
We would like to think Oleg Dubovik and two anonymous reviewers for their comments on this study. Robert 
Levy also provided some comments offline (with some overlap to the below).

Below, reviewer comments are in bold while our responses are in regular type. We have also provided a ‘track 
changes’ version of the manuscript, with added text in blue and deleted/moved text in red.

In addition to comments addressing the below, we have also added a brief discussion of work being done by the 
TUNER consortium (von Clarmann et al. 2019), independently from but parallel to this work, relating to 
uncertainty quantification in trace gas/temperature profiling from satellite remote sensing.

Short Comment by Oleg Dubovik

The paper suggests to present a comprehensive and rigorous approach for the evaluation of uncertainty
of remote sensing retrieval. It is useful and timely research work. However, I have noticed a pronounced 
unjustifiable methodological bias in consideration of the current retrieval approaches and in 
acknowledging previous retrieval efforts.

The authors base their consideration on only two main equations that as they suggest come from 
general concept of optimal estimations by Rodgers (2000). I understand that several of co-authors 
originated from Oxford and do have their scientific background views on the Clive Rodgers remarkable 
retrieval development. Nonetheless, it is quite clear to me that the authors are well aware of the details of
optimal estimation approach and could credit more precisely the approach for its merit as well as to be 
fair in crediting other works for their contribution to the formed approach. For example, the authors 
showed in Eq.(1) the cost function with three terms and introduced the equation using the following 
referencing: “While notation differs between authors (cf. Thomas et al., 2009; Dubovik et al., 2011; 
Govaerts and Luffarelli, 2018), following Rodgers (2000) a general form of the cost function J can be 
written:” This is quite misleading statement since for all who really read Rodgers (2000) it is obvious that
Clive never considered more than two first terms, same as the paper Thomas et al., 2009. If I am 
mistaken my remark it would be nice if the authors pointed at such formula in the Rodgers (2000) 
textbook. The fact is this multi-term fitting concept comes from Dubovik et al. (2011) and earlier 
AERONET retrieval works by Dubovik and King (2000), Dubovik (2004), etc. Here this no difficulties to 
point out the equations analogous to Eq.(1). For example, Eq.(18a) in Dubovik et al. (2011), or Eq.(48) in 
Dubovik (2004). The paper by Govaerts and Luffarelli (2018) does contain such formulation but it was 
also adapted from Dubovik et al. (2011) while authors Govaerts and Luffarelli were not fairly generous to 
credit previous work either. (The fact was brought up to the attention of the authors and editor (A. Sayer)
by the reviewers of the discussion paper, but this detail never was addressed.). This is pretty 
disappointing approach from the group of rather respected scientists.

As first author, I (A. Sayer) want to apologise for the original wording of the section in question as I am most 
directly responsible. The wording “following Rodgers (2000)” there was intended to state merely that we are 
following Rodgers’s notation, and was not meant to imply that the full formulation below came from Clive’s book. 
However I totally understand how you could have got that impression from reading the text as written, and so I 
am sorry about that. That was poor wording on my part and I should have been more careful given prior 
discussions.

We agree with you that the formalism in the book doesn’t extend to the additional smoothness constraints, and 
the first application of these additional constraints in aerosol remote sensing was from your AERONET work. In 



the revised paper we have changed this sentence, and expanded the paragraph afterwards to mention the 
AERONET work, and the broader application of smoothness constraints, in more detail.

Another critical aspect in the proposed methodology is the fact that the authors consider only random 
component of retrieval error and do not suggest any quantitative approach to access the effect of 
possible biases. This is very dangerous practice. For example, from the structure of Eq.(2) it is rather 
clear that by increasing weight of second and third terms by adding a priori constraints one can 
suppress the level of random errors very strongly. That is justifiable if a priori constraints are adequate. 
However, if the false a priori information is inadequate (i.e. doesn’t not correspond to the reality), the 
random errors would be suppressed also. However, in such situations, the solution would be strongly 
biased, and this would never appear as results of using Eq.(2). This fact is not captured neither by used 
equation nor by profound discussion. Overall, the paper needs critical and honest revision by the 
authors before the publication.

Here, we partially agree with you. From the point of view of uncertainty propagation, approaches such as 
Optimal Estimation can deal with systematic or correlated uncertainty sources via off-diagonal elements of the 
covariance matrices. This was only briefly mentioned, though, so is emphasised more in the revised manuscript, 
as well as the effect of global vs. local systematic sources. We have also expanded the discussion on prior 
constraints (which was touched on in the first and second points of the enumerated list in section 2.2.1) a little to 
emphasise the problems if these are not appropriate (e.g. the wrong strength, or systematically biased). From 
the point of view of output uncertainty estimate evaluation (i.e. analysis of uncertainty estimates with respect to 
retrieval errors), I agree that the plots like Figure 7 assess only total uncertainty/error and do not split out random
vs. systematic components. However, other parts of the analysis (e.g. left part of Figure 3, x-axis of Figure 9) do 
allow an analysis of whether retrievals are systematically biased at the same time as looking at random and total 
error.

This was briefly discussed in the Conclusions. In the revision, we have added a new subsection 2.4 to explicitly 
discuss characterisation and effect of systematic uncertainties in propagation methods. Some of the material 
from the Conclusions was moved to this new section (which we feel also improves the focus of the Conclusions). 
We have also moved Figure 9 earlier in the manuscript (and split into separate land/ocean panels, and expanded
the discussion around it, to give this more prominence.

Comments by Anonymous Referee #1

The authors discuss preliminary but very innovative work on prognostic (i.e. predicted) uncertainties in 
satellite retrievals. Although they focus on AOT (aerosol optical thickness), much of what they have to 
say is applicable to other properties (either related to aerosol or not). The paper has two major topics: 
the methodology of prognostic uncertainty estimates and the evaluation of those uncertainties. I believe 
prognostic uncertainties to be very important for at least two reasons. A practical reason is that data 
assimilation systems require uncertainty estimates for the observations they ingest. A 
philosophical/scientific reason is that good prognostic uncertainty estimates, if provided through formal
error propagation, will advance our understanding of the strengths and weaknesses of remote sensing 
products. This paper is well written and entirely suitable to AMT.

We are happy that the reviewer sees the value of this work.



As I started reading the paper, I felt that two major issues were not really touched upon: biases in 
observations and the Gaussian nature of errors. Fortunately, the authors spend quite some time 
discussing these at the very end of their paper. Maybe it would be good to refer to this alreday in the 
Introduction. That said, I would like to hear the authors ideas on some aspects: - why would we expect 
errors to have a Gaussian distribution in the first place (other than for its ease of use)? - how will biases 
in real observations affect their analysis. E.g. Fig 9 shows that biases clearly present. (I believe Oleg 
Dubovik makes a very similar comment)? - how to interpret biases and uncertainty? The concept of 
uncertainty suggests random errors but at the same time the authors point out that calibration issues 
often result in biases. A similar issue is that a bias may be spatially varying (e.g. if related to surface 
reflectance estimates), and may present itself as more of a random error in a global dataset.

We address this in the response to Oleg Dubovik’s comments, above. In brief, we have added a new section 2.4,
updated Figure 9 and moved it earlier, and expanded the discussion to give systematic uncertainties and errors 
more prominence.

p 19, l 3: "The reasons for identifying a particular site as complex" Can one be sure that 
"straightforward" sites are exactly that? It would be good if in future work, a number can be put on this 
so-called ’complexity’. One thing that surprised me was that it seems that scene complexity has no 
systematic impact on errors/uncertainty. Maybe the authors can comment on that?

Yes, as we state in the paper, the categorisation is based on things we expected beforehand would have a 
notable influence on retrieval error characteristics. In some cases this was borne out but in others it was not. For 
example, some algorithms appear to cope with complex scenes by simply doing no retrievals. This was 
discussed in the text about Pickle Lake and Mbita. We have emphasised this a little more in the revised 
manuscript’s Concusions, and agree that it would be useful to be able to develop the concept of site complexity 
more in future work. (There has been some recent and some ongoing work on representivity, although much of 
this has been on level 3 scales rather than level 2.)

p 20, l 12: Did the authors verify that the standard deviation in AERONEt measurements was 
(statistically) the same for match-ups of different products (e.g. did different products see scenes of 
similar heterogeneity)?

The comparison was restricted to fairly homogeneous AERONET scenes, to minimise the contribution of 
AERONET heterogeneity to the total uncertainty, and get more directly at the satellite-based component. This 
was discussed in section 3.2.1. Within these constraints, yes, all products are roughly equal. No changes were 
made in the revised manuscript as a result of this comment.

p 21, l 5: "there is no objective way to determine universal optimal thresholds." I suspose the problem is 
not in finding an objective criterium but finding a universal criterium. Objective criteria might be derived 
from e.g. model simulations at high spatial resolution or collocated surface measurements at high 
frequency.

Yes, good point. We mention this now in the revised paper.

Table 7: Why do land cases provide more match-ups? I would assume that over ocean, there are more 
valid retrievals?



We are not sure why one would make that assumption. Generally ocean has a higher cloud fraction than land, 
and many water sites are also affected by Sun glint periodically, so we would expect land (on average) to have 
more. Section 3.3 mentions some of the factors influencing absolute data volume at sites, so in the interest of not
further increasing the length of the paper, we have not expanded this discussion.

p 29, l 1: "sites are grouped in triplets" I’m not sure what is meant by this. I see 6 sites in each figure and
scene complexity is only denoted by the vertical order of the panels.

We meant that the three straightforward ones are the first three rows, and the three complex ones are the last 
three rows (as opposed to alphabetical order). We have clarified this text in the revised version.

p 29, l 13: "This implies ..." Doesn’t it also imply that the uncertainty of AERONET retrievals (mentioned 
in the previous sentence) is NOT an issue?

It could imply that, but does not necessarily imply that (and may be true in some situations but not others). In the 
interests of not further increasing the length of the manuscript, we have not expanded the discussion here.

p 31, l 4 : "there is no clear single best technique" I’m rather impressed with the performance of DB. I 
understand DB uses an empirical approach which is maybe why the authors don’t mention its success. 
Since its performance is so obviously better than the others, may be better to discuss this once more?

We highlighted DB in point 5 of the Conclusions to the original manuscript (a few paragraphs down), together 
with possible reasons why. We feel that a bullet point in the Conclusions is sufficient emphasis, although have 
expanded this bullet in the revised manuscript.

p 35, l 35: "the hard boundary of SSA=1 means that the Gaussian statistics on which many uncertainty 
estimates ..." Similarly AOD has a hard boundary of zero. Skewed MODIS DT error distributions can be 
found at low AOD (see e.g. Zhang & Reid 2006), which is why DT introduced negative AOD.

This is true, but negative AOD is unphysical, so this is undesirable. The AOD distribution is not quite so clustered
near this hard boundary. We have expanded this discussion to note this, though.

Comments by Anonymous Referee #3

This paper outlines the development of a framework for evaluating uncertainties for satellite AOD 
retrievals, although the authors note that this work is applicable to other retrieved quantities as well. The
manuscript goes through an in-depth discussion of both prognostic and diagnostic methods for 
evaluating retrieval uncertainties and a framework for how to evaluate them. This is important work as 
estimates of retrieval uncertainty are crucial for many users, particularly for applications such as data 
assimilation. The outlined framework provides a way to verify the verification and a means for 
understanding where the uncertainty estimates can be improved. This paper is very detailed and well 
written. I think this is a good starting point for evaluation of forecast uncertainties and more analyses 
can be added in the future, for bias evaluation for example.

We thank the reviewer for their kind words and are pleased that they see the value in this work.



A minor point, perhaps you could also mark the sites that you designate as straightforward or complex 
in the tables and figures where you have individual AERONET sites evaluations (Table 8, Figure 7,8). 
This would make it easier to compare results for the two site categories. I recommend the manuscript for
publication in AMT.

Thanks for the suggestions – we agree this can help make things clearer. For Figures 7 and 8, the text indicates 
the grouping of panels. We have added a symbolic classification to show the same in the updated Figure 9. We 
have updated the header of Tables 7 and 8 to show this information as well.
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Abstract. Recent years have seen the increasing inclusion of per-retrieval prognostic (predictive) uncertainty estimates within

satellite aerosol optical depth (AOD) data sets, providing users with quantitative tools to assist in optimal use of these data.

Prognostic estimates contrast with diagnostic (i.e. relative to some external truth) ones, which are typically obtained using

sensitivity and/or validation analyses. Up to now, however, the quality of these uncertainty estimates has not been routinely

assessed. This study presents a review of existing prognostic and diagnostic approaches for quantifying uncertainty in satellite5

AOD retrievals, and presents a general framework to evaluate them, based on the expected statistical properties of ensembles of

estimated uncertainties and actual retrieval errors. It is hoped that this framework will be adopted as a complement to existing

AOD validation exercises; it is not restricted to AOD and can in principle be applied to other quantities for which a reference

validation data set is available. This framework is then applied to assess the uncertainties provided by several satellite data sets

(seven over land, five over water), which draw on methods from the empirical to sensitivity analyses to formal error propagation,10

at 12 Aerosol Robotic Network (AERONET) sites. The AERONET sites are divided into those where it is expected that the

techniques will perform well, and those for which some complexity about the site may provide a more severe test. Overall

all techniques show some skill in that larger estimated uncertainties are generally associated with larger observed errors,

although they are sometimes poorly calibrated (i.e. too small/large in magnitude). No technique uniformly performs best. For

powerful formal uncertainty propagation approaches such as Optimal Estimation the results illustrate some of the difficulties in15

appropriate population of the covariance matrices required by the technique. When the data sets are confronted by a situation

strongly counter to the retrieval forward model (e.g. potential mixed land/water surfaces, or aerosol optical properties outside

of the family of assumptions), some algorithms fail to provide a retrieval, while others do but with a quantitatively unreliable

uncertainty estimate. The discussion suggests paths forward for refinement of these techniques.
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Copyright statement. TEXT

1 Introduction

The capability to quantify atmospheric aerosols from spaceborne measurements arguably goes back to 1972 with the launch

of the Multispectral Scanner System (MSS) aboard the first Landsat satellite (e.g. Griggs, 1975; Kaufman and Sendra, 1988),

primarily designed for land surface characterisation. Earlier satellite-based solar reflectance measurements were (with the5

exception of the three-colour camera on the Applications Technology Satellite 3, launched 1967) either panchromatic (and

used for cloud mapping) or broadband (for radiation). While it was realised from experience with similar sensors on Mars

(Hanel et al., 1972) that some aerosols could contribute to signals in the thermal infrared (tIR), they were largely treated

as a contaminant in temperature/water vapour retrievals and not routinely quantified (Weaver et al., 2003). Landsat-1 MSS

was followed in 1975 by a second Landsat launch and the Stratospheric Aerosol Measurement (SAM) instrument on the10

Apollo-Soyuz Test Project, a proof-of-concept for monitoring stratospheric aerosols (McCormick et al., 1979), and then by a

gradually-expanding variety of instruments from the late 1970s onwards.

At present there are several dozen sensors of various types suitable for quantification of aerosols in flight, and more that

have begun and ended operations in between. In addition to the variety of instruments, a variety of algorithms have been

developed to retrieve aerosol properties from these measurements (e.g. Kokhanovsky and de Leeuw, 2009; Lenoble et al.,15

2013; Dubovik et al., 2019, for some reviews of the principles behind various techniques). The majority of these sensors have

been used to retrieve total column aerosol optical depth (AOD) across some part(s) of the ultraviolet (UV), visible, near- and

shortwave- infrared, and tIR spectral regions, where aerosol particles are optically active; most commonly reported is the mid-

visible AOD at a wavelength in the range 500-565 nm. Some sensors are able to retrieve profiles of aerosol extinction, which

may be integrated vertically to give partial or total column AOD (dependent on whether or not profiling is possible down20

to the surface). This proliferation, combined with geophysical and mathematic terminology, makes aerosol remote sensing

an incredibly acronym-heavy field; indeed, instruments and algorithms are often referred to by their acronyms rather than

full names. Table 1 lists those sensors which have to date been used to process AOD data products, and Table 2 lists those

which are able to provide extinction profiles; in many cases, two or more of each type of design, either identical or with small

modifications, have been flown. Where multiples of a given sensor have flown the date ranges indicate period(s) of continuous25

coverage as opposed to launch/decommission dates for individual instruments.

Retrieval algorithms are used to process the calibrated observations (referred to as level 1 or L1 data) to provide level

2 (L2) data products, consisting of geophysical quantities of interest. These L2 products are typically on the L1 satellite

observation grid (or a multiple of it) and often further aggregated to level 3 (L3) products on regular space-time grids. For

further background and discussion of satellite data processing levels, see Mittaz et al. (2019). Table 3 provides acronyms and30

full names for some of the L2 processing algorithms which have been applied to L1 measurements from these instruments.

Again, many of these algorithms have been applied (identically or with small modification) to multiple sensors. This table is

provided as a convenience to the reader to decode acronyms and decrease clutter in later tables and discussion; specific relevant
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Table 1. Satellite instruments which have been used for column AOD retrieval, arranged by sensor type.

Acronym Instrument full name Orbit(s) Operation period(s)

Multispectral imager

ABI Advanced Baseline Imager Geostationary 2016+

AHI Advanced Himawari Imager Geostationary 2014+

AVHRR Advanced Very High Resolution Radiometer Sun-synchronous 1978+

CAI Cloud-Aerosol Imager Sun-synchronous 2009+

EPIC Earth Polychromatic Imaging Camera Lagrange point 2015+

(E)TM (Enhanced) Thematic Mapper Sun-synchronous 1982+

GOES Imager Geostationary Operational Environmental Satellite Imager Geostationary 1978-2018

GOCI Geostationary Ocean Color Imager Geostationary 2010+

GLI GLobal Imager Sun-synchronous 2002-2003

MERIS MEdium Resolution Imaging Spectrometer Sun-synchronous 2002-2012

MODIS MODerate resolution Imaging Spectrometer Sun-synchronous 2000+

MSS Multispectral Scanner System Sun-synchronous 1972-2013

OLCI Ocean and Land Color Instrument Sun-synchronous 2016+

OLI Operational Land Imager Sun-synchronous 2013+

SeaWiFS Sea-viewing Wide Field-of-view Sensor Sun-synchronous 1997-2010

SEVIRI Spinning Enhanced Visible and InfraRed Imager Geostationary 2004+

VIIRS Visible Infrared Imaging Radiometer Suite Sun-synchronous 2012+

VIRS Visible and Infrared Scanner Precessing 1997-2015

Multispectral, multiangle imager/polarimeter

(A)ATSR (Advanced) Along-Track Scanning Radiometer Sun-synchronous 1991-2012

CHRIS Compact High Resolution Imaging Spectrometer Sun-synchronous 2001+

MISR Multiangle Imaging SpectroRadiometer Sun-synchronous 2000+

POLDER POLarization and Directionality of the Earth’s Reflectances Sun-synchronous 1996-1997; 2002; 2004-2013

SGLI Second-generation GLobal Imager Sun-synchronous 2017+

SLSTR Sea and Land Surface Temperature Radiometer Sun-synchronous 2016+

Nadir-looking spectrometer

AIRS Atmospheric Infra-Red Sounder Sun-synchronous 2002+

GOME Global Ozone Monitoring Instrument Sun-synchronous 1995-2011

IASI Infrared Atmospheric Sounding Interferometer Sun-synchronous 2006+

OMI Ozone Monitoring Instrument Sun-synchronous 2004+

OMPS NM Ozone Mapping Profiler Suite Nadir Mapper Sun-synchronous 2012+

SCIAMACHY SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY Sun-synchronous 2002-2012

TOMS Total Ozone Mapping Spectrometer Sun-synchronous 1978-1994; 1996-2005

TROPOMI TROPOspheric Monitoring Instrument Sun-synchronous 2017+
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Table 2. As Table 1, except for satellite instruments which have been used for aerosol extinction profiling.

Acronym Instrument full name Orbit(s) Operation period(s)

Lidar

ALADIN Atmospheric LAser Doppler INstrument Sun-synchronous 2018+

CALIOP Cloud-Aerosol LIdar with Orthogonal Polarization Sun-synchronous 2006+

CATS Cloud-Aerosol Transport System Precessing 2015-2017

GLAS Geoscience Laser Altimeter System Polar (varied) 2003-2010

LITE Lidar In-space Technology Experiment Space shuttle 1994

Limb/occultation profiler

GOMOS Global Ozone Monitoring by Occultation of Stars Sun-synchronous 2002-2012

MIPAS Michelson Interferometer for Passive Atmospheric Sounding Sun-synchronous 2002-2012

OMPS LP Ozone Mapping Profiler Suite Limb Profiler Sun-synchronous 2012+

OSIRIS Optical Spectrograph and InfraRed Imaging System Sun-synchronous 2001+

SAGE Stratospheric Aerosol and Gas Experiment Precessing 1979-1982; 1984+

SAM Stratospheric Aerosol Measurement Precessing 1975; 1979-1993

details and references are provided later. Acronyms often summarise either the principle of the technique or the institution(s)

which developed the algorithm. Some algorithms are not listed in this table as they do not have acronyms and are typically

referred to by data producers/users by the sensor or mission name. Further, this is not an exhaustive list as numerous other

approaches have been proposed in the literature; the criteria for inclusion and broader discussion in this study are that data

have been (1) processed and (2) also made generally available for scientific use. Likewise, algorithms which provide aerosol5

properties as a by-product but not a focus (e.g. land/ocean surface atmospheric correction approaches) are not discussed as

often the aerosol components are less detailed and/or used as a sink for other error sources in the algorithm (e.g. Kahn et al.,

2016).

L2 retrieval algorithm development is typically guided by information content studies, sensitivity analyses, and retrieval

simulations to gauge which quantities a given sensor and algorithmic approach can retrieve, and with what uncertainty (e.g.10

Tanré et al., 1996, 1997; Hasekamp and Landgraf, 2007; Veihelmann et al., 2007; Young and Vaughan, 2009). As aerosol remote

sensing is an underdetermined problem and there is considerable heterogeneity in the underlying (surface and atmospheric)

conditions giving rise to the L1 signals, sensitivities and uncertainties are typically highly context-dependent. For example,

retrieval of AOD from optical sensors over a dark ocean surface is typically much easier than over a bright snow-covered

surface. After an algorithm has been developed, these analyses are typically complemented by validation against reference data15

sets, most commonly AOD from Sun photometers such as part of the Aerosol Robotic Network (AERONET, Holben et al.,

1998) over land and from hand-held instruments deployed on ocean cruises in the Maritime Aerosol Network (MAN, Smirnov

et al., 2009, 2011). The resulting uncertainty estimates provided by these studies and validation analyses are diagnostic, i.e. for
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Table 3. Acronyms for some aerosol retrieval algorithms/data record/institution names applied to one or more satellite instruments from

Tables 1 and 2.

Acronym Algorithm full name

AAC Aerosols Above Clouds

ADV (A)ATSR Dual View

AerGOM Aerosol profile retrieval prototype for GOMOS

ASV (A)ATSR Single View

BAR Bayesian Aerosol Retrieval

CISAR Combined Inversion of Surface and AeRosol

DB Deep Blue

DT Dark Target

EDR Environmental Data Record

ESA European Space Agency

GACP Global Aerosol Climatology Project

GRASP Generalized Retrieval of Aerosol and Surface Properties

IMARS Infrared Mineral Aerosol Retrieval Scheme

JAXA Japan Aerospace eXploration Agency

LDA Land Daily Aerosol

LMD Laboratoire de Météorologie Dynamique

MAIAC Multi-Angle Implementation of Atmospheric Correction

MAPIR Mineral Aerosol Profiling from Infrared Radiances

MODACA MODIS Above-Cloud Aerosol

NOAA National Oceanic and Atmospheric Administration

OMACA OMI Above-Cloud Aerosols

OMAERO OMI Multi-wavelength AEROsol product

OMAERUV OMI AERosol UV product

ORAC Optimal Retrieval of Aerosols and Clouds

PMAp Polar Multi-sensor Aerosol product

SOAR Satellite Ocean Aerosol Retrieval

SU Swansea University

SYNAER SYNergetic AErosol Retrieval

ULB Université Libre de Bruxelles

xBAER eXtensible Bremen AErosol Retrieval
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a known true state they diagnose the retrieval error (difference between retrieved and true states). This is useful to identify the

general tendencies for bias or loss of sensitivity under different conditions, and assess potential ways to improve on them.

Increases in the quality of instrumentation, retrieval algorithms, models, and computational power have prompted increasing

desire for the provision of pixel-level uncertainty estimates in L2 aerosol data products. This has been driven in part by data

assimilation (DA) applications, which need a robust error model on data for ingestion into numerical models (Benedetti et al.,5

2018), often in near-real time. Diagnostic uncertainty estimates are less useful here since the true state is not known (only

the retrieved state), and so a prognostic (predictive) uncertainty model is needed instead. Early aerosol DA applications either

treated diagnostic uncertainty estimates as prognostic ones (e.g. Collins et al., 2001; Matsui et al., 2004) or constructed their

own prognostic error models as part of validation and bias-correction efforts (e.g. Zhang and Reid, 2006; Benedetti et al., 2009;

Hyer et al., 2011; Shi et al., 2013). These uncertainty estimates are also valuable outside of DA to identify when a retrieval is10

likely to be useful for a given purpose. As an example, air quality modeling also typically uses L2 retrievals and can benefit

from these uncertainties. Climate applications often use L3 aerosol data for which uncertainty estimates are yet to be robustly

developed; this is an important emerging area of research regarding both methods of aggregation/reporting (e.g. Levy et al.,

2009; Kinne et al., 2017; Povey and Grainger, 2019; Sayer and Knobelspiesse, 2019) and influence of sampling (e.g. Sayer

et al., 2010b; Colarco et al., 2014; Geogdzhayev et al., 2014; Schutgens et al., 2016, 2017), and L2 uncertainty estimates will15

be an important input to this.

Driven by these needs, many AOD data sets now provide prognostic uncertainty estimates; in some cases these additions have

been developed to satisfy these user needs, while in others they have always been available as they are inherent to the retrieval

technique. Unlike AOD validation, however, which has had a fairly standard methodology (Ichoku et al., 2002), there is not

yet a robust and well-used framework for evaluating these uncertainty estimates (sometimes called ‘validating the validation’).20

This study arose from discussions as part of the international AeroSat group of aerosol remote sensing researchers, as a step

toward remedying that gap. AeroSat is a grass-roots community who meet once a year, together with researchers involved in

aerosol modeling (the AeroCom group) and measurement, to discuss and move toward solving common issues in the field of

aerosol remote sensing. The purpose of this study is threefold:

1. To briefly review the ways in which uncertainty information has been conveyed in satellite aerosol data products (Section25

2).

2. To provide a framework for the evaluation of pixel-level AOD uncertainty estimates in satellite remote sensing, which

can be adopted as a complement to AOD validation exercises going forward, and use this framework to assess AOD

uncertainty estimates in several AOD retrieval products (Section 3).

3. To discuss the strengths and limitations of each these approaches, and suggest paths forward for improving the quality30

and use of L2 (pixel-level) uncertainty estimates in satellite aerosol remote sensing (Sections 3, 4).
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2 Uncertainty estimates in current satellite aerosol data sets

2.1 Terminology

The International Standards Organization document often known as the GUM (Guide to Uncertainty in Measurement) provides

standardised terminology for discussing uncertainties (Working Group 1, 2008). In the interests of standardisation and in line

with other treatments of uncertainty and error in remote sensing (e.g. Rodgers, 2000; Povey and Grainger, 2015; Loew et al., 2017; Merchant et al., 2017; Mittaz et al., 2019)5

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Rodgers, 2000; Povey and Grainger, 2015; Loew et al., 2017; Merchant et al., 2017; Mittaz et al., 2019; von Clarmann et al., 2019)

, the GUM terminology is also adopted here. Terms are often used inconsistently in writing or informal conversation (in par-

ticular ‘error’ and ‘uncertainty’), so to assist the reader, definitions of relevant terms are as follows (and see previously-cited

references):

– A measurand is a quantity to be determined (measured), in the case of this study the AOD.10

– A measurement is the application of a technique to quantify the measurand, in this case the application of L2 retrieval

algorithms to L1 satellite observations.

– The measured value is the output of the measurement technique, i.e. here the result of the L2 retrieval algorithm, often

referred to as the ‘retrieved AOD’.

– The uncertainty is in the general sense an expression of the dispersion of the measurand. For most of the data sets15

discussed in this study it is presented as a one standard deviation (1σ) confidence interval around the retrieved value

(which is defined as the standard uncertainty by the GUM). The true value of the measurand (AOD) is expected to lie

within this confidence interval∼ 68.4 % of the time (corresponding to one standard deviation, colloquially 1σ), following

Gaussian statistics.

– The error is the difference between the measured and true values of the measurand, i.e. here the difference between true20

and retrieved AOD. Following the GUM convention, a positive error means that the measured value minus the true value

is positive (and vice versa).

The error can only be known when the true value of the measurand is also known, which is rare. This is the province of

validation exercises: Loew et al. (2017) note that in the remote sensing community (and adopted here), validation refers to a

quality assessment of a data set, which is a different definition from that of the metrology community. While Loew et al. (2017)25

omit mention of aerosols, the points discussed there are applicable to aerosol remote sensing as well. They also note that some

authors (e.g. Rodgers, 2000) have adopted a stricter definition of validation to explicitly also include the question of whether

theoretical characterisation and obtained properties of the data are consistent; the aforementioned ‘validating the validation’

framework developed in the present study is one component of this.

For validation exercises AERONET AOD data are often taken as a reference truth because the uncertainty on AERONET30

AOD data (around 0.01 in the mid-visible; Eck et al., 1999) is generally much smaller than that of satellite retrievals. This

7



enables diagnosis of retrieval errors at the times and locations of matchups with AERONET (or similar reference data), which

are often generalised to infer the likely error characteristics of retrievals under various aerosol/surface and geometric conditions.

The implicit assumption is that such a generalisation is possible, but it is important to bear in mind that validation data are

spatiotemporally sparse and may underrepresent or omit certain factors relative to the real world (Virtanen et al., 2018).

In contrast to error, the uncertainty can be estimated for each individual measured value (retrieval). The term ‘expected error’5

(EE) is often used in the aerosol remote sensing literature (e.g. Remer et al., 2005; Kahn et al., 2010; Sayer et al., 2013) to

define these prognostic and diagnostic estimates of the magnitude of the uncertainty, highlighting (viz. ‘expected’) the fact that

it is a statistical quantity; in hindsight the term ‘estimated uncertainty’ might have been less confusing. The uncertainty is a

statement about the level of confidence (expected magnitude of the error), while the actual error is a realisation drawn from the

uncertainty distribution. By analogy, rolling a single unbiased die has a mean value (expectation) of 3.5 although this result is10

impossible to achieve on a single roll (which can take only integer values from 1-6). The various techniques which have been

applied to provide prognostic estimates for AOD are discussed in Section 2.2, while Section 2.3 discusses those data sets for

which only diagnostic uncertainty estimates are available. A difficulty, which this study aims to tackle, is how to tell whether

these uncertainty estimates are quantitatively useful and reliable.

::::::::::::::::::::::
von Clarmann et al. (2019)

::::::
propose

::::
six

:::::::::
‘conditions

:::
of

:::::::::
adequacy’

:::
for

:::::::::::::::
temperature/trace

:::
gas

::::::
profile

::::::::::
uncertainty

:::::::::
estimates.15

:::::::
Namely,

:::
that

::::
they

:::
are

:::
(1)

::::::::::::::
intercomparable

:::::::
between

::::::::::::::
instruments/error

:::::::::
estimation

::::::::
schemes;

:::
(2)

::::::::::
independent

::
of

:::::::
vertical

:::::::
retrieval

:::
grid

::::::
(often

::::
less

:::::::
relevant

:::
for

::::::::
aerosols);

::::
(3)

:::::
usable

:::
to

:::
the

::::::
reader

:::
not

:::::::
familiar

:::::
with

::::::::::::::::
instrument/retrieval

::::::::
technical

:::::::
details;

:::
(4)

::::::::::
documented

:::
and

:::::::::
traceable;

:::
(5)

::::::::::
validatable

::::
(part

::
of
::::

the
:::::
focus

::
of

::::
this

::::::
study);

::::
and

:::
(6)

:::
can

:::
be

:::::::::::
summarised

::::::
without

:::::::::
excessive

::::::::
additional

::::
data

::::::
volume

:::::::::
overhead.

:::::
These

:::
are

:::::::
desirable

:::::
from

:::
the

::::
point

:::
of

::::
view

::
of

:::::::
aerosols

::
as

:::::
well.

2.2 Techniques for prognostic uncertainty estimates20

Examples of existing prognostic uncertainty estimates for AOD or aerosol extinction data sets are given in Table 4. These fall

into two broad camps: formal error propagation techniques accounting for individual terms thought to be relevant to the overall

error budget, and more empirical methods. The term ‘error budget’ (not defined in the GUM, but in common colloquial use)

here refers to, dependent on context, the overall collection of contributions to input or output uncertainty. Strictly, one might

refer instead to ‘uncertainty budget’ and ‘uncertainty propagation’, but for reader ease, the commonly-used terms are adopted25

here.

2.2.1 Formal error propagation

The formal methods which have been applied to date are in general Bayesian approaches which can be expressed in the

formalism of Rodgers (2000), and are often referred to as Optimal Estimation (OE). OE approaches provide the maxi-

mum a posteriori (MAP) solution to the retrieval problem: maximisation of the conditional probability P (x|y,xa) of the30

retrieved state vector x, where y, xa, represent the satellite measurements and any a priori information on x, respectively.

The MAP solution is achieved by minimisation of a cost function J , and the formalism allows the calculation of vari-

ous contributions to the total uncertainty Ŝ on the retrieved state. OE accounts for uncertainty on the satellite measure-

8
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ments, retrieval forward model (e.g. atmospheric/surface structure assumptions, ancillary data), a priori information, and

smoothness constraints (on e.g. spatial, temporal, or spectral variation of parameters). While notation differs between authors

(cf. Thomas et al., 2009; Dubovik et al., 2011; Govaerts and Luffarelli, 2018), following Rodgers (2000)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(cf. Rodgers, 2000; Dubovik et al., 2011; Govaerts and Luffarelli, 2018)

:
, a general form of the cost function J can be written

J(x) =(F(x)− y)
T S−1

y (F(x)− y)

+(xa− x)
T S−1

a (xa− x)

+xTHT
s S−1

s Hsx

+ . . .

(1)5

where Sy,Sa are covariance matrices describing the measurement/forward model and a priori uncertainty respectively, and

F(x) the forward-modelled measurements. The third term represents a generic smoothness constraint on the state vector (which

might be spatial, temporal, spectral, or otherwise) where Hs is a block diagonal matrix and Ss its associated uncertainty; the

ellipsis in Equation 1 indicate the potential for expansion of J to include additional smoothness terms. These
::::::::::
smoothness

:::::::::
constraints

::::
were

:::
first

:::::::::
introduced

::
in

:::
the

::::::
context

::
of
:::::::
aerosol

::::::
remote

::::::
sensing

::
by

:::::::::::::::::::::
Dubovik and King (2000)

:
,
:::
for

:::::::::
AERONET

::::::::
sky-scan10

:::::::::
inversions.

::
In

:::::
recent

:::::
years

::::
they

::::
have

:::::::
become

::::
more

::::::::::
widespread

::
in

::::::
satellite

:::::::
aerosol

::::::
remote

::::::
sensing

::
as

:::::
more

::::::
capable

:::::::
sensors

::::
(e.g.

::::::::
POLDER)

::::::
and/or

:::::::::
algorithms

::::
with

::::::::
increased

::::::::::::::
(spatiotemporal,

:::::::
spectral,

::
or

::::::::::
directional)

:::::::::::::
dimensionality

::
of

::::::::
measured

::
or

::::::::
retrieved

::::::::
quantities

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Dubovik et al., 2011; Govaerts and Luffarelli, 2018; Shi et al., 2019)

:::
have

:::::
been

:::::::::
developed.

:::::::::
Candidate

::::::::::
algorithms

::
for

:::::::
aerosol

:::::::
retrieval

:::::
from

:::::::::::::
information-rich

::::::
future

::::::
sensors

::::
also

:::::
tend

::
to

:::
use

::::::::::
smoothness

:::::::::
constraints

::::::::::::::::::
(e.g. Xu et al., 2019).

::::
All

::::
these

:
covariance matrices are assumed to be Gaussian, which may not always be true in practice.15

Note that here Sy represents the total of measurement uncertainty, forward model uncertainty (due to approximations made

in the radiative transfer), and the contribution of uncertainties in forward model parameters to the simulated signal at the top of

atmosphere (TOA). These model parameters are factors which affect the TOA signal but typically insignificantly enough to be

retrieved. For example, many AOD retrieval algorithms ingest meteorological reanalysis to correct for the impact of absorbing

trace gases (such as H2O) on the satellite signal at TOA (Patadia et al., 2018), and to provide wind speed to calculate glint20

and whitecap contributions to sea surface reflectances (Sayer et al., 2010a). Sometimes these are represented in J instead by a

‘model parameter error’ matrix denoted Sb and similar squared deviations, although mathematically since the terms in Equation

1 are additive the two formalisms are equivalent if the model parameter uncertainty is transformed into measurement space and

included in Sy (as is typically the case).

As Sy,Sa, etc. are square matrices, correlations between wavelengths or parameters can (and, where practical, should) be25

accounted for. These terms often affect several satellite bands, such that an error in e.g. reanalysis data ingested as part of

an AOD retrieval would manifest in a correlated way between these bands. However, due to the difficulty in estimating these

off-diagonal elements, in practice they are frequently neglected and the covariance matrices are often assumed to be diagonal

(which does not, however, mean that Ŝ is diagonal). Dependent on the magnitude and sign of these correlations, their neglect

can lead to over- or underestimates in the level of confidence in the solution. When the cost function has been minimised, the30

10



uncertainty Ŝ on the retrieved state is given by:

Ŝ =
(

KTS−1
y K + S−1

a + HT
s S−1

s Hs

)−1

(2)

Here K, known as the weighting function or Jacobian matrix, is the sensitivity of the forward model to the state vector

∂F(x)/∂x, typically calculated numerically. The 1σ uncertainty on the retrieved AOD is then the square root of the relevant

element on the diagonal of Ŝ (dependent on the contents of the state vector). Many current approaches in Table 4 omit a5

priori and/or smoothness constraints, in which case the corresponding terms in Equations 1 and 2 vanish. Only BAR and

CISAR include both a priori and smoothness constraints. AerGOM, GRASP, and the MIPAS stratospheric aerosol data set

use smoothness constraints without a priori on the aerosol state. Others (LDA, JAXA AHI, MAPIR, ORAC) use a priori but

no smoothness constraints. Smoothness constraints are attractive for algorithms such as the GRASP application to POLDER,

which includes retrieval of binned aerosol size distribution and spectral refractive index (which are expected to be smooth for10

physical reasons), as well as those (e.g. BAR, CISAR, GRASP) moving beyond the independent pixel approximation to take

advantage of the fact that certain atmospheric/surface parameters can be expected to be spatially and/or temporally smooth on

relevant scales.

These smoothness and a priori constraints provide a regularisation mechanism to suppress ‘noise-like’ variations in the

retrieved parameters when they are not well-constrained by the measurements alone, although there is a danger in that overly-15

strong constraints can suppress real variability. As a result, a priori constraints on AOD itself are often intentionally weak

compared to those on other retrieved parameters. Strictly, the MAP is a maximum likelihood estimate (MLE) only if the

retrieval does not use a priori information, although it is often referred to as a MLE regardless (see Section 4.1 of Rodgers,

2000, for more discussion on this distinction). This distinction is made in the descriptions in Table 4.

The rest of the error propagation methods in Table 4, whether formulated as OE or not, are essentially propagating only mea-20

surement (and sometimes forward model) uncertainty through to the retrieval solution through Jacobians. MAIAC is a special

case here because, rather than use the measurement uncertainty directly, it propagates the uncertainty of surface reflectance

in the 470 nm band, which is thought to be the leading contribution to the total error budget (Lyapustin et al., 2018). It is

important to note that the cost function and uncertainty estimate calculations in Equation 2 are conditional on several factors:

1. The forward model must be appropriate to the problem at hand and capable of providing unbiased estimates of the obser-25

vations. Typically if the forward model is fundamentally incorrect
:
,
:::::
and/or

::::
any

:
a
:::::
priori

:::::::::
constraints

:::::::
strongly

::::::::::::
inappropriate,

the retrieval will frequently not converge to a solution, or have unexpectedly large J . For this reason, high cost values are

often used in post-processing to remove problematic pixels (e.g. undetected cloud or snow) or candidate aerosol optical

models from the provided data sets (Martonchik et al., 1998; Thomas et al., 2010).

2. The covariance matrices Sy,Sa,Ss (on measurements, a priori, and smoothness) must be appropriate; if systematically30

too large or small, uncertainty estimates will likewise be too large or small. These can be tested, to an extent, by ex-

amining distributions of residuals (on measurements and a priori) and the cost function and comparing to theoretical

expectations (e.g. Sayer et al., 2010a, 2012c).
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3. The forward model must be approximately linear with Gaussian errors near the solution. This assumption sometimes

breaks down if the measurements are uninformative on a parameter and a priori constraints are weak or absent, and

the resulting state uncertainty estimates will be invalid. This can be tested (Thomas et al., 2009; Sayer et al., 2016) by

performing retrievals using simulated data, perturbing their inputs according to their assumed uncertainties, and assessing

whether the dispersion in the results is consistent with the retrieval uncertainty estimates.5

4. The retrieval must have converged to the neighbourhood of the correct solution (i.e. near the global, not a local, minimum

of the cost function), which can be a problem if there are degenerate solutions. In practice algorithms try to use reasonable

a priori constraints, first guesses, and make a careful selection of which quantities to retrieve vs. which to assume (e.g.

Thomas et al., 2009; Dubovik et al., 2011). Note that the iterative method of convergence to the solution is not important

in itself.10

:::::::
Detailed

::::::
further

:::::::::
discussion

:::
on

::::
these

:::::::::
conditions

:::::
from

:::
the

::::::::::
perspective

::
of

::::::::::
temperature

::::
and

::::
trace

::::
gas

::::::::
retrievals,

::::::
which

:::::
share

::::
some

::::::
similar

:::::::::
conceptual

:::::::::
challenges

::
to
:::::::
aerosol

::::::
remote

:::::::
sensing,

::
is

:::::::
provided

:::
by

::::::::::::::::::::::
von Clarmann et al. (2019).

:

2.2.2 Other approaches

A particular challenge for the formal error propagation techniques is the first point above: how to quantify the individual

contributions to the error budget necessary to calculate the above covariance matrices? This difficulty has motivated some of15

the empirical approaches in Table 4.

Sayer et al. (2013) used the results of validation analyses against AERONET to construct an empirical relationship (discussed

in more detail later) expressing the uncertainty in MODIS DB AOD retrievals as a function of various factors. This basic

approach was later adopted for other data sets, including GOCI and NOAA VIIRS EDR aerosol retrievals (Huang et al., 2016;

Choi et al., 2018). This has some similarity to diagnostic EE envelopes, although importantly these prognostic estimates are20

framed in terms of retrieved rather than reference AOD. An advantage of this method is that, if AERONET can be taken as a

truth and collocation-related uncertainty is small (Virtanen et al., 2018), it empirically accounts for the important contributions

to the overall error budget without having to know their individual magnitudes. However, there are some disadvantages: if

validation data are sparse or do not cover a representative range of conditions, there is a danger of overfitting the expression,

and for an ongoing data set there is no guarantee that past performance is indicative of future results as sensors age and25

the world changes. For a quantity without available representative validation data, the method cannot be performed. Further,

programatically, it requires processing data twice: once to perform the retrievals and do the validation analysis to derive the

expression, and a second time to add the resulting uncertainty estimates into the data files. The LMD IASI retrieval has a

similar parametric approach (Capelle et al., 2014), although as validation data are sparse, the parametrisation draws on the

results from retrieval simulations as well.30

The MISR algorithms use different approaches. Both the land and water AOD retrieval algorithms perform retrieval using

each of 74 distinct aerosol optical models (known as ‘mixtures’) and calculate a cost function for each. In earlier algorithm

versions (Martonchik et al., 1998) uncertainty was taken as the standard deviation of AOD retrieval from mixtures which

12



fit with a cost below some threshold. This is equivalent to assuming that aerosol optical models are the dominant source of

uncertainty in the retrieval, and that the 74 mixtures provide a representative sampling of microphysical/optical properties.

This approach was refined (for retrievals over water pixels) by Witek et al. (2018b), by considering the variation of retrieval

cost with AOD for each model, and transforming this to give a probability distribution of AOD, with the uncertainty taken

as the width of this distribution. A similar approach has been proposed for the OMAERO retrieval by Kauppi et al. (2017),5

although has not yet been implemented on a large scale. It has conceptual similarities with the propagation of measurement

error in Equation 2, except calculating across the whole range of AOD state space rather than an envelope around the solution,

and summing the results from multiple distinct retrievals (corresponding to the aerosol mixtures). These methods are, however,

reliant on the set of available optical models being sufficient.

2.3 Examples of diagnostic uncertainty estimates10

Available AOD data sets which do not currently provide prognostic uncertainty estimates are listed in Table 5. In these cases,

algorithm papers typically summarise the results of sensitivity analyses to provide rationale for choices made in algorithm

development and to provide a summary of expected performance. Sensitivity analyses often include similar aspects to those

employed in error propagation approaches: namely, characterisation of the expected effects of uncertainties in sensor calibration

and forward model limitations (e.g. assumed aerosol optical models, surface reflectance) on the retrieval solution, singly or15

jointly. In most cases these are provided for a subset of geometries and atmosphere/surface conditions. Compared to formal

error propagation, this has the advantage of being easier to communicate to a reader concerned about a particular assumption

(provided the results of the sensitivity analysis are representative), but on the other hand the summary results are specific to

only the simulations performed, and real-world uncertainties may be more complicated, particularly when multiple retrieval

assumptions are confounded.20

Sensitivity analyses are often complemented by dedicated validation papers which summarise the results of comparisons

against AERONET, MAN, or other networks (e.g. Remer et al., 2005; Kahn et al., 2010); aerosol remote sensing is fortunate

compared to some other disciplines in that high-quality AOD validation data are fairly readily-available. It is common for the

results to be summarised in terms of EE envelopes or similar metrics; these envelopes are sometimes adjusted if pre-launch ex-

pectations prove too optimistic or pessimistic (e.g. Levy et al., 2013). Diagnostic and prognostic uncertainty estimates should25

not be regarded as exclusionary; diagnostic analysis is useful to guide algorithm refinement and assess assumptions, and many

data products which provide prognostic uncertainties also show the results of diagnostic validation activities. However, extend-

ing the data sets in Table 5 to also provide prognostic estimates would improve their specificity, and utility for applications like

DA.

2.4
:::::::::
Systematic

:::
and

::::::::
random

::::::::::::
contributions

::
to

::::::::::
uncertainty30

::::
Both

:::
the

:::::::::
diagnostic

::::
and

:::::::::
prognostic

:::::::::
techniques

::::::::
typically

:::::::::
(implicitly

::
or

:::::::::
explicitly)

:::::
make

::::
the

:::::::::
assumption

::::
that

:::
the

::::::
sensor

::::
and

:::::::
retrieval

::::::::
algorithm

::::
itself

:::
are

:::::::::
unbiased,

:::
and

:::
that

:::
the

::::::::
resulting

::::::::::
uncertainty

::::::::
estimates

:::
are

:::::::
unbiased

::::
and

:::::::::
symmetric.

::::::::
However,

::
it

::
is

:::
well

::::::
known

::::
that

:::::
many

::
of

:::
the

:::
key

::::::
factors

::::::::
governing

::::::::
retrieval

:::::
errors

:::
are

:::::::
globally

::::::::::::::::::::::::::::::::::::::
(e.g. sensor calibration, Lyapustin et al., 2014)
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::
or

:::::::::::::::::
seasonally/regionally

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. aerosol optical model, surface reflection, cloud contamination Eck et al., 2013; Zhao et al., 2013; Gupta et al., 2016)

:::::::::
systematic,

:::
and

::::
that

:::
true

:::::::
random

::::
error

::::
(i.e.

:::::::::
propagated

:::::
noise)

::
is

::::
often

::::::
small.

:::::
While

:::::
these

::::::::
systematic

::::::
factors

::::
may

:::::::
partially

::::::
cancel

::::
each

::::
other

:::
out

::::
over

:::::
large

:::::::::
ensembles

::
of

::::
data

::::::
(drawn

::::
from

::::
e.g.

:::::::
different

:::::::
regions,

:::::::
seasons,

::
or

::::::::::
geometries),

::::
this

::
is

:::
not

:
a
:::::
given.

:

:::::::::
Uncertainty

:::::::::::
propagation

:::::::::
approaches

:::::
such

::
as

:::
OE

::::
can

::
in

::::::::
principle

::::::
account

:::
for

:::::::::
systematic

::::::::::
uncertainty

:::::::
sources,

::
as
:::::

they
::::
(and

:::
any

:::::::
spectral

::
or

:::::::::
parameter

:::::::::::
correlations)

:::
can

:::
be

:::::::
included

:::
in

:::
the

:::::::
required

:::::::::
covariance

::::::::
matrices.

:::::
This

:::
can

:::::::
produce

::::::::
estimates

:::
of5

::::
total

:::::::::
uncertainty

:::::
which

:::
are

:::::::::
reasonable

:::
for

::
an

:::::::::
individual

:::::::
retrieval,

:::
but

:::
the

::::
true

::::::::::
(large-scale)

:::::
error

::::::::::
distributions

:::::
would

::::
then

:::
not

:::
be

:::::::::
symmetric,

::::::::
lessening

::::
their

:::::
value.

::::::::
Likewise,

::::::::::::
systematically

::::::
biased

:::::
priors

:::
can

::::
lead

::
to

::::::::::::
systematically

:::::
biased

::::::::
retrievals.

:::
As

:
a
::::::
result,

:
it
::::::
would

::
be

::::::::
desirable

::
to

::::::
remove

:::::::::
systematic

::::::::::::
contributions

::
to

:::
the

:::::::
retrieval

::::::
system

:::::::::
uncertainty

:::
as

::
far

:::
as

:::::::
possible.

::
In

:::::::
practice

::::
this

:
is
:::::
often

::::
done

:::::::
through

:::::::::
validation

::::::::
exercises,

::::::
where

::::::::
diagnostic

:::::::::::
comparisons

:::
can

:::::::
provide

:::::
clues

::
as

::
to

:::
the

::::::
source

::
of

::::::
biases,

::::::
which

::
are

::::
then

::::::::::
(hopefully)

:::::::
lessened

::
in
:::
the

::::
next

:::::::
version

::
of

:::
the

:::::::::
algorithm.

:::::::::::
Distributions

::
of

::::::::
residuals

::
of

::::::::
predicted

::::::::::::
measurements

::
at

:::
the10

:::::::
retrieval

:::::::
solution

:::
can

::::
also

::
be

::::::::
indicative

::
of

:::::::::
calibration

::::
and

:::::::
forward

:::::
model

::::::
biases

:
at
:::
the

::::::::::
wavelength

::
in

::::::::
question.

:
A
::::::::

possible
:::::::
solution

::
to
::::

this
::
is
::
to
::::::::

perform
:
a
:::::::::

vicarious
:::::::::
calibration,

::::::::::
calculating

::
a

::::::::
correction

::::::
factor

::
to

:::
the

::::::
sensor

:::::
gain

::
as

::
a

:::::::
function

::
of

::::
time

::::
and

:::::
band

:::
by

::::::::
matching

::::::::
observed

::::
and

:::::::
modeled

::::::::::
reflectances

:::
at

::::
sites

::::::
where

:::::::::::::::::
atmospheric/surface

:::::::::
conditions

::
are

:::::::
thought

:::
to

::
be

::::::::::
well-known

:::::
(e.g.

::::
thick

:::::
anvil

::::::
clouds,

::::
Sun

:::::
glint,

::::
and

::::::::::
AERONET

:::::
sites).

::::
The

::::::
derived

:::::::::
correction

::::::
factor

::::
then

:::::::
accounts

:::
for

:::
the

:::::::::
systematic

::::::::::
uncertainty

:::
on

:::::::::
calibration

::::
and

:::
the

:::::::
radiative

:::::::
transfer

:::::::
forward

::::::
model,

::::::::
although

::
if

::::
this

::::
latter

:::::
term15

:
is
:::::::::::::
non-negligible

::::
then

:::
the

::::::::::::::::::
vicariously-calibrated

:::::
gains

:::
will

::::
still

:::
be

::::::::::::
systematically

:::::
biased

::::::
(albeit

::::
less

::
so

:::
for

:::
the

::::::::::
application

::
at

:::::
hand).

::::
This

::::
has

:::
the

:::::::::
advantage

::
of

:::::::::::
transforming

:::
the

::::::::::
calibration

:::::::::
uncertainty

:::::
from

::
a

:::::::::
systematic

::
to

:::::
more

:::::::
random

::::
error

:::::::
source,

:
at
::::

the
:::::::
expense

::
of

:::::::
creating

:::::::::::
dependence

::
on

::::
the

:::::::::
calibration

::::::
source

::::
and

:::::::
radiative

:::::::
transfer

::::::
model.

::::::
There

::
is

::::::::
therefore

::
a

::::::
danger

::
in

:::::::
creating

:
a
:::::::
circular

::::::::::
dependence

:::::::
between

:::
the

::::::::
vicarious

::::::::::
calibration

:::
and

:::::::::
validation

::::::
sources

:::
as

:
it
::::
can

:::::
hinder

::::::::::::
understanding

:::
of

::
the

:::::::
physics

::::::
behind

::::::::
observed

::::::
biases.

:::::::
Further,

:::
this

::::
has

:::
the

::::
side

:::::
effect

::
of

:::::::::
potentially

:::::::::
increasing

:::
the

:::::
level

::
of

:::::::::
systematic

:::::
error

::
in20

::::
other

:::::::::
quantities

::
or

::
in

:::::::::
conditions

:::::::::::
significantly

:::::::
different

:::::
from

::::
those

::::::
found

::
at

:::
the

::::::::
vicarious

:::::::::
calibration

::::::::
location,

::
if

:::
the

:::::::
forward

:::::
model

::::::::::
contribution

:::
to

:::::::::
systematic

::::::::::
uncertainty

::
is

:::::::::
significant

::::::::::::::::
(Kahn et al., 2016).

:::::::::
Vicarious

:::::::::
calibration

::
is

::::::::
common

::::::
within

:::
the

:::::
ocean

:::::
colour

::::::::::
community

::::::::::::::::
(Franz et al., 2007),

::
in

::::::
which

:::::::
retrieval

:::::::::
algorithms

:::
are

::
in

:::::
some

::::
cases

:::::
more

::::::::
empirical

:::
and

:::::::::
amenable

::
to

:::::
tuning

::::
than

::::::::::::::
physically-driven

:::::::
aerosol

:::::::
retrieval

:::::::::
algorithms.

::
It
:::
has

::::
also

::::
been

::::
used

:::
for

:::::::
on-orbit

:::::::::
calibration

::
of
::::::::::
instruments

:::::::
lacking

:::::::
on-board

::::::::::
capabilities

::
to

::::
track

::::::::
absolute

:::::::::
calibration

:::
and

::::::::::
degradation

:::::::::::::::::::::::
(e.g. Heidinger et al., 2010).

:
25

3 Statistical framework to evaluate pixel-level AOD uncertainty estimates

3.1 Background and methodology

The notation adopted herein is as follows. The AOD is denoted τ ; unless specified otherwise, references to AOD indicate that

at 550 nm. The reference (here AERONET) AOD is τA and satellite-retrieved AOD is τS. The 1σ estimated uncertainties on

these are denoted εA and εS respectively. If the reference AOD is assumed to be the truth, then the error ∆S on the satellite30

AOD is given by ∆S = τS− τA.

Figure 1 provides a simulation experiment to illustrate the relationship between AOD, uncertainty, and error distributions.

The left panel is a histogram of AOD generated (1,000,000 points) assuming a Lognormal distribution with geometric mean

15



(a) Simulated AOD histogram
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Figure 1. (a) Sample AOD histogram drawn from a lognormal AOD distribution with geometric mean 0.2 and geometric standard deviation

0.35. (b) Distribution of (black) estimated retrieval uncertainties and (red) actual absolute retrieval errors obtained if error characteristics

followed the MODIS DT land model, εS =±(0.05 + 0.15τ).

0.2 and geometric standard deviation 0.35, which is a typical shape for many locations in North America and Europe (O’Neill

et al., 2000). The right panel shows two distributions: in black is the distribution of the expected AOD uncertainty magnitude

(often, as discussed before, called ‘expected error’ or EE), assuming error characteristics of the MODIS DT land retrieval,

εS =±(0.05 + 0.15τ) (Levy et al., 2013). This is obtained simply by multiplying the histogram in Figure 1a by the magnitude

of uncertainty |εS|. The red line, in contrast, is the distribution of actual absolute retrieval errors (i.e. |τS− τA|) which would5

be expected to be seen in a validation exercise against AERONET if the expression for εS holds true. This red line is obtained

by taking draws from the AOD distribution and then, for each, generating a Normally-distributed random number with mean 0

and standard deviation εS to provide the retrieval error (note the absolute value of this retrieval error is shown in Figure 1b).

Uncertainty vs. error
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Figure 2. Scatter density joint histogram (on a logarithmic scale) of the simulated expected uncertainties and retrieval errors in Figure 1b.

The 1:1 line is shown in black. Bins containing no data are shown in white.
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An important nuance which bears repeating is that the distributions of estimated uncertainty and actual error in Figure 1

are quite different in shape. This is because the estimated uncertainty distribution is one of expectations of εS (given the AOD

distribution), while the distribution of errors is one of realisations of (draws from) εS. Recall again the distinction between

the expectation of rolling an unbiased die (i.e. a result of 3.5) and the actual realisation (result) of rolling a die (1, 2, 3, 4, 5,

or 6). The latter distribution is broader. This illustrates why comparing errors and uncertainties on a 1:1 basis, or comparing5

distribution magnitudes, is not expected to yield agreement, and an evaluation of consistency requires a statistical approach.

Figure 2 shows this more directly: there is little correspondence between the two on an individual basis.

When comparing satellite and reference data, the total expected discrepancy (ED) between the two for a single matchup,

denoted εT, should account for uncertainties on both the satellite and reference (here AERONET) data,

εT =
√
ε2S + ε2A, (3)10

adding in quadrature under the assumption that the uncertainties on satellite and AERONET AOD are independent of one

another. One can then define a normalised error ∆N as the ratio of the actual error to the ED, i.e.

∆N =
∆S

εT
=

τS− τA√
ε2S + ε2A

(4)
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Figure 3. (a) PDF and (b) CDF of normalised error distributions drawn from the numerical simulations in Figure 1; theoretical (grey shading)

and simulation (red) results lie on top of one another. Note the CDF is of absolute normalised error. Dashed lines indicate various well-known

percentage points of Gaussian distributions.

In the ideal case εA� εS, in which case the shape of ∆N is dominated by the uncertainty and errors on the satellite-retrieved

AOD. If the uncertainties on satellite and reference AOD have been calculated appropriately, and the sample is sufficiently large,15

then the normalised error ∆N should approximate a Gaussian distribution with mean 0 and variance 1. Thus, the distribution of

∆N can be checked in several ways against expected shapes for Gaussian distributions, for example, the probability distribution

function (PDF) and cumulative distribution function (CDF) as shown in Figure 3.

The above distribution analyses are informative on the overall magnitude of retrieval errors compared to expectations (as

well as, in the case of the PDF analysis, whether there is an overall bias on the retrieved AOD). However, alone they say little20

about the skill in assessing variations in uncertainty across the population. Taking things a step further, the data can be stratified
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in terms of ED and a quantile analysis performed to assess consistency with expectations. This is equivalent to taking a single

location along the x-axis in Figure 2, and assessing the distribution of retrieval errors found for the points from that histogram.

These, too, should follow Gaussian statistics.
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Figure 4. Expected AOD discrepancy against percentiles of absolute AOD retrieval error. Symbols indicate binned results from the numerical

simulation; within each bin, paler to darker tones indicate the 38th, 68th, and 95th percentiles (approximate 0.5σ, 1σ, 2σ points) of absolute

retrieval error. Dashed lines (0.5:1, 1:1, 2:1 respectively) show theoretical values for the percentiles of the same colour.

An example of this is shown in Figure 4. The data are divided by expected discrepancy εT into 10 equally-populated bins,

and within each bin the 38th, 68th, and 95th percentiles (i.e. approximate 0.5σ, 1σ, 2σ points, following Gaussian statistics) of5

absolute retrieval error are plotted. If the uncertainties are appropriate, these should lie along the 0.5:1, 1:1, and 2:1 lines. This

analysis provides a way of checking the validity of the uncertainty estimates across the spectrum from low to high estimated

uncertainties as opposed to population-average behaviour (i.e. do the distributions of retrieval error change in the expected

way as the estimated uncertainty varies?). The 68th percentile is of most direct interest as it corresponds most directly to the

expectation of the retrieval error, but examining other percentiles provides a way to assess whether the distribution is broader10

or narrower than expected (due to, perhaps, the presence of more or fewer outliers than expected).

The binned analysis is similar to the assessment of forecast calibration in meteorology (Dawid, 1982). Note in a forecast

sense the term calibration refers to a comparison of forecast vs. observed frequencies or magnitudes, distinct from the common

meaning of calibration to refer to radiometric accuracy in remote sensing. By further analogy to the forecast community (cf.

expressions in Murphy, 1988), a calibration skill score scal can be defined,15

scal = 1−

B∑
b=1

(
εT,b− |∆1σ

S,b|
)2

B∑
b=1

(
|∆S| − |∆1σ

S,b|
)2 , (5)
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where |∆1σ
S,b| is the 1σ absolute retrieval error in bin b (Figure 4), over B bins total. This compares the observed squared

discrepancy from the 1:1 line in Figure 4 with that which would be obtained if a data user assumed that the retrieval uncertainty

was equal to the mean absolute retrieval error (|∆S|) from a validation exercise at that location, which is what might be done

in the absence of pixel-level uncertainty estimates. This skill score is computed using binned values rather than individual

matchups due to the previously-discussed nature of the relationship between uncertainty and error (Figures 1, 2). The highest5

possible score is 1 and a score of 0 indicates that the uncertainty estimates do not have greater skill than simply assuming

the average retrieval error. If the magnitudes of εT are in error then it is possible for scal to take unbounded negative values,

in which case the uncertainties are said to be poorly calibrated (Dawid, 1982). This is quite a difficult test for a data set as a

positive skill score requires that both the magnitudes of the uncertainty, and the variations in both uncertainty and error, must

be accurate. This may be particularly difficult if the error does not vary much at a given location. As a result scal should not be10

used as a single metric in isolation, but rather examined in a broader context.

Figures 3 and 4 provide the basis for the framework proposed in this study. An earlier version of this method was designed

during development and assessment of prognostic uncertainty estimates for MODIS DB retrievals by Sayer et al. (2013).

It has been further advanced through discussions at annual AeroSat meetings. Further practical applications of these ideas

include to NOAA VIIRS AOD data by Huang et al. (2016), to GOCI data by Choi et al. (2018), and to retrievals of absorbing15

aerosols above clouds against airborne measurements by Sayer et al. (2019b),
::::
and

::
to

:::
the

:::::
latest

:::::
MISR

:::::::
product

::::
over

:::::
ocean

:::
by

:::::::::::::::
Witek et al. (2019). The idea of looking at normalised retrieval error distributions was also explored for AOD by Popp et al.

(2016) and Kinne et al. (2017) when evaluating ESA Climate Change Initiative (CCI) aerosol products, and in a more general

sense (with cloud top height as an example) by Merchant et al. (2017). Indeed, the method is not restricted to AOD, although

AOD has the advantage of comparatively readily-available, high-quality reference data in AERONET and other networks.20

3.2 Practical application to satellite data products

3.2.1 AERONET data used and matchup criteria

Here, the reference AOD τA is provided using level 2.0 (cloud-screened and quality assured) direct-Sun data from the latest

AERONET version 3 (Giles et al., 2019). As AERONET Sun photometers do not measure at 550 nm, the AOD is interpolated

using a second-order polynomial fit to determine coefficients a0,a1,a2 for each measurement,25

log(τλ) = a0 + a1 log(λ) + a2 log(λ)2, (6)

where λ is the wavelength. All available (typically four) AOD measurements in the 440-870 nm wavelength range are used

in the fit, which is more robust to calibration problems in individual channels than a bispectral approach, and accounts for

spectral curvature in log(τλ) (Eck et al., 1999; Schuster et al., 2006). The uncertainty on mid-visible AOD is dominated by

sensor calibration, and is ∼0.01 (Eck et al., 1999). The sampling cadence is typically once per 10 min in cloud-free, daytime30

conditions, but is more frequent at some sites.

Data from a total of 12 AERONET sites, listed in Table 6, are used here to assess the AOD uncertainty estimates in various

satellite data sets. This is evenly split to provide six sites to evaluate AOD retrievals from algorithms over land, and six over
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Table 6. AERONET sites used and their categorisation.

Site Latitude (◦ N) Longitude (◦ E) Complexity

For land algorithm evaluation

Avignon 43.93 4.88 Straightforward

Goddard Space Flight Center (GSFC) 38.99 -76.84 Straightforward

Palencia 41.99 -4.52 Straightforward

Ilorin 8.48 4.67 Complex

Kanpur 26.51 80.23 Complex

Pickle Lake 51.45 -90.22 Complex

For water algorithm evaluation

Ascension Island -7.98 -14.41 Straightforward

Midway Island 28.21 -177.38 Straightforward

University of California Santa Barbara (UCSB) 34.42 -119.85 Straightforward

Capo Verde 16.73 -22.94 Complex

International Centre of Insect Physiology and Ecology (ICIPE) Mbita -0.43 34.21 Complex

Venise 45.31 12.51 Complex

water. Each category is further split; three sites are described as ‘straightforward’, for which the AOD retrieval problem is

comparatively uncomplicated (i.e. likely no significant deviations from retrieval assumptions) and so the uncertainty estimates

might be expected to be reasonable, and three sites are ‘complex’. These complex sites were chosen as they have complicating

factors which are not well-captured by existing retrieval forward models and might be expected to lead to breakdowns in the

techniques used by the retrieval algorithms to provide uncertainty estimates.5

The reasons for identifying a particular site as complex are as follows. Over land, Ilorin (Nigeria) and Kanpur (India) can

exhibit complicated mixtures of aerosols with distinct optical properties and vertical structure (Eck et al., 2010; Giles et al.,

2012; Fawole et al., 2016). Many AOD retrieval algorithms, in contrast, assume a single aerosol layer of homogeneous optical

properties. Pickle Lake (Canada) is in an area studded by lakes of sizes similar to or smaller than satellite pixel size. This

might be expected to interfere with data set land masking (which often determines algorithm choice) and surface reflectance10

modeling in a non-linear way (Carroll et al., 2017). Over water Capo Verde (on Sal Island, officially Republic of Cabo Verde) is

characterised by frequent episodes of Saharan dust outflow; these particles have complex shapes, which are often approximated

in AOD retrieval algorithms by spheres or spheroids. This assumption leads to additional uncertainties in modeling the aerosol

phase matrix and absorption cross-section, larger than for many other aerosol types, which may not be accounted for fully in

the retrieval error budget (Mishchenko et al., 1997; Kalashnikova et al., 2005). ICIPE Mbita (hereafter Mbita, on the shore of15

Lake Victoria in Kenya) is similar to Pickle Lake but for water retrievals, i.e. it allows of sampling of nominal water pixels

which may be influenced by partial misflagging of coastlines, 3D effects from the comparatively bright land, and outflow into
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the water affecting surface brightness. Finally, Venise (Italy) is in the northern Adriatic Sea, slightly beyond the outflow of the

Venetian lagoon, and its water colour is strongly divergent from the ‘Case 1’ (brightness tied to chlorophyll-a concentration;

Morel, 1988) assumption employed by most AOD retrieval algorithms.

This breakdown is inherently subjective as all retrievals involve approximations; the dozen sites chosen are illustrative of

different aerosol and surface regimes, but not necessarily indicative of global performance. The purpose of this study is to5

define and demonstrate the framework for evaluating pixel-level uncertainties, and provide some recommendations for their

provision and improvement. It is hoped that, with growing acceptance of the need to evaluate pixel-level uncertainties, this

approach can be applied on a larger scale. The sites were chosen as they are fairly well-understood and have multi-year data

sets (data from all available years were considered from the analysis). Note that some of the satellite data sets considered here

do not provide data at some sites, for various reasons (discussed later).10
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Figure 5. Example results of matchup and filtering criteria for MISR data at Ascension Island. Red points indicate matchups included for,

and grey those excluded from, further analysis on the basis of filters described in the text. Horizontal and vertical error bars indicate the 1σ

uncertainty on AERONET and MISR data, respectively. The 1:1 line is dashed black.

The matchup protocol is as follows. AERONET data are averaged within±15 min of each satellite overpass (providing τA),

and compared with the closest successful satellite retrieval which has a pixel centre within 10 km of the AERONET site. This

provides τS and εS. Each satellite data set’s recommended quality assurance (QA) filtering criteria are applied as provided in

the data products. The AERONET uncertainty, εA, is taken as the quadrature sum of the AERONET measurement uncertainty

(±0.01; Eck et al., 1999) and standard deviation of the AERONET measurements (typically 2-3) during the±15 min temporal15

window. Additionally, matchups are discarded if εA > 0.02 or if only one AERONET measurement is obtained during the time

window, as this indicates the potential for heterogeneous scenes. Dependent on site and sensor, this additional filtering step

removes around 10-60 % of potential matchups; Figure 5 shows an example for MISR over-water retrievals at the Ascension

21



Island site. As a reminder, the focus here is not on validating the AOD, but rather validating the AOD uncertainty estimates

(vertical lines in the Figure).

These matchup criteria are stricter than is commonly applied for AOD validation (e.g. Ichoku et al., 2002), which typically

averages AERONET data within ±30-60 min and satellite retrievals within ∼±25 km; the smaller spatiotemporal window

and additional filtering critera decrease the potential (unknown) contribution of collocation uncertainty to εA, which increases5

as the colocation criteria are loosened (Virtanen et al., 2018). The reasoning behind taking the nearest, rather than average,

satellite retrieval is similar: averaging would have the potential to decrease the apparent retrieval error, which would make the

comparison less useful for evaluating εS. Weakening these criteria could increase the data volume for analysis at the expense of

increased colocation-related uncertainty and there is no objective way to determine universal optimal thresholds.
::::::::
However,

::
in

::
the

::::::
future,

::::::::::
site-specific

::::::
criteria

:::::
could

:::
be

::::::
guided

::
by

:::::::
analysis

::
of
:::::
high

:::::::::::::
(spatiotemporal)

:::::::::
resolution

:::::
model

::::::::::
simulations

:::
and

:::::::
surface10

:::::::::::
observations.

This work considers satellite AOD products from seven algorithm teams; five of these contain both land and water retrievals

(albeit sometimes with different algorithms), while two only cover land retrievals. Only pixels retrieved as land are used for

comparison with AERONET data from land sites in Table 6, and vice-versa for water sites. These data sets are briefly described

below and the reader is referred to references cited here and in Tables 4 and 5 for additional information. Note in the discussion15

the term ‘pixel’ refers to individual L2 retrievals, sometimes referred to ‘superpixels’ in the literature as they are often coarser

than the source L1 data.

3.2.2 MODIS data sets

Four of the data sets (three land, one water) are derived from MODIS measurements; there are two MODIS sensors, providing

data since 2000 and 2002 on the Terra and Aqua satellites, respectively. The sensors have a 2,330 km swath width which is20

advantageous in providing a large data volume for analysis. Since launch, the MODIS aerosol data products have included

AOD from the DT algorithm family, which has separate algorithms for water and vegetated land pixels (Levy et al., 2013).

These data sets provide only diagnostic uncertainty estimates of the form εS =±(a+ bτA); in practice (and here) these are

often treated as if they were framed instead in terms of τS with the same coefficients a,b when a prognostic estimate is needed.

For retrievals over land, εS =±(0.05+0.15τA), which is consistent with the expected performance of the algorithms at launch25

(Remer et al., 2005). Over water, the estimate has been revised since launch to εS =±(0.03+0.1τA). Limited validation based

on Collection 6 data by Levy et al. (2013) suggested that there might be an asymmetry to the envelope with the 1σ range over

water being from −0.02− 0.1τA to +0.04 + 0.1τA. This has not yet been corroborated by global validation of C6 or the latest

Collection 6.1 (C6.1), and it is also plausible that calibration updates in C6.1 may have ameliorated some of this bias. As a

result the symmetric envelope is used here.30

The DB algorithm retrieves AOD only over land and was introduced to fill gaps in DT coverage due to bright surfaces such

as deserts (although has since been expanded to include vegetated land surfaces as well). The latest version is described by Hsu
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et al. (2019). Prognostic AOD retrieval uncertainties are estimated as described in Sayer et al. (2013),

εS =±

(
a+ bτS
1
µ0

+ 1
µ

)
, (7)

where µ0,µ are the cosines of solar and view zenith angles, respectively, and a,b coefficients depending on QA flag value,

sensor, and (since C6.1) surface type. The latest values of a,b are given by Hsu et al. (2019).

BAR also performs retrievals only over land; it uses the same radiative transfer forward model as DT, but reformulates the5

problem to retrieve the MAP solution of aerosol properties and surface reflectance simultaneously for all vegetated pixels in a

single granule (Lipponen et al., 2018). This includes both a priori information and spatial smoothing constraints. Uncertainty

estimates are provided organically by the MAP technique (Equation 2). Note BAR data are only available at present from

2006-2017.

For all MODIS products, data from the latest C6.1 are used. All products are provided at nominal (at-nadir) 10 km horizontal10

pixel size. Identical algorithms (and approaches for estimating uncertainty) are applied to both Terra and Aqua measurements,

and the results of the evaluation were not distinguishable for Terra and Aqua data. For conciseness and to increase data volume

Terra and Aqua data are not separated in the discussion going forward.

3.2.3 MISR data sets

The MISR sensor also flies on the Terra platform, and consists of 9 cameras viewing the Earth at different angles, with a fully-15

overlapped swath width around 380 km (Diner et al., 1998). The latest version 23, used here, provides AOD retrievals at 4.4 km

horizontal pixel size. Both land and water retrievals (Garay et al., 2017; Witek et al., 2018b) attempt retrieval using each of 74

candidate aerosol mixtures, although they differ in their surface reflectance models and uncertainty estimates. The over-land

‘heterogeneous surface’ retrieval estimates uncertainty as the standard deviation of AOD retrieved using those aerosol mixtures

which provide a sufficiently close match to TOA measurements (Martonchik et al., 1998, 2009). The ‘dark water’ approach20

(Witek et al., 2018b) looks at the variation of a cost function across the range of potential AOD and aerosol mixtures,

f(τ) =
1

N

N∑
m=1

1

χ2
m(τ)

, (8)

where the sum is overN = 74 aerosol mixtures and χ2
m is a cost function similar to the first term of Equation 1. The uncertainty

εS is then taken as the full-width at half maximum of f(τ), which is often found to be monomodal and close to Gaussian (Witek

et al., 2018b). Note that MISR does not provide retrievals over Mbita or Venise as the ‘dark water’ algorithm logic excludes25

pixels within the matchup radius used here as too bright and unsuitable; thus, the approach cannot be evaluated at those sites.

3.2.4 ATSR data sets

The ATSRs were dual-view instruments, measuring near-simultaneously at nadir and near 55◦ forward. ATSR2 (1995-2003)

and AATSR (2002-2012) had four solar and three infrared bands, with approximately 1 km pixel sizes, and a 550 km swath

(although ATSR2 operated in a narrow-swath mode over oceans). Their predecessor ATSR1 lacked three of the solar bands and30
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so has not been used widely for AOD retrieval. In 2016 the first of a new generation of successor instruments (the SLSTRs)

was launched; SLSTR has several additional bands, a rear view instead of forward, the native spatial resolution of solar bands

is finer, and the swath broader (Coppo et al., 2010). This study uses two data sets derived from this family of sensors.

ORAC is a generalised OE retrieval scheme which has been applied to multiple satellite instruments. Here, the version

4.01 ATSR2 and AATSR from the ESA CCI are used (Thomas et al., 2017), along with an initial version 1.00 of data from5

SLSTR. ORAC provides AOD retrievals over both land and ocean surfaces; the retrieval approaches are the same except for the

surface reflectance models, which also inform the a priori and covariance matrices. Over water, surface reflectance is modelled

according to Sayer et al. (2010a) with fairly strong a priori constraints. Over land, two approaches have been implemented

in ORAC; the one used here is a model developed initially for the SU (A)ATSR retrieval algorithm (North et al., 1999)

which assumes that the ratio between forward and nadir surface reflectance is spectrally invariant, and has very weak a priori10

constraints. Note that AOD and aerosol effective radius have weak and strong a priori constraints, respectively. Retrievals are

performed at native resolution, and cost functions and uncertainty estimates are as in Equations 1 and 2 without smoothness

constraints. ORAC simultaneously retrieves aerosol and surface properties, peforming an AOD retrieval for each of a number

(here, 10) candidate aerosol optical models (mixing four components defined by the aerosol CCI; Holzer-Popp et al., 2013),

and choosing the one with the lowest cost as the most likely solution. Retrievals passing quality checks (Thomas et al., 2017)15

are then averaged to a 10 km Earth-referenced sinusoidal grid.

ADV uses the ATSR dual-view over land to retrieve the contribution to total AOD from each of three aerosol CCI components

(with the fraction of the fourth dust component prescribed from a climatology) by assuming that the ratio of surface reflectance

between the sensor’s two views is spectrally flat. This has some similarity with the North et al. (1999) approach, except for

ADV the ratio is estimated from observations in the 1600 nm band where the atmosphere is typically most transparent, rather20

than being a freely-retrieved parameter (Kolmonen et al., 2016). Over the water, the algorithm only uses the instruments’

forward view as this has a longer atmospheric path length and is less strongly affected by Sun glint. Because of this, the

water implementation is often called ASV rather than ADV (Table 3), although for convenience here the term ADV is used

throughout. Water surface reflectance is modelled as a combination of Fresnel reflectance and the cholorphyll-driven model

of Morel (1988). The land and water algorithms treat other factors (e.g. aerosol optical models) in the same way. Unlike25

ORAC, ADV aggregates to a 10 km grid before performing the retrievals. ADV uncertainty estimates are calculated using

Jacobians at the retrieval solution, i.e. the first component of Equation 2, with Sy assumed diagonal. The uncertainty on the

TOA measurements is taken as 5 %, which is somewhat larger than that assumed by ORAC, so ADV is implicitly adding some

forward model uncertainty into this calculation. Version 3.11 of the data sets (Kolmonen and Sogacheva, 2018), also from the

ESA aerosol CCI, are used here.30

Aside from pixel/swath differences, for both ADV and ORAC the implementation of the algorithms is the same for the three

sensors. Matchups from the two (for ADV) or all three (for ORAC) sensors are combined here in the analysis, to increase

data volume, due to the similarity in sensor characteristics and algorithm implementation. Note however that the difference

in viewing directions between (A)ATSR and SLSTR (i.e. forward vs. rear) means different scattering angle ranges are probed

over the two hemispheres, which influences the geographic distributions of retrieval uncertainties. For both of these data sets,35
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a large majority of matchups (75 % or more) obtained are with AATSR, as the ATSR2 mission ended before the AERONET

network became as extensive as it is at present, and the SLSTR record to date is short. The results do not significantly change

if only AATSR data are considered.

3.2.5 CISAR SEVIRI

Unlike the other data sets considered here, the SEVIRI sensors fly on geostationary rather than polar-orbiting platforms. This5

analysis uses data from the first version of the CISAR algorithm (Govaerts and Luffarelli, 2018) applied to SEVIRI aboard

Meteosat 9; due to computational constraints, only SEVIRI data from 2008-2009 have been processed and included here. This

sensor has a sampling cadence of 15 min and observes a disk centred over North Africa, covering primarily Africa, Europe,

and surrounding oceans. The horizontal sampling distance is 3 km at nadir, increasing to around 10 km near the limits of useful

coverage. This sampling means that several of the AERONET sites (GSFC, Kanpur, Midway Island, Pickle Lake, UCSB) are10

not seen by the sensor and cannot be analysed.

CISAR is also an OE retrieval scheme, which in its SEVIRI application accumulates cloud-free measurements from three

solar bands over a period of five days and simultaneously retrieves aerosol and surface properties, reporting at each SEVIRI

timestep. Surface reflectance is modelled following Rahman et al. (1993) over land and Cox and Munk (1954a, b) over water,

although the retrieval approach is otherwise the same between the two surface types. It employs a priori data and several15

smoothness constraints, and so uncertainty estimates (Luffarelli and Govaerts, 2019) broadly follow Equation 2.

3.3 Results

With the above criteria, the number of matchups n obtained for each AERONET site with each data set is shown in Table 7.

This additionally includes the long-term climatological mean (March 2000-February 2019) daytime cloud fraction fC from

MODIS Terra, taken from the C6.1 level 3 monthly product (MOD08_M3) for the 1◦ grid cell in which the AERONET site20

lies. The cloud masking approach is described by Frey et al. (2008), with more recent updates listed in Section 3 of Baum et al.

(2012). Data from Terra are used as the majority of the aerosol data sets, like Terra, have a late-morning overpass time.

To make the counts more comparable between sites a sampling-corrected count n̂ can be calculated,

n̂= n
cos(φ)

(1− fC)

mS

mA
, (9)

where φ is the site’s latitude (important as for polar-orbiting satellites a given latitude is overflown proportional to 1/cos(φ)),25

mS the number of months of the satellite record, and mA the number of months during the satellite record for which the

AERONET site was in operation. For example, CISAR data used here cover the period 2008-2009 (mS = 24); for these years,

AERONET data at Ascension Island are available for 5 months of 2008 and 11 of 2009 (mA = 16). Equation 9 thus provides

a first-order estimate of the number of matchups which would have been obtained in the absence of clouds (as the data sets

consider cloud-free pixels only), an equal rate of being overflown, and with the AERONET site in constant operation through30

the satellite lifetime. Normalising each satellite data set to the maximum of n̂ across sites (to account for swath width and

mission length differences, which determine total counts) provides a relative measure of how often each data set provides a
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Table 7. Number of matchups obtained for each AERONET site and data set, together with climatological cloud fraction.

Data set AERONET site

Land matchup counts

Straightforward sites Complex sites

Avignon GSFC Palencia Ilorin Kanpur Pickle Lake

ADV 266 199 98 89 100 57

BAR 1793 2088 2017 893 1087 1119

CISAR 1749 0 868 493 0 0

DB 3045 3010 1924 1144 1493 1068

DT 2519 2409 1774 895 1250 529

MISR 241 271 203 82 153 108

ORAC 344 326 200 105 104 106

Cloud fraction 0.50 0.57 0.55 0.68 0.55 0.67

Water matchup counts

Straightforward sites Complex sites

Ascension Island Midway Island UCSB Capo Verde Mbita Venise

ADV 30 43 81 59 57 137

CISAR 210 0 0 716 336 1442

DT 748 443 1812 768 341 2698

MISR 74 59 196 115 0 0

ORAC 66 79 135 143 68 257

Cloud fraction 0.59 0.63 0.34 0.72 0.42 0.58

valid retrieval at each location; the resulting relative sampling frequencies are shown in Figure 6. This measure will be used

in the ongoing discussion. Note that as CISAR is applied to geostationary SEVIRI data, the factor of cos(φ) is omitted (since

each point on the disk is sampled once per scan, and each point outside the disk is never seen).

::::::::
Graphical

:::::::::
evaluation

::
of

:::
the

:::::::::
pixel-level

::::::::::
uncertainties

:::
are

::::::
shown

::
in

:::::::
Figures

:
7
:::
and

::
8,
:::
for

::::
land

::::
and

::::
water

::::::::
retrievals

:::::::::::
respectively.

::
In

::::
both

::
of

::::
these

:::
the

::::::::
left-hand

::::::
column

:::::
shows

::::::
CDFs

::
of

:::::::
absolute

:::::::::
normalised

::::
error

:::::
|∆N| ::::::

against
:::::::::
theoretical

::::::::::
expectations

:::
(cf.

::::::
Figure5

:::
3b),

::::
and

::
the

::::::
middle

::::
and

::::
right

:::::::
columns

:::::
show

:::
the

:::
ED

::
εT::::

and
::::
twice

::::
ED,

::::::
binned,

:::::::
against

::
the

:::
1σ

:::
and

:::
2σ

:::::
points

:::
of

:::::::
absolute

:::::::
retrieval

::::
error

:::::
|∆S|, ::::::::::

respectively
:::
(cf.

::::::
Figure

::
4).

::::
Due

::
to
:::
the

::::
very

::::::::
different

::::::::
sampling

:::::::
between

::::
data

:::
sets

::::
and

::::
sites

:::::
(Table

:::
7),

:::
the

:::::::
number

::
of

:::
bins

::
is
:::::
taken

::
as

:::
the

::::::
lesser

::
of

:::::
n/20

::
or

::::
n1/3

::::::::
(rounded

::
to

:::
the

:::::::
nearest

:::::::
integer).

::::
This

::::::
choice

::
is

:
a
:::::::
balance

:::::::
between

:::::::::::::
well-populated

:::
bins

::
to
::::::
obtain

:::::
robust

::::::::
statistics,

::::
and

:::
the

:::::
desire

::
to

:::::::
examine

:::::::::
behaviour

:::::
across

::
a
:::::
broad

:::::
range

::
of

:::
εT.

::::::
These

::::::
Figures

::::
also

::::::
include

:::
an

:::::::
estimate

::
of

:::
the

::::::::::
digitisation

:::::::::
uncertainty

:::
on

:::
the

::::::
binned

::::::
values:

:::
for

::::::::
example,

::
in

::
a

:::
bin

:::::::::
containing

:::
100

:::::::::
matchups,

:::
the

::::::::::
uncertainty10

::
on

:::
the

::::
68th

:::::::::
percentile

:::
(1σ

:::::
point)

::::::
binned

:::::
value

::::::
shown

::
is

:::::
taken

::
as

:::
the

:::::
range

:::::
from

:::
the

::::
67th

::
to

::::
69th

::::::::
matchup

::
in

:::
the

:::
bin.

::::
For

:::
the
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(a) Normalised sampling, land
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(b) Normalised sampling, water
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Figure 6. Site-to-site corrected sampling n̂ for each data set, shown on a relative scale. Symbols are used to aid in differentiating overlapping

data points but carry no further information.

::::::::::::
MODIS-based

::::::
records

::::::
(which

::::
have

:::
the

:::::::
highest

::::::::
sampling)

:::
this

::::::::::
digitisation

:::::::::
uncertainty

::
is
:::::
often

:::::::::
negligible,

:::
but

:::
for

:::::
others

::::::
(ADV,

:::::
MISR,

:::::::
ORAC)

::
it

:
is
::::::::::
sometimes

:::
not.

:

:
A
:::::::

further
:::
way

:::
to

::::
look

::
at

:::
the

::::
data

::
is

::::::::
provided

::
by

::::::
Figure

::
9,
::::::

which
:::::
shows

::::
the

:::::
mean

:::
and

::::::::
standard

::::::::
deviation

::
of

:::
∆N:::

for
:::::

each

:::
data

:::
set

::::
and

:::::::::
AERONET

::::
site;

:::
for

::::::::
unbiased

::::::::
retrievals

::::
with

:::::::::::::::::::
perfectly-characterised

:::::
errors

::::
(cf.

::::::
Figure

:::
3a)

:::
the

::::::
results

:::::
should

::::
fall

:
at
::::::::::

coordinates
:::::
(0,1).

::::
This

::
is
::

a
::::::::::
complement

:::
to

:::
the

:::::::::::::::
previously-shown

:::::
CDFs

::
as

::
it

::::
also

:::::::
provides

::::::::
measures

:::
of

:::::::::
systematic

::::
bias

::
in5

::
the

:::::
AOD

:::::::
retrieval

::::
and

:::::::::
systematic

::::::::
problems

::
in

:::::::::
estimating

:::::
error

:::::::::
magnitude:

:::::::::
horizontal

:::::::::::
displacement

:::::
from

:::
the

:::::
origin

::::::::
indicates

::
the

:::::::
relative

:::::::::
magnitude

::::
and

:::::::
direction

:::
of

:::::::::
systematic

:::::
error,

:::
and

:::::::
vertical

:::::::::::
displacement

:
a
:::::::
general

::::::
under-

::
or

::::::::::::
overestimation

:::
of

:::
the

:::::
typical

:::::
level

::
of

:::::
error.

:::::::
Further,

:
it
::::::

shows
::::
how

::::::
closely

:::
(or

::::
not)

::::::
results

::::
from

:::
the

::::::::
different

::::
sites

::::::
cluster

:::::::
together.

:::
For

::
a
::::::::::
larger-scale

::::::
analysis

:::
of

::::::::
hundreds

::
of

::::::::::
AERONET

:::::
sites,

:::
this

::::
type

:::
of

::::
plot

:::::
could

::
be

::::::::
expanded

:::
to

:
a
::::
heat

:::::
map.

::::
The

:::::
CDFs

::
in

:::::::
Figures

::
7

:::
and

::
8

:::::
assess

:::
the

::::::
overall

:::::::::
magnitude

::
of

:::::::::
normalised

::::::
errors

:::
and

:::::
shape

::
of

:::
the

:::::::::::
distribution,

:::::
while

::
the

::::::
binned

::::
ED

:::::::
assesses

:::
the

::::::
overall

::::
skill10

::
in

::::::::
specificity

:::
of

:::
the

::::::::
estimates.

:::
In

:::::
these

:::::::
Figures,

:::
the

:::
top

:::
and

:::::::
bottom

::::
three

:::::
rows

:::::
show

::::
sites

::::::::
expected

::
to

::
be

:::::::::::::
straightforward

:::
or

::::::::::
complicated

:::
test

:::::
cases

:::
for

:::
the

::::::::::
uncertainty

:::::::
estimate

:::::::::
techniques

::::::
(Table

:::
6).

:::::
Table

:
8
::::::::
provides

:::
the

::::::
overall

:::::::::
calibration

::::
skill

::::::
scores

::
for

:::
1σ

:::::
error

::
at

::::
each

:::
site

:::::::::
(Equation

::
5),

::::
plus

:::
the

:::::::::
coefficient

::
of

::::::::::::
determination

:::
R2

::::::
(where

::
at

::::
least

::
3

::::
bins

::::
were

::::::::
available)

::::::::
between
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(a) Avignon, CDF
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(c) Avignon, 2σ
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(d) GSFC, CDF
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(f) GSFC, 2σ
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(g) Palencia, CDF
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(h) Palencia, 1σ
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(i) Palencia, 2σ
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(j) Ilorin, CDF
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(l) Ilorin, 2σ
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(m) Kanpur, CDF
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(o) Kanpur, 2σ
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(p) Pickle Lake, CDF
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(r) Pickle Lake, 2σ
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Figure 7. Evaluation of pixel-level uncertainty estimates for over-land retrievals. Each row corresponds to a different AERONET site, and

colours are used to distinguish data sets. The left-hand column shows a CDF of the absolute normalised retrieval error |∆N| (cf. Figure 3b)

and the middle and right columns show 1σ and 2σ expected discrepancy ED vs. absolute retrieval errors |∆S| (cf. Figure 4) respectively. In

the left column, theoretical expectations are shaded grey; in the others, the 1:1 line is indicated dashed in grey, and vertical bars indicate the

uncertainty on the bin value, as described in the text.
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(a) Ascension Island, CDF
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(b) Ascension Island, 1σ
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(c) Ascension Island, 2σ
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(d) Midway Island, CDF
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(f) Midway Island, 2σ
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(g) UCSB, CDF
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(h) UCSB, 1σ
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(i) UCSB, 2σ
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(j) Capo Verde, CDF
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(k) Capo Verde, 1σ
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(l) Capo Verde, 2σ
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(m) ICIPE Mbita, CDF
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(o) ICIPE Mbita, 2σ
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(p) Venise, CDF
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(q) Venise, 1σ
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(r) Venise, 2σ
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Figure 8. As Figure 7, except for AERONET sites used for over-water retrieval evaluation.
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(a) Land sites
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(a) Water sites
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Figure 9.
::::
Mean

:::
and

:::::::
standard

:::::::
deviation

::
of

:::::::::
normalised

::::
error

:::
∆N:::::::

obtained
:::
for

:::
each

:::::::::
AERONET

:::
site

::::
and

::::::
satellite

:::
data

::::
set,

::
for

:::
(a)

::::
land

:::
and

::
(b)

:::::
water

::::
sites.

::::::::
Horizontal

:::
and

::::::
vertical

::::
bars

::::::
indicate

:::
the

::::::
standard

:::::
errors

::
on

:::
the

:::::::
estimates

:::
of

::
the

:::::
mean

:::
and

:::::::
standard

:::::::
deviation,

::::::::::
respectively.

:::::::
Diamonds

::::
and

::::::
triangles

:::::::
indicate

::::::::::::
straightforward

:::
and

:::::::
complex

:::::::::
AERONET

:::
sites

::::::
(Table

::
6).

::::
Note

:::
the

::::::
x-axes

:
is
::::::::

truncated
:::
and

:::
the

:::::
y-axis

::
is

:::::::::
logarithmic.

:::::
binned

::::::::::
uncertainty

:::
and

:::
1σ

::::
error

:::::
from

::
the

::::::
middle

::::::::
columns

::
of

::::::
Figures

::
7

:::
and

::
8.

::::::::
Together,

:::::
these

:::::::
facilitate

:
a
::::::
visual

:::
and

::::::::::
quantitative

::::::::
evaluation

::
of

:::
the

:::::::::
pixel-level

::::::::::
uncertainty

::::::::
estimates.

:

Graphical evaluation of the pixel-level uncertainties are shown in Figures 7 and 8, for land and water retrievals respectively.

In both of these the left-hand column shows CDFs of absolute normalised error |∆N| against theoretical expectations (cf. Figure

3b), and the middle and right columns show the ED εT and twice ED, binned, against the 1σ and 2σ points of absolute retrieval5

error |∆S|, respectively (cf. Figure 4). Due to the very different sampling between data sets and sites (Table 7), the number of

bins is taken as the lesser of n/20 or n1/3 (rounded to the nearest integer). This choice is a balance between well-populated

bins to obtain robust statistics, and the desire to examine behaviour across a broad range of εT. These Figures also include an

estimate of the digitisation uncertainty on the binned values: for example, in a bin containing 100 matchups, the uncertainty

on the 68th percentile (1σ point) binned value shown is taken as the range from the 67th to 69th matchup in the bin. For the10

MODIS-based records (which have the highest sampling) this digitisation uncertainty is often negligible, but for others (ADV,

MISR, ORAC) it is sometimes not.

Together, these enable a simple evaluation of the pixel-level uncertainty estimates: the CDFs in Figures 7 and 8 assess

the overall magnitude of normalised errors and shape of the distribution, while the binned ED assesses the overall skill in

specificity of the estimates. In all of these Figures, the sites are grouped in triplets according to whether they were expected15

to be straightforward or complicated test cases for the uncertainty estimate techniques (Table 6). Table 8 provides the overall

calibration skill scores for 1σ error at each site (Equation 5), plus the coefficient of determination R2 (where at least 3 bins

were available) between binned uncertainty and 1σ error from the middle columns of Figures 7 and 8.
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Table 8. Calibration skill scores scal and coefficient of determination R2 from binned 1σ uncertainties in Figures 7 and 8.

Data set AERONET site

scal R2 scal R2 scal R2 scal R2 scal R2 scal R2

Land calibration skill scores/R2

Straightforward sites Complex sites

Avignon GSFC Palencia Ilorin Kanpur Pickle Lake

ADV <0 0.58 <0 0.87 <0 0.72 0.29 0.99 <0 0.99 0.08 0.99

BAR <0 0.55 <0 0.94 <0 0.57 <0 0.37 <0 0.84 0.11 0.88

CISAR <0 0.67 - - <0 0.075 <0 0.94 - - - -

DB <0 0.98 0.57 0.98 0.65 0.96 <0 0.99 <0 0.97 0.61 0.86

DT 0.57 0.89 0.47 0.89 0.53 0.92 <0 0.04 0.69 0.91 0.50 0.99

MISR 0.84 0.85 0.97 0.99 0.93 0.98 0.62 0.75 <0 0.38 0.87 0.96

ORAC <0 0.82 <0 0.70 <0 0.36 0.82 0.95 <0 0.88 <0 0.84

Water calibration skill scores/R2

Straightforward sites Complex sites

Ascension Island Midway Island UCSB Capo Verde Mbita Venise

ADV <0 - <0 - 0.40 0.79 <0 0.91 <0 0.35 0.11 0.70

CISAR <0 0.11 - - - - <0 0.42 <0 0.28 <0 0.33

DT 0.72 0.87 0.38 0.95 0.45 0.99 0.73 0.93 0.62 0.92 0.63 0.98

MISR 0.52 0.94 <0 0.45 0.80 0.97 0.78 0.94 - - - -

ORAC <0 0.84 <0 0.48 <0 0.06 <0 0.92 <0 0.047 <0 0.063

3.3.1 Land sites

Turning to the land sites (Figure 7), all the techniques show some skill in that the ED generally increases with retrieval error.

There is, however, considerable variation between sites (which points to the utility of considering results site-by-site for this

demonstration analysis) and data sets. For the ‘straightforward’ sites, there is an overall tendency for the uncertainty estimates

to be too large. This may indicate that the retrieval error budgets are a little too pessimistic; since overall errors and uncertainties5

also tend to be small at these sites, it is also possible that the uncertainty on the AERONET data (which can be a non-negligible

contribution to ED here) is overestimated. A notable exception here is MISR, for which uncertainty estimates are very close

to theoretical expectations. This implies that the overall assumptions made by this technique (that the principle contribution to

error is in aerosol optical model assumptions, and the 74 mixtures provide a representative set, such that the standard deviation

of retrieved AOD between well-fitting mixtures is a good proxy for uncertainty) is valid. A second exception is CISAR, which10

more significantly overestimates the uncertainty, indicating that the retrieval is more robust than expected. For these sites the

binned plots of 1σ and 2σ retrieval error vs. ED look similar, suggesting that, within each bin, the retrieval errors are roughly
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Gaussian (even if the magnitudes of uncertainty are not perfectly estimated). MODIS DT tends to overestimate uncertainty on

the low end and underestimate on the high end, suggesting (at least for these sites) that the first and second coefficients in the

expression εS =±(0.05 + 0.15τ) may need to be decreased and increased, respectively.

For the ‘complex’ land sites, the picture is different. At Ilorin, MODIS DB and ADV tend to overestimate uncertainty

while the others underestimate. This site was chosen as a test case because of the complexity of its aerosol optical properties,5

which are more absorbing than assumed by many retrieval algorithms and can show large spatiotemporal heterogeneity due

to a complex mix of sources (Eck et al., 2010; Giles et al., 2012; Fawole et al., 2016). Using aircraft measurements, Johnson

et al. (2008) found mid-visible single scattering albedo (SSA) from smoke-dominated cases between 0.73-0.93, with a central

estimate for the smoke component of 0.81. DB has a regional SSA map with more granularity (Hsu et al., 2019), while the

other algorithms do not contain sufficiently absorbing particles, leading to a breakdown in their uncertainty estimates when10

strong absorption is present.

The most absorbing component in the MISR aerosol mixtures has an SSA of 0.80 at 558 nm; mixtures including this

component have SSA from 0.81-0.96, and all other MISR mixtures have SSA>0.90 (Tables 2, 3 of Kahn et al., 2010). In

smoke cases retrievals are biased low and the uncertainty estimates too narrow because the set of candidate aerosol mixtures

is not representative of optical properties at this location. MODIS DT and BAR (which uses the same optical models as DT)15

assume a fine-mode dominated model with mid-visible SSA of 0.85 from December-May and 0.90 from June-November

(Figure 3 of Levy et al., 2007), and mix this with a less absorbing coarse-dominated model, so suffer similar issues. CISAR

retrieves AOD by a combination of aerosol vertices in SSA-asymmetry parameter space; the most absorbing (for SEVIRI’s

640 nm band, which is the shortest wavelength) has SSA around 0.79 (Figure 4 of Luffarelli and Govaerts, 2019); due to the

spectral curvature of smoke SSA, this would imply a weaker effective absorption in the mid-visible. ADV and ORAC share20

aerosol components prescribed by the aerosol CCI (Holzer-Popp et al., 2013); the most absorbing fine-mode component has

mid-visible SSA around 0.80, although this is also always mixed with more weakly-absorbing fine-mode (which have SSA of

0.98) and coarse-mode particles in varying proportions, so in practice the assumed SSA is always higher (Tables 1 and 2 of

Thomas et al., 2017). It may be that ADV is providing reasonable estimates at this site despite this, due to is somewhat larger

assumed forward model uncertainty than ORAC. For Kanpur, except for MISR (which has similar issues to Ilorin) and CISAR25

(as SEVIRI does not observe the site) these issues are lessened. This may be because, while Kanpur has similar complex mixed

aerosol conditions, the components are overall less strongly absorbing and so these issues are less acute, with a typical SSA

(similar to that of Ilorin in mixed, as opposed to smoke-dominated, conditions) around 0.89 (Giles et al., 2012). The issues

with MISR may imply the wrong mixture(s) are being selected here.

The case at Pickle Lake is more diverse: similar to the ‘straightforward’ sites MODIS DT, DB, and BAR all overestimate30

uncertainty. ADV and MISR are fairly close to theoretical values; despite this, their skill scores are fairly low (Table 8) as

the magnitudes of their uncertainties are not perfect and the range of 1σ retrieval errors is fairly small. All these algorithms

provide retrievals significantly less often than would be expected by the site’s cloud cover, latitude, and AERONET availability

(Figure 6). This implies that the algorithms may be coping with a potential violation of assumptions (i.e. land mask issues from

numerous small lakes) by simply not providing a retrieval at all. ORAC underestimates uncertainties at this site, but provides35
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retrievals relatively more frequently than the other data sets. As the land/sea mask is determined at full (1 km) resolution and

used to set the surface model, it is likely that some of the pixels within the 10 km grid will be affected by mis-flagging/mixed

surface issues, contributing to additional errors which are not being caught by these quality checks. Which behaviour is more

desirable (no data vs. more uncertain data than expected) is a philosophical and application-dependent matter. As it lies outside

the SEVIRI disk, CISAR provides no retrievals at this site.5

Aside from DB, DT, and MISR, skill scores (Table 8) are in most cases negative; for the former two the uncertainty estimates

are somewhat empirical and not independent of the AERONET data, so the fact they are fairly well-calibrated is not surpris-

ing. Despite this R2 is typically not negligible (although the small number of bins means the estimates of R2 are somewhat

uncertain). This implies that, while the absolute magnitudes of estimated uncertainty are often too small/large, the techniques

do show some skill at predicting which retrievals are comparatively less/more uncertain at a variety of locations. Neither scal10

nor R2 should be overinterpreted in terms of site-to-site variations, as these depend strongly on the number of bins, range in

estimated uncertainties, and range in actual retrieval errors at a given site. The main points of note are whether scal > 0, and

whether there is a positive association between binned uncertainty and error.

3.3.2 Water sites

For the water sites (Figure 8), only five satellite data sets are available–recall also that the MODIS DT uncertainty envelope15

is narrower than over land, and the MISR uncertainty is a PDF based on a cost function composited over AOD and aerosol

mixtures rather than (as over land) a simple standard deviation. At the ‘straightforward’ sites there is some commonality with

the land sites. Specifically, the MISR approach works fairly well, CISAR overestimates uncertainty (although of the three, only

Ascension Island is within the SEVIRI disk), and MODIS DT slightly overestimates uncertainty overall, with a tendency to

overestimate on the low end and underestimate on the high end. In general a similar picture is also seen in terms of scal and20

R2: most data sets are not well-calibrated, although there is skill at assessing variations in uncertainty at individual sites.

ADV and ORAC are more systematic in their underestimation of uncertainty over water compared to over land, although

as the over-water errors are often fairly small in absolute terms, they appear fairly large in relative terms. This difference in

the ATSR-based records between land and ocean sites is intriguing. ADV assumes 5 % uncertainty in the TOA signal while

ORAC includes separate measurement and forward model terms for a slightly lower total uncertainty overall (typically 3-4 %25

dependent on band and view), which in part explains ORAC’s larger normalised errors. The common behaviour either implies

(1) that the calibration of the sensors may be biased or more uncertain than expected for these fairly dark ocean scenes, or (2)

that the over-water surface reflectance models or (for ORAC) their uncertainties (either in their contribution to forward model

error in Sy , or the strength of the a priori constraint in Sa) might be less reliable than assumed.
::::::
Figure

:
9
:::::::
implies

:::
that

:::::
there

:
is
::
a

::::::::
significant

:::::::::
systematic

:::::
error

:::::
source

::
in

::::::
ORAC

::::::::::
contributing

::
to

::
a

::::::
positive

::::
bias

::::
over

:::::
water. A thorough comparison between the two30

data sets using the matchups collected here is difficult due to the fairly low data volumes involved, especially for ADV. ADV

provides significantly fewer retrievals overall than ORAC (for both land and water), implying stricter pixel selection/retention

criteria; this is consistent with ESA CCI validation analysis of earlier versions of these data sets by Popp et al. (2016) and

Kinne et al. (2017).
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Despite the expected complexities at Capo Verde from mixtures of low-level sea spray and higher-altitude nonspherical

mineral dust (Mishchenko et al., 1997; Kalashnikova et al., 2005), the error characterisation at this complex site does not

appear different from that obtained at the more straightforward sites. Interestingly, these algorithms seem more selective about

when to provide retrievals at the three straightforward sites than they are at Capo Verde (Figure 6). The reasons for this are

unclear unless the estimate provided by n̂ (Equation 9) is not a good approximation for these sites; each is close to the coast5

and all should be roughly equally affected by Sun-glint sampling-related losses.

Mbita is in some sense the inverse of the land site Pickle Lake, and similar comments apply. MODIS DT uncertainties

are reasonable, although the data volume is fairly low relative to expectations from Figure 6. ADV and ORAC retrieve more

frequently, and perform well but with more high-error outliers than expected, likely due to mixed or misflagged land/water

pixels. CISAR retrieves with a similar frequency at Mbita to Ascension Island (that is, less than expected, but no less so than at10

the straightforward site). Looking at the binned ED vs. error, the errors for the 1σ points (Figure 8n) are slightly overestimated

and that for the 2σ points (Figure 8o) underestimated, implying more extreme outliers than expected, indicating possible surface

contamination issues. Note MISR does not provide retrievals at this site as the algorithm does not consider Lake Victoria to be

dark water.

Venise is sampled close to the expected rates by ADV, CISAR, MODIS DT, and ORAC (Figure 6), and again excluded15

by MISR due to the bright, turbid water. Here, the CISAR 1σ retrieval error is ∼0.05 and the 2σ error is about double that,

regardless of the ED, and the uncertainty estimates do not show skill overall. As SEVIRI’s wavelengths (640, 810, 1640 nm)

are less strongly affected by water turbidity than the other sensors, the issues causing complexity here may not apply and the

overall tendency for CISAR to report too large an uncertainty may be dominating. ADV and DT results are reasonably in line

with expectations, implying either that the turbid water is not a hindrance for the algorithm or that the additional uncertainty20

from this factor is compensated by lower uncertainties in some other aspect of the algorithm. ORAC tends to more strongly

underestimate the retrieval uncertainty. The water surface reflectance model (Sayer et al., 2010a) is based on low-turbidity Case

I water (Morel, 1988) and so it is likely providing a low-biased a priori for the retrieval with too strong a constraint, leading to

a high bias in AOD retrievals with overly high confidence in the solution, which becomes large when expressed in normalised

terms.25

4 Conclusions and path forward

Pixel-level uncertainty estimates in AOD products are an important complement to the retrievals themselves, to allow users to

make informed decisions about data use for data assimilation and other application. Ideal estimates are prognostic (predictive),

and these are increasingly being provided within data sets; when they are absent, diagnostic estimates can be used as a stopgap.

This study has reviewed existing diagnostic and prognostic approaches, provided a framework for their evaluation against30

AERONET data, and demonstrated this framework using a variety of satellite data products and AERONET sites. It is hoped

that this methodology can be adopted by the broader community, as an additional component of data product validation efforts.
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Mean and standard deviation of normalised error ∆N obtained for each AERONET site and satellite data set. Horizontal and

vertical bars indicate the standard errors on the estimates of the mean and standard deviation, respectively. Note the x-axes is

truncated and the y-axis is logarithmic.

Figure 9 shows the mean and standard deviation of ∆N for each data set and AERONET site; for unbiased retrievals

with perfectly-characterised errors (cf. Figure 3a) the results should fall at coordinates (0,1). This is a complement to the5

previously-shown CDFs as it also provides a measure of bias in the AOD retrieval, and shows how closely (or not) results from

the different sites cluster together. Based on this and the previous discussion, several
::::::
Several conclusions about the

::::::::::
performance

::
of

::::
these

:
existing estimates follow:

1. All tested techniques show skill in some situations (in that the association betweeen estimated uncertainty and observed

error is positive, and on average magnitudes are reasonable), although none are perfect, and there is no clear single10

best technique. Small data volumes for some sensors and locations limit the extent to which performance in the high-

uncertainty regime can be probed.

2. The points in Figure 9 tend to cluster by data set more strongly than by site. This implies that some of the quantitative

limitations in the uncertainty estimates provided within the current data sets are large-scale issues (e.g. persistent un-

der/overestimate of some aspect of the retrieval error budget).
::::::
Further,

::
as

:::
the

:::::::::::
performance

::
at

::::::::
expected

:::::::::::::
straightforward15

::
vs.

::::::::
complex

::::::::::
AERONET

::::
sites

::::
was

:::
not

::::::
always

:::::::
distinct,

:::::
these

:::::::::
limitations

:::
(or

:::::
other

::::::::
unknown

:::::::
factors)

::::
may

::
at

::::::
present

:::
be

::::
more

:::::::::
significant

::::
error

:::::::
sources

::::
than

:::
the

:::::
issues

:::::::::
associated

::::
with

:::
the

::::::
ground

::::
sites.

:

3. While skilful, the uncertainties are not always well-calibrated, i.e. they are often systematically too large or too small. If

characterisation of the error budgets of the retrievals cannot be significantly improved, it is plausible that a simple scaling

(using e.g. averages of the standard deviations on the y-axis of Figure 9) could be developed to bring the magnitudes20

more into line with the expected values.

4. The formal error propagation techniques (employed here by BAR, CISAR, and ORAC) are very powerful. Their differing

behaviour and performance illustrates the difficulties in appropriately quantifying terms for the forward model and a

priori covariance matrices and appropriate smoothness constraints. For these sites, CISAR tends to overestimate the

uncertainty most strongly, BAR to overestimate slightly, and ORAC to underestimate (more strongly over water than25

land). The simpler approach taken by ADV (Jacobians from a flat 5 % error on TOA reflectance) tends to be about right

over land but also underestimates the true uncertainty over water.

5. The empirical validation-based MODIS DB approach works well but on average overestimates the total uncertainty,
::::
and

:
at
:::::

these
::::
sites

:::
has

:::::
little

:::
bias

:::::::
overall. That may indicate that the sites used here are coincidentally better-performing than

the global results used to fit the expression. This points to the fact that the expression (which draws on AOD, geometry,30

quality flag, and surface types) captures many, but not all, of the factors relevant for quantifying total uncertainty.

6. The diagnostic MODIS DT approaches perform reasonably well if used instead as prognostic uncertainty estimates; they

have a tendency to be insufficiently confident (overestimate uncertainty) on the low end and overconfident (underestimate
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uncertainty) on the high end.
::::::
Despite

:::
the

:::::::::
possibility

:::
for

:::::::::
unphysical

:::::::
negative

:::::
AOD

::::::::
retrievals

::
in

:::
the

:::
DT

::::
land

:::::::
product,

::::
both

:::
land

::::
and

:::::
ocean

::::::
results

:::::::
indicate

:
a
:::::::::
systematic

:::::::
positive

:::
bias

::
in
:::
the

:::::::::
retrievals.

7. MISR’s two approaches (applied for land and water surfaces) are both based on diversity between different candidate

aerosol optical models. They both perform well at most sites, although have a tendency to underestimate the total uncer-

tainty slightly. The implication from this is that the diversity in AOD retrievals from different candidate optical models5

does capture the leading cause of uncertainty in the MISR retrievals. The fact that they are underestimates does imply at

least one remaining important factor which is not captured by this diversity, which could perhaps be a systematic error

source such as a calibration or retrieval forward model bias.

More broadly, these results suggests paths for development and refinement for pixel-level AOD uncertainty estimates for

existing and new data sets. For algorithms attempting AOD retrievals from multiple candidate aerosol optical models, the10

diversity in retrieved AOD between these different models could be a good proxy for part of the retrieval uncertainty. The

MODIS DT ocean and ORAC algorithms both perform retrievals for multiple optical models. As ORAC is already an OE

retrieval, this aerosol model-related uncertainty is one of the few components not directly included in the existing error budget,

so could perhaps be added in quadrature to the existing uncertainty estimate. MODIS DT provides only a diagnostic AOD

uncertainty estimate; diversity between possible solutions (which draw from 20 possible combinations of 4 fine modes and 515

coarse modes) could be explored as a first-order prognostic extension or replacement of that. One caveat is that this metric

is only useful when the candidate set of optical models is representative; results at Ilorin, where aerosol absorption is often

stronger than assumed in retrieval algorithms and the MISR approach does not perform well, illustrate that this is not always

the case.

A general principle behind the error propagation techniques is the assumption of Gaussian departures from some underly-20

ing forward model. When this is not true, the techniques tend to fail. The Ilorin case is one such example of this. Another

is the higher-level issue of coastal or lake areas, as most algorithms make binary retrieval decisions with nonlinear implica-

tions (e.g. treat pixel as land or water for surface reflectance modeling) which cause problems if pixels are either misflagged

or ‘contaminated’ and contain mixed water or land. The algorithms tested here tend to deal with this in one of two ways.

The first is simply to fail to provide a valid retrieval at all; in this case, the uncertainty estimates for available retrievals25

tend to be reasonable, although the data volume is significantly less than expected. The second option is to provide a re-

trieval but consequently provide a poor estimate (and typically an underestimate) of the associated uncertainty. Neither is

entirely satisfactory. Performing retrievals at a higher spatial resolution with strict filtering might ameliorate these issues,

as a smaller fraction might then be contaminated or misflagged; however, the resolutions of the sensor measurements and

land mask (and its quality) place hard constraints on what could be achieved. A second option might be to attempt retrievals30

using both land and water algorithms for these pixels, and either report both or an average (including the difference be-

tween them as an additional contribution to the uncertainty estimate). This would provide some measure of the potential

effect of surface misclassification, and at the least provide a larger uncertainty estimate to alert the data user about prob-

lematic retrieval conditions.
:
A

::::::
deeper

::::::::::::
understanding

:::
of

:::
the

::::::::::::
representivity

::
of

:::::::::::
AERONET

::::
sites

:::
on

:::::::
satellite

:::::::
retrieval

::::::
scales
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:::::
would

:::
be

:::::
useful

:::
to

:::::
better

:::::::::
understand

:::::::::::
distributions

:::
of

:::::::
retrieval

:::::::
success

::::
rates

::::
and

::::::
errors.

::::
This

::
is

::
a
::::
topic

:::
of

::::::
current

::::::::
research

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Kinne et al., 2013; Li et al., 2016; Schutgens et al., 2016, 2017; Schutgens, 2019)

:
,
::::::::
although

::::
often

:::
on

:
a
::::::::
temporal

::::
basis

:::
or

::
on

::::::
coarser

::::::
spatial

:::::
scales

::::
than

:::::::
relevant

:::
for

:::
L2

:::::::::
validation.

A further difficulty in the assumption of Gaussian random errors is that sensor calibration uncertainty tends to be dominated

by systematic effects rather than random noise. While in practice it is often (as in the algorithms assessed here) treated as a5

random error source, when it is a dominant contribution to the retrieval error budget it will tend to skew the retrievals toward

one end of the notional uncertainty envelopes. This may explain some of the systematic behaviour along the x-axis of Figure 9

within individual data sets (although position along this axis is determined not only by the actual error, but also the estimated

uncertainty). A possible solution to this is to perform a vicarious calibration, calculating a correction factor to the sensor gain

as a function of time and band by matching observed and modeled reflectances at sites where atmospheric/surface conditions10

are thought to be well-known (e.g. thick anvil clouds, Sun glint, and AERONET sites). The derived correction factor then

accounts for the systematic uncertainty on calibration and the radiative transfer forward model , although if this latter term

is non-negligible then the vicariously-calibrated gains will still be systematically biased (albeit less so for the application at

hand) . This has the advantage of transforming the calibration uncertainty from a systematic to more random error source,

at the expense of creating dependence on the calibration source and radiative transfer model. There is therefore a danger in15

creating a circular dependence between the vicarious calibrationand validation sources as it can hinder understanding of the

physics behind observed biases. Vicarious calibration is common within e.g. the ocean colour community (Franz et al., 2007),

in which retrieval algorithms are in some cases more empirical and amenable to tuning than physically-driven aerosol retrieval

algorithms, and the focus is on long-term consistency of the record. It has also been used for on-orbit calibration of instruments

lacking on-board capabilities to track absolute calibration and degradation (e.g. Heidinger et al., 2010)
::
As

::::::::
discussed

::
in

:::::::
Section20

:::
2.4,

::
a

::::::::
pragmatic

:::::::
method

:::
for

:::::::::::
amelioration

::
of

:::
this

:::
(if

:::
the

:::::::
forward

::::::
model

::::::::::
contribution

::
to

:::
the

::::::::::
systematic

:::::::::
uncertainty

::::::
cannot

:::
be

::::::::::
significantly

:::::::
reduced

:::
by

::::::::::::
improvements

::
to

::::::::
retrieval

:::::::
physics)

::::::
would

:::
be

::
to

:::::::
perform

::
a
::::::::
vicarious

:::::::::
calibration. Ship-born AOD

observations were also used as one part of the MISR calibration strategy for low-light scenes (Witek et al., 2018a); if this

removes the bulk of the systematic calibration error, it may help explain why the uncertainty estimation technique (dispersion

in possible solutions with different aerosol optical model assumptions) generally works so well.25

The framework for evaluating uncertainties here is general and not restricted to AOD. In practice, however, it is difficult to

extend it to other aerosol-related quantities at the present time. For profiling data sets (such as lidar), uncertainties in extinction

profiles are often strongly vertically correlated as the effects of assumptions propagate down the profile (Young et al., 2013).

An assessment would also have to account for the vertical resolution of the sensors and compute appropriate averaging kernels

(Rodgers, 2000); this is by no means intractable, and has been done using ground-based lidar systems for aerosol properties (e.g.30

Povey et al., 2014) as well as other geophysical quantities (e.g. atmospheric temperature by Sica and Haefele, 2015). Possibly

a stronger limitation is that there are relatively few validation-quality data sets (i.e. with significantly smaller uncertainty than

the spaceborne sensor) to compare them to, and so the ground-based contribution to the total expected discrepancy would not

be negligible.
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For the total column, other key quantities of interest include the Ångström exponent (AE), fine mode fraction (FMF) of

AOD, and aerosol SSA. The AE can easily be assessed using this framework, although AERONET AE itself can be quite

uncertain in the low-AOD conditions which predominate in many locations around the globe (Wagner and Silva, 2008). In that

case the expected discrepancy would include significant contributions from AERONET uncertainty, so the comparison would

be less informative about the quality of the satellite uncertainty estimate. These issues are somewhat lessened in high-AOD5

conditions, however. Similar comments apply to AERONET FMF, which has an uncertainty of order ±0.1 in moderate/high

AOD conditions, and larger when AOD is low (O’Neill et al., 2003, 2006). The framework presented here would not become

invalid in these cases (although becomes statistically problematic for locations where FMF is close to the bounds 0 or 1), but

would become a measure of the joint consistency of both satellite and AERONET uncertainties, rather than a test primarily of

the satellite uncertainty estimates. Some of these issues are lessened if, instead of FMF, fine mode AOD (i.e. the product of10

FMF and AOD) and coarse mode AOD are used.
:::::
While

:::::
AOD

::
is

:::
also

:::::::
positive

:::::::
definite,

:::::::::
numerical

:::::
issues

:::::::::
associated

::::
with

:::::
AOD

:::
near

::
0
:::
can

:::
be

:::::::
removed

::
if
::::::::
retrievals

:::
are

:::::::::
performed

::
in

:::
log

::::::
space,

::::::::
reflecting

:::
the

::::::::::::::::
closer-to-lognormal

:::::::::::
distributions

::
of

:::::
AOD

:::::
found

::
in

:::::
nature

:::::::::::::::::::::::::::::::::::::::::::
(O’Neill et al., 2000; Sayer and Knobelspiesse, 2019)

:
;
::::::
ORAC,

:::
for

::::::::
example,

:::::::
retrieves

:::::
AOD

::
in

:::
log

::::::
space.

Issues with SSA are somewhat more difficult; AERONET almucantar inversions have an uncertainty in SSA around ±0.03

under favourable conditions (moderate to high AOD and large solar zenith angle) but uncertainties can be significantly larger15

otherwise (Dubovik et al., 2000). Given SSA (like FMF) is inherently bounded in the range 0-1, and most aerosol types

have SSA in the visible spectral region around 0.8-1 (e.g. Dubovik et al., 2002), in practical matters this uncertainty is a

significant fraction of the variability in the parameter to be observed. Further, the hard boundary of SSA=1 means that the

Gaussian statistics on which many uncertainty estimates and part of this framework rely will be less useful models of the real

error characteristics. As such (similarly to FMF) it may be better to assess related optical properties, such as absorption AOD20

(AAOD), rather than SSA itself. This would address some of the statistical issues (plus AAOD is more directly connected to the

radiative effect than SSA alone) but would not remove the underlying difficulty of accurate quantification of aerosol absorption,

which remains both difficult to measure and difficult to retrieve from ground, airborne, or satellite remote sensing. Despite these

difficulties with other aerosol properties (and the current limitations of techniques for quantifying AOD uncertainty), the routine

provision, evaluation, and scientific use of prognostic AOD uncertainty estimates from satellite remote sensing will itself be an25

important step toward more optimal and robust applications of these data sets.

Data availability. AERONET data are available from https://aeronet.gsfc.nasa.gov. MODIS DB and DT, and MISR data, are available

from https://earthdata.nasa.gov. ADV and ORAC data are available from http://www.esa-aerosol-cci.org. CISAR data are available from
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