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Abstract. The second generation of the EUMETSAT Polar System (EPS-SG) will include the Ice Cloud Imager (ICI), the

first operational sensor covering sub-millimetre wavelengths. Three copies of ICI will be launched that together will give a

measurement time series exceeding 20 years. Due to the novelty of ICI, preparing the data processing is especially important

and challenging. This paper focuses on activities related to the operational product planned, but also presents basic technical

characteristics of the instrument. A retrieval algorithm based on Bayesian Monte Carlo integration has been developed. The5

main retrieval quantities are ice water path (IWP), mean mass height (Zm) and mean mass diameter (Dm). A novel part of the

algorithm is to fully present the inversion as a description of the posterior probability distribution. This is preferred for ICI as

its retrieval errors not always follow Gaussian statistics. A state-of-the-art retrieval database is used to test the algorithm and

to give an updated estimate of the retrieval performance. The degrees of freedom in measured radiances, and consequently the

retrieval precision, vary with cloud situation. According to present simulations, IWP, Zm and Dm can be determined with 90%10

confidence at best inside 50%, 700 m and 50 µm, respectively. The retrieval requires that the data from the thirteen channels of

ICI are remapped to a common footprint. First estimates of the errors introduced by this remapping are also presented.

Copyright statement. TEXT

1 Introduction

Satellite data are today an indispensable part of numerical weather prediction (NWP), see e.g. Bauer et al. (2015). The first15

observations from space directed towards weather prediction were made during the early 1960s by the TIROS (Television

InfraRed Observation Satellite) program, using optical and infrared sensors (Bandeen et al., 1961). According to Staelin et al.

(1976), the first satellite-based microwave observations of Earth’s atmosphere were made by Cosmos 243 and 384, launched by

the Soviet Union in 1968 and 1970, respectively. Atmospheric humidity and liquid cloud water were measured using channels

at 22.235 and 37 GHz. These first, brief measurements (two weeks and two days, respectively) were followed by NEMS20

1



(Nimbus E Microwave Spectrometer) that was functional 2.4 years after its launch 1972 with Nimbus-5. The channels of NEMS

were placed at 22.235, 31.4, 53.65, 54.9 and 58.86 GHz. The additional channels around 55 GHz gave information on the

atmospheric temperature profile (Waters et al., 1975). Another microwave sensor onboard Nimbus-5 was ESMR (Electrically

Scanning Microwave Radiometer), that had a single channel at 19.35 GHz and showed that rainfall can be detected from space

(Kidd and Barrett, 1990).5

More regular microwave soundings started around 1979 with the MSU (Microwave Sounding Unit) and SSM/T (Special

Sensor Microwave – Temperature) sensor series. Both these instruments had only channels between 50 and 60 GHz (see e.g.

Grody, 1983; Liou et al., 1981). The SSM/I (Special Sensor Microwave – Imager), introduced in 1987 had humidity, cloud

liquid water and precipitation as main atmospheric targets, with channels at 19.4, 22.2, 37.0 and 85.5 GHz (see e.g. Schluessel

and Emery, 1990), and thus extended the coverage of the microwave region to higher frequencies. The next main step was taken10

during the 1990s with the SSM/T-2 (Special Sensor Microwave – Humidity) and AMSU-B (Advanced Microwave Sounding

Unit – B) instruments that both included three channels around 183.3 GHz (see e.g. Spencer et al., 1989; Saunders et al., 1995).

A main motivation for extending the coverage up to 183 GHz was to obtain vertical information on humidity, and not only

column values. Today a relatively high number of microwave sensors are operational, mainly in sun-synchronous orbits but

also in other orbits, such as SAPHIR (Sondeur Atmospherique du Profil d’Humidite Intertropicale par Radiometrie) and GMI15

(Global precipitation mission Microwave Imager). Across-track and conically scanning microwave radiometers are by tradition

denoted as imagers or sounders, respectively. The origin to this classification is that conically scanning instruments have tended

to be optimised for deriving surface properties, while vertical sounding of the atmosphere has mainly been implemented as

across-track instruments.

In NWP the capability of providing information on temperature and humidity with no or small impact of clouds has tradi-20

tionally been seen as the main justification for launching microwave sounders. It has been recognised that passive microwave

data also contain valuable information on clouds and precipitation and these features have been used in various stand-alone

retrievals (e.g. Spencer et al., 1989; Weng et al., 2003; Andersson et al., 2010), but this fraction of the data has been rejected

inside NWP as assimilation systems have been incapable of using these observations. This situation has started to change, and

there are already indications of a strong increase of the relative impact of microwave data inside NWP (Geer et al., 2017).25

The present growing impact of microwave data is mainly due to improved assimilation software in combination with in-

creased computing power, but also new versions of the instruments having a higher number of channels has been beneficial.

But one limitation has remained for two decades, that operational microwave observations are so far limited to frequencies be-

low 195 GHz. This situation will change in 2023 with the launch of ICI (Ice Cloud Imager), that will extend the coverage up to

670 GHz. ICI is one of the instruments planned for the next generation of Metop satellites, see further Sec. 2. The frequencies30

195 and 670 GHz correspond to wavelengths of 1.5 and 0.45 mm, respectively, and ICI will thus open up the “sub-millimetre

region” for NWP.

The main objective of ICI is to provide data on humidity and ice hydrometeors, particularly the bulk ice mass. The advantage

of using sub-millimetre observations for deriving such information was first pointed out by Frank Evans and coworkers in a
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series of articles (Evans and Stephens, 1995a, b; Evans et al., 1998, 1999, 2002). The initial idea was to have a sub-millimetre

instrument onboard CloudSat to complement its cloud radar, but this part was later descoped.

The idea of a sub-millimetre cloud ice sounder was picked up again in a mission called CIWSIR, that was proposed to

the European Space Agency ESA as an “Earth Explorer” in 2002 and again in 2005 (Buehler et al., 2007). CIWSIR was not

selected, but ESA funded preparatory studies, that lead to a consolidated mission proposal called CloudIce for Earth Explorer5

8 in 2010 (Buehler et al., 2012). It featured channels near 183.31, 243.20, 325.15, 448.00, and 664.00 GHz. Shortly thereafter,

a similar sensor was also proposed for the international space station (ISS-ICE), with a reduced set of channels.

While CloudIce was not selected for Earth Explorer 8, it was taken as blueprint for the ICI instrument part of EUMETSAT

Polar System - Second Generation (EPS-SG). Its channel configuration, given explicitly in Table 1, is identical to CloudIce,

except that the number of channels near 183 GHz was reduced from 6 to 3.10

ICI will be the first operational sub-millimetre mission, but measurements of our atmosphere at such wavelengths already

exist by other instruments, mainly by limb sounding instruments. The main objective of these instruments is to monitor gases

in the strato- and mesosphere, but at their lowest tangent altitudes they perform observations that have similarities with ICI.

Retrievals of ice cloud mass have also been developed for all three sub-millimetre limb sounders launched so far; Aura MLS

(Wu et al., 2006), Odin/SMR (Eriksson et al., 2007) and SMILES (Millán et al., 2013; Eriksson et al., 2014). Observations at15

887 GHz were recently demonstrated by a “cubesat” mission (IceCube, Wu (2017)). The observation approach behind ICI has

also been used by some airborne instruments. The pioneering instruments were MIR (Millimeter-wave Imaging Radiometer)

and CoSSIR (Compact Scanning Submillimeter Imaging Radiometer) (Wang et al., 2001; Evans et al., 2005). More lately,

ISMAR (International SubMillimetre Airborne Radiometer) has been developed largely to support the preparations for ICI (Fox

et al., 2017). These instruments and the associated data analysis, besides their intrinsic scientific value, provided justification20

for ICI in the selection process and provide useful input when designing processing algorithms for ICI.

It is expected that ICI data will be used in two main ways. In NWP the data will mainly be ingested as basic radiances; for a

review of challenges, expected benefits and approaches of “all-sky” assimilation, see Geer et al. (2018). The data of ICI can also

be “inverted” in stand-alone algorithms to produce a number of geophysical quantities, see Buehler et al. (2012). The produced

retrieval datasets can be of concern for short-term weather forecasting, but will likely mainly be used for different climate25

applications, such as the verification of global models made by the similar ice cloud products derived from limb sounders

(e.g. Li et al., 2005; Eriksson et al., 2010; Jiang et al., 2012). This article describes activities performed under the auspices of

EUMETSAT in preparation of a “day-one” retrieval product (i.e. the product released directly after commissioning), as well as

to provide general support for using ICI data.

The ICI instrument and its main characteristics are introduced in Sec. 2, while the following Sec 3 outlines the retrieval30

algorithm in focus. The expected performance is investigated in Sec. 4 using simulated data. The two final sections provide an

outlook and conclusions.
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2 The Ice Cloud Imager

2.1 Overview of EPS-SG

The ICI mission is part of the EUMETSAT Polar System second generation system (EPS-SG). The space segment will consist

of a two-satellite architecture, referred to as Metop-SG satellite A and B. There will be three satellite pairs, where each satellite

will have a nominal lifetime of 7.5 years to span a total operational lifetime over 21 years. These satellites will fly, like present5

Metop, in a sun-synchronous mid-morning orbit at 09:30 local time of descending node. The altitude profile over the Earth

geoid varies between 848 and 823 km (832 km mean altitude). The orbit repeat cycle will be 29 days (412 orbits per repeat

cycle). The main ground-station will be Svalbard, but also McMurdo will be used to improve the timeliness of data. The

ground segment also includes regional ground stations for receiving Direct Data Broadcast. See further www.eumetsat.int/

website/home/Satellites/FutureSatellites/EUMETSATPolarSystemSecondGeneration/index.html.10

ICI will be onboard of the B satellites, also carrying MWI (Micro-Wave Imager), SCA (Scatterometer), RO (Radio Oc-

cultation sounder) and ARGOS-4 (Advanced Data Collection System). In particular, MWI is a conically scanning radiometer

which observes 18 frequencies ranging from 18 to 183 GHz. All channels up to 89 GHz will observe in dual polarisation,

while only vertical polarisation will be provided for higher frequencies. MWI has the same requirements for incidence angle

and fore-view observation as ICI. Combined, the MWI and ICI radiometers will provide an unprecedented set of microwave15

passive measurements, from 18.7 GHz up to 664 GHz.

It is noteworthy that MWI will cover the 118.75 GHz oxygen and the 183.15 GHz water vapour molecular transitions with

four and five channels, respectively. This gives MWI sounding capabilities and this instrument narrows down the traditional

separation between “imagers” and “sounders”.

2.2 The receiver package20

The ICI radiometer (Bergadá et al., 2016) consists of seven double sideband front-ends, operating with local oscillator (LO)

frequencies of 183.31, 243,20, 325.15, 448.00 and 664.00 GHz. The frequencies 183.31, 325.15 and 448.00 correspond to

three water vapour transitions, while 243,20 and 664.00 GHz are “window” channels (see Buehler et al., 2007, Fig. 10). There

is a receiver at each of these LO frequencies providing data matching vertical (V) polarisation inside the atmosphere. At both

the two window frequencies there is also a second receiver covering horizontal (H) polarisation. A spectrometer of filter-bank25

type is attached to each front-end. The receiver package will be kept in thermal balance by passive cooling. Presently, the

receiver noise temperature is expected to be about 600, 900, 1700, 1500 and 2600 K at the five LO frequencies, respectively.

See e.g. Janssen (1993) for an introduction to the concept of receiver noise temperature.

For the window frequency receivers the filter-bank consists of a single channel, while the other filter-banks have three

channels each. Position and width of all the channels are reported in Table 1 and are visualised in Fig. 1.30
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Table 1. Specifications of the ICI receiver. ICI has double sideband receivers, indicated by ± in the third column, and the bandwidth refers

to the width of single passbands, i.e. the intermediate frequency bandwidth. “NE∆T” and “Max bias” are reported as the requirements, and

final performance should be better. Further comments are found in the text (the two last columns are discussed in Sec.3).

Channel Frequencies Bandwidth Polari- NE∆T Max bias Elevation Azimuth τ = 1 Ozone

Name ID [GHz] [GHz] sation [K] [K] offset [◦] offset [◦] [km] [K]

ICI-1V 1 183.31±7.00 2.00 V 0.8 1.0 -0.780 0.000 0.8-3.8 0.1

ICI-2V 2 183.31±3.40 1.50 V 0.8 1.0 -0.780 0.000 2.8-5.6 0.1

ICI-3V 3 183.31±2.00 1.50 V 0.8 1.0 -0.780 0.000 3.8-6.8 0.1

ICI-4V 4 243.20±2.50 3.00 V 0.7 1.5 0.711 -3.398 0.0-2.5 0.1

ICI-4H 5 243.20±2.50 3.00 H 0.7 1.5 0.731 3.385 0.0-2.5 0.1

ICI-5V 6 325.15±9.50 3.00 V 1.2 1.5 -0.822 -2.226 1.6-4.4 0.2

ICI-6V 7 325.15±3.50 2.40 V 1.3 1.5 -0.822 -2.226 3.1-5.9 0.2

ICI-7V 8 325.15±1.50 1.60 V 1.5 1.5 -0.822 -2.226 4.4-7.4 0.9

ICI-8V 9 448.00±7.20 3.00 V 1.4 1.5 -0.822 2.240 4.5-7.2 0.1

ICI-9V 10 448.00±3.00 2.00 V 1.6 1.5 -0.822 2.240 6.0-8.9 0.1

ICI-10V 11 448.00±1.40 1.20 V 2.0 1.5 -0.822 2.240 7.2-10.2 0.3

ICI-11V 12 664.00±4.20 5.00 V 1.6 1.5 0.752 -1.367 4.5-7.1 1.6

ICI-11H 13 664.00±4.20 5.00 H 1.6 1.5 0.875 0.941 4.5-7.1 1.6

2.3 Antenna system, scanning and calibration

The receiver package is integrated with a conically scanning antenna system. The diameter of the main reflector is 0.26 m

(slightly elliptical), and the system is rotating at 1.333 Hz (i.e. 45 r.p.m.). Atmospheric observations are made over about 120◦,

around the platform’s (forward) flight direction. This gives a swath width of roughly 1500 km. The platform will perform yaw

manoeuvres to keep the swath centred around the sub-nadir orbit track. During the remaining part of each rotation, calibration5

data will be obtained by observing “cold sky” and an internal calibration target that will have a temperature of around 300 K.

The overall requirement on random (NE∆T) and systematic (bias) uncertainties of calibrated antenna temperatures are found

in Table 1.

The horn antennas are designed to keep the angular resolution the same between channels (about 0.5◦), but the footprints

of the receivers still differ, as the antenna of each front-end is placed at a different position in the focal plane. The angular10

offsets are found in Table 1. The reference angle for the elevation offsets is 44.767◦, measured from the nadir direction. This

gives a configuration of instantaneous footprints at surface level as depicted in Fig 2, with surface incidence angles varying

between 51.5◦ and 53.8◦. The instantaneous footprint sizes at surface level are about 17/20 km along-track and 7.3/8.5 km

across-track for the footprints having a positive/negative elevation offset (at -3 dB, and slightly varying with latitude). The

angular movement inside the integration time increases the effective across-track size.15
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Although the combination of conical scanning and the platform’s movement in total gives a continuous coverage over the

swath, there will not be any perfect matches in horizontal coverage between the channels. Accordingly, some post-processing

is required to obtain data suitable for an inversion using channels from more than one front-end. To support footprint “remap-

ping” a high across-track sampling will be applied, data will be recorded every 0.661 ms. This corresponds to an across-track

movement of the boresights between samples of about 2.7 km, giving 785 samples/scan. The distance along-track between5

subsequent scans will be about 9 km. This gives substantial overlap of sample footprints, both in along- and across-track di-

mension, giving some freedom in setting the target resolution in the remapping of footprints. The requirement on final footprint

size is 16 km (as average between along- and across-track resolution), and the requirement of e.g. NE∆T is defined for this

horizontal resolution. The noise in individual samples will be higher. It is expected that averaging over four subsequent across-

track samples will meet the requirements, and about 200 footprints/scan will effectively be provided. L1b data will only contain10

the original samples, the optimal remapping will differ depending on application.

3 Algorithm

3.1 Aim and constraints

The planned output of the EPS-SG Overall Ground Segment at EUMETSAT Headquarters includes the MWI-ICI-L2 product,

that will contain retrievals based on MWI and ICI and be delivered in near real time. The objective of the IWP product of15

MWI-ICI-L2 is to provide a day-one, robust, retrieval that reflects the main information content of ICI radiances. For some

centrally generated level 2 products, the EUMETSAT Satellite Application Facilities (SAFs) provide support by specifying the

level 2 processing algorithms and share responsibility for the products. The SAF supporting Nowcasting (NWC-SAF) retains

the scientific ownership of the IWP product and delivered the IWP algorithm theoretical basis definition (Rydberg, 2018). To

allow for the procurement and implementation in the ground segment, the IWP algorithm definition had to be finished during20

2018, with further changes in the algorithm specifications not to impact the basic architecture and design. The efforts so far

have focused on the core algorithm and the retrieval database discussed below has been produced as an initial working basis.

Future studies will be required to elaborate the final database. Additional products from ICI will be generated directly by the

SAFs located at weather services in EUMETSAT member and co-operating states.

3.2 Overview25

A first, crucial decision was the selection of retrieval approach. “Optimal estimation” (a.k.a. 1DVAR) was not selected as it

would demand a forward model handling multiple scattering of polarised radiation and capable of providing the Jacobian with

respect to the retrieval quantities. Such a model was simply not at hand. With respect to sub-millimetre cloud observations,

optimal estimation has so far only been used for theoretically inclined studies (Birman et al., 2017; Grützun et al., 2018; Aires

et al., 2019).30
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Further, the retrieval problem at hand is both non-linear and involves non-Gaussian statistics, and a more general solution of

the Bayes theorem should be preferable. For practical reasons this leads to approaches based on a retrieval database (Rydberg

et al., 2009). The most straightforward implementation can be denoted as BMCI (Bayesian Monte Carlo Integration), and has

been the method of choice for Evans and coworkers (e.g. Evans et al., 2002).

There are close connections between BMCI and the standard use of neural nets (Pfreundschuh et al., 2018). Such neural5

nets (NN), a form of machine learning, have been applied on both simulated ICI data (Jimenez et al., 2007; Wang et al., 2017)

and ISMAR field data (Brath et al., 2018). Both approaches (BMCI and NN) were considered initially, but NN was eventually

rejected as it was found that a very high number of nets would be required and there was no established way to estimate

retrieval uncertainties.

Following the selection of BMCI, a complete retrieval algorithm was designed (Fig. 3). The algorithm consists of two main10

parts, a series of pre-processing steps and the actual inversion by BMCI. Only the most critical aspects are discussed in the

following sections, for details we refer to Rydberg (2018). The generation of the final retrieval database is a task of the future,

but a possible manner to generate the database is still outlined in Sec 4.2.

3.3 Input and output

The main input to the retrieval algorithm are geo-located and calibrated antenna temperatures, i.e. L1b data. Data from a15

number of footprints will be involved in each inversion, being remapped to the target footprint specified (Sec. 3.4.1). The

target footprint also governs the extraction of geophysical variables (Sec. 3.4.3). All important retrieval parameters are set by

a configuration data structure.

The main output variables (L2) are ice water path (IWP), mean mass height (Zm) and mean mass diameter (Dm). All these

three variables are reported as percentiles of the estimated a posterior distribution (Sec. 3.5.1) and are defined as antenna20

weighted means. For example, the reported IWP is an estimation of

IWP =

∫∞
z0

∫
Ω
r(Ω)IWC(x(Ω),y(Ω),z)dΩdz∫

Ω
r(Ω)dΩ

, (1)

where r is the antenna (or radiation) pattern (in sr−1, with the satellite as reference point), Ω is antenna pattern solid angle, x,

y and z are Cartesian coordinates (with arbitrary origin) and IWC is ice water content:

IWC =

∞∫
0

n(dveq)m(dveq)ddveq, (2)25

where n is particle size distribution, m is particle mass and dveq is equivalent volume diameter (ρ is the density of ice):

dveq = 3
√

6m/πρ. (3)

That is, dveq is the diameter of an “ice sphere” having the same mass. The start of the altitude integration in Eq. 1, z0, is

presently set to be the surface altitude, but it can be changed.
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Mean mass height is defined as

Zm =

∫∞
z0
z
∫

Ω
r(Ω)IWC(x(Ω),y(Ω),z)dΩdz

IWP
, (4)

and mean mass size as (cf. e.g. Delanoë et al., 2014, Eq. 3)

Dm =

∫∞
0
d4

veq

∫∞
z0

∫
Ω
r(Ω)n(dveq)dΩdzddveq∫∞

0
d3

veq

∫∞
z0

∫
Ω
r(Ω)n(dveq)dΩdzddveq

. (5)

These equations are applied to calculate the IWP etc. of the database cases, and thus will represent the “true” values. As these5

equations take inhomogenities into account, both vertically and horizontally, the impact of “beamfilling” (Davis et al., 2007)

will automatically be included in the estimated retrieval uncertainty.

The L2 data will contain further data, such as retrieved water vapour column, but the exact L2 format is not finalised and

only the three main retrieval quantities are discussed below.

3.4 Pre-processing part10

3.4.1 Target footprint and remapping of data

The exact geo-location of samples differs between channels (Sec 2.3), but the time integration of individual samples is shorter

than the time period necessary to sweep out a single projected field of view. This allows for a footprint matching procedure by

remapping of the original data. A toolbox for performing such remappings has been developed in a dedicated study issued by

EUMETSAT (Rydberg and Eriksson, 2019). The toolbox is based on the Backus-Gilbert methodology (Backus and Gilbert,15

1970; Stogryn, 1978), that earlier has successfully been applied for footprint-matching between various satellite data (e.g.

Bennartz, 2000; Maeda and Imaoka, 2016).

In short, the Backus-Gilbert methodology can be used to obtain a set of optimal weighting coefficients for neighbouring

samples, both within the scan and from adjacent scans, to create a remapped representation of the data matching a specified

target footprint. A remapped value is a linear weighted combination of data of the channel of concern. The weights are found,20

after a trade-off analysis, by minimisation of a penalty function that considers both the effective noise of the remapped data

and the fit to the target footprint.

The centre position of a retrieval is set by selecting one of the sample footprints of ICI-1V. The exact shape of the target

footprint around this position will be determined later, but it is expected to be≈16 km and close to circular. The effective noise

of remapped samples should be equal or below the “NE∆T” reported in Table 1. Example results are found below, in Sec. 4.1.25

3.4.2 Bias correction

The algorithm allows for a simple “bias correction” of the data:

T ca,j = aj + bjTa,j (6)
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where T ca,j is corrected antenna temperature for channel j, Ta,j is the value as given by the remapping toolbox and aj and bj

are channel specific coefficients.

The purpose of the bias correction is to remove systematic differences between remapped L1b data and the simulations

behind the retrieval database. A bias can originate from e.g. calibration issues, the remapping and incorrect spectroscopic data

in the simulations. This module will only be applied as a rough temporary solution if any bias is detected, until the source to5

the bias has been understood and corrected.

3.4.3 Geophysical data and RTTOV

The retrieval performance can be improved by incorporating various geophysical data. These data will be taken from the

ECMWF forecast system. Data of dynamic character that will be used include: temperature, ozone and surface wind speed,

while static data are various parameters to characterise surface altitude and type. The water vapour profile is also imported10

from ECMWF, but it is modified below the tropopause to have a constant relative humidity (a configuration setting). The logic

behind this approach is to incorporate information on e.g. atmospheric temperatures and ozone from ECMWF (ICI has no

temperature channels), while letting humidity be constrained by the ICI data. The last column in Table 1 gives the mean impact

of ozone based on a set of simulations. The maximum impact found was 2.1 K, for ICI-11 and a mid-latitude winter scenario.

Using the ECMWF data as input, radiative transfer calculations will be performed applying the RTTOV software (Saunders15

et al., 2018), to obtain a first estimate of the atmospheric optical thickness and a reference antenna temperature (T ra ). These

calculations assume “clear-sky” conditions (i.e. no impact of hydrometeors), are run for all ICI channels and are discussed

further below.

3.4.4 Channel selection

Modelling of surface effects will, at least initially, be a main obstacle for these retrievals. Simulating these effects for land20

surfaces is a challenge already at low microwave frequencies. The situation for water bodies is better, particularly as the

TESSEM sea-surface emissivity parameterisation has been updated to cover the full frequency range of ICI (Prigent et al.,

2017). Some validation of TESSEM has been made (using ISMAR), but presently relatively large model uncertainties are

expected even for water surfaces.

The impact of surface effects on measured radiances depends mainly on the atmospheric transmission. The transmission25

varies strongly between the ICI channels, as exemplified in Fig. 4. It varies also with the atmospheric situation. Estimates of

at what altitude the transmission to ICI equals e−1, for clear-sky conditions, are found in the column “τ = 1” of Table 1. The

lowest altitudes are associated with driest atmospheric scenario considered, and vice versa. The table shows that surface effects

is in general of no concern for e.g. ICI 7V, 10V, 11V and 11H, while for some channels the surface must always be considered.

As a consequence, an adaptive selection of data is required. A channel mask is formed by evaluating30

τcs,j + chmτhm,j ≥ τst (7)
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where τcs,j is the clear-sky optical thickness of channel j obtained by RTTOV, chm a configuration setting, τhm,j is estimated

additional optical thickness due to hydrometeors and τst is a threshold value for surface type s. Data from channels fulfilling

this criterion are included in the calculations. In the pre-processing part τhm is set to zero. The channel mask is re-evaluated

as part of the BMCI module, then also including attenuation due to hydrometeors. Both chm and τst are configurable variables,

where the later is specified for five different surface types. The selection of τst should consider to what extent surface emissivity5

variability is represented in the final retrieval database, as well as to what extent the error model in Sec. 3.5.3 covers remaining

modelling uncertainty.

3.4.5 Detection of clear-sky data

The algorithm includes an optional module for identifying observations that with a high probability match clear-sky conditions,

that thus can be set to give IWP = 0 without doing an actual inversion. This procedure results in that the L2 structure can not10

be fully filled, e.g. the water vapour column will not be retrieved, and this module will only be activated if it will be necessary

to decrease the overall calculation burden of the processing. As the module likely will not be applied, we refer to Rydberg

(2018) for details.

3.5 Inversion part

3.5.1 Theory and retrieval representation15

The retrieval is performed by the BMCI method (Sec. 3.2). For a description of BMCI and its relationship to Bayesian es-

timation, see e.g. Kummerow et al. (1996) or Pfreundschuh et al. (2018). In short, BMCI is based on a “retrieval database”

consisting of n pairs of atmospheric state, xi, and corresponding observation, yi, with the constraint that xi is approximately

distributed according to reality, i.e. represents the prior distribution of x. The essence of BMCI is, for a given measurement y,

to attribute a posterior probability, pi(xi|y), to each database state as20

pi(xi|y) = wiai/

n∑
i=1

wiai, (8)

where wi is a measure on the agreement between y and yi,

wi = exp(−
[
(y−yi)

TS−1
o (y−yi)

]
/2), (9)

with So being the covariance matrix describing measurement and forward model uncertainties (Kummerow et al., 1996). The

factors ai can be seen as a priori weights. They can be used to optimise the retrievals for a given database size. For example, it25

could be justified to accept cases with IWP = 0 only with some probability r < 1 during database generation (Sec. 5). If this

thinning is performed, remaining database cases having IWP = 0 will obtain ai = 1/r (instead of 1).

As Eq. 9 involves So, this has the consequence that all uncertainties covered by this covariance matrix must approximately

follow Gaussian statistics (as for 1DVAR). On the other hand, BMCI allows any a priori distribution of variables (unlike

1DVAR), and e.g. “outliers” can be included in the generation of the retrieval database.30
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The actual solution of BMCI is the estimated posterior distribution (as for all Bayesian methods), but it is unpractical to

report sets of p. Some more compact description is needed. If the posterior distribution follows a Gaussian distribution it

suffices to report the expectation value and the width of the distribution. ICI retrievals do not fall into this category and it was

decided to instead use a more general description based on the cumulative distribution function, in the continuous case defined

as5

Fx|y(x) =

x∫
−∞

p(x′|y)dx′, (10)

where p denotes a probability density function, and in the framework of BMCI is obtained by summing the probability of all

cases having xi < x:

Fxi|y(x) =
∑
xi<x

pi(xi|y). (11)

Using Eq. 11, Fx|y is calculated on a wide grid of x-values. These data are then used to obtain the inverse distribution function,10

F−1, numerically by interpolation to a set of fixed percentiles. A more descriptive name of F−1 is the quantile function.

For example, F−1(0.5) is the median and the 90th percentile is F−1(0.9). Figure 5 exemplifies prior and posterior quantile

functions.

It is presently planned to report the 5th, 16th, 50th, 84th and 95th percentiles in the L2 data. If the retrieval must be condensed

to a single value, the first candidate to “best estimate” should be the 50th percentile. The other percentiles can be used in15

different ways. For example, if the 5th percentile for IWP is > 0 then a correct detection of ice hydrometeors is highly

probable. The 16th/84th percentile range matches ±1σ for a Gaussian distribution. The true value is between the 5th and 95th

percentiles with a probability of 90%, etc.

3.5.2 Database extraction and iterations

Not all database cases are included in the BMCI summation, a filtering is done based on surface type, pressure, wind speed and20

temperature, as well as ∆Ta (as defined below in Eq. 12). Wind speed is applicable only over water. The database extraction is

done in an iterative manner, where the filter limits are adjusted with an iteration counter, in order to fetch both the most relevant

and a sufficient number of matches. The filtering does not involve latitude or season. This results in that e.g. a tropical database

case can influence the inversion of a mid-latitude summer measurement, if there is a match in surface temperature etc.

An additional iteration scheme has been added around the core BMCI calculations. A first reason is to better make use of25

the observations in situations with significant hydrometeor contents. The optical thickness associated with hydrometeors is

estimated alongside of the L2 data in each iteration. Based on this updated estimate of the total optical thickness, Eq. 7 is

reevaluated for all channels. If this results in that more channels can be included, BMCI is reiterated with the new channel

mask. This iteration is important as the channels sensitive to the surface in a clear-sky situation, and thus ignored in the initial

iteration, are the most important ones to obtain good estimates at high IWP.30

The second reason is to handle the fact that the retrieval database only provides a discrete coverage of the distribution of y. If

one yi happens to agree closely with y, one wi can be orders of magnitude bigger than all other w and the summation in Eq. 8
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will be dominated by one database case. While the median value found can be realistic, this results in an underestimation of the

retrieval uncertainty. It could also be the case that no yi gives a significant match with y. Both these situations are primarily

handled by increasing the variances in So, effectively making the “search radius” larger. If this does not suffice, channels will

be rejected until an acceptable number of significant weights are obtained.

For further details of the filtering and iteration schemes, see Rydberg (2018). All critical parameters are part of the configu-5

ration data.

3.5.3 Measurement vector and uncertainties

The measurement vector (y) incorporates data from channels fulfilling the optical thickness criterion of Eq. 7 as a difference:

∆Ta,j = T ca,j −T ra,j (12)

where T ca,j is defined by Eq. 6 and T ra,j is a simulated antenna temperature (by RTTOV, Sec. 3.4.3). To match this, the retrieval10

database contains the difference between a full (all-sky) simulation and one (clear-sky) matching T ra,j .

The matrix So (Eq. 9) represents both instrument and simulation uncertainties. It is kept diagonal in lack of relevant infor-

mation on uncertainty correlations between channels. The knowledge regarding such correlations is especially poor for surface

emissivity. The variances σ2 are set as

σ2
j = NE∆T2

j + (∆εTskine
−τcs,j)2 + (c∆Ta,j)

2, (13)15

where NE∆T is uncertainty due to thermal noise and calibration. The second term aims at representing the impact of unknown

surface emissivity, where ∆ε is emissivity uncertainty, Tskin is the ECMWF surface skin temperature, and it is assumed that

the emissivity is relatively high. The antenna temperature is then approximately Ta = εTskine
−τcs,j +Te(1− e−τcs,j), where

Te is an effective temperature of the atmosphere, and thus dTa/dε≈ Tskine
−τcs,j .

The last term covers uncertainty in modelling of hydrometeor scattering. To our best knowledge, no investigation of such20

modelling errors has been made. The uncertainty is zero for clear-sky conditions, and it should in general increase with the

strength of scattering. Based on these two simple observations, we decided to simply model the error as proportional to the

deviation from the clear-sky reference simulation. NE∆T for each channel (j), ∆ε for water and land, and c are constants, part

of the configuration data.

4 Performance tests25

4.1 Remapping of data

Samples from all ICI channels will be convolved into the field of view of ICI-1V. This section summarises the main findings

obtained by applying the Backus-Gilbert toolbox developed (Sec. 3.4.1).
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4.1.1 Simulate test data

To test the toolbox four full orbits were simulated. The orbit parameters were taken from Metop-A (orbits 4655, 4656, 6985 and

9744). Geophysical data for the time of the four orbits were taken from ERA5 (mate.copernicus.eu/climate-reanalysis). ERA5

lacks data on precipitation of convective nature. To compensate for this, precipitation was added from a separate database

(provided by Alan Geer at ECMWF), based on similarities of large-scale precipitation profiles and some other variables. Using5

these data, radiances were simulated for all MWI and ICI channels, covering an area broader than the instrument’s swath and

representing a set of incidence angles.

These simulations were done by running the ARTS software in its three-dimensional mode (Eriksson et al., 2011). Absorp-

tion due to gases and liquid water content was calculated following Rosenkranz (1993, 1998) and Ellison (2007), and surface

emissivities following Prigent et al. (2017) and Aires et al. (2011). The size distribution of rain drops and ice hydrometeors10

were set following Abel and Boutle (2012) and Field et al. (2007), respectively. Particle properties were taken from Eriksson

et al. (2018), applying ID25 for rain and IDs 15 and 20 for ice hydrometeors (the name of these habits are found Table 2 below).

Using the set of pre-calculated pencil-beam radiances as a “look-up”-table, antenna weighted brightness temperatures could

be generated with a relatively low calculation burden taking full account of MWI’s and ICI’s scanning and footprints charac-

teristics, for different assumptions of the exact syncing between the instruments. In all parts, the WGS-84 reference ellipsoid15

was applied.

4.1.2 Main findings

The assumption here is that the goal of the remapping is to obtain data as would be observed with a synthetic instrument having

a common footprint for all channels (implying the same surface incidence angle for all channels). As will be shown, this can

not be achieved perfectly. However, these “errors” can at least partly be considered in the retrieval process and the final impact20

can be relatively low. Most importantly, the basic impact of different incidence angles can be included in both 1DVAR and

BMCI retrievals.

A bias-free convolution was demonstrated as long as the remapping does not involve a change in incidence angle. However,

this is strictly true only for ICI-2V and ICI-3V. These two channels share bore-sight with ICI-1V, but the antenna patterns differ

somewhat and a remapping is still required.25

Figure 6 exemplifies the issues that appear for the other channels, having an incidence angle that differs from the one of

ICI-1V (Table 1). Considerable remapping errors are found for ICI-11V. The elevation offset of this channel deviates to ICI-1V

with 1.53◦, that scales to a ∼2 degree lower incidence angle at surface level. This angular difference results in a remapping

error even in the absence of hydrometeors, as exemplified by the upper-left portion of the simulated area. The remapping

generates data that are 0.4 - 0.6 K too warm, as the toolbox can not compensate for the original difference in incidence angle.30

The “clear-sky” brightness temperature is higher at a lower incidence angle.

The same effect can be noted for areas with relative homogeneous cloud distributions, but brightness temperatures vary

more strongly with incidence angle in cloudy conditions and the error for ICI-11V is here instead about 0.5− 2 K (see e.g. the
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area directly south of 0◦N 10◦E). Further, at the edges of areas with hydrometeors even higher errors can be noted, as well

as errors of opposite sign. These errors originate in horizontal inhomogenities. The target footprint is defined at the altitude

of the reference ellipsoid and the remapping is optimal for this altitude. However, the effective footprint for some altitude

inside the atmosphere is the one at zero altitude projected upwards following the incidence angle of each channel. That is, the

footprints will not overlap perfectly, with a horizontal displacement that increases with altitude. As example, for ICI-11V it is5

about 700 m at 12 km. Hence, the noted errors match the change in brightness temperature for horizontal shifts of that order.

However, the atmospheric data used in the simulations do not have this high horizontal resolution and the magnitude of these

errors are just indicative.

The errors found for ICI-5V (Fig. 6) show a similar spatial pattern, but have the reversed sign and are of lower magnitude.

This is expected as the zenith offset of ICI-5V is only 0.04◦smaller than the one of ICI-1V, in contrast to the larger, positive10

shift for ICI-11V.

4.2 Generation of retrieval database

Retrieval databases for ICI must so far be generated by radiative transfer simulations. The input to the simulations can be

obtained from atmospheric models providing a sufficiently detailed description of hydrometeors (Wang et al., 2017; Brath

et al., 2018). This approach relies on that the model mimics reality with sufficient accuracy, as it represents the a priori for the15

BMCI retrieval. Another option is to base the simulations directly on observations as far as possible. As the spatial resolution

of ICI is limited, the most important input is information on vertical and horizontal structures in hydrometeor fields. Today

such data are available through cloud radars, even on global scale by CloudSat (Stephens et al., 2002).

The cloud radar data can be used in various ways. Some options are explored by Evans et al. (2002, 2012), while the

results reported below are based on the methodology developed in Rydberg et al. (2007, 2009). The basic idea is to produce20

simulated passive observations that are consistent with the basic information provided by the radar, i.e. measured reflectivities.

This is done for some assumption on particle size and shape distributions. That is, external retrievals of e.g. IWC are not

involved, the mapping from radar reflectivities to particle optical properties at the frequencies of the passive data is done by

an internal, implicit retrieval. The retrieval database should contain simulations for a set of different particle assumptions, to

reflect the variability and our limited knowledge of particle shapes and sizes. Remaining atmospheric data can be taken from25

some analysis (such as ECMWF’s ERA5), but this still represents a drawback of the approach as consistency is not guaranteed.

Most importantly, corrections are likely required to avoid improbable relative humdities where hydrometeors are present.

4.3 ICI retrieval performance

4.3.1 Test retrieval database

At this stage, the simulations are based on stretches of CloudSat reflectivites, selected randomly and with no preference regard-30

ing longitudes, land/ocean etc.. That is, the simulations have two dimensions, vertical and along-track. The ICI slant geometry

and antenna pattern are represented fully inside this 2-d geometry. So far the extension of the antenna pattern in the across-
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Table 2. Combinations of particle size distribution and habit model included in the test retrieval database. McFarquhar and Heymsfield

(1997) is shortened to MH97. Field et al. (2007) defined a tropical and a mid-latitude version of their size distribution, and both are used.

Each habit model consists of single scattering data selected from Eriksson et al. (2018), where both name and id-number are specified.

Hydro- Size Habit Latitude

meteor distribution name ID region

Ice Field et al. (2007) Sector snowflake 3 Tropics

Ice Field et al. (2007) Evans snow aggregate 1 Tropics

Ice MH97 Thick plate+Large plate aggregate 15+20 Tropics

Ice Field et al. (2007) Evans snow aggregate 1 Mid and high

Rain Abel and Boutle (2012) Liquid sphere 25 Global

track dimension is neglected, but can be included by mapping the CloudSat data to three dimensions (Rydberg et al., 2009).

Consideration of the antenna pattern is required to avoid systematic modelling biases due to “beamfilling” (Davis et al., 2007).

The procedure applied to map radar reflectivities to microwave radiances is described in detail by Ekelund et al. (2019). The

radiative transfer calculations were performed with the ARTS software (Buehler et al., 2018), using its interface to the RT4

(Evans and Stephens, 1995b) scattering solver. RT4 is applied following the “independent beam approximation” (see further5

Sec. 5), inside the two-dimensional atmosphere formed based on the CloudSat data. Absorption due to gases and liquid water

was treated as in Sec. 4.1.

The microphyscial models applied are described in Table 2. For mid and high latitudes also simulations with a modified

gamma distribution (for two habits) were produced, but the resulting Dm was found to be unrealistically high (a significant

fraction even above 2 mm) and this part of the database is here rejected. Oriented and melting particles are so far ignored.10

Observations over both water and land were simulated. Ocean surface emissivity was modelled according to Prigent et al.

(2017). In lack of any model for ICI’s frequency range, land emissivity was simply set to vary randomly around 0.9 (with a

log-normal distribution). The data used below contain in total 6.2·106 cases, based on 1373 CloudSat orbits between Sep 2015

and Jan 2016.

Besides the retrieval database, a smaller dataset was also simulated for channels 16 - 21 of ATMS (Weng et al., 2012)15

and a statistical comparison to actual observations was made. The simulated data were generated exactly as done for the

retrieval database, except that the footprint averaging followed the specifications of ATMS. Example results are displayed in

Fig 7. The peak in the distribution around 255 K corresponds to “clear-sky” situations (low level cloud can still be present),

while most cases below ∼230 K should contain influences of ice hydrometeors. The agreement between simulations and

observations is high down to about 200 K. For lower brightness temperatures the simulations show higher occurrence rates20

than the observations. This deviation is at least partly a consequence of that the full antenna pattern and particle orientation

are not yet considered in the simulations. The better agreement for nadir simulations, where ATMS has a smaller footprint,

indicates the impact of the first of these two effects. By assuming totally random particle orientation radar back-scattering
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is under-estimated and our procedure will generate clouds with a high bias in IWC. There is a compensating effect when

simulating the passive data, by a similar under-estimation of extinction, but it is smaller, at least for angles away from nadir

where particle orientation has a smaller impact on the projected cross-section (Brath et al., 2019).

The approach behind the database generation reproduces GMI (Draper et al., 2015) data in a similar manner, even when

focusing on the tropical Pacific where deep convective systems control the impact of ice hydrometeors on ICI and the radiative5

transfer simulations are especially challenging (Ekelund et al., 2019).

A similar comparison is found in Fig. 13 of Geer and Baordo (2014). They obtained a poorer agreement with observations,

with an underestimation starting at about 225 K. Similar particle models were used and the better agreement found here is

likely a consequence of that the simulations are based on CloudSat, and not model data. The agreement is similar for the

other ATMS channels considered, see Rydberg (2018). A graphical manner for exploring if the retrieval database covers the10

multi-dimensional space spanned by the observations to be inverted is found in Brath et al. (2018, Fig. 2).

4.3.2 Degrees of freedom

As an introduction to the information provided by ICI, Fig. 8 displays an estimate of the measurements’ degrees of freedom

(DoF) for tropical conditions. The DoF can be seen as a measure on the effective number of channels.

Each DoF-value is calculated by finding the (left) eigenvectors (E) of the simulated set of measurement vectors in consider-15

ation (without noise added). These eigenvectors and the covariance matrix (Sy) of the data are related as:

Sy = EΛET (14)

where Λ is a diagonal matrix, holding the eigenvalues. See e.g. Eriksson et al. (2002) for further details. The uncertainty due

to thermal noise, in the eigenvalue space, is

SΛ = ESεE
T , (15)20

where Sε has NE∆T2 as its diagonal elements and is zero elsewhere (cf. Eq. 13). As Sε is diagonal, also SΛ will be diag-

onal due to properties of the eigenvectors (orthonormality). The number of diagonal elements in Sy that are larger than the

corresponding value in SΛ can be taken as the DoF. This calculation of DoF is essentially the same as the analysis described

in Sec. 2.4.1 of Rodgers (2000), but is somewhat more general as it is based on Sy and does not involve the Jacobian matrix,

so it can be easily computed even in cases where Jacobians are not available.25

For very low IWP and most wet atmospheres, the DoF is only two. For these conditions, ICI is primarily sensitive to humidity

in the middle and upper troposphere. The DoF increases with decreasing IWV, as humidity at lower altitudes then gets a growing

impact. The DoF is here about three, consistent with the fact that ICI has three channels around each water vapour transition

covered (1V-3V, 5V-7V and 9V-11V, respectively), and that there is a high redundancy in information between these groups

of channels (which together give an improved precision for water vapour retrievals). Figure 4 shows that the two innermost30

448 GHz channels cover higher altitudes than the other channels, but it appears that these two channels add little information

in single-footprint retrievals due to a relatively high noise (Table 1). A further analysis of ICI’s overall performance for clear-
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sky conditions is left for a future study. For most dry atmospheres, there is also a surface contribution to the DoF, mainly by

channels 4V and 4H, from the various variables affecting surface emission and reflectivity.

The DoF is considerably higher at high IWP. The maximum DoF in Fig. 8 is eight, but the true number is likely higher.

The figure is based on simulations only including totally random particle orientation and thus the full information given by the

dual polarisation channels is not reflected. The simulations lack also melting particles and still use a relatively low number of5

particle models, and the full variability of hydrometeors is probably not yet reflected.

There is an intermediate range, extending between about 10 and 500 g/m2, where DoF is increasing with IWP. This analysis

shows that ICI acts mainly as a coarse humidity sounder for IWP below ∼10 g/m2, but, as designed, provides more rich

data with increasing ice hydrometeor content. This indicates that ICI is suitable for measuring IWP, but the DoF gives no

information on retrieval precision or if other quantities also can be constrained.10

4.3.3 Overall performance

The retrieval performance was estimated by repeatedly dividing the data generated between a retrieval database and test data

(Fig. 9). The algorithm described in Sec. 3 was followed, except that no footprint remapping or run of RTTOV was performed.

Since particle orientation is not yet included, these retrievals did not include the extra 243 and 664 GHz channels that measure

H-polarisation. Noise was added following the NE∆T of Table 1, but present tests indicate that lower noise will actually be15

achieved. Both these aspects should lead to a conservative estimate of the performance at low IWP, or compensate for error

sources not yet considered. The results in Fig. 9 are averages of retrievals over both water and land.

The best performance is found for tropical conditions where IWP above about 50 g/m2 can be retrieved without a clear

bias. ICI provides information also for lower IWP, down to about 10 g/m2, but then with an increasing influence of a priori

information causing a low bias. This bias occurs because the a priori is dominated by cases having IWP=0. Accordingly, the20

bias could be decreased strongly by an independent method of cloud detection, effectively removing all, or most, IWP=0 from

the a priori distribution.

The retrieval precision in Fig. 9 is reported as the range between the 5th and 95th percentile. This range corresponds to a

50% uncertainty above about 200 g/m2. The precision is poorer for lower IWP, particularly on the 5th percentile side. This

percentile reaches IWP = 0 when the true value is ∼ 15 g/m2. Mean altitude, Zm is well estimated over its full range (for25

the type of ice clouds of concern for ICI), i.e. between about 4 and 12 km, with a median precision in the order of 700 m.

The retrieval of Dm is best between 175 and 400 µm, where the median precision is about 50 µm, but the retrievals should be

competitive between about 100 and 800 µm.

As a contrast, results for mid-latitude late autumn/winter conditions are also found in Fig. 9. There are likely higher uncer-

tainties in these simulations (e.g., they involve only a single particle habit) and these results should be approached with more30

care. Compared to tropical conditions, the performance is poorer, especially for IWP below 100 g/m2. This is the case because

the ice hydrometeors here are found at lower altitudes, often below the sounding range of the high frequency channels. Low

IWP is best estimated by the 664 GHz channels, but they have sensitivity only down to about 5 km (Fig. 4). Low altitude clouds

also make the choice of τst (Eq. 7) critical. For these test retrievals, it was set to 1 for oceans and 3 for all other surface types.
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Zm is retrieved without any significant bias between 2 and 10 km, but the posterior distribution is highly skewed below 3 km.

That is, the 50th percentile is in general a good estimate, but the retrieval can not fully rule out considerably higher Zm. The

accuracy is good for Dm between 150 and 600 µm, while there is a quickly growing low bias above 650 µm.

These results do not deviate significantly from earlier similar studies. The most similar one is Jimenez et al. (2007), partic-

ularly as it also used IWP, Zm, and Dm as retrieval quantities. They found a better retrieval performance for low IWP, which5

likely is due to a smaller retrieval database and fewer considered error sources. Our results should be more realistic, albeit

somewhat conservative, as explained at the start of this section. Wang et al. (2017) made a study focusing on relatively severe

weather over Europe and obtained similar IWP accuracy as reported here. They did not consider Zm and Dm, but retrieval of

separate hydrometeor classes as well as joint inversion of data from MWI and ICI. When comparing results between studies,

the error range definition considered must be noted. We use a wider range (matching ±2σ) compared to most others.10

5 Outlook

The basic algorithm will not be modified until some time after the launch of ICI and the main concern for the coming years is to

refine the retrieval database generation. A required extension is to include particle orientation, as shown by Defer et al. (2014)

and Gong and Wu (2017). The first data on scattering properties at sub-millimetre wavelengths of oriented particles have just

been presented (Brath et al., 2019). Varying orientation distributions should be used in the database generation. Scattering15

solvers handling oriented particles include RT4 (Evans and Stephens, 1995b) and DOIT (Emde et al., 2004).

In the database used in this work, a strict separation between liquid and ice hydrometers was assumed. This is a simplification

in several ways. Super-cooled liquid cloud droplets are common in the atmosphere (e.g. Zhang et al., 2010), frequently as part of

“mixed-phase” clouds. Results in Pfreundschuh et al. (2019) indicate that ICI has some sensitivity to such super-cooled liquid

water and it should thus be considered in future work. Also the super-cooled liquid water in updraft regions of convective cells20

should be taken into account, especially as the drops here can be of mm-size and the liquid water content can reach several

g/m3 (Lawson et al., 2015). This should lead to a significant impact on both CloudSat and ICI data. Finally, the impact of

melting ice hydrometeors should be assessed and included if found relevant. However, data on single scattering properties of

such particles are still lacking for the frequency range of ICI.

A broader range of particle size distributions and particle shapes should be used, compared to the simulations used in this25

work. The simulations should of course make use of most recent studies of these particle properties, preferably applying data

tailored for each cloud type of concern. ISMAR should be an essential tool for validating microphysical assumptions. A first

study of this type has already been performed (Fox et al., 2019).

On the instrument side, a more detailed treatment of the full antenna pattern is needed. This will increase the calculation

burden, but to what extent is not yet known. The present assumption is that an independent beam approximation (IBA) can be30

applied, i.e. that the radiance at one location can be sufficiently well estimated by a simulation of one-dimensional character.

Test simulations have revealed that this is not true for all situations, but full three-dimensional, polarised simulations can so far
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only be performed by computationally costly Monte Carlo methods, therefore IBA would be to prefer. The error by applying

IBA is being assessed as part of a EUMETSAT fellowship project.

As discussed in Sec. 4.1, the necessary spatial remapping of channels causes some errors due to the differences in incidence

angle. These remapping errors must either be incorporated in the generation of the database or be treated as an observation

uncertainty. In the later case, an error model must be derived to set So (Eq. 9) accordingly. The information on temperature and5

ozone obtained from ECMWF (Sec. 3.4.3) has uncertainty and the resulting impact on the retrievals has not yet been studied.

The same is true for errors in assumed spectroscopic parameters, used to calculate the absorption due to gases. As ICI will

operate in a relatively unexplored wavelength region, considerably spectroscopic uncertainties can not be ruled out at this point

(Mattioli et al., 2019). Also here ISMAR should be a useful tool for validation.

A number of retrieval configuration settings need to be determined. For example, the optical thickness thresholds (τst , Eq. 7)10

should be reevaluated at some point, then preferably with improved knowledge, obtained by ISMAR, of the variability of

surface emissivity at the frequencies of ICI. Another example is that a clear strategy for the database thinning discussed in

Sec. 3.5.1 is lacking, only rudimentary tests have so far been made.

In a longer perspective, joint inversions of data from MWI and ICI shall be considered. Such synergistic retrievals should be

especially beneficial for obtaining consistent data on liquid and ice hydrometeor properties (Wang et al., 2017). The remapping15

toolbox is prepared to handle this extension, but application of BMCI becomes more problematic as dealing with the combined

measurements drastically increases the required retrieval database size. Machine learning could be an alternative. In Pfreund-

schuh et al. (2018) it is shown that quantiles of the posterior distribution can be estimated by neural networks more efficiently

than with BMCI.

6 Conclusions20

Ice hydrometeors presently constitute one of the components in Earth’s atmosphere that are least constrained by observation

and modelling systems. There is even a persistent large spread among zonal means of IWP (Waliser et al., 2009; Eliasson et al.,

2011; Duncan and Eriksson, 2018). ICI will provide observations that could be used to decrease these uncertainties both inside

weather forecasting and stand-alone retrievals, as well as by model verification through “satellite simulators”. ICI does not

offer the spatial resolution of cloud radars, such as the CloudSat one, but has the swath width needed for obtaining semi-global25

coverage on a daily basis.

The focus of this article is the ICI retrieval algorithm (Rydberg, 2018) that will be applied operationally at EUMETSAT.

At the time of the algorithm selection, BMCI was judged a safer option than existing machine learning alternatives. However,

since machine learning is developing rapidly, future scientific retrieval algorithms may well employ it.

The “day-one” algorithm described here aims at extracting the basic information of ICI on ice hydrometeors, which is the30

ice water path, as well as cloud altitude and particle size. ICI has the potential to also provide profiles of ice water content

(Wang et al., 2017; Birman et al., 2017; Grützun et al., 2018; Aires et al., 2019), but that possibility is so far left for research

groups to investigate.
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An innovative aspect of the new algorithm is that, to our best knowledge, it is the first example where the retrieval result is

presented fully as a description of the posterior distribution (by reporting five percentiles), and not as the expectation value and

some uncertainty value. This more general approach is to prefer for ICI as the retrieval uncertainty can exhibit a highly skewed

distribution.

The core algorithm has successfully been tested using ISMAR and simulated ICI data, but the final retrieval performance5

is mainly determined by the quality of the retrieval database provided to the processing system. Such a database has been

produced for test purposes and to provide updated estimates of the retrieval precision. The database reflects the state of the art,

but the retrieval error estimates should still be considered as tentative because some tools needed to cover the full complexity

of the observations are still lacking.

It is hard to find stringent uncertainty estimates of other IWP retrievals, but we note that the global mean of IWP given by10

the DARDAR inversions (mainly based on CloudSat) changed by 26% between the two most recent versions (Cazenave et al.,

2019). Based on present simulations, ICI will deliver a similar accuracy at least above IWP = 200 g/m2. Above this IWP, there

is no intrinsic cause of bias in the retrievals, and the precision for single retrievals is ±50% (at quantiles matching ±2σ).

The use of ICI in numerical weather prediction (NWP) is not discussed here, but several activities described are also relevant

for this application. The most notable example should be the development of ice hydrometeor single scattering data (Eriksson15

et al., 2018), that is of direct relevance for “all-sky” assimilation of ICI radiances. A problem common for NWP and stand-

alone retrievals is how to incorporate the effect of ice particle orientation without making the radiative transfer calculations too

costly. This extension is required to make full use of ICI’s double polarisation channels at 243 and 664 GHz.

In this paper we have tried to reflect the efforts already performed to prepare for inversions using ICI, but also to indicate the

work that remains to be done. Combining the data of ICI and MWI is an especially interesting prospect for future extensions.20

That combination can possibly provide a relatively full view of water in all its three phases (gas, liquid and ice).

As a last remark we would like to stress that ICI will provide the first “operational” observations of our atmosphere in the sub-

millimetre region and its data will cover more than 20 years. This will give the weather forecasting and climate communities a

new important data source.
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Figure 1. Frequency coverage of the sidebands for each ICI channel. The simulated spectrum (blue line) is based on a mid-latitude winter

scenario. The dotted lines are simulations ignoring ozone.
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Figure 2. Instantaneous ICI footprints. The inner and outer contours represent the -3 and -6 dB level of normalised antenna patterns. The

assumed sensor position is 6.9◦S, 175.3◦E at an altitude of 824.5 km.
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Figure 3. The overall data flow of the algorithm.
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Figure 4. Channel mean transmission between altitudes in the atmosphere and ICI, according to a mid-latitude winter scenario. The dotted

line corresponds to an optical thickness of 1.
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Figure 5. Example quantile functions. The blue line represents the retrieval database applied in Sec. 4.3, acting as prior for a test retrieval (red

line). For example, the prior and posterior median values are 0 and 117 g/m2, respectively. The black line matches a hypothetical retrieval

having a Gaussian posterior of 100± 32 g/m2. The symbol * identifies the 5th, 16th, 50th, 84th and 95th percentiles of each distribution.
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Figure 6. Remapping of ICI-5V and ICI-11V brightness temperatures (K) for an example scene. The upper row shows simulations repre-

senting the expected result after remapping (figures showing the data before remapping look identical plotted in this manner). The lower row

displays the error found when remapping simulated, noise-free, observations.

Figure 7. Statistical comparison of simulated and real ATMS channel 21 (183.31±1.8 GHz) measurements, for both a zenith angle of 180◦

(nadir) and 135◦ (roughly the one of ICI). Based on data collected between 15◦S to 15◦N August 2015 (all longitudes included, all ATMS

day-time data included, 170 randomly selected CloudSat orbits used).
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Figure 8. Estimated degrees of freedom (DoF) of ICI observations, as a function of integrated water vapour (IWV) and IWP. Based on the

tropical part of the retrieval database (Sec. 4.3.1).
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Figure 9. Estimated retrieval performance for IWP (top panel), Zm (Eq. 4, middle panel) and Dm (Eq. 5, bottom panel). Tropical refers

to data at latitudes between 30◦S and 30◦N, while mid-latitude includes data for November to January between 35◦– 65◦N. The blue and

yellow solid lines show the median of retrieved median value, while the corresponding dashed lines show the median of retrieved 5th and

95th percentile. The performance for Zm and Dm is shown for states with an IWP above 25 and 50 g/m2 for tropical and mid-latitude,

respectively.
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