Response to referees’ comments:

Referee #1

The method recommended by the authors for the missing value filling to hourly PM 5 data is interesting.
It could be useful for relevant study.

Reply: Thank you for your insightful comments and valuable suggestions which help a lot in improving
the manuscript. All your raised concerns (in black) have been properly and adequately addressed in our

revised manuscript and point-to-point responses (in blue) can be found below.

Some concerns remain as following, which might be considered to further improve the method.

(a) Because the PM; 5 diurnal variation could vary largely from day to day, is it possible that some typical
classification of PM2 s diurnal variation could be established and considered, which should be helpful
if one can determine the general pattern of PM» s diurnal variation for the interested day and make

more adequate filling for the missing PM; s data.

Reply: Thanks for your constructive suggestions. Actually, what you suggested is our ultimate goal that
we intentionally focused on the analysis of the diurnal variation pattern of PMa,.s. However, the observed
salient data gaps in using our retrieved PMas time series became a big obstacle and this is also the
motivation of the development of this gap filling method. In the next step, we will attempt to extract the
general pattern of PMa.s diurnal variation in space and time using the gap filled time series and then use
such general patterns to better deal with data gaps present in future data records. In short, your insightful
suggestion provides us new perspective to use PMa.s diurnal variation pattern to better deal with PM2 s
data gaps in the future. Also, we have discussed this perspective in our revised manuscript.

(b) The PM2 5 diurnal variation could be related to some specific meteorological factors as well as their
diurnal evolution. Is it possible that the diurnal variation of specific meteorological factors be

considered within the authors recommended missing value filling method?



Reply: Thanks for your insightful comments. Incorporating the diurnal cycle of some related factors such
as the mixing layer depth would be a big plus in advancing the estimation of the PM2 s missing values.
Nevertheless, such an endeavor is still subject to the following two constraints: (1) the lack of high
temporal resolution data (e.g., hourly mixing layer depth) and (2) the relationship between PM.s and the
related factor (that is, to what extent the diurnal variation pattern of PM2.5 can be explained by the diurnal
cycle of the related factor). To figure out the mechanism, more explicit model simulations are anticipated,
which is out of the scope of our current study. However, it deserves more in-depth analysis in the future.
Such an endeavor has been discussed in the revised manuscript to provide new envisions to the
improvement of this gap filling method.

(c) What is the applicability of the method? Especially for the different spatial distribution of the air
quality monitoring stations which are condense over eastern China but sparse over western part of the
country.

Reply: Good point! The question you mentioned does matter the accuracy of the proposed method and
we have discussed this issue in our revised manuscript in terms of the impact of number of neighboring
stations on the prediction accuracy (Fig.9b). For stations with at least one neighboring monitor (like in
the west of China), our method is still able to recover the missing value with good accuracy (R>0.7). This
lies in the principle that both spatial and temporal neighborhood information are used to reconstruct the
diurnal cycle of PMas. Such effect is also corroborated by our most recent paper (Bai et al., Environmental
Pollution, 2019, doi: 10.1016/j.envpol.2019.113047) that PM2s has a good autocorrelation in adjacent
space and time domain. The prediction accuracy could be relatively poor for those isolated stations (no
neighboring station) given the lack of spatial neighborhood information, and such effect might be
mitigated by incorporating other related factors as you suggested in the future. We have discussed this

issue in this revision to bridge the readership gap.
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Figure 9. Impacts of the number of missing values present in hourly PM2.5 records for every 24-h (a)
and the total number of neighboring stations within 100 km (b) on the performance of the proposed gap

filling method. The error bars denote one standard deviation of each value from the mean on each side.

References:
Bai, K., Li, K., Chang, N.-B., Gao, W., 2019. Advancing the prediction accuracy of satellite-based PM2.5
concentration mapping: A perspective of data mining through in situ PM2.5 measurements.

Environ. Pollut. 254, 113047. https://doi.org/10.1016/j.envpol.2019.113047

(d) In the manuscript, the authors made cross validation for missing value filling for several hours, is it
possible that there are missing value for a specific station for one day or several days? If this situation
happens, how about the performance of the authors recommended method to make missing value
filling?

Reply: In the current manuscript, we only deal with the days with missing values no more than 20 within

24 hours since the missing values are recovered by projecting the reconstructed diurnal cycle of PMa 5 to

the level of valid measurements on a specific day. For the situation with data missing for a whole day or

several consecutive days, we did not recover the data given the lack of essential reference data values.

Although there exists a possible way that the diurnal cycle of other related factors could be used, data

amplitudes on different days may still differ from each other even in the presence of similar diurnal cycle
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pattern, and this is also the reason why we need to have several valid measurements for that specific day.
This issue has been discussed in the revised manuscript to bridge the readership gap. Again, we highly

appreciate your insightful comments in helping improve the quality of this manuscript.

Some specific comments are also listed below for the authors.

1. ine 60, “data cleaning processes”, consider using more accurate wording to describe what the authors
want to mention.
Reply: Per your kind suggestion, it has been reworded to “how data gaps were treated in their data

exploration processes (e.g., integration and transformation)” to ease the readership.

2. Lines 70-71, it is better to directly give the disadvantages of “approaches of ignoring missing values
or excluding records on days with missing values”, rather than arbitrarily comment these approaches
as “unreasonable”.

Reply: Per your kind suggestion, the disadvantages have been clearly stated in the revised manuscript as:

“Nevertheless, such a treatment on missingness (i.e., ignoring missing values or excluding records on

days with missingness) would either introduce new bias to the aggregated PMas record or make the

original PM, 5 time series temporally discontinuous, especially when missingness occurs at some specific
times (e.g., during severe pollution episodes).”

3. Table 1, the lines for the references are not quite clear, it is difficult to find which reference is
corresponding to which method.

Reply: Thanks for pointing it out. We have enlarged the height of each row to make them more
distinguishable.

4. Line 152, “m was defined as the number of stations within 100 km of the target station”, as the authors
mentioned about the “significant heterogeneity” of the PMays data, is the setting of “100 km”
improperly greater in this context? PMzs concentration can vary largely even within a small area.
Moreover, the air quality monitoring stations are densely distributed over eastern China but sparsely
over western part of China. Is there any special consideration should be taken on this issue?
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Reply: Thanks for your insightful comments. We are aware of the fact that m and n are two critical factors
associated with the performance of the proposed gap filling method since it determines the size of spatial
and temporal neighborhood used for the reconstruction of the diurnal cycle of PMzs. In the current
method, two empirically-determined invariant spatial and temporal window sizes of 100 km and 14 near-
term days were used, but these two numbers have little effect on the final prediction accuracy of missing
values. This is because these two numbers are simply used as a threshold to limit the number of samples
to avoid the usage of all available data. Our recent study published in Environmental Pollution has
revealed a proper spatial and temporal window size of autocorrelation of 50 km and 3-day in eastern
China for PMas. Therefore, a window size of 100 km and 14-day suffices to include adequate number of
candidate samples in space and time for the reconstruction of PMas diurnal cycle. Most critically, the
neighboring data confined to these two numbers are not directly used to reconstruct the diurnal cycle of
PM, s; rather, we have proposed a set of constraints to pinpoint those similar samples from the whole
dataset determined by 100 km and 14-day for the subsequent diurnal cycle reconstruction. Finally, only
those samples have similar diurnal variation pattern will be used for the diurnal cycle reconstruction. We
have clearly stated this in section 3, please refer to the second procedure (construct a compact PMa s
neighborhood field) on page 8 (Line 156-160) for more detail.

5. The day-to-day PM> 5 diurnal variation could vary largely, which depends on whether it is a clean day
or a severe polluted day, as well as the various weather conditions. The authors also mentioned this
in Lines 302-304. While the method the authors suggested only considers the diurnal variation of one
week before and one week after the data missing day to be filled. Is it possible any variety in the
diurnal variation of PMys can be considered in the recommended method? Also, more detailed
classification and establishment of the typical patterns of PM»s diurnal variation and adequate
consideration of this issue could be very helpful to improve the data filling method suggested.

Reply: We appreciate your constructive suggestion. Same as the above question, the temporal window

used here would not significantly affect our results since it is simply a cutoff value (large enough to

include adequate samples) to limit the number of samples for the subsequent analysis. A compact

neighborhood is further generated for the reconstruction of PMz s diurnal cycle by only including similar
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samples rather than all the data samples. The classification of the typical patterns of PMas diurnal
variation is quite a smart suggestion and we will try to account for this effect in the further to improve the
current method. We have envisioned this perspective in the discussion section to broaden the possible
improvement of the current method. Again, thanks for your insightful suggestion.

6. Figure 3, it is a little difficult to understand the variables illustrated. The result presented in each panel
of the figure seems not match with the caption. The name of the x axis in Figure 3f could be better as
“hour”.

Reply: Thanks for pointing these typos. Following your suggestions, we have revised the caption to match

the figure. The name of the x axis in Figure 3f has been revised to “hour” per your suggestion.

7. Figure 4a, the 50th percentile of the mean relative differences generally remains constant around zero,
does this mean that the 50th percentile is subjective of less influence from missing values?

Reply: The 50th percentile of the mean relative differences around zero just reveals the fact that missing

values would result in random bias (half below zero and half above zero) to PM» s daily averages. We

have explained this effect in the manuscript in section 4.2.2 (Line 282-286).

8. Figure 6, the reconstructed diurnal PM s variation seems to be a smoothed average of the observations
near the interested station within a week before and after the interested day, it cannot reconstruct any
particular variation of PMa s such as those at 19:00 local time in Figure 6e and at 08:00-09:00 local
time in Figure 6f.

Reply: Yes, the reconstructed diurnal cycle of PMas is relatively smooth compared with the actual
observations and thus some small variations cannot be fully recovered. This lies in the fact that the diurnal
cycle of PMa s is reconstructed from the spatial and temporal neighborhood using the EOF method and
hence it mainly captures the dominant variation mode. We have clearly explained this defect in our
manuscript in Lines 336-340.

9. Lines 409-411, because of the “significant heterogeneity” of the PM> 5 spatial distribution, how about
the spatial distribution of the diurnal pattern of PMas variation? Is it practical to consider the

variability of PMz s at the stations 100 km away to fill missing value of PM25?



Reply: Thanks for your constructive comments. Yet the spatial distribution of the diurnal pattern of PM> s
variation in China has not been examined due to the discontinuous hourly PMa.s observations, we will
investigate the diurnal pattern of PMa s variation in China soon per your suggestion and try to identify the
typical diurnal variation pattern to improve the current method. In our current method, we did not consider
to use PMz 5 data measured 100 km away for gap filling though there might exist similar variation patterns.
This lies in the first principle of geography that data from closer stations are more similar than those
distant away. On the other hand, the final prediction accuracy is not sensitive to the spatial window size
if it is large enough to include three neighboring stations (Figure 9b).

10. Do Figure 10a and 10b reflect the same information from different perspectives? Is it possible just
keep one figure to discuss the issue?

Reply: Not exactly. Actually, Figure 10a indicates the total number of missingness (percentage with
respect to the total number of record) have been filled at each station whereas Figure 10b shows the
number of days with missingness removed. As shown in Figure 10a, the removed total number of
missingness seems to be low compared with the total number of samples. Nevertheless, Figure 10b
indicates the percentage of how many days are without missingness after gap filling.

11. Lines 414-422 and Figure 10, have the authors done data filling for all the available PM, s data over
China with the recommended method? Is the evaluation presented here are based on data filling for

the whole dataset of PM» 5 available?

Reply: Yes, we have performed gap filling for each site-specific PMa s record in China and the results
shown in Figure 10 are based on the gap-filled data set. As indicated, data gaps still persist even after gap
filling and this is mainly because we did not fill the gaps for the episodes with missingness continuing for
a whole day or several consecutive days. Discussions with respect to this issue has been added to fill the

readership gap.



Referee #2:

The submitted manuscript well fits within the journal scope as it is describing a method to fill missing
values in hourly PM2.5 concentrations for more than one thousand observational sites across China.
Overall, the work is consistent and the method is well explained. Nevertheless, in my opinion, before

publication, two points should be considered before publication

Reply: Thank you for your valuable comments and suggestions in helping improve the quality of this
manuscript. The paper has been thoroughly revised according to your comments (in black), and please
find the point-to-point responses (in blue) to your concerns below and refer to the revised paper for more

detail.

1) The authors made a sensitivity study to assess how the number of neighbour stations impact the
reconstruction of PM2.5 concentration. However, it might happen that the spatial distribution of the
neighbour station might influence the final result, i.e. in case of equispatially distributed or spreade. 1
suggest to perform a sensivity test for a couple of cases taking as metric the sum of euclidean distances

using the same number of stations for the same aerosol loading.

Reply: Good point. Per your kind suggestion, we checked the potential impacts of the number of
neighboring stations and their spatial structure on the prediction accuracy of missing values, which is
shown in Figure R1. It can be seen that the correlation coefficient does not changes dramatically with the
increase of number of neighboring stations as well as the distance between the target station and the
closest station. This means that the spatial pattern of neighboring station does not influence the
performance of the proposed gap filling method. This is mainly due to the implementation of an
optimization process (step 2 in our method) to identify similar observations rather than using all available
observations for the reconstruction of PM2.5 diurnal cycle. In other words, the final input observations
only contain those with similar diurnal variation pattern to the target observation, and the distance is thus

not a critical influential factor when there exist abundant samples.
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Figure R1. Impacts of number of neighboring stations and their spatial structure on the prediction

accuracy of missing values.

2) it is missing how the measurement error is impacting the reconstruction as all the measurements are

presented without error bars.

Reply: Thanks for your valuable comments. The impact of measurement error on the final accuracy of

gap filling is not assessed in the current manuscript. The reasons are twofold: (1) The PMz s data used in

this study are gauged by the state-level monitors, so the quality of the data record is assured. (2) Our gap

filling method mainly get involved in the usage of empirical orthogonal function (EOF) in order to

reconstruct the diurnal variation pattern of PMz s, which would in turn cancel out the measurement errors

(if any). Therefore, the measurement error would have little effect on the final results.

English should be revised as some sections are not very clear.

Reply: We have made essential corrections in this revised manuscript per your valuable suggestion.

Specific comments are available in the attached file.



Reply: Thanks for your valuable comments and suggestions. Except for the glitches and typos that have

been corrected directly in our revision, the responses to several specific concerns are listed as follows.

Line 152: how those numbers (m and n) are determined? How the method accuracy changes changing

those numbers?

Reply: m and n are determined by the given spatial (100 km) and temporal (7-day before and after t)
window size, respectively. A cutoff value of 100 km and 7-day are used based on our recent results in
which an optimal window size of 50 km and 3-day was found to attain a good autocorrelation of PM2.5
concentration in space and time, respectively (Bai et al., 2019). Here we enlarge (double) the both window
sizes so as to have adequate samples for the construction of Xgi" while avoiding including all available
samples, especially for those distant away. In general, these two window sizes would have little effect on
the performance of the subsequent gap filling once they are large enough (at least greater than the
identified optimal window sizes) to cover most similar observations nearby since a sorting scheme (step
2) will be further applied to identify observations with similar diurnal variation patterns to that of the
target station. Such effect is also evidenced in Figure 9b that the prediction accuracy would not increase
with the number of neighboring stations once there are more than 3 neighboring stations nearby. These

more detailed discussions have been added in the revised manuscript to ease the readership.
Line 171-175: this part should be better explained.

Reply: This part regarding the EOF process for data gap filling has been explained by clarifying it in the
context in this revision, which shows as follows:

“Reconstruct the local diurnal cycle of PM2.5: The diurnal cycle of PM2.5 at site p on date ¢ (denoted as
B.,) was then reconstructed from the optimized PM2.5 neighborhood field X* using EOF in an iterative
process similar to the DINEOF method (Beckers and Rixen, 2003). In our DCCEOF method, the target

PM2.5 time series at site p on date t (denoted as x},) were also included to constrain the reconstruction

of B, and the whole field was then denoted as X.

X = {x{,,X*} (€))
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In general, the EOF-based gap filling process can be outlined as follows: a) 20% of valid PM2.5
observations in X were first held out for cross validation and then these data values were treated as gaps
by replacing with nulls (i.e., missing value); b) given that a small amount of missing values would not
significantly influence the leading EOF mode for the original data set, we may assign a first guess (here
we used the mean value of valid data on each specific date) to the data points where missing values are
identified to initialize the EOF analysis; ¢) EOF analysis was performed on the previously generated
background field (that is, X with gaps are filled with daily mean and denoted as < X >) in a form of
singular value decomposition (SVD) and then data values at value-missing points were replaced by the

reconstructed values using the first EOF mode. These processes can be expressed as:
[U.S.V]= svd(< X >) Q)
X' =uy *s; %0y (6)
where < X > denotes the initial matrix in which the missing values were filled with daily means. U, S,

and V are three matrices derived from SVD while u,, s, and v; denote the SVD components in the first

EOF mode.”

Line 355: “largely from that of neighboring stations at the same time”, how do you deal with this problem?

Reply: The proposed DCCEOF method is unable to deal with such issue once the diurnal variation pattern
of neighbors differs largely from that of the target station. We have clearly stated this defect in our revised

manuscript.

Line 360: how about the instrument precision?

Reply: The precision of PM2 s records have been introduced in section 4.1.
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Line 409: how about the spatial distribution of the stations? How this impacts on final result? “The
experimental results suggest that three neighboring stations within 100 km”, does matter the their mutual

location?

Reply: The topotaxy effect between these neighboring stations is not considered in our current method
since we only accounted for the relative similarity between their diurnal variation patterns rather than
their locations. In other words, whether the PMa 5 observation measured at one station will be applied for
gap filling does not depend on its location (see Figure S1); Rather, we only took the similarity of PMa s
observations between the target station and neighboring stations as a measure to select similar
observations for the subsequent diurnal cycle reconstruction. Discussions related to this issue has been

added in the revised manuscript to bridge the readership gap.
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Abstract. Data gaps frequently emerge in our retrieved in-situ hourly air quality data records, In this

study, we propose, a novel gap filling method called the diurnal cycle constrained empirical orthogonal

function (DCCEOF) to fill in data gaps, for the improvement of data completeness, The hourly PM, s

concentration data retrieved from the China national air quality monitoring network is used here as a

demonstration. Generally, the DCCEOF method works in a principle of calibrating the diurnal cycle of

= CFormatted: Subscript

PMa2.s_concentration fhat is reconstructed from discrete PM».s neighborhood fields in space and time to

the level of valid PM2s goncentration observed at adjacent times. Prior to gap filling, the data

completeness and the impact, of data gaps in hourly PM> s concentration record on daily averages,were

examined, The statistical analysis indicates a high frequency of data gaps in our retrieved hourly PM> s

record, with PM, s concentration measured on about 40% of days subject to data gaps, On the other hand

aps could introduce significant bias to daily averages of PMa s concentration, especially durin

clean episodes as larger biases would be introduced to PM, s daily averages during clean days than

polluted days gven in the presence of same number of missingness, The cross-validation results indicate

that the DCCEOF method has a good prediction accuracy, particularly in predicting daily peaks and/or

minima that cannot be restored by the conventional spline interpolation approach, given the consideration

of local diurnal variation pattern of PMa s in our method. A practical application of the DCCEOF method

to the retrieved hourly PMy s record,jn China during 2014 to 2019, yields a significant improvement of the

data completeness, with the frequency of days with data gaps reduced from 42.6% to 5.7%. In general,

he results in this study have well demonstrated the performance and application potential of DCCEOF
in handling data gaps in time series of geophysical parameters with significant diurnal variability, and

this method can be easily applied, to, other data sets with similar barriers because of its self-consistent

capability.
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1 Introduction

A large variety of ground-based monitoring networks have been established worldwide to provide

accurate measurements on various aspects of the atmospheric environment (Lolli and Di Girolamo, 2015),

Many of these in-situ measurements, however, suffer from data losses due to various unexpected yeasons,

e.g., instrumental malfunction, interruption of power supply, and internet outage, thus resulting in salient
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data gaps in the archived data records. Undoubtedly, these gaps significantly impair the data qualities and

the exploration of these valuable data sources. Therefore, filling data gaps present in such datasets is
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critical and of great value to facilitating the broad application of these in-situ measurements.

Confronted with frequently occurring severe haze pollution events, China started to establish the national

ambient air quality monitoring network since 2012 by extending the range of the previous sparsely
distributed monitoring network to cover most major Chinese cities. To date, more than 1,600 state-level
stations are routinely operated to measure concentrations of six essential air pollutants (i.e., PMjo, PMa3s,
03, NO2, SOz, CO) on an hourly basis (Guo et al., 2017; Li et al., 2017a). These in-situ measurements are
publicly released online via the China National Environment Monitoring Centre (CNEMC) in near real-
time as of 2013 but without providing any direct data download interface. Consequently, users oftentimes

use an automated software program (often known as a “web crawler”) to retrieve these valuable data
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sources from the CNEMC website. Such an endeavour helps users to acquire hourly air quality data more

efficiently, and the retrieved data record, taken PM s mass concentration data as an example, have been

widely used as a critical data source in many haze related studies(Gao et al., 2018; Miao et al., 2018; Bai

et al., 2019a, 2019b; Zhang et al., 2019).

Although these PM2s concentration data have been extensively used, how data gaps were treated jn the

data exploration process, (e.g.. data integration and data transformation), gspecially for those using daily

or monthly averaged PM> 5 data set (e.g., Guo et al.. 2009: Miao et al., 2018; Ye et al., 2018; Zhang et al.,

2018; Yang et al., 2019a), is oftentimes unclear. Since ignoring missing values would undoubtedly
introduce biases into the final results (Bondon, 2005; Larose et al., 2019), some studies attempted to
perform data analysis on a relatively long time scale to mitigate the impacts of data gaps by integrating

hourly records into monthly resolution (e.g., Bai et al., 2019b; Zhang et al., 2019). On the other hand,

many previous studies preferred to exclude records on days subject to a certain degree of mi
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(e.g., no more than 6 missing values within 24-h) from their analysis (e.g., van Donkelaar et al., 2016; Li
et al., 2017; Huang et al., 2018; Manning et al., 2018; Shen et al., 2018; Bai et al., 2019a; Zhang et al.,

2019). Nevertheless, such a treatment on data gaps (e.g., ignoring missing values or excluding records on

days with missingness) would either introduce new bias to the aggregated data record or make the original

PMa 5 time series temporally discontinuous,,

Since a non-gap PM: s record is essential to PMy s related haze control and environmental health risk

assessment, filling data gaps presented in hourly PMas record,Js thus of critical importance. Although

there exists versatile gap filling methods (e.g., Beckers and Rixen, 2003; Taylor et al., 2013; Chang et al.,

2015; Dray and Josse, 2015; Gerber et al., 2018), most of them fail to properly yestore missingness in

PMaz s time series with high temporal resolution (e.g., hourly). In general, the conventional methods are

oftentimes incapable of restoring PM; 5 daily peaks and/or minima since a priori knowledge of the diurnal

variation pattern of PM> s is always yequired,as PM> s mass concentration_varjes significantly in space and
time due to heterogeneous local emissions and atmospheric conditions (Guo et al., 2017; Lennartson et
al., 2018; Shi et al., 2018). A similar barrier also applies for many other datasets which are sampled at
high temporal resolution.

In this study, we propose, a novel gap filling method fermed as DCCEQOF (that is, the diurnal cycle

constrained empirical orthogonal function) to better handle data gaps present,in time series with marked

variability in space and time, by taking the diurnal yariation pattern as a critical constraint in missing

value prediction. To our knowledge, none of the existing gap filling methods have accounted for the

diurnal yariation pattern of the given data, in their missing value yeconstruction schemes, and hence the

predicted values from these methods, are prone to large bias. As an illustration, the hourly PMas

concentration record retrieved from CNEMC during the time period of 2014 to 2019 js applied here to

demonstrate _the efficacy and accuracy of the proposed DCCEOF method. Science questions to be

answered by this study include: (1) how about the data completeness of the Chinese jn situ PM, s record;?
(2) how much uncertainties can be introduced to PM> s daily averages by missing values? (3) is it feasible
to reconstruct the Jocal diurnal yariation pattern of PMp 5 from discrete observations in the neighborhood?

and (4) are missing values yestored py DCCEOF reliable?
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2 Overview of existing gap filling methods

Plenty of methods have been developed or adopted for gap filling with respect to various theoretical bases,

ranging from simple replacement with surrogates (e.g.. mean value) to spatigtemporal interpolation as

(Deleted:

al or

well as complicated machine learning techniques, Generally, these methods can be classified into different

groups according to different criteria. For instance, two major groups can be classified based on the
number of variables (univariate versus multivariate) (Ottosen and Kumar, 2019) and theoretical basis

(likelihood-based versus imputation-based) (Junger and Ponce de Leon, 2015). Table 1 summarizes a

selection of popular gap filling methods to deal with, missingness jn geophysical data sets according to

the domain specific data dependence (Gerber et al., 2018). Comparisons, of the performance, of these ™

methods can also be found in other literatures, e.g., Kandasamy et al. (2013), Demirhan and Renwick

(2018), Yadav and Roychoudhury (2018), and Julien and Sobrino (2019), to name a few.

Since each method is initially proposed to deal with missingness in one specific data set, adopting one

method to another data set is often a challenge due to distinct features of missingness (e.g., missing at
random versus missing not at random), in particular for data sets with salient spatiotemporal heterogeneity

such as air pollutants time series (Junger and Ponce de Leon, 2015). PM2.s concentration often exhibits

evident, diurnal variation patterns, which are primarily governed by local air pollutants emissions and

regional meteorological conditions such as boundary layer height (Guo et al., 2017; Li et al., 2017; Huang
et al., 2018; Liu et al., 2018; Miao et al., 2018; Yang et al., 2018, 2019b). Consequently, conventional
approaches like those listed in Table 1 may partially fail in accurately predicting missing values in hourly

PM, 5 time series.
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In general, most available gap filling methods in Table 1 suffer from at least one of the following (Deleted: currently
drawbacks: 1) partially fail for data sets with prominent gaps; 2) not self-consistent due to the requirement
of supplementary data sets;3) computationally intensive (e.g., neural networks), and, most critically; 4)
unable to fairly predict daily peaks and/or minima due to the Jack of essential prior knowledge of diurnal (Deleted: absence

variability of monitoring targets. Given the significant heterogeneity of PM2 s concentration in space and
time (Guo et al., 2017; Manning et al., 2018), ignoring the diurnal phases of PM2.s would result in large
bias to the gap filled PM2 s data set.
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station. The goal is to better predict missing PM2 s values, especially for the daily peaks and/or minima,

which are poorly predicted by conventional methods due to the absence of prior knowledge of local

diurnal phases of PMas. Figure 1 presents a schematic jllustration of the proposed DCCEOF method, In .- (Deleted: A
o CDeIeted: diagram

general, the DCCEOF method consists of the following four primary procedures foward the filling of data
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1) Initialize a local PM2 s neighborhood field: For any identified PM» 5 missingness at site p on date

t, an initial PM> s neighborhood field in space and time (denoted as X7'") is first constructed using 24-h - Formatted: Font: Not Bold
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PM:s observations from nearby m stations on date ¢ and adjacent 2n days (z_days before and after ¢
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have little effect on the performance of the subsequent gap filling once they are large enough (at least

‘(Deleted:

one week before and after date ¢ respectively

Deleted
constructi
"

: . This configuration resulted in adequate samples for the
on ofX;,'f;" while rendering the computational workload
1

greater than the identified optimal window sizes) to cover most similar observations nearby since a sorting

'(Formatted: Font: Not Bold

A AN A A AL W AN A AL
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each specific time from 00:00 to 23:00. The aim of this configuration is to avoid large bias in the

CDeIeted: (i.e., observations in each row)

subsequent diurnal cycle reconstruction using empirical orthogonal function (EOF), since large outliers

may emerge at times without any valid observation. Mathematically, the process to construct X* can be
formulated as follows:
er = COV(x{,,x’|X;'ft'") (2)

! ! r
Xk = {xl,xz, ey X

Cx,r( < CX;’c-l < e < Cx{} (3)

Wwhere x" denotes the 24-h time series of candidate PMas in X, and COV is the covariance function.

3) Reconstruct the Jocal diurnal cycle of PM,s: The diurnal cycle of PMys at site p on date £
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In general. the EOF-based gap filling process can be outlined as follows: a) 20% of valid PMss

observations in X were first held out for cross validation and then these data values were treated as gaps

by replacing with nulls (i.e., missing value); b) given that a small amount of missing values would not

significantly influence the leading EOF mode for the original data set, we may assign a first guess (here
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singular value decomposition (SVD) and then data values at value-missing points were replaced by the

reconstructed values psing the first EOF mode. These processes can be expressed as:
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where < X > denotes the initial matrix in which the missing values were filled with daily means. U, S, ‘-

and J are three matrices derived from SVD while u,, s;, and v; denote the SVD components in the first
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EOF mode. X' is the reconstructed matrix using the first EOF mode; e) iteratively decompose and .
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(Deleted:

NN

AN A

till the convergence is confirmed by the mean square error at each iteration; f) repeat the above iterative previous
processes for the following EOF modes till the reach of the final convergence (i.e., error starts to increase

as the new EOF mode is included). The B, was finally derived by standardizing the identified leading .- (Deleted: obtained
EOF modes.
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the hourly PMz s observations in China have been publicly available since 2013, the PM s records used

the middle of 2015.
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4.2 Results,
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Deleted: The features of data gaps presented in the retrieved hourly

4.2.1 Data completeness of in-situ PM:s records jn China

Figures 3a—c present the daily averaged missing value ratio, the occurrence frequency of missingness

(defined as the ratio of days with missing values jn each 24-hour PMa s observations divided by the total

number of days), and the diurnal phases of the most frequently occurring missing values at each

monitoring station since the first release of PM..s observations to the public, while Figures 3d—f show the
corresponding histograms, respectively. Although most of stations have a daily-averaged missing value
less than 10% (Fi

stations (red dots in Figure 3a) with more than 70% of hourly PMa2s observations lost in daily 24-h

res 3a_and 3d

measurements. After checking the retrieved PM2 s data records pver these stations, we find that most of

these stations stopped releasing PMa s observations after the middle of 2015.
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time (Beijing time, BJT) at which missing values occurred most frequently and the arrow length indicates
the magnitude of frequency. The varying diurnal phases of missing values were represented by different

color; blue (00~06 BJT), green (06~12 BJT), red (12~18 BJT), and black (18~24 BJT).
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Despite the small magnitudes (~10%) of daily-averaged missing value ratios (Figure 3d), data gaps in our

retrieved hourly PMa s record, are still significant, which is evidenced by the occurrence frequency of

missing values in daily PMa.s observations (Figure 3b). In contrast to the daily averaged missing value

ratios (Figure 3a), the missing value frequency has a relatively larger magnitude pf about 40%, jndicating

2 high occurrence frequency of data gaps jn the retrieved PMas record, as PMa s data measured on four

out of ten days were subject to missingness (Figure 3e). Thege results suggest an urgent need to fill in the

data gaps present in our retrieved PMa s record, so as to facilitate the further exploration of this valuable

data set.

Figure 3c presents the diurnal variation pattern of the occurrence of missingness in the retrieved PM,

record in terms of the detailed time (represented by the arrow direction) and frequency (represented by

the relative length of each arrow) of the most frequently occurring missing values, while Figure 3f shows

the histogram of the local time at which missing values occurred most frequently at each monitoring

station. It js interesting to note that the missing values occurred more frequently in the morning over most

stations (90.7% of total population of stations), particularly at 0600 and 1200 of the Beijing tim

However, detailed reason for this diurnal variation pattern remains, unclear.
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Given the frequent usage of daily-averaged PM, 5 concentration data in many studies, the possible impacts

of data gaps on PM, s daily averages were thus assessed here to examine how well the estimated PM> s

daily averages can be trusted in the presence of data gaps, especially in different pollution episodes.

Joward such a goal, gap;free observations of hourly PM, s within 24-h were first extracted. To make the

computational workload manageable, we randomly sampled 1,000 days observations yather than using

observations from all gap-free days, Moreover, days with PM> s daily averages Jower than that of the 10th

quantile of all gap-free days were considered as clean scenario, while those greater than the 90th quantile
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were treated as polluted scenario. Subsequently, a varying number (range from 1 to 23) of data values
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peaks are oftentimes observed in the early morning (Wang and Christopher, 2003), though such a diurnal

variation pattern may differ by regions (Lennartson et al., 2018). Also, the diurnal phases of PM> s are

CDeIeted: Furthermore

largely dominated by the diurnal variation of regional emissions and boundary layer processes (Guo et
al., 2016; Lennartson et al., 2018; Miao et al., 2018;_Yang et al., 2019b). In contrast, the diurnal phases
of MRDs are not evident during polluted days. All these findings collectively suggest the need to fill in

data gaps present jn hourly PM, s observations, especially for those measured during clean days, since
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Figure 4. Impacts of the number of missing values on daily averages of PM2s5. Mean relative deviations
were calculated between PMa s daily averages estimated from 1,000 hourly PMy s records with a given
number of missing values and the original one without missing values. (a) Deviations at different
percentiles at all-sky conditions; (b) deviations at the 50th percentile under different pollution scenarios;

(c) same as (b) but for the 10th percentile; (d) same as (b) but for the 90th percentile. Thick lines represent
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mean deviations while shaded regions are uncertainties of one standard deviation from the mean at each

side.
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Figure 5. Impacts of diurnal phases of missing values on PMa 5 daily averages. Hourly PMa s values in
the morning (07~11 BJT), afternoon (12~16 BJT), evening (17~21 BJT), and night (22~06 BJT) were
removed from the original hourly PM2s time series throughout the day to resemble missing values
respectively. On each box, the black dots represent medians of mean relative deviations while the bottom
and top edges of the box indicate the 25th and 75th percentiles and the whiskers extend to the 10th and

90th percentiles, respectively.

4.2.3 Performance of the DCCEOF method
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To assess the efficacy and accuracy of the proposed DCCEOF method, cross validation experiments were

conducted at two different monitoring stations, Specifically, three gap-free PMj s records within 24-h

* | reconstruct the diurnal cycle of PM: s from a spatiotemporally
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observations in each 24-h record were held ouf, Subsequently, the DCCEOF method was applied to

reconstruct the diurnal cycle of P

s for each specific case. Figure 6

cycles of PM» s with their actual PM».s concentrations. The results indicate that the reconstructed diurnal A

cycles of PM,s have a good fit with their actual observations, thus confirming the robustness of the
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DCCEOF method jn reconstructing the diurnal yariation pattern of PM (Deleted: performed well

(Deleted: local PM2 s

field, In particular, the DCCEOF method also succeeded to restore the missing PM 5 information even at
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the inflection times, e.g., the peak value in Figure 6¢ and the minimum value in Figure 6e, which are ‘(Deleted: s

oftentimes hardly to be recovered by statistical interpolation approaches. Nonetheless, compared with

Aactual PMa s observations, the reconstructed PM» s diurnal cycle js still unable to fotally restore all types

5y “( Deleted: , and the reconstructed diurnal variation patterns were
. (_highly in line with the practical observations
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of local variations (e.g., PMa.5s observations between 0700 and 1100 shown in Figure 6f). This is consistent

with our initial understanding that PM> s concentrations vary significantly in space and time, whereas the
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To better assess the performance of the DCCEOF method, we retrieved the hourly PM, s observations ((Deleted: proposed
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recorded at one monitoring station in Beijing during the time period August 1 to 7, 2014 and then some CD \oted:
£ — = = . - - eleted: from
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valid observations were treated as missing values for the subsequent gap filling practices. Both the

DCCEOF method and a spline interpolation approach were then used to practically restore the retained

missing values. The comparison results shown in Figure 7 indicate higher accuracy of the DCCEOF (Deleted: The DCCEOF method performed better

method than the gpline interpolation approach in restoring the artificially masked missing values, ((Deleted: conventional
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especially for those at the inflection times at which spline interpolation failed to predict with good

accuracy,(e.g., peak values on August 3), However, both methods failed in predicting the minimum values .- (Deleted:

on August 2. After checking the original data record, we found that the local variation of PMy s at this (Deleted: (igure 7
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station differed largely from that of all neighboring stations at that time. For such situation, the proposed S (Deleted: s
DCCEOF method would fail to properly predict the missing values given the distinct diurnal variation (Deteted: i same
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Figure 7. Comparison of gap filled hourly PM; s time series reconstructed using spline interpolation and

the proposed diurnal cycle prescribed gap filling method at the Wanshou Temple station in Beijing

between 1 and 7 August 2014. The green line shows the practical PM> s observations that were treated as

gaps while their original values were retained for cross validation.
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Figure 8 presents a more general evaluation of the prediction accuracy of the proposed DCCEOF method,
which compares the predicted values with the retained data values at different pollution levels. As

indicated, there is a good fit between the predicted values and the actual observations, with a correlation

coefficient of 0.82 on clean days (Figure 8a) and 0.95 during polluted gpisodes (Figure 8b), respectively.

This is in line with our expectation as higher prediction accuracy would be reached by the DCCEOF

method in, filling data gaps on polluted days given smaller variability of PMa.s concentrations, This gffect

can also be evidenced by spread scatters shown in Figure 8a, which in turn yeveals the large,spatiotemporal

heterogeneity of PM2 s concentrations during clean scenarios.
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Figure 8. Comparisons of PM,s observations with the reconstructed data values during clean (a) and
polluted (b) phases. For each scenario, the results were derived from 1,000 days of gap-free PMas

observations with 5 valid values peing randomly retained from 24-h observations on each sampled date
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original values were retained for cross validation.

for cross validation.

Given the underlying principle of utilizing discrete neighborhood field in space and time to reconstruct

the local diurnal cycle of PMy s for the subsequent missing value yestoration, the performance of the

DCCEOF method could be subject to the number of missing values and the otal number of neighboring

stations, To assess the possible dependence of prediction accuracy on these two factors, sensitivity

Figure 9a shows the response of prediction accuracy (in terms of

CCEOF method to the va

experiments were also conducte

correlation coefficient) of the ing number of missing values in each sampled
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introduced to the final predictions with a limited number of neighboring stations (<3) due to the lack of

sufficient prior spatial information for the reconstruction of the diurnal cycle of PM» 5. Nevertheless, good (Deleted: local PM:
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Although the DCCEOF method has a promising accuracy in filling the data gaps present in hourly PMp s CFormatted: Subscript

concentration time series, the current method only works for days with at least several valid observations.

In other words, the DCCEOF method is incapable of restoring values for days with all 24-h data missed.
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