was determined, ASY is the only unknown input parameter. ASY is the key to portraying the scattering direction 

of aerosols. ASY=1 denotes completely forward scattering, and ASY=0 is symmetric (Rayleigh) scattering. Here, gridded 

ASY was simulated by matching observed F_u_toa (from CERES) with simulated F_u_toa (from SBDART). The sensitivity 

test indicates that F_u_toa, just similar with F_u_sur (shown in Figure S3b), is a monotonically increasing function of ASY 230 

with other fixed inputs. Consequently, only one F_u_toa can be obtained by one specific ASY. In this premise, a binary search 
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was applied to approximate ASY to improve calculation efficiency (Chang, 2013). The goal of the binary search is to find the 

ASY when the simulated F_u_toa is close to the observed F_u_toa. To accomplish this, the ranges of F_u_toa are repeatedly 

diminished by taking the middle ASY as one of the boundary values, and when the difference between the F_u_toa observed 

by CERES and calculated by SBDART is less than 1, the corresponding approximation of ASY is finally obtained. The detailed 235 

scheme is illustrated in Figure 4. First, the value for ASY is initially assumed in the reasonable range of 0.1-0.9, and the upper 

and lower boundaries of ASY, along with other parameters, are input to SBDART to yield the initial range of calculated 

F_u_toa_a and F_u_toa_b. Then, this range is checked to determine whether it includes the F_u_toa (observed by CERES) by 

multiplying ((F_u_toa_a- F_u_toa)*( F_u_toa_b- F_u_toa)). If the multiplication result is negative, meaning that ASY falls 

within this range (ASYa, ASYb), the average of F_u_toa_a and F_u_toa_b is set as a new boundary (F_u_toa_c). Otherwise, 240 

this case is discarded, and the retrieval is not continued (ASY=NaN), perhaps due to inappropriate inputs. Next, for cases in 

which the multiplication result is negative, the multiplication process is applied to the new boundary ((F_u_toa_a- 

F_u_toa)*( F_u_toa_c- F_u_toa)). If this multiplication result is negative, the ASY falls within this range (ASYa, ASYc). 

Then, ASYc is set to represent ASYb. Otherwise, ASYc is set to represent ASYa. This process represents the scope-narrowing 

of the ASY boundary discussed above. With several iterations of narrowing the scope, the boundaries of the simulated F_u_toa 245 

become close to the true value of F_u_toa (observed by CERES). When the difference between the simulated F_u_toa boundary 

and the observed F_u_toa is less than 1, the corresponding ASY is considered as one approximation. In this process, the input 

parameters, including AOD (from MODIS), SSA (from MERRA-2), surface albedo (from MODIS), aerosol vertical profile 

(from NCEP), atmospheric profiles (from ECMWF), total column ozone and water vapor (from ECMWF), were input into the 

SBDART together in every iteration. All these inputs from 2000-2016 were used to simulate ADRF in each grid of East China. 250 

All calculations were performed on the Linux system. Following this method, ASY was retrieved in each grid cell over East 

China. The range of retrieved ASY is 0.50-0.80, and the mean ASY is 0.63, which is consistent with the observation site (Taihu) 

in East China (Xia et al., 2007). According to Mie theory, ASY is determined by the size distribution and the complex refractive 

index of aerosols. Therefore, the difference of ASY in East China can be partly related with the difference of fine mode radius. 

Xia et al. (2007) has reported that the fine mode volume median radius at Taihu site averages 0.181 μm over a range of AOD 255 

from 0.6-1.0, while it is 0.168 μm in northern China. In ASY retrieval, ASY is assumed to vary enough to match F_u_toa with 

ensuring the accuracy of all other inputs (e.g. AOD, SSA). This assumption can deviate from the reality if there are obvious 

differences between real and retrieval values of other inputs. This above condition can easily occur in the process of ASY 

retrieval, when ASY cannot be retrieved (ASY=NaN). Even if ASY can be obtained, ASY can be inaccurate when other inputs 

have large biases. The uncertainty of ASY caused by the other inputs (AOD, SSA, albedo, CERES F_u_toa) will be quantified 260 

in the following uncertainty analysis (Section 4.3). 

After aerosol optical properties were obtained, these parameters from multiplatform datasets can be input into the SBDART 

model to simulate surface radiative fluxes and ADRF in East China according to the methodology in Section 3. 
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4.2 Validation of the method 

Before conducting ADRF simulation in each grid of East China during 2000-2016, this method was first applied in the three 265 

grids of selected sites to assess the performance of ADRF retrieval. Three radiation sites in Baoshan (121.45°E, 31.4°N), 

Fuzhou (119.29°E, 26.08°N), Yong’an (117.37°E, 25.98°N) were chosen to make the comparisons between calculated F_d_sur 

and surface observation by the pyranometers (FS-S6, China) during 2014-2016. Red circles in Figure 1 denote the specific 

locations of pyranometers. Baoshan and Fuzhou are urban and coastal sites while Yong’an represents suburb and inland sites. 

The different aerosol concentration levels and abundant aerosol types in these sites can represent the most of aerosol properties 270 

in East China. These pyranometers had regular maintenance and were calibrated annually through intercomparisons with the 

basic-reference station. Additionally, quality control has been performed at these sites according to Long and Shi (2008), 

including the removal of physical possible limits as determined by Baseline Surface Radiation Network (BSRN) and use of 

configurable limits based on climatological analysis of measurement data. The uncertainty in the pyranometers is expected to 

be 5% (Song, 2013). Simulated F_d_sur was averaged in the scope of a 40 km side length with the center at the pyranometer, 275 

and the measured F_d_sur was averaged within 30 min of the satellite overpass (Ichoku, et al., 2002). 

Figure 5 displays the comparison results between simulated F_d_sur and observed F_d_sur by pyranometers at three sites. The 

simulated F_d_sur is fairly consistent with the observations, with correlation coefficients of 0.87 in Baoshan (Figure 5a) and 

Fuzhou (Figure 5b) and 0.90 in Yong’an (Figure 5c). Root mean squared error (RMSE) is a good indicator for measuring the 

discrepancy between observed and simulated F_d_sur data. The RMSE is 7.9 W m-2 in Baoshan, 7.5 W m-2 in Fuzhou and 5.6 280 

W m-2 in Yong’an. This discrepancy only accounts for 3-5% of ADRF, indicating that this retrieval method has a relatively 

higher accuracy than those in other studies (e.g., Thomas et al., 2013; Fu et al., 2017). Additionally, all slopes are less than 1, 

which implies that the method has systematic biases at these sites.  A similar tendency was found in the comparison between 

MODIS AOD andsunphotometers in East China by He et al. (2010); it is speculated the main systematic error in ADRF 

simulation may come from the input, MODIS AOD. Nevertheless, satisfactory comparison results indicate the suitability and 285 

feasibility of ADRF retrieval in the off/near the sea and urban/suburb sites of East China, although the type of underlying 

surface and aerosol properties are evidently different in these areas. 

To further assess the discrepancy between simulated F_d_sur and the observations, the relative errors of each case at the three 

sites were calculated. The results suggest that underestimated cases (negative relative errors) account for 61% of the total cases 

and overestimated cases (positive relative errors) account for 39%. According to the validation results, the sources of error in 290 

the simulation may be attributed to the following reasons: 

Cloud contamination: An examination of cloudiness was carried out at the three sites. According to the empirical clear-sky 

detection method, one-hour radiation data of a pyranometer was used to discriminate clear-sky observations (Xia et al., 2007). 

The red dots in Figure 5 represent the cloudiness case detected by the pyranometer. Meanwhile, from the MODIS true color 

map composed by channels 1, 4 and 3 (not shown), the olive green dots denote the specific case in which the site is completely 295 

covered by clouds. Taking one olive green cases (Baoshan, October 18, 2014) for an example. As shown in the Figure S2, it 
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is obvious that a large amount of cloud exists in the area of 29°N-31°N and 120°E-122°E, and Baoshan site is at the edge of 

the cloud. In this case, MODIS AOD was overestimated compared with sunphotometer AOD, this because some cloud effects 

were not completely removed from the MODIS/AOD calculation. Therefore, a large discrepancy can occur in these cases 

between simulated F_d_sur and observation. The cloud effect, especially residual thin cirrus clouds, is difficult to completely 300 

remove from MODIS AOD (Kaufman et al., 2005). Moreover, the cloud mask algorithm in MODIS aerosol inversion 

sometimes fails to distinguish fog or haze in high-humidity conditions. Many more fog days can be observed in Fuzhou than 

the other two sites, and fogginess can significantly reduce the accuracy of the simulation (Ye et al. 2010). In addition, the error 

source of MODIS AOD is also from errors in the aerosol model assumption and surface reflectivity (Xie et al., 2011). 

Different spatial and temporal representativeness: In the validation, the area measurement (satellite and reanalysis data) 305 

was compared to point measurements (pyranometer). For temporal matching, the pyranometer can capture the process of 

perturbation induced by air mass movement within one hour, whereas satellite can only provide the instantaneous condition. 

Hence, this comparison method inevitably introduces some degree of uncertainty. 

Instrument and radiative transfer errors: One error source in pyranometers is the thermal offset effect. This spurious signal 

is due to the difference in temperature between the inner dome and the detector of a pyranometer and can lead to additional 310 

errors in the irradiance measurements, especially diffuse irradiance (Sanchez et al., 2015). To reduce this effect, a pyranometer 

should be installed in a transparent ventilation hood. Alternatively, several statistical methods have also been proposed to 

suppress the thermal offset effect (e.g., Song, 2013; Cheng et al., 2014). In this study, the correction of the thermal offset was 

not performed because of the lack of additional observation data. Aside from the instrument error, the model simulation 

discrepancy also depends on the radiative transfer models. They are based on some simplifications, including the sphericity of 315 

aerosol particles and the directional reflectance of the surface. Derimian et al. (2016) found that neglecting aerosol particle 

nonsphericity can overestimate the aerosol cooling effect. Furthermore, simulation results vary slightly among different models 

due to their different assumptions in radiative transfer. For instance, Yu et al. (2007) compared three models (second simulation 

of the satellite signal in the solar spectrum (6S), Moderate resolution atmospheric Transmission (MODTRAN) and SBDART) 

at Xianghe station and showed that approximately 80% of the cases simulated by SBDART were lower than the surface 320 

observations, while the 6S simulation results were higher. 

4.3 Sensitivity test and uncertainty analysis 

To determine the uncertainty of the method for ADRF simulation caused by each input parameter, a sensitivity test for input 

parameters was carried out. A specific case in Shanghai on October 11, 2015, was used with the following values: AOD = 

0.62, SSA = 0.85, ASY = 0.69, surface albedo = 0.13, total column water vapor = 0.69 g/cm2, and total column ozone = 0.28 325 

atm-cm. Figure S3 portrays the responses of F_d_sur, F_u_sur and ADRF to changes in one parameter while holding the other 

parameters constant. To remove the impact of units, all the parameters are dimensionless; that is, the ratio of the input to the 

actual value is used as the x-axis value. The absolute value of every slope describes the impact of every parameter on the 

dependent variables (F_d_sur, F_u_sur and ADRF). Figure S3 presents the actual condition of this case when the value of the 
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x-axis equals 1, in which F_d_sur is 629.15 W m-2, F_u_sur is 83.52 W m-2, and ADRF is -149.39 W m-2. This situation denotes 330 

a strong cooling effect of aerosols at the surface. Apparently, different parameters impose diverse influences on the radiative 

values (F_d_sur, F_u_sur, and ADRF). As depicted in Figure S3, AOD, SSA, and ASY are three crucial parameters that greatly 

influence F_d_sur. Wang, P. et al. (2009) conducted the radiative closure experiment in the Netherlands and further found that, 

AOD can affect the changes of direct/diffuse irradiation, while SSA and ASY only affect the diffuse irradiance. For F_u_sur, 

albedo, AOD, and SSA are more important parameters. The impact of surface albedo is much larger than the others because 335 

albedo actually determines how much of the irradiance is reflected by the surface. For ADRF, SSA, AOD, and ASY are major 

factors in determining ADRF. Additionally, only a large AOD produces much cooler at the surface, whereas increases in SSA 

and ASY can result in decreases in the aerosol cooling effect. In general, sensitivity test shows that ADRF depends highly on 

AOD, SSA, ASY and albedo. Two parameters (atmospheric profile and aerosol vertical profile) are not discussed because 

these parameters have little impact on clear-sky ADRF in the above case. The atmospheric profile has a minor effect on the 340 

perturbations of ADRF compared with the total columns of atmospheric component (water vapor and ozone). This result has 

also been proven by Yu et al. (2007) and Li et al. (2016). As for aerosol profile, two typical shapes were input to SBDART for 

the sensitivity test. The first type (type I) has an elevated aerosol layer, and the second type (type II) is the two-layer aerosol 

model as mentioned above (Figure S1). The changes of the elevated layer height (type I) or PBL/ABL (type II) have very little 

impact on ADRF, and the according maximum value of ADRF difference only can reach 0.5 W m-2. This conclusion is 345 

consistent with Guan et al. (2009). However, this impact becomes much stronger in the presence of absorbing aerosols, 

especially in some extreme cases such as dust storms and biomass burning (Wang and Christopher, 2006). Reddy et al. (2013) 

also demonstrated that surface aerosol radiative forcing can be enhanced by 25% due to the insertion of the extinction profile 

of absorbing aerosols to replace the default profile. 

On the basis of these four high-sensitivity factors, the uncertainties in ASY and ADRF due to these parameters were 350 

quantitatively assessed. According to data uncertainty mentioned in Section 2 and the SSA validation, the relative errors of 

AOD, SSA, albedo, and CERES F_u_toa are 20%, 10%, 5% and 1.6%, respectively. This lower/upper limit of parameter errors 

was input to the ADRF calculation, and the associated uncertainty was calculated by the difference between the simulated 

radiative flux with parameter errors and without errors. Notably, the uncertainty analysis is based on extreme conditions, and 

the associated errors are much larger than the actual values. As displayed in Table 4, the uncertainty in ASY induced by SSA 355 

can reach up to 23%, indicating that SSA is a decisive factor in ASY retrieval when using CERES F_u_toa constraint. SSA 

also has the largest effect in regulating aerosol radiative forcing, which is consistent with the research on dust aerosols by 

Huang et al. (2009). AOD contributes uncertainties of 3.7% in ASY and 15.4% in ADRF. Albedo introduces 1.7~3.7% 

uncertainty in ASY and approximately 3% in ADRF. The error of CERES product produces approximately 1.7% uncertainty 

in ASY and 1.5% in ADRF. The results of uncertainty analysis agree well with those of previous studies. For example, Xia et 360 

al. (2016) revealed that AOD and SSA together can account for 94% of surface ADRF. Zhuang et al. (2018) further noted that 

the error sources from the absorbing component of AOD and coarse-aerosol SSA contributed to the greater uncertainty in the 

ADRF. Therefore, improving the precision of the input parameter is helpful for obtaining reliable ADRF estimation. As 
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Michalsky et al. (2006) demonstrated, when using high-quality measurements as inputs to model, the biases between modeled 

and measured irradiance can decrease to 1.9%. In addition to these factors, Wang and Martin (2007) also revealed the effects 365 

of aerosol hygroscopicity on the aerosol phase function and the increase in SSA with RH enhancement, suggesting that relative 

humidity (RH) is also closely related to ADRF. 

4.4 Long-term ADRF retrieval in East China 

The above evaluations show the method for ADRF simulation is feasible and high-accuracy in East China, thus this method 

was further applied in each grid cell of East China to obtain a full coverage of ADRF during 2000-2016. Figure 6 outlines an 370 

overall picture of annual mean ADRF at the surface over East China during the past 17 years. It provides valuable information 

about aerosol radiative effect not only in the urban areas with intensive human activities, but also in the suburb with unavailable 

observational data. ADRFs in all grids are negative, ranging from -220 W m-2 to -20 W m-2, implying that aerosols have cooling 

effect at the surface over East China. The yearly mean ADRF is -100.21 W m-2. The magnitude of ADRF is higher than most 

cities in the world, such as Spain (Esteve et al., 2014), Gasan (Kim et al., 2006) and Karachi (Alam et al., 2011). The main 375 

reason is that AOD in East China is much larger than these cities, since East China has experienced rapid urbanization and 

economic development in the past 17 years and AOD is much larger than these regions. For example, mean AOD in East China 

is 0.62 in this study during 2003-2011 while AOD is 0.19 in Spain during 2003-2011 (Esteve et al., 2014). Red area denotes 

the high absolute value of ADRF (Figure 6), which are found in the densely populated and industrialized areas, including the 

western Shandong Province, YRD and Poyang Lake Plain. Low value (blue area) is observed in the Southern part, such as 380 

Fujian and southern Zhejiang Province. Obvious difference of ADRF distributions is found between the northern and southern 

part of East China, and the magnitude of ADRF increases from South to North. This pattern is consistent with site observations 

in Che et al., (2018), in which surface ADRF ranges from -150 to -100 W m-2 in the northern sites of East China (Huainan and 

Hefei in Anhui Province) while ADRF ranges from -100 to -50 W m-2 in the southern sites of East China (Jiande, ChunAn and 

Tonglu in Zhejiang Province). To further explore this difference, East China was divided into two parts: the North and South, 385 

with the boundary of 30°N. The occurrence frequencies of annual ADRF for each grid cell in the North and South were 

calculated in the Figure S4. The occurrence frequency shows a broad range from -300 W m-2 to 0 and the interval is 20 W m-

2. In the North, the largest proportion of ADRF, with the value of 76.47%, fall in the range of -100~-80 W m-2, while the largest 

proportion (64.71%) of ADRF fall in the range of -60~-40 W m-2 in the South. The extreme value over -250 W m-2 may result 

from severe haze in the winter. Aerosol cooling radiative effect can sharply increase with large aerosol loadings. According to 390 

Yu et al. (2016b), surface ADRF can reach up to -263 W m-2 in the haze days, while in the non-haze days, it can decrease to -

45 W m-2 in Beijing on January 2013. Usually in the heavy haze, the enhanced surface cooling, combined with atmosphere 

heating, can result in a more stable environment. It is unfavourable for the diffusion and dispersion of the aerosols, can further 

make air accumulation and enhance aerosol ADRF (Wu et al., 2016). Meanwhile, positive ADRF also found in few grid cells, 

although it is not shown in the Figure S4. This condition occurs over bright surface in East China especially with the abundance 395 

of absorbing aerosols (Sundström et al., 2015).  According to the uncertainty analysis, ADRF is closely associated with the 
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inputs (SSA and AOD). Based on this, comparison was conducted among the mean spatial distribution of ADRF, AOD and 

SSA during 2000-2016 (Figure 7). It is clear to see that ADRF pattern is very similar to the negative phase of AOD pattern, 

that is, the areas of high AOD have low ADRF. As for SSA, the higher value can be found in the South than the North, which 

indicating the aerosols in the South are generally more scattering than the North. Therefore, the large difference between North 400 

and South can be mainly attributed to the difference in AOD. The industry locations and topography between the North and 

South are obviously different. With the development of economy and urbanization, large amounts of anthropogenic aerosols 

in the North can impose strong cooling radiative effect in the past two decades. It is worth noting that, although western 

Shandong has lower urbanization compared with YRD, aerosol cooling effect in western Shandong is even larger than in YRD. 

This is because Yimeng mountain (these mentioned places are all shown in Figure 1) located in the middle of Shandong,  405 

blocks the west flow, leading to the enhancement of the aerosol accumulations and high AOD near its western border (He et 

al., 2012b). Meanwhile, Shandong is also easily impacted by air pollution transported from North China. In addition, high 

absolute value of ADRF is also found in Poyang Lake in Jiangxi with abundance of anthropogenic aerosols, and these areas 

are surrounded by the mountains, the poor ventilation condition makes aerosols enhanced. Compared with the North, the South 

is characterized by more extensive vegetation coverage and less human activities, and AOD is relatively lower in the South 410 

(Figure 7b) and aerosols have weaker cooling effect.  

Apart from spatial changes, temporal changes of ADRF during 2000-2016 were also analysed. Figure 8 displays the time series 

of monthly mean ADRF and AOD. For comparison, blue line represents ADRF and red line denotes AOD. They both show a 

fluctuation pattern, and they have an obvious negative phase with the correlation coefficient of 0.72.  It indicates that the 

temporal change of ADRF is mainly attributed to the change of AOD. MK trends of ADRF and AOD are both positive but 415 

insignificant at 90% confident level, showing AOD and ADRF did not change significantly during 2000-2016 in East China. 

Paulot et al. (2018) also proved this insignificant trend of ADRF in China based on chemical-climate models. About AOD, 

Zhang et al. (2017) found that AOD trend increases since 2000-2007 and then decreases in the eastern China based on satellite 

observations. It is well known that the changes of AOD is closely linked with the change of anthropogenic emissions, especially 

in the developing country. Che et al. (2019) calculated that SO2 is the dominant anthropogenic emissions factors to AOD in 420 

China during past few decades. Furtherly, model simulations also indicate the changes of sulfate aerosols are the largest 

contributor to AOD and aerosol effect in China (Paulot et al., 2018). MK trends of monthly mean ADRF in each grid cell 

during 2000-2016 were also calculated (Figure 9). Hatched regions indicate those exceeding the 90% significance level.  It 

can be found high positive trend in Anhui and Jiangxi, indicating the aerosol cooling effect is weaker in this region during 

2000-2016. However, a few regions experience the stronger of this cooling effect, especially in the northeast and south area of 425 

Yimeng mountain in Shandong. In general, the changes of ADRF during the past 17 years are mainly due to the anthropogenic 

emissions in East China. In addition, Paulot et al. (2018) further pointed that there is a nonlinear relationship between 

anthropogenic emissions and AOD/ADRF when considering the mix and oxidation of different emissions. 
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5 Conclusion 430 

In this study, based on multiplatform datasets, high-accuracy ADRF distributions over East China during 2000-2016 were 

protrayed. MERRA-2 SSA data were first compared with sunphotometer data (Taihu, Xuzhou, Pudong), and the validation 

result shows that the relative error of the MERRA-2 SSA is 10% over East China. Then, ASY in each grid was retrieved by 

matching the simulated F_u_toa by SBDART with satellite observations. Then, aerosol optical properties (AOD from MODIS, 

SSA from MERRA-2, and ASY from the retrieval), surface albedo (from MODIS), aerosol vertical profile (from NCEP), 435 

atmospheric profiles (from ECMWF), total column ozone and water vapor (from ECMWF) served as input parameters for 

SBDART to simulate ADRF in each grid cell of East China during 2000-2016. The validation result of this method at three 

sites (Baoshan, Fuzhou, and Yong’an) reveals that simulated F_d_sur is highly correlated with the pyranometer data during 

2014-2016, with correlation coefficients of 0.87 in Baoshan and Fuzhou and 0.90 in Yong’an. The RMSEs are 7.9 W m-2 in 

Baoshan, 7.5 W m-2 in Fuzhou and 5.6 W m-2 in Yong’an. It shows that ADRF retrieval is feasible and has high accuracy over 440 

East China. In addition, associated factors, including cloud contamination, instrument and radiative transfer errors, as well as 

different spatial and temporal representativeness, were confirmed to produce additional uncertainty in ADRF simulations.  

Sensitivity test shows that ADRF depends highly on AOD, SSA, ASY and albedo. Uncertainty analysis shows the uncertainty 

in ADRF retrieval induced by SSA is calculated 24% and that by AOD is 15.4%. Finally, ADRF simulation was conducted in 

each grid of East China during 2000-2016. Long-term ADRF distributions over East China were presented for the first time. 445 

ADRFs in all grids are negative, the range of ADRF is between -220 W m-2 and -20 W m-2, implying that aerosols have cooling 

effect on surface over East China.   Aerosols are found to have stronger cooling effect in the North compared with the South. 

ADRF spatial pattern is consistent with the negative phase of AOD pattern, and the temporal changes of ADRF also have a 

close relationship with AOD. They indicate that the changes of ADRF in East China can mainly attributed to the changes of 

AOD. Furthermore, the spatiotemporal changes of AOD and ADRF are controlled by anthropogenic emissions, especially 450 

sulfate emissions in East China during past 17 years. 

In summary, this study suggests that the method for ADRF retrieval is feasible in East China. Especially in suburbs with no 

monitoring resources, our study offers valuable information of direct radiative impact of aerosols. It is noted that, in our study, 

ADRF was calculated during the time that satellite passes by rather than the whole day. More additional observation data from 

the sites, are needed to further verify the performance of the ADRF retrieval and constrain these multiplatform datasets to 455 

improve the ADRF accuracy. In addition, it is necessary to improve the satellite instruments and the retrieval algorithm of 

aerosol properties; more novel methods, such as machine learning, can be involved in the ADRF estimates (Yin, 2010; Yu and 

Song, 2013). In the future work, aerosol-induced changes in the surface radiation under climate change and agricultural 

economic impact will be studied. This work can provide a deep understanding of aerosol radiative effects and is also helpful 

for aerosol modeling over East China. 460 
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Table 1: Summary of the acronyms. 

ADRF Aerosol direct radiative forcing (W m-2)  

SSA Single scattering albedo (unit less) 

ASY Asymmetry parameter (unit less) 

AOD Aerosol optical depth (unit less) 

F_u_toa Upward radiative fluxes at the top of atmosphere (W m-2) 

F_d_sur Downward radiative fluxes at the surface (W m-2) 

F_u_sur Upward radiative fluxes at the surface (W m-2) 
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 Table 2: Satellite and reanalysis datasets used in the study. 

   

Parameters Products Sensors/Models Spatial Resolution Temporal Resolution  

AOD MOD04 L2 Terra MODIS 0.1°×0.1° instantaneous   

SSA tavg1_2d_aer_Nx MERRA-2 0.625°×0.5°  hourly   

Surface albedo MCD43C3 Terra+Aqua MODIS 0.05°×0.05° daily  

Upward TOA radiative flux SSF Terra CERES 20km instantaneous  

Meteorological data ERA-Interim ECMWF 0.125°×0.125° hourly  
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Table 3: The geographical characteristics, observing period, sample number of sunphotometer sites. The fitted 750 

regression equations between MERRA-2 and sunphotometer SSA are also shown here. In the equation, x represents 

SSA sample, y represents fitted value of SSA. 

 

Location Lon/Lat Observing 

period 

Sample 

number 

Fitted regression 

equation between 

MERRA-2 and 

sunphotometer SSA 

Xuzhou 

(Urban) 

117.14°E/34.22°N 2013.8-2016.12 514 y=0.02+0.94x 

Shouxian 

(Rural) 

116.78°E/32.56°N 2008.5-2008.12 26 y=-0.45+1.46x 

Hefei 

(Urban) 

117.16°E/31.91°N  2005.11-2005.12 

2008.1-2008.11 

19 y=0.09+0.85x 

Taihu 

(Rural) 

120.22°E/31.42°N 2005.1-2012.12 

2015.1-2016.12 

230 y=0.2+0.75x 

Pudong 

(Urban) 

121.79°E/31.05°N  2010.12-2012.10 

2014.1-2015.11 

84 y=0.49+0.46x 

Hangzhou 

(Urban) 

120.16°E/30.29°N 2008.4-2009.2 45 y=0.38+0.57x 
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Table 4: Errors induced by different input parameters in ASY, radiative flux (F_d_sur, F_u_sur) and ADRF. Here, the 

uncertainties of input parameters (AOD, Albedo, CERES F_u_toa) are from literatures and the uncertainty of SSA is 

from validation in Section 4. 

Parameter Uncertainty Errors in ASY Errors in F_d_sur Errors in F_u_sur Errors in ADRF 

AOD ±20%a -3.7%~1.7% ~4.5% ~4.4% ~15.4% 

SSA ±10% -19%~23% ~12% ~12% ~24% 

Albedo ±5%b -3.7%~1.7% ~0.7% ~5.9% ~3% 

CERES F_u_toa ±1.6%c -1.8%~1.7% ~0.4% ~0.4% ~1.5% 

a He et al. (2010). 

b Cescatti et al. (2012). 760 

c Su et al. (2015).  
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Figure 1: The map of research area, topography, major lakes and mountains in East China. The red circles denotes the 

locations of three pyranometers (Baoshan, Fuzhou and Yong’an). This figure was generated by ArcGIS, version 10.2. 765 

Map source: Map World (National Platform for Common Geospatial Information Services, www.tianditu.gov.cn).  

  

http://www.tianditu.gov.cn/
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Figure 2: A schematic diagram to simulate ADRF based on satellite and reanalysis datasets. 770 
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Figure 3: (a) The location of six sunphotometer sites over East China. (b) The scatter plots of SSA between MERRA-2 

and sunphotometer in Xuzhou, Shouxian and Hefei. Orange dots represent Xuzhou samples and orange line is the 

fitting curve of Xuzhou samples while green represents Shouxian and black represents Hefei. Dashed lines are the range 775 

of ±10% relative error. (c) The scatter plots of SSA between MERRA-2 and sunphotometer in Taihu, Pudong and 

Hangzhou. Red dots represent Taihu samples and red line is the fitting curve of Taihu samples while purple represents 

Pudong and yellow represents Hangzhou. Dashed lines are the range of ±10% relative error. 
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 780 

Figure 4: A detailed workflow of binary search used in ASY retrieval. 
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Figure 5: The scatter plots between observed F_d_sur by pyranometers and simulated F_d_sur by SBDART in Baoshan, 

Fuzhou, and Yong’an. The blue line the is fitting curve and the dashed line represents y=x. The red dots denote the 785 

specific case in which the pyranometer captures the fluctuation of F_d_sur by clouds during one hour. The olive green 

dots denote the specific case in which the site is completely covered by clouds, deduced from MODIS true color map 

composed by 1, 4 and 3 channels. The blue dots represent the other ordinary case. 
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Figure 6:  Yearly mean ADRF distributions during 2000-2016 over East China (unit: W m-2).  
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Figure 7: Averaged spatial distribution of (a)ADRF (unit: W m-2), (b)AOD and (c)SSA during 2000-2016 in the East 

China. 
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Figure 8: Time series of monthly mean ADRF (blue) and AOD (red) in East China from 2000 to 2016.  Dashed lines 

represent the Mann-Kendell (MK) fitting trend of ADRF and AOD. 
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Figure 9: The spatial distribution of ADRF trend in East China during 2000-2016 (unit: W m-2 month-1). Hatched 

regions represent those exceeding the 90% significance level.  

 


