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Abstract. Data gaps are frequently observed in the hourly PM2.5 mass concentration records measured 

from the China national air quality monitoring network. In this study, we proposed a novel gap filling 

method called the diurnal cycle constrained empirical orthogonal function (DCCEOF) to fill in data gaps 

present in hourly PM2.5 concentration records. This method mainly calibrates the diurnal cycle of PM2.5 

that is reconstructed from discrete PM2.5 neighborhood fields in space and time to the level of valid PM2.5 20 

data values observed at adjacent times. Prior to gap filling, possible impacts of varied number of data 

gaps in the time series of hourly PM2.5 concentration on PM2.5 daily averages were examined via 

sensitivity experiments. The results showed that PM2.5 data suffered from the gaps on about 40% of days, 

indicating a high frequency of missing data in the hourly PM2.5 records. These gaps could introduce 

significant bias to daily-averaged PM2.5. Particularly, given the same number of gaps, larger biases would 25 

be introduced to daily-averaged PM2.5 during clean days than polluted days. The cross-validation results 

indicate that the predicted missing values from the DCCEOF method with the consideration of the local 

diurnal phases of PM2.5 are more accurate and reasonable than those from the conventional spline 

interpolation approach, especially for the reconstruction of daily peaks and/or minima that cannot be 

restored by the latter method. To fill the gaps in the hourly PM2.5 records across China during 2014 to 30 

2019, as a practical application, the DCCEOF method can be able to reduce the averaged frequency of 

missingness from 42.6% to 5.7%. In general, the present work implies that the DCCEOF method is 

realistic and robust to be able to handle the missingness issues in time series of geophysical parameters 

with significant diurnal variability and can be expectably applied in other data sets with similar barriers 

because of its self-consistent capability. 35 
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1 Introduction 

A large variety of ground-based monitoring networks have been established worldwide to provide 

accurate measurements on various aspects of the atmospheric environment such as the Aerosol Robotic 

Network (AERONET) for aerosol properties. Many of these in-situ measurements, however, suffer from 40 

data losses due to various unexpected accidents, e.g., instrumental malfunction, interruption of power 

supply, internet outage either on monitoring stations or user’s end, thereby resulting in salient data gaps 

in the archived data records. Undoubtedly, these gaps significantly impair the data qualities and their 

valuable applications. Therefore, filling the data gaps present in such datasets is critical and of great value 

to facilitating the broad application of in-situ measurements. 45 

Confronted with frequent severe haze pollution events, China started to establish the national ambient air 

quality monitoring network since 2012 by extending the range of the previous sparsely distributed 

monitoring network to cover most major Chinese cities. To date, more than 1,600 state-level stations 

routinely operate to measure concentrations of six essential air pollutants (i.e., PM10, PM2.5, O3, NO2, 

SO2, CO) on an hourly basis (Guo et al., 2017; Li et al., 2017a). These in-situ measurements are publicly 50 

released online via the China National Environment Monitoring Centre (CNEMC) in near real-time as of 

2013 but without providing any direct data download interface. Consequently, users oftentimes utilize an 

automated software program (often known as a “web crawler”) to retrieve these valuable data sources 

from the CNEMC website. Such an endeavour helps users to acquire hourly air quality data more 

efficiently. The retrieved hourly mass concentration record, taking PM2.5 for instance, has been widely 55 

used as a critical data source in many studies related to haze pollutions, because of its good accuracy and 

high temporal resolution as well as its national-scale coverage (Gao et al., 2018; Miao et al., 2018; Bai et 

al., 2019a, 2019b; Zhang et al., 2019).  

Although PM2.5 data from this dataset have been extensively used in many PM2.5-related studies, the 

method of treating data gaps during the data cleaning processes, particularly for those using daily or 60 

monthly averaged PM2.5 data (e.g., Miao et al., 2018; Ye et al., 2018; Zhang et al., 2018; Yang et al., 

2019a), is oftentimes unclear. Since ignoring missing values would undoubtedly introduce biases into the 

final results (Bondon, 2005; Larose et al., 2019), some studies attempted to perform data analysis on a 

relatively long time scale to mitigate the impacts of data gaps by integrating hourly records into monthly 
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resolution  (e.g., Bai et al., 2019b; Zhang et al., 2019). On the other hand, many previous studies preferred 65 

to exclude records of days with a certain degree of missing values (e.g., no more than 6 missing values 

within 24-h) from their analysis (e.g., van Donkelaar et al., 2016; Li et al., 2017; Huang et al., 2018; 

Manning et al., 2018; Shen et al., 2018; Bai et al., 2019a; Zhang et al., 2019). Although the exclusion of 

records with missingness could avoid biased results to some extent, such a data treatment would make 

the PM2.5 time series temporally discontinuous. Therefore, approaches of ignoring missing values or 70 

excluding records on days with missing values are unreasonable. 

Since a non-gap PM2.5 record is essential to PM2.5 related haze control and environmental health risk 

assessment, filling data gaps presented in hourly PM2.5 records are of critical importance. Although 

versatile gap filling methods exist (e.g., Beckers and Rixen, 2003; Taylor et al., 2013; Chang et al., 2015; 

Dray and Josse, 2015; Gerber et al., 2018), most of them fail to properly impute missingness in PM2.5 75 

time series with high temporal resolution (e.g., hourly). An overview of existing gap filling methods is 

therefore worthwhile. Some conventional methods working in a principle of statistical interpolation are 

incapable of restoring daily peaks and/or minima since a priori knowledge of diurnal phases is oftentimes 

required to cope with this issue. The primary reason lies in the varied diurnal phases of PM2.5 

measurements since the mass concentrations always vary significantly in space and time due to 80 

heterogeneous local emissions and atmospheric conditions (Guo et al., 2017; Lennartson et al., 2018; Shi 

et al., 2018). A similar barrier applies for many other datasets which are sampled at high temporal 

resolution. 

In this study, we proposed a novel practical gap filling method called a diurnal cycle constrained empirical 

orthogonal function (DCCEOF) to better handle data gaps presented in time series with marked variability 85 

in space and time, by taking diurnal phases as a critical constraint in missing value imputation. To our 

knowledge, none of the existing gap filling methods have accounted for the diurnal phase effect in their 

missing value imputation schemes, and hence the predicted values from these methods might suffer from 

large bias. As a demonstration, the retrieved hourly PM2.5 concentration record from CNEMC during the 

time period of 2014 to 2019 was applied to evaluate the efficacy and accuracy of the proposed DCCEOF 90 

method. Science questions to be answered by this study include: (1) how many and how often are the 

missing values presented in a large-scale monitoring network such as the one in China with abundant in 
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situ PM2.5 records? (2) what are the uncertainties that can be introduced by missing values to daily 

averaged PM2.5? (3) is it feasible to reconstruct a set of spatiotemporally localized diurnal cycles from 

discrete PM2.5 observations in a large-scale monitoring network? and (4) are missing value imputations 95 

constrained by the diurnal cycles reliable? 

2 Overview of existing gap filling methods 

Plenty of methods have been developed or adopted for gap filling with respect to various theoretical bases, 

ranging from simple replacement with surrogates to spatial or temporal interpolation in addition to 

complicated machine learning techniques such as neural networks. These methods can be classified into 100 

different groups according to different criteria. For instance, two major groups can be classified based on 

the number of variables (univariate versus multivariate) (Ottosen and Kumar, 2019) and theoretical basis 

(likelihood-based versus imputation-based) (Junger and Ponce de Leon, 2015). Table 1 summarizes a 

selection of popular methods for missing value imputation in geophysical data sets by referring to the 

domain specific data dependence (Gerber et al., 2018). Comparisons of the performances of these methods 105 

can also be found in other literatures, e.g., Kandasamy et al. (2013), Demirhan and Renwick (2018), 

Yadav and Roychoudhury (2018), Julien and Sobrino (2019), among others. 

Given that each method is initially proposed to deal with missingness in one specific data set, adopting 

one method to another data set is often a challenge due to the various features of missingness (e.g., missing 

at random versus missing not at random), in particular for data sets with salient spatiotemporal 110 

heterogeneity such as air pollutants time series (Junger and Ponce de Leon, 2015). PM2.5 often exhibits 

evidently diurnal variation phases, which are primarily governed by local air pollutants emissions and 

regional meteorological conditions such as boundary layer height (Guo et al., 2017; Li et al., 2017; Huang 

et al., 2018; Liu et al., 2018; Miao et al., 2018; Yang et al., 2018, 2019b). Consequently, conventional 

approaches like those listed in Table 1 may partially fail in accurately predicting missing values in hourly 115 

PM2.5 series. 

In general, most currently available gap filling methods in Table 1 suffer from at least one of the following 

drawbacks: 1) partially fail for data sets with prominent gaps; 2) not self-consistent due to the requirement 

of supplementary data sets;3) computationally intensive (e.g., neural networks), and, most critically; 4) 

https://doi.org/10.5194/amt-2019-317
Preprint. Discussion started: 11 September 2019
c© Author(s) 2019. CC BY 4.0 License.

Cross-Out

Inserted Text
spatio-temporally   This comment is valid all over the manuscript 



6 
 

unable to fairly predict daily peaks and/or minima due to the absence of essential prior knowledge of 120 

diurnal variability of monitoring targets. Given the significant heterogeneity of PM2.5 concentration in 

space and time (Guo et al., 2017; Manning et al., 2018), ignoring the diurnal phases of PM2.5 would result 

in large bias to the gap filled PM2.5 data set. 

Table 1. Overview of several popular gap filling methods to impute missingness in geophysical data sets. 

 Method Principle or core technique Reference 

Te
m

po
ra

l 

Weibull Weibull frequency distribution mapping Nosal et al. (2000) 
EM Expectation-Maximization Junger and Ponce de Leon (2015) 

Interpolation Linear regression, Spline, NAR, ARIMA, ARCH 
Stauch and Jarvis (2006);  Neteler 
(2010); Demirhan and Renwick 
(2018) 

Machine 
learning Gradient Boosting, neural networks Körner et al. (2018) 

Şahin et al. (2011) 

SSA Imputation using singular spectrum analysis Mahmoudvand and Rodrigues 
(2016) 

DS Conditional resampling of a temporal subset Dembélé et al. (2019) 
Oriani et al. (2016) 

TIMESAT Savitzky–Golay filter, harmonic and asymmetric Gaussian 
functions Jönsson and Eklundh (2004) 

Hybrid method Fuzzy c-means with support vector regression and genetic 
algorithm Aydilek and Arslan (2013) 

Sp
at

ia
l IDW Interpolate using inverse distance weighting Shareef et al. (2016) 

Kriging Interpolate neighborhoods using Kriging Rossi et al. (1994); Zhu et al. 
(2015); Singh et al. (2017) 

NSPI / GNSPI Replace or interpolate with adjacent similar pixels Zhu et al. (2012); Chen et al. (2011) 

Sp
at

io
-te

m
po

ra
l  EOF / DINEOF Iteratively decompose and reconstruct spatial and temporal 

subsets using empirical orthogonal function 
Beckers and Rixen (2003); Taylor 
et al. (2013); Liu and Wang (2019) 

Mosaicing Merge numerical outputs with satellite observations Konik et al. (2019) 
gapfill Quantile regression fitted to spatiotemporal subsets Gerber et al. (2018) 
STWR Spatially and temporally weighted regression Chen et al. (2017) 

SMIR Learning machine created from historical spatial and 
temporal subsets Chang et al. (2015) 

RFRE Learning from other information using random forest Bi et al. (2018); Chen et al. (2019) 
* SSA: Singular Spectrum Analysis; DS: Direct Sampling; IDW: Inverse Distance Weighting; NSPI: Neighborhood Similar 125 
Pixel Interpolator; GNSPI: Geo-statistical Neighborhood Similar Pixel Interpolator; EOF: Empirical Orthogonal Function; 
DINEOF: Data Interpolating Empirical Orthogonal Function; STWR: Spatially and Temporally Weighted Regression; SMIR: 
SMart Information Reconstruction; RFRE: Random Forest Regression 

3 Gap filling method on the diurnal cycle constrained empirical orthogonal function 

Given the significant heterogeneity of PM2.5 diurnal phases impacted by local air pollutants emissions 130 

and atmospheric conditions, we propose to utilize the local diurnal cycle of PM2.5 to constrain missing 
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value imputation for the filling of data gaps presented in the hourly time series of PM2.5 concentration at 

each station. The goal is to better predict missing PM2.5 values, especially for the daily peaks and/or 

minima, which are poorly predicted by conventional methods due to the absence of prior knowledge of 

local diurnal phases of PM2.5. A schematic diagram of the proposed DCCEOF method is illustrated in 135 

Figure 1. In general, the DCCEOF method consists of the following four primary steps with the goal of 

reconstructing the local diurnal cycle of PM2.5 for the time series of each 24-h PM2.5 with missingness 

from their discrete neighborhood fields.  

 

Figure 1. Schematic illustration of the proposed DCCEOF method for filling data gaps in hourly 140 

PM2.5 records. The grey rectangles denote missing values. 

 

1) Initialize a local PM2.5 neighborhood field: For any identified PM2.5 missingness at site 𝒑 on date 

𝒕 (denoted as 𝑴𝒑
𝒕  hereafter), an initial PM2.5 neighborhood field in space and time (denoted as 𝑿𝒑,𝒕

𝒎,𝒏) was 
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first constructed using 24-h PM2.5 observations from nearby 𝒎 stations on date 𝒕 and observations from 145 

adjacent 2𝒏 days at site 𝒑. Mathematically, the neighborhood field 𝑿𝒑,𝒕
𝒎,𝒏 can be expressed as: 

𝑋*,+
,,- = {𝑥+1, 𝑥+2, … , 𝑥+,;	𝑥*+6-, … , 𝑥*+62, 𝑥*+61, 𝑥*+71, 𝑥*+72, … , 𝑥*+7-}    (1) 

It is clear that 𝒎 and 𝒏 are two critical factors in determining the dimension of 𝑿𝒑,𝒕
𝒎,𝒏 as a smaller 𝒎 and 

𝒏 would yield a more compact and localized PM2.5 neighborhood field. Considering a too compact 

neighborhood field may be insufficient to reconstruct the local diurnal cycle of PM2.5 fairly due to limited 150 

information, since missingness may also present in each candidate 24–h PM2.5 concentration time series. 

𝒎 was defined as the number of stations within 100 km of the target station and 𝒏 was set to 7 (i.e., one 

week before and after date 𝒕 respectively) in our algorithm. This configuration resulted in adequate 

samples for the construction of 𝑿𝒑,𝒕
𝒎,𝒏 while rendering the computational workload manageable.  

2) Construct a compact PM2.5 neighborhood field: Since the initial PM2.5 neighborhood field 𝑿𝒑,𝒕
𝒎,𝒏 155 

might include many irrelevant observations with different diurnal phases given large spatial and temporal 

intervals (i.e., m and n), a compact neighborhood field should be constructed by only retaining 

observations that are highly related to the target PM2.5 time series 𝒙𝒑𝒕  most critically, with similar diurnal 

phases. Therefore, the covariance rather than correlation between the target time series 𝒙𝒑𝒕  and every 

candidate PM2.5 time series in 𝑿𝒑,𝒕
𝒎,𝒏 was first calculated (normalized by the number of valid data pairs, 160 

i.e., without missingness). Subsequently, the candidate PM2.5 time series were sorted with respect to the 

magnitudes of covariances in a descending order. Finally, the first 𝒌 time series were retained to construct 

the optimized PM2.5 neighborhood field 𝑿𝒌;  by complying with the criterion that there are at least five 

valid observations at each specific time (i.e., observations in each row) from 00:00 to 23:00. The aim of 

this configuration is to avoid large bias in the subsequent diurnal cycle reconstruction using EOF, since 165 

large outliers may emerge at times without any valid observation. Mathematically, the process to construct 

𝑿𝒌;  can be formulated as follows: 

𝐶=> = 𝐶𝑂𝑉(𝑥*+ , 𝑥B|𝑋*,+
,,-)        (2) 

𝑋E; = {𝑥1B , 𝑥2B , … , 𝑥EB 	|𝐶=F> < 𝐶=FHI> < ⋯ < 𝐶=I> }     (3) 

where 𝑥B denotes the time series of candidate PM2.5 in 𝑿𝒑,𝒕
𝒎,𝒏 and COV is the covariance function. 170 
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3) Reconstruct the spatiotemporally localized diurnal cycle of PM2.5: The diurnal cycle of PM2.5 at 

site 𝒑 on date 𝒕 (denoted as 𝜷𝒑𝒕 ) was then reconstructed from the optimized neighborhood field 𝑿𝒌;  using 

EOF in an iterative process similar to the DINEOF method (Beckers and Rixen, 2003). In our DCCEOF 

method, the time series of the target PM2.5 𝒙𝒑𝒕  were also included as a basic constraint for the 

reconstruction of the local diurnal cycle of PM2.5 𝜷𝒑𝒕  and the whole field was then denoted as 𝑿L.  175 

𝑋M = {𝑥*+ , 𝑋E;}        (4) 

The EOF-based gap filling process can be outlined as follows: a) 20% of valid PM2.5 observations in 𝑿L 

were first retained for cross validation (CV) and then data values at these points were treated as gaps by 

replacing with nulls (i.e., missing value); b) given that a small amount of missing values would not 

significantly influence the leading EOF mode for the original data set, we may assign a first guess (here 180 

we used the mean value of valid data in each column) to the data points where missing values are 

identified to initialize the EOF analysis; c) EOF analysis was performed on the previously generated 

matrix (i.e., gaps are filled with column mean) in a form of singular value decomposition (SVD) and then 

data values at value-missing points were replaced by the reconstructed values at the same points using the 

first EOF mode. These processes can be expressed as: 185 

[𝑈, 𝑆, 𝑉] = 𝑠𝑣𝑑(< 𝑋M >)       (5) 

𝑋B = 𝑢1 ∗ 𝑠1 ∗ 𝑣1       (6) 

where < 𝑋M > denotes the initial matrix in which the missing values were filled with column means. U, S, 

and V are three matrices derived from SVD while 𝑢1, 𝑠1, and 𝑣1 denote the SVD components in the first 

EOF mode.  𝑋B  is the reconstructed matrix using the first EOF mode; e) iteratively decompose and 190 

reconstruct the matrix while updating data values at the value-missing points using the first EOF mode 

till the convergence is confirmed by the mean square error at each iteration; f) repeat the previous iterative 

processes for the following EOF modes till the final convergence (i.e., error starts to increase as the new 

EOF mode is included). The 𝜷𝒑𝒕  was finally obtained by standardizing the identified leading EOF modes. 

4) Missing value imputation: Finally, a linear relationship was established between valid PM2.5 195 

observations in 𝒙𝒑𝒕  and the corresponding values in 𝜷𝒑𝒕 . Missing values in the time series of the original 
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PM2.5 were then predicted by mapping data values in the reconstructed diurnal cycle at missing time based 

on the established linear relationship.  

In general, the proposed DCCEOF gap filling method is a univariate and self-consistent method since no 

additional data record is required for missing value imputation. Rather, the method works by relying 200 

primarily on the local diurnal cycle of PM2.5 that can be reconstructed from discrete PM2.5 neighborhood 

fields in space and time. Compared with conventional gap filling methods that work on a statistical basis 

(e.g., spline interpolation), the unique feature and novelty of the proposed DCCEOF method lies in its 

utilization of the diurnal cycle to constrain the missing value imputation, rendering physically meaningful 

predicted values with high accuracy. 205 

4 Demonstrative case study in China 

4.1 China in-situ PM2.5 concentration records 

The near surface mass concentrations of PM2.5 across China are measured primarily using the tapered 

element oscillating microbalance analyzer and/or the beta-attenuation monitor at each monitoring 

station. The instruments’ calibration, operation, maintenance, and quality control are all properly 210 

conducted by complying with the China Environmental Protection Standards of GB3095-2012 and HJ 

618–2011. PM2.5 concentrations are measured by these instruments with an accuracy of ±5 μg/m3 for ten-

minute averages and ±1.5 μg/m3 for hourly averages (Guo et al., 2017; Miao et al., 2018). Although the 

hourly PM2.5 observations in China have been publicly available since 2013, the PM2.5 records used in 

the present study were retrieved following May 2014 via a web crawler program.  215 

Figure 2 depicts the spatial distribution of the national ambient air quality monitoring network in China 

as well as the start year for the first release of PM2.5 measurements at each individual station. Given the 

fact that our data were retrieved following May 2014, stations deployed before 2014 are hard separate 

from those being built in 2014 and hence, they were all designated the same way in Figure 2. At present, 

this network consists of more than 1,600 stations, in which about 940 stations were established before 220 

2015. The total number of stations was increased to 1,494 in June 2015, and then only four stations were 
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newly deployed in the following one and half years until December 2016. In other words, the vast majority 

(92.4%) of PM2.5 stations in the current monitoring network were established before the middle of 2015. 

 

Figure 2. Spatial distribution of China’s national ambient air quality monitoring stations from May 2014 225 

to April 2019. Circles with distinct color indicate the year in which the first PM2.5 observation was 

publicly released at each station in our used data record. 

 

4.2 Results and discussion 

4.2.1 Data completeness of in-situ PM2.5 records across China 230 

The features of data gaps presented in the retrieved hourly PM2.5 concentrations were first evaluated. 

Figures 3a–c present the daily averaged missing value ratio, the occurrence frequency of missingness 

(defined as the ratio of days with missing values presented in 24-hour PM2.5 observations (regardless of 

the number of missing values) divided by the total number of days since the release of the first PM2.5 

observation), and the diurnal phases of the most frequently occurring missing values at each monitoring 235 

station since the first release of PM2.5 observations to the public, whereas Figures 3d–f show the 

corresponding histograms, respectively. Note that most of stations exist daily-averaged missing value 
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ratios less than 10% (Figure 3a). Nonetheless, prominent data gaps are still observed at several monitoring 

stations (red dots in Figure 3a) with more than 70% of hourly PM2.5 observations lost in daily 24-h 

measurements. After checking the retrieved PM2.5 data records across these stations, we found that most 240 

of these stations stopped releasing PM2.5 observations after the middle of 2015.  

 
Figure 3. Frequency of missing values present in hourly PM2.5 records at each station since the first 

release of PM2.5 observations onward. (a) Frequency of days with missing values, (b) diurnal phases of 

maximum occurring frequency of missing values, (c) and (d) are corresponding histograms for (a) and 245 

(b), respectively. The arrow direction denotes the local time (Beijing time, BJT) at which missing values 
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occurred most frequently and the arrow length indicates the magnitude of frequency. The varying diurnal 

phases of missing values were represented by different colors: blue (00~06 BJT), green (06~12 BJT), red 

(12~18 BJT), and black (18~24 BJT). 

 250 

Despite the small magnitudes (~10%) of daily-averaged missing value ratios (Figure 3d), data gaps in our 

retrieved hourly PM2.5 records are still salient, which is evidenced by the occurrence frequency of missing 

values in daily PM2.5 observations (Figure 3b). In contrast to the daily averaged missing value ratios 

(Figure 3a), the missing value frequency has a relatively larger magnitude (~40%), revealing that data 

gaps occurred frequently in the retrieved PM2.5 records, as four out of ten days PM2.5 samplings were 255 

subject to data gaps (Figure 3e). Therefore, there is an urgent need to fill in the data gaps in China PM2.5 

records to facilitate the exploitation of these valuable records. 

In addition, the diurnal phases of the occurrence of missing values were examined. Figure 3c presents the 

detailed time (represented by the arrow direction) and frequency (represented by the relative length of 

each arrow) of the most frequently occurring missing values, whereas Figure 3f shows the histogram of 260 

the local time at which missing values occurred most frequently at each monitoring station. It can be 

found that the missing values occurred more frequently in the morning for most stations (90.7% of total 

population of stations), particularly at 0600 and 1200 of the Beijing time, while the possible reason for 

which remains unclear. 

4.2.2 Impacts of missing values on daily-averaged PM2.5 265 

It is well known that the number of missingness is highly linked to how well the estimated PM2.5 daily 

averages and their associations with application results can be trusted. As such, the possible impacts of 

PM2.5 missing values were examined to provide a holistic viewpoint of the adverse impacts of data gaps, 

given the fact that the daily averages are frequently used in many PM2.5-related studies. First, gap–free 

observations of hourly PM2.5 within 24h were extracted. Since sampling based on all enumerated 270 

combinations for the given number of missing values is undoubtedly time consuming, we randomly 

sampled 1,000 days from all gap-free days observations, especially for different pollution scenarios (clean 

versus polluted, respectively) in order to make the workload manageable. In addition, days with daily-
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averaged PM2.5 lower than the 10th quantile of all gap-free days were considered as clean scenario, while 

those greater than the 90th quantile were treated as polluted scenario. Subsequently, a varying number 275 

(range from 1 to 23) of data values were treated as gaps in every daily PM2.5 observation randomly and 

then mean relative differences (MRDs) in daily-averaged PM2.5 derived from between hourly records with 

and without data gaps were calculated as a measure to evaluate the potential impacts of missingness. 

Figure 4a shows the estimated MRDs at the 10th, 50th, and 90th quantiles for different numbers of missing 

values in 1,000 randomly sampled 24–h PM2.5 observations, indicating that larger biases could be 280 

introduced to the daily averages with the increase in the total missingness. Given the symmetrical 

behavior of MRDs around zero (like a Gaussian distribution) for each given number of missingness, we 

may infer that random biases could be introduced into PM2.5 daily averages if missing values are ignored 

for the calculation of daily averages of PM2.5. These random biases, in turn, could yield large uncertainties 

to the subsequent results such as trend estimations. To further evaluate the impacts of missingness on 285 

daily averages of PM2.5, in particular at different pollution scenarios, MRDs were calculated on 1,000 

clean and polluted days, respectively (Figure 4b–d). On average, MRDs vary with larger deviations for a 

given number of missingness on clean days than on polluted days (Figure 4b). Regarding MRDs at 10th 

and 90th quantiles, we may deduce that missing values would result in larger bias to PM2.5 daily averages 

on clean days than in polluted conditions given larger MRDs for clean scenarios (Figures 4c–d). This 290 

effect is in line with expectations since PM2.5 concentrations often exhibit larger diurnal variations on 

cleaner days and smaller deviations on polluted days due to the boundary layer height (BLH) effect (Li 

et al., 2017; Miao et al., 2018). Note that six missing values would result in as large as approximately 5% 

of bias (10% for 12 missing values) to daily averages of PM2.5 during clean days (Figures 4c-d). 

In addition to the number of missing values, possible impacts of diurnal phases of missing values on 295 

daily-averaged PM2.5 were also examined (Figure 5). Different diurnal phases were observed for MRDs 

associated with missingness at different pollution levels. Missing values in the afternoon and evening 

would more likely result in overestimations to daily-averaged PM2.5, whereas underestimations for 

missingness in the morning and night. Moreover, the missingness in the afternoon during clean days has 

a larger potential to overestimate daily-averaged PM2.5 than at other times. This effect could be largely 300 

associated with the diurnal phases of PM2.5 as daily peaks are oftentimes observed in the early morning 
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(Wang and Christopher, 2003), though such a diurnal variation pattern may differ by regions (Lennartson 

et al., 2018). Furthermore, the diurnal phases of PM2.5 are largely dominated by the diurnal variation of 

regional emissions and boundary layer processes (Guo et al., 2016; Lennartson et al., 2018; Miao et al., 

2018;Yang et al., 2019b). In contrast, the diurnal phases of MRDs are not evident during polluted days. 305 

All these findings collectively suggest the need to fill in data gaps presented in hourly PM2.5 observations, 

especially for those measured during clean days, since missing values would result in larger biases to 

daily-averaged PM2.5 than those during polluted phases. 

 
Figure 4. Impacts of the number of missing values on daily averages of PM2.5. Mean relative deviations 310 

were calculated between PM2.5 daily averages estimated from hourly records with a given number of 

missing values and the original one without missing values. (a) Deviations at different percentiles at all-

sky conditions; (b) deviations at the 50th percentile under different pollution scenarios; (c) same as (b) 

but for the 10th percentile; (d) same as (b) but for the 90th percentile. Thick lines represent mean 

deviations while shaded regions are uncertainties of one standard deviation from the mean at each side. 315 
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Figure 5. Impacts of diurnal phases of missing values on PM2.5 daily averages. Hourly PM2.5 values in 

the morning (07~11 BJT), afternoon (12~16 BJT), evening (17~21 BJT), and night (22~06 BJT) were 

removed from the original hourly PM2.5 time series throughout the day to resemble missing values 

respectively. On each box, the black dots represent medians of mean relative deviations while the bottom 320 

and top edges of the box indicate the 25th and 75th percentiles and the whiskers extend to the 10th and 

90th percentiles, respectively.  

 

4.2.3 Performance of DCCEOF method 

Since the goal of the proposed DCCEOF method is to reconstruct the diurnal cycle of PM2.5 from a 325 

spatiotemporally localized neighborhood field even in the presence of data gaps, three gap-free 24-h PM2.5 

observations at different pollution levels were selected at two different monitoring stations (with different 

numbers of neighboring stations within 100 km of the target station) respectively to assess the efficacy of 

the proposed DCCEOF gap filling method. As shown in Figure 6, the DCCEOF method performed well 

in reconstructing the local PM2.5 diurnal cycles from the discrete neighborhood field, and the 330 

reconstructed diurnal variation patterns were highly in line with the practical observations. In particular, 

the DCCEOF method enabled us to successfully restore the missing PM2.5 information even at the 
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inflection times, e.g., the peak value in Figure 6c and the minimum value in Figure 6e, which are 

oftentimes hard to recover by statistical interpolation approaches. Nonetheless, compared with practical 

PM2.5 observations, the reconstructed PM2.5 diurnal cycle was still unable to sufficiently restore all types 335 

of local variations (e.g., PM2.5 observations between 0700 and 1100 shown in Figure 6f). This is consistent 

with our initial understanding because PM2.5 concentrations vary significantly in space and time. 

Moreover, the reconstructed PM2.5 diurnal cycle is derived from a limited number of leading EOF modes 

and hence it only captures the dominant variation patterns of the neighborhood field while some local 

variations are ignored. In spite of this potential drawback, the proposed DCCEOF method still exhibited 340 

high accuracy in restoring the local PM2.5 diurnal cycle from a discrete neighborhood field. 

 

Figure 6. Comparisons of practical PM2.5 concentrations with the reconstructed spatiotemporally 

localized PM2.5 diurnal cycles at different pollution levels. For each trial, 6 valid PM2.5 observations were 

treated as missing values to simulate gapped PM2.5 time series prior to diurnal cycle reconstruction for a 345 

given day. Note the number of neighboring stations differs between these two cases (58 for the top panel 

and 16 for the bottom). 
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To assess the performance of the proposed DCCEOF gap filling method, we retrieved the hourly PM2.5 

observations recorded at one monitoring station in Beijing during the time from August 1 to 7, 2014 and 

then some valid observations were treated as missing values for the subsequent gap filling. The DCCEOF 350 

method performed better than the conventional spline interpolation approach in restoring the artificially 

masked missing values, especially for those at the inflection times at which spline interpolation failed to 

predict with good accuracy (Figure 7). However, both methods failed in predicting the minimum values 

on August 2. After manually checking the original data records, we found that the local variation of PM2.5 

at this station differed largely from that of neighboring stations at the same time. 355 

Figure 8 presents a more general evaluation of the prediction accuracy of the proposed DCCEOF gap 

filling method, which compares the predicted values with the retained data values at different pollution 

levels. It indicates that the proposed method has good imputation accuracy, with a CV correlation 

coefficient of 0.82 on clean days (Figure 8a) and 0.95 for polluted days (Figure 8b). As stated earlier, 

higher imputation accuracy is expected for filling gaps on polluted days than cleaner days given the less 360 

dynamic features of PM2.5 concentrations on polluted days. This is also evidenced by the scatter plot 

shown in Figure 8a, in which larger variance is observed between the predicted values and the practical 

PM2.5 observations. This effect also reveals the larger spatiotemporal heterogeneity of PM2.5 

concentrations in clean scenarios. 

 365 

Figure 7. Comparison of gap filled hourly PM2.5 time series reconstructed using spline interpolation and 

the proposed diurnal cycle prescribed gap filling method at the Wanshou Temple station in Beijing 
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between 1 and 7 August 2014. The green line shows the practical PM2.5 observations that were treated as 

gaps while their original values were retained for cross validation. 

 370 

Figure 8. Comparisons of PM2.5 observations with the reconstructed data values during clean (a) and 

polluted (b) phases. For each scenario, the results were derived from 1,000 days of gap-free PM2.5 

observations with 5 valid values which were randomly retained from 24-h observations on each sampled 

date for cross validation. 

 375 

Given the DCCEOF method can work well by relying primarily on the spatiotemporally localized 

neighborhood field to reconstruct the local PM2.5 diurnal cycle for the subsequent missing value 

imputation. Note that the number of missing values and the population of neighboring stations are two 

critical factors to fill gaps via the DCCEOF method. Therefore, sensitivity experiments were performed 

to quantify the response of prediction accuracy to the variation of these two parameters. Figure 9a shows 380 

the response of prediction accuracy (in terms of correlation coefficient) of the proposed method to the 

varying number of missing values in each sampled time series of 24–h PM2.5. It is clear that the prediction 

accuracy generally decreases with the increase of the number of missing values. This effect can be 

attributable to the fact that the target PM2.5 time series is applied as a critical constraint for the screening 

of candidate PM2.5 observations in space and time to construct the spatiotemporally localized 385 

neighborhood field for the reconstruction of the local PM2.5 diurnal cycle. Consequently, more 

missingness would make the constructed neighborhood field have large uncertainties due to less 
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information being left for the selection of related time series of PM2.5, which in turn undermines the 

overall accuracy of the predicted results. 

 390 

Figure 9.  Impacts of the number of missing values present in hourly PM2.5 records for every 24-h (upper 

panel) and the total number of neighboring stations (bottom panel) on the performance of the proposed 

gap filling method. The error bars denote one standard deviation of each value from the mean on each 

side. 

 395 

Figure 9b presents the potential impacts of the total number of neighboring stations on the prediction 

accuracy at the target station. The total number of neighboring stations within 100 km of the target station 

was first calculated and then sensitivity experiments were performed for each selected number of 

neighboring stations. Specifically, ten stations were randomly selected for each given number of 

neighboring stations within 100 km, and then 20 gap-free PM2.5 observations were sampled at each 400 

individual station. For each gap-free PM2.5 observation within 24-h, six values were retained and then 

treated as gaps for cross validation.  

It is indicative that the DCCEOF method would yield high prediction accuracy with an adequate number 

of neighboring stations, as three neighboring stations would render promising prediction accuracy (Figure 

9b). Large biases would be introduced with a limited number of neighboring stations (<3) due to the lack 405 

of sufficient prior information for the reconstruction of the local PM2.5 diurnal cycle. In general, the 

prediction accuracy may be improved with the increase of the number of neighboring stations but the 

enhancement effect is not obvious at those stations with more than three neighboring stations. 
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Nonetheless, the present results indicate that the increase of neighboring stations would reduce the 

uncertainties in the final predicted values, as evidenced by smaller standard deviations of correlation 410 

coefficients for cases with more neighboring stations. Moreover, diurnal cycle reconstructed from the 

neighborhood field in space is more accurate than using PM2.5 observations from adjacent times, which 

is evidenced by smaller correlation values with limited neighboring stations.  

Figure 10 presents the benefits of the DCCEOF method for in–situ hourly PM2.5 records at each individual 

monitoring station in terms of the improvement of the data completeness ratio as well as the reduction of 415 

gap frequency. It shows that the DCCEOF method enables the improvement of the data completeness 

ratio of hourly PM2.5 records by about 5% on average at the national scale, and the overall data 

completeness ratio has been improved from 89.2% to 94.3% (Figure 10a). Despite the small magnitude 

of the data completeness improvement ratio, the occurrence frequency of days with missingness has been 

prominently reduced, with the averaged frequency of days with missingness declined from 42.6% to 5.7% 420 

(Figure 10b). In general, the gap-filled PM2.5 record via the DCCEOF method is more temporally 

complete and thus can be used as a good data source for further PM2.5-related studies. 

 
Figure 10. Benefits of the proposed gap filling method applied to China in-situ hourly PM2.5 records at 

each individual monitoring station. (a) Improvement of data completeness and (b) reduction of the 425 

percentage of days with missing values. 
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5. Conclusions 

A practical and realistic gap filling method termed DCCEOF is proposed in the present study to cope with 

missingness in time series with significant diurnal variability. Compared with the conventional gap filling 

methods, the proposed DCCEOF method is self–consistent, physically meaningful, and more accurate, 430 

given the utilization of the reconstructed spatiotemporally localized diurnal cycle to constrain the missing 

value imputation. Such an endeavor enables the proposed gap filling method to predict missing values 

even at inflection times, like daily peaks or minima, with good accuracy.  

As a demonstration, the proposed DCCEOF method was practically applied to fill in data gaps in hourly 

PM2.5 data records that were acquired from China’s national air quality monitoring network, and the cross-435 

validation results indicate a promising prediction accuracy of the proposed DCCEOF gap filling method 

in restoring PM2.5 missingness. The method performs even better in predicting missing values during 

polluted phases rather than during clean days given smaller variations of PM2.5 concentrations in space 

and time. Further sensitivity experiments suggest that the overall accuracy of the DCCEOF method would 

slightly decrease with the increase of the amount of missingness in daily 24-h PM2.5 observations. This 440 

effect is largely associated with larger uncertainties in the construction of spatiotemporally localized 

PM2.5 neighborhood fields. In addition, an adequate number of neighboring stations in space is essential 

to the final prediction accuracy of missing value imputation. The experimental results suggest that three 

neighboring stations within 100 km to the target station would yield a promising prediction accuracy, and 

the more neighboring stations, the less the uncertainties of the predicted values.  445 

Moreover, the data gaps presented in our retrieved in–situ hourly PM2.5 records were explored. In general, 

the missingness ratio is less than 10% at most stations across China. Meanwhile, data gaps occur more 

frequently at 0600 and 1200 BJT than other time. After gap filling, the data completeness ratio of China 

in–situ hourly PM2.5 record was improved to 94.3% while the frequency of days with missingness was 

markedly reduced from 42.6% to 5.7%. The gap filled hourly PM2.5 record can thus be used as a promising 450 

data source for better PM2.5 concentration mapping at the national scale, e.g., incorporating in-situ PM2.5 

information from neighboring stations to advance PM2.5 prediction accuracy. 

Overall, the proposed DCCEOF gap filling method provides a realistic and promising way to deal with 

missingness presented in hourly PM2.5 concentration records which oftentimes exhibit pronounced diurnal 
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phases. Given its self-consistent nature, this method can be thereby directly applied to PM2.5 datasets 455 

measured in other regions and/or other time series of other data with similar barriers. A more general 

comparison of this method with many other conventional gap filling methods will be conducted in the 

future to further evaluate the performance and accuracy of the DCCEOF method in handling various types 

of data gaps. 
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