
Reply to Reviewer2 
 

We do appreciate the reviewer provide so much important comments  help us improving our 

manuscript. We’d like to address these comments as following. 

 

 Line 2: “that require a whole volume radar data” should read as….  “that require a whole 

volume of radar data”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

 Line 7: “with multiple precipitation events including two widespread mixture of stratiform and 

convective events” May read better as….. with multiple precipitation events including two 

widespread mixed stratiform and convective events”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

line 10: “can accurately identify the convective cells from stratiform storms with the radar data 

only from the lowest scan in tilt. It can produce better results than using the separation index 

only.” Would read better as……. “can accurately identify the convective cells from stratiform 

rain using radar data from the lowest scan in tilt only, and produced better results than using 

the separation index only.”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

Line 15: “convective precipitation’s are associated with” reads better as …convective 

precipitation is associated with”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

line 16: “while stratiform precipitations are associated” reads better as……while stratiform 

precipitation is associated”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

line 17: what is meant by saying a convective system consists of large and dense raindrops?  

Response: It was found the values of raindrop’s mass weighted mean diameter(Dm) in 

stratiform and convective precipitation generally are within 1-1.9 mm and above 1.9 mm, 

respectively (Chang et al., 2009). Following the review’s comment, we added more discussions 

in the manuscript L:80~83 

 

Line 53: “of the DSD-based approaches depends on the environmental regime”….Could you 

expand upon this a little bit please?  

Response: The separation index derived from Equations 2~5 in the manuscript depends on 

several factors: the radar wavelength, temperature, drops size distribution(DSD), and drop 

shape relations(DSR). The last three factors depend on environmental regime. In our work, we 

demonstrated that temperature, DSD and DSR features from Taiwan very similar to Darwin, 

Australia. Therefore, all the coefficients derived by BAL can be directly used in the current work. 

Following the review’s comment, we added more discussions in the manuscript L:123~135. 

 



 

Line 58 and 59: “classification results even it is operated”…… Reads better as…. classification 

results even if it is operated”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

line 68: “together with other three single polarization”….Reads better as… together with the 

other three single polarization”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

line 73: “for convective and stratiform precipitations, total 4306 minutes of DSD data”….Reads 

better as…… for convective and stratiform precipitation, a total of 4306 minutes of DSD data”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

line 81: “stratiform precipitations generally consist of condense of small to median 

raindrops”….. This sentence needs to be corrected and explained better.  

Response:  this sentence is modified as in L:80-83. 

 

Line 98: “using the separation index i to identify convective precipitation from stratiform” … 

This may read better as ..using the separation index i to identify convective from stratiform 

precipitation”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

Line 100: I assume that Nw refers to liquid water concentration… Is this true?  

Response: Nw is the normalized number concentration in the gamma drop size distribution. 

 

Equation 5: it may help to list as equations 5a) and 5b)  

Response:  the manuscript was modified following the reviewer’s comment. 

 

Lines 157 – 160: I understand the authors using the MRMS precipitation classification algorithm 

as ground truth….However, he should be noted that there are many imperfections in the 

system, especially since it only uses single pole information to determine echo classes  

Response:  We appreciate the reviewer point this out.  

In the revision, we made the following statements in the revision L:170~181: 

“Thirdly, the precipitation type is confirmed by the Multi-Radar-Multi-Sensor (MRMS) 

precipitation classification algorithm implemented in Taiwan (Zhang et al., 2011, 2016). In this 

MRMS classification approach, a three-dimensional radar reflectivity field was mosaicked 

from 4 S-band single-polarization radars (Figure 1). The composite reflectivity (CREF) and 

other measurement such as temperature and moisture fields were then used in the surface 

precipitation clas- sification (Zhang et al., 2016). Based on the classification results, MRMS 

chooses different R(Z) relations in the rainfall rate estimation. The performance of MRMS has 

been thoroughly evaluated for years for the quantitative precipitation estimation, flash flood 

monitoring, severe weather, and aviation weather surveillance (e.g., Gourley et al., 2016; 

Smith et al., 2016).  The products are used as the benchmark and ground truth in many studies 



(e.g., Grecu et al., 2016; Skofronick-Jackson and Coauthors, 2017). It should be noted that, on 

the other hand, the MRMS also shows limitations since it only uses single-polarization variables 

to determine the precipitation type. At the current stage, the MRMS precipitation 

classification is considered as the appropriate benchmark in the training and validation of the 

proposed algorithm. Moreover, since the MRMS classification is a mosaicked product derived 

from 4 S-band radars, it can be viewed as an independent reference.”  
 

Line 165: “total one hour data were used as the convective type training data in the training 

data are associated with the >20 dBZs”….. What is meant by “total one hour data”?  

Response: The radar data collected from 1030 UTC to 1130 UTC are used in the training. Given 

the radar VCP, there are total 13 volume scans data are available.  

 

Line 169: “ the number of support vectors is selected as 1000 and the current work”….Not 

everyone who reads this article will be familiar with some of the machine learning/artificial 

intelligence setting of criteria… It may help to add a few more lines on this… You have done that 

in lines 170 through 172 but still it would help to go a little bit further into what is typically 

done for these types of learning algorithms.  

Response: We do appreciate the reviewer point this out. We added more discussion in the 

revised manuscript in L:192~200. 

 

Line 188: “results from RCMK……and MRMS could be different as large as five minutes in time 

stamps”…… This may read better if written as .. results from RCMK……and MRMS could be 

significantly different with timestamp differences as large as five minutes”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

line 190: “evaluation criteria of the possibility of detection” … Should read as evaluation criteria 

of the probability of detection”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

line 197: “was first validated with two widespread mixture of stratiform and convective”…… 

Should read as… was first validated with two widespread stratiform and convective mixed”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

Line 241: “it could found that the heavy precipitation band”… Should read as .. it was found that 

the heavy precipitation band”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

Line 253: “different from some existing classification algorithms” would read better as  

“different from other classification algorithms”  

Response:  the manuscript was modified following the reviewer’s comment. 

 

Lines 273 – 274: “second, the performance of the proposed approach highly depends on the 

training data. It should be very careful to select the training data.”  This would read better as  



“second, the performance of the proposed approach depends highly on the training data which 

should be very carefully selected. “  

Response:  the manuscript was modified following the reviewer’s comment. 

 



Reply to Referee 3 
 
We do appreciate the reviewer provide so much important comments  help us improving our 
manuscript. We’d like to address these comments as following. 
 
1.) First of all, an important comment the proposed methodology, which uses the lowest 

unblocked scanning tilt, as stated by the authors at page 2 (Line 55). In my opinion, the 
authors should add a discussion about the weakness of such approach, considering, for 
example, the scenario in which it is applied in a complex-orography area. In such a case, the 
strategy may be not suitable, because the radar signal at lowest tilt may be totally or 
partially obstructed by the surrounding topography in some sectors. A possible solution to 
overcome this issue may be using the lower “free” available scanning elevation but this 
choice can generate inconsistencies and biases. For example, in some sectors of radar 
coverage, the algorithm may receive as input the reflectivity data collected at 1o elevation, 
in others the measurements sampled at 4o antenna elevation angle. The information 
provided by data sampled at 1o and 4o antenna elevation angle can be very different, 
depending on the precipitation type event that is taking place. 

  
Response:  Thank you for the reviewer pointing this out. First, we totally agree with the reviewer 
that a discussion about the weakness of the proposed approach is necessary, which can guide 
readers to evaluate and implement this approach. We added following discussion in the revised 
manuscript: 
 
1.) Line 56: Different from some existing classification techniques that require whole volume 

scan of radar data, this new approach uses the lowest unblocked tilt data in the separation. 
If the lowest tilt is partially or completely blocked, then next adjacent unblocked tilt is used 
instead. 

2.) Line 336: Limitations of proposed approach are also included in the discussion section as: 
First, this approach is developed for fast scanning and fast update purpose, therefore, data 
from the lowest unblocked tilt is used as the input. However, if the radar is located in a 
complex orography area, radar beam could be partially or completely blocked at some 
regions. A possible solution for such scenario is using a hybrid scan data from different 
scanning tilts as the input. Radar scanning tilts used in the hybrid scanning are determined by 

the radar scanning geometry. Given the factor that precipitation's microphysics (such as drop 
size distribution) from different altitudes may be significantly different, therefore, the 
performance of proposed approach may worse than expected. 

 
Secondly, the data from 1.4o elevation angle is used in the current work. Following figures show 
the scanning geometry of RCMK, and this figure was also added in the manuscript as the reviewer 
suggested. From this figure, we can find that the data from 0.5o is severely blocked by the central 
mountain range. Therefore, data from 1.4o elevation angle (treated as lowest unblocked data) is 
used in the current work.   



 
 
Figure 1. Blockage maps of RCMK from the first 2 elevation angles (0.5o and 1.4o). The grey scale 
indicates the blockage percentages.  
 
2.) In Section 2, I suggest to add a figure showing the scanning geometry of the C-band 

polarimetric radars involved in this study. Please indicate the elevations angles used to 
develop the SVM method. Moreover, it is not clear if the authors used also the measurements 
provided by S-band single-polarization systems operating in the area of Taiwan. 

 
Response:  Following the reviewer’s suggestion, a figure of the scanning geometry of RCMK is 
added in the revised manuscript. The data from 1.4o elevation angle (the lowest unblocked tilt) 
is used in the algorithm development. We included this clarification in the revised manuscript. 
The S-band single-polarization radar data is not used in the SVM approach. We clarify this too in 
the revised manuscript. 
 
 
3.) In Section 2, the authors describe the variables used as input to the SVM method. They 

discuss about quality control of reflectivity measurements, focusing only on a specific issue, 
the attenuation along the path. I suggest to extend this discussion to other radar impairments 
that may have a strong impact on the performance of the proposed methods, such as the 
ground clutter (which strongly affects the radar measurements quality at lowest tilt) and the 
reflectivity vertical profile. In this respect, a detailed discussion should be provided about the 
bright band, which is a typical signature of stratiform precipitation events. 

 
Response:  Following the reviewer’s suggestion, issues about ground clutter and VPR are 
discussed in the revised manuscript. The discussion about bright band is also included as 
suggested.  
 
Line 98: Other quality control issues, including calibration, reflectivity vertical profile, and 



ground clutter removal, were also considered in this work. Since this radar is used in the real-
time quantitative precipitation estimation, the biases of Z and ZDR should be within 1 dBZ and 
0.1 dB, respectively. The data quality of RCMK was examined through validating the QPE 
performance in different works (e.g., Wang et al., 2013, 2014). Therefore, the calibration bias 
of RCMK should be within a reasonable range. A vertical profile of reflectivity (VPR) correction 
is generally needed on the reflectivity field to reduce the measurement biases because of the 
melting layer (Zhang et al., 2011). Given the fact that 1.4◦ elevation angle is used within the 
maximum range of 150 km, and the melting layer is usually around 5 km in Taiwan, the radar 
data is well below the melting layer. In addition, considering the vertical profile of differential 
reflectivity is not well studied in the current stage, no vertical corrections are applied to fields 
of Z and ZDR. Ground clutter is typically associated with a low correlation coefficient (ρHV ), the 
ρHV threshold used in this work is 0.9, which can effectively remove those non-meteorological 
echoes such as ground clutter. 
 
Line 163: On the other hand, stratiform precipitations are generally associated with a 
prominent bright band signature. The melting hydrometeors increase backscatter during 
stratiform rainfall, which can significantly enhance radar reflectivity. The bright band feature is 
one of the obvious indicators of stratiform precipitation. Bright band signature normally can be 
observed from relatively high EAs (such as above 9.9◦). From low EAs, because of the 
combination of radar beam broadening and low slant angle, the bright band feature spreads 
into more gates and becomes not apparent. Therefore, in this work, the bright band feature 
from high elevation angles is only used in training data selection but not used as one of the 
inputs. 
 
 
4.) Section 2.3, in my opinion, it may useful cite some previous work that developed machine-

learning algorithm based on meteorological radar data. I suggest the following reference: 
Capozzi et al. (2018), Adity Sai Srinivas et al. (2019) and Yen et al. (2019). 

 
Response:  Following the reviewer’s suggestion, these three references were added into the 
revised manuscript. 
 
Line 139: Machine learning algorithms based on meteorological radar data were well developed 
during the past two decades (e.g., Capozzi et al., 2018; T. et al., 2019; Yen et al. 2019) 
 
 
5.) As training data for convective precipitation type, the authors use the measurements 

collected in a single event occurred on 23 July 2014. More specifically, for this event radar 
data collected from 10:30 to 11:30 (one hour) were used. I am quite skeptical about this 
choice, that the authors must justify and explain. It is well note that convective events may 
be triggered by different meteorological scenarios and that may exhibit different features in 
radar data according to thunderstorm types (single cell, squall line, supercell, etc.).  

 



Response:  In this work, the training data plays a critical role in the SVM development. 
Therefore, we choose convective and strtiform precipitations following three major steps.  
1.) First, the training data was checked following general classification principles: for example, 

heavy precipitation band associated with high reflectivity for convective type precipitation; 
bright band for stratiform type precipitation.  

2.) Second, the ground observation is used as another reference. For example, the severe 
weather report could be used as the ground observation. 

3.) The classification results from MRMS is used as the third reference.  
 
The convective type precipitation data is mainly from a thunderstorm on 23 July 2014. An 
aircraft crash tragedy caused by strong downdraft is used as the ground observation. MRMS 
classification algorithm classifies this event as the convective precipitation type. The radar 
observation of reflectivity Z and differential reflectivity ZDR at 0858 UTC is shown in Fig. 2 
 

 
 

Figure 2. Reflectivity (left) and differential reflectivity (right) at 0858 UTC, 23 July 2014. 
 

A clear squall line features can be identified at this moment, which triggered the strong 
updraft/downdraft. Inside this squall line, the reflectivity field is above 40 dB; differential 
reflectivity field is above 1 dB. The maximum value of ZDR could be as high as 2.5 dB. Behind the 
severe precipitation band, the differential reflectivity field drops to negative value because of 
the attenuation issue.   Fields of Z and ZDR from 1028 UTC are shown in Fig. 3. Although the 
squall line signatures are not as well structed as 0858 at this moment, clear convective 
precipitation features such as large reflectivity, and very positive differential reflectivity are still 
very obvious.  Therefore, we use those gates classified as convective type as in the training 
data. 
 
We hope these plots can address the reviewer’s concerns. 



 
 

      Figure 3. Reflectivity (left) and differential reflectivity (right) at 1028 UTC, 23 July 2014. 
 

6.) Moreover, at page 6 (line 166) the authors declare that 17281 sets of data have been used 
in the training process. What does it mean “sets”? A clarification about this point is 
required. 

 
Response:  We appreciate the reviewer pointing this out. A “set” means a set of data from one 
radar gate (defined as azimuthal angle and range). Be more specific, a set of training data 
means a vector of  ["($, &)	"!"($, &)	)($, &); +($, &)]. Where “a” indicates azimuthal angle, “r” 
indicates range; “d” is the desired response with “1” represents convective, and “-1” represents 
stratiform. 
 
Line 188: A total of 17281 sets of data (15144 sets of stratiform, and 2137 sets of convective) are 
used in the training process. In this work, one data set is defined as the variables from a single 
gate in terms of range and azimuthal angle. Be more specific, a collection of training data means 
a vector of [Z(a, r) ZDR(a, r) i(a, r) d(a, r)], where a and r  indicate azimuthal angle and range, 
respectively.   The variable d is the ground truth (with 1 and -1 represents convective and 
stratiform), i.e., the desired response in the training process. 
 
7.) In section 3, the authors present the results of their work, introducing a whole coverage 

convective ratio (RCS) number. The latter is defined as parameter that provides a qualitative 
assessment of the performance of SVM and other considered methods. In my opinion, an 
evaluation about the reliability of SVM algorithm based on a single parameter is not 
sufficient to reach robust conclusions. Therefore, I suggest to involve in the statistical 
analysis other useful scores, such as the Critical Success Index and ROC curve. 

 



Response:  We agree with the reviewer that a single crietia may not sufficient to validate the 
performance of proposed approach. To address the reviewer’s concerns, we made the 
following modifications: 
 
1.) Besides the convective ratio (RCS) we introduced in the original manuscript, we also applied 

the Probability of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI) 
in the performance evaluation.  
 

2.) Since both cases of 30 August 2011 and 14 June 2012 are widespread stratiform and 
convective mixed precipitation events, and the performances of proposed approach show 
similarity from these two cases. We only kept the 30 August 2011 cases in the revised 
manuscript for the stratiform and convective mixed precipitation case. We also added more 
analysis and sensitivity test on this case.  

 
3.) For the tropical precipitation case 08/06/2009~08/09/2009 case, we included POD, FAR, CSI 

analysis, and also included sensitivity test. 
 

Please refer section 3 in the revised manuscript for more details. 
 
 
 
8.) Some suggestions about figures. In figure 1, I suggest to include a reference scale for terrain 

elevation. 
 
Response:  Following reviewer’s suggestion, a reference scale for terrain elevation is added in 
the manuscript, as shown below. 

 
 

Figure 4. The terrain of Taiwan, the location of a C-band polarimetric radar RCMK (marked with 
a black square), JWDs (marked with black stars), and four S-band single polarization radar 



RCCG, RCKT, RCHL, and RCWF (marked with black circles). The continuous grey-scale terrain 
map shows the central mountain range of Taiwan. 

 
 

 
9.) In figure 3, it is necessary to improve the line-style used to indicate the various algorithm. 

More specifically, MRMS and SVM time series seem have a similar marker according to the 
legend showed in panel (a). 

 
Response:  Following reviewer’s suggestion, we use different colors to represents the results 
from different algorithms. More details could be found from the response to comment 7.). 
 
10.) Regarding figure 4, I recommend to enlarge the panels, if it is possible. Moreover, the 

color scale should not have a gradient, because the output of the algorithm is binary 
(convective or stratiform). 
 

Response:  Following reviewer’s suggestion, we made following modifications: 1.) enlarge each 
panels in figure 4; and 2.) change the color scale as binary. 
 
 
11.) About Figures 5, 6, and 7, please clarity in the caption the meaning of black, red, and 

white circles. 
 
Response:  Following reviewer’s suggestion, we added the meaning of these circles in the 
caption. 
 
 
12.) Finally, I suggest to carefully checking the paper to address some minor typos. 
Response:  Following reviewer’s suggestion, we run grammar and spelling check before 
submitting the revision. 



Reply to Referee 4 
 
We appreciate the reviewer provided these important comments help us improving our 
manuscript. We’d like to address these comments as following. 
 
1. ZDR is a moment that needs to be calibrated. How stable is the ZDR calibration with time for 

the C-band you are using. Usually one attempts to be within +/- 0.2 dB. Do you use birdbath 
scans to calibrate ZDR?  

 
Response:  Thank you for the reviewer pointing this out. We totally agree with the reviewer that 
calibration plays a critical role in radar data processing and weather radar applications. A bias 
within 0.2 dB is the basic requirement on the ZDR field. In the current work, we directly used the 
data provided by the radar engineers from Central Weather Bureau of Taiwan, and no further 
calibration was applied on the ZDR field. We believed the quality of data is good, and the 
calibration bias of ZDR should be within the reasonable range based on following two reasons: 
1.) This radar belongs to Weather Wing of the Chinese Air Force (CAF), and the data became 

available to the Central Weather Bureau (CWB) since 2009. Currently, RCMK is one of the 
operational radars in the radar network, and its data are used in the real-time quantitative 
precipitation estimation (QPE) and forecasting (QPF). The quality of the radar data is closely 
examined by the engineers from CAF and CWB. Therefore, we believe this radar is well 
maintained and calibrated. 

2.) Same data sets (such as: 08/06/2009 ~ 08/09/2009) from this radar were also examined in 
few QPE papers (e.g., Wang et al. 2013, 2014). In order to achieve less than 10% bias in QPE 
products, the bias (including mis-calibration and attenuation) of reflectivity, and differential 
reflectivity should be within 1 dBZ, and 0.1 dB, respectively. Based on the QPE results 
estimated from this radar using different combinations of polarimetric radar variables, we 
believe the bias of Z and ZDR should be within a reasonable range. 

 
On the other hand, following the reviewer’s suggestion, we did the sensitivity analysis on the 
ZDR field. In this analysis, the observed ZDR field was manually adjusted by a factor of -0.2 dB, -
0.1 dB, 0.1 dB, and 0.2 dB, respectively. The separation index was recalculated with the 
“biased” ZDR field. The performances from proposed approach and using separation index only 
were analyzed with the “biased” fields. Please refer to the reply to comment 2 for more details 
related to this test.     
  
2. How sensitive is the separation index (eq2) to a ZDR bias? You assume implicitly a perfect 

radar (hardware wise), where only attenuation corrections need to be applied (if 
necessary). I wonder how sensitive your method is to some radar hardware influences or 
issues. Or can you rule out any influence from radar hardware? A discussion is needed here. 

 
Response:  First, we do appreciate the reviewer pointing this out. We did not include sensitivity 
analysis in the original manuscript. We believe such analysis is very useful to guide readers to 
evaluate and apply this algorithm. 
 



To address this concern, we did the sensitivity test through simulation and real data validation. 
In the simulation part, the separation index i was calculated with four distinct Z values: 10 dBZ, 
20 dBZ, 30 dBZ, and 40 dBZ. For each Z, ZDR changes between -0.5 dB to 2 dB, which is used to 
simulate the bias on ZDR field. The simulation results could be found from revised manuscript in 
section 3.3. 
 
In the real case validation, we did the following test: 
1.) After correcting the !!"   field from attenuation, we manually added  ∆!!"  values (as the 

designed bias) on the corrected !!"  field. The  ∆!!"  values are: -0.2 dB, -0.1 dB, 0 dB, 0.1 dB, 
and 0.2 dB, and the “biased”  !!":  are calculated as: 

!!"# = !!" + ∆!!"  
where  !!"#  indicates biased !!". 

2.) Calculate the separation index (%#) with !!"# . Evaluate the impacts of ∆!!" 	on performances 
of BAL0 and BAL-0.5 on cases 08/30/2011 and typhoon case (08/06/2009~ 08/09/2009).  

3.)  With !!"#  and  %#	as the inputs to the proposed SVM approach, Evaluate the impacts of 
∆!!" 	 on performances of SVM approach on cases 08/30/2011 and typhoon case 
(08/06/2009~ 08/09/2009). 

More details about simulation and real data validation could be found in section 3.2 in the revised 
manuscript. In the revised manuscript, only the case from 08/30/2011 is provided. The results 
from 2009 are provided as below: 
 

 
 

Figure 1. 96-hour averaged RCS(A), CSI(B), POD(C), and FAR(D) from 6~9 August 2009. 
The results from BAL with threshold T0 = -0.5, BAL with threshold T0 = 0, SVM, and 
MRMS are indicated with symbols of pentagram, circle, triangle, and square, 
respectively. 
 



 
Are the radome effects an issue (especially for the typhoon case you present; is it possible that 
part of the somewhat unusual ZDR pattern in Fig. 10 may be attributed to such a source?) 
 
Response:  Yes, we agree with the reviewer. The wet radome could be a possible issue for radar 
variables such as Z and ZDR. In the revised manuscript, we added following discussion: 

Line 280 Other reasons such as wet radome may also contribute to the Z and ZDR issues.  

 
L164, can you motivate why using such a large rhohv (> 0.98) as a criterion? You seem to throw 
away a lot of data e.g., if you have mixed phase precipitation with hail. Is there no hail in Taiwan? 
How much of the data are not considered? What happens if you observe rhohv  < 0.98. How is 
the performance degrading if you have data ranges present that where considered for training. 
Those rangebins cannot be classified, since you trained the data for only specific ranges? Explain 
what consequence this choice of threshold has, how sensitive your results are, and before that, 
how the training results are dependent on this choice. Did you make sensitivity studies? 
 
Response:  We’d like to address the reviewer’s concern from following few different aspects:  
1.) In the manuscript, we use 0.98 as the threshold of RhoHV only in the training data selection.  

As reported by Kumjian (2013), pure rain generally produces very high of RhoHV (> 0.98) 
observed by WSR-88D. Such value (0.98) also suggested by Ryzhkov and Zrnic (2004) as the 
RhoHV field from majority of pure rain in C-band. Such large RhoHV was also suggested in 
hydrometeor classifications (e.g., Liu and Chandrasekar 2000; Park et al. 2009). For example, 
Park et al. (2009) suggested that RhoHVs for light/moderate rain, and heavy rain are 0.97 and 
0.95, respectively. The precipitation may be classified as the mixed rain and hail if RhoHV is 
below 0.9. Following these pioneering works, we choose 0.98 as the threshold of RhoHV in 
the training data selection. 
 
In the revised manuscript, we added the reference paper on Line 186.  
 

2.) The threshold of 0.98 for RhoHV is only applied in the training data selection. Such aggressive 
threshold can assure the training data from pure precipitation, and not smeared by clutter 
(including ground clutter, sea clutter, biological scatter), AP, and possible ice phase 
precipitation. When we test the algorithm with precipitation events, the threshold for RhoHV 
is selected as 0.90. Any pixel (gate) with RhoHV below than 0.9 is classified as non-
precipitation echo. Any pixel with RhoHV above 0.9 is treated as pure rain, and the same 
support vector obtained from training data is applied.  
 

3.) The separation index (i) was derived from two drop size distribution (DSD) parameters Nw and 
D0. Therefore, it only validates at liquid phase precipitation (stratiform and convective types) 
as suggested by (Bringi et al. 2009). For other phase precipitation, such as mixed hail and rain, 
its performance is not well studied (Bringi et al. 2009). Other hydrometeor classification 
schemes are suggested for such scenario (Bringi et al. 2009). In this work, the separation index 



also plays an important role in the SVM approach, therefore, we limited the application of 
the proposed approach only within pure water phase precipitation. We have not tested it on 
the mixed phase precipitation with hail. In the revised manuscript, we emphasized this 
limitation at Line 344. 
 

4.) The goal of this work is to propose a prototype algorithm, and this manuscript focuses on 
describing this algorithm. We are working on further analyzing this approach including 
deriving the new separation index for S-band radar (WSR-88D), validating its long-term 
performance, including more variables (such as reflectivity texture), including multiple 
elevation angles. Sensitivity test for different training data definitely is also included in this 
work. We plan to report further findings in the upcoming papers. 

 
  
L166, what is exactly a “data set”? A range bin with all the moments you use satisfying the 
criteria for Z, RhoHV? Would be helpful to the reader who is not so familiar with this method. 
 
Response:  We appreciate the reviewer pointing this out. A “set” means a set of data from 
one radar gate (defined as azimuthal angle and range). Be more specific, a set of training 
data means a vector of  [!(), +)	!!"(), +)	%(), +); .(), +)]. Where “a” indicates azimuthal 
angle, “r” indicates range; “d” is the desired response with “1” represents convective, and “-
1” represents stratiform. 

 
Line 188: A total of 17281 sets of data (15144 sets of stratiform, and 2137 sets of convective) 
are used in the training process. In this work, one data set is defined as the variables from a 
single gate in terms of range and azimuthal angle. Be more specific, a collection of training 
data means a vector of [Z(a, r) ZDR(a, r) i(a, r) d(a, r)], where a and r  indicate azimuthal 
angle and range, respectively.   The variable d is the ground truth (with 1 and -1 represents 
convective and stratiform), i.e., the desired response in the training process. 
 
 
L234: the intrinsic ZDR for stratiform precipitation: isn’t it something around 0.2 dB, Or is this 
different in Taiwan? 
 
Response: Yes, the reviewer is correct. The ZDR values we provided in the manuscript is not 
accurate. The ZDR values mentioned in the manuscript are within the black circle in the 
following figure (Fig. 7 in the original manuscript). If we examine carefully, especially for those 
gates with Z around 30 dBZ, the ZDR values are around 0.2 dB, instead of 0 dB.  



 
 
 
Fig 10: ZDR looks biased to me… There seem sector based (az, range) biases for 270 -> 90o… 
you mention this in I250 ff, but Z looks relatively reasonable here. 
 
Response: We agree with the reviewer. In this sector, ZDR looks over corrected from 
attenuation, but Z looks relatively better. One hypothesis is both coefficients 0 and 1 used in 
the linear PhiDP are need be adjusted based on the DSD and DSR features. Comparing to  0, 
1 is more sensitive to the impact of DSD and DSR. 
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Abstract. A precipitation separation approach using
:
a
:
support vector machine method was developed and tested on a C-

band polarimetric
::::::
weather

:
radar located in Taiwan (RCMK). Different from some existing separation methods that require

:::::::
methods

::::::::
requiring a whole volume radar

::::
scan data, the proposed approach utilizes the polarimetric radar data from the lowest

::::::::
unblocked

:
tilt to classify precipitation echoes into either stratiform or convective type. Through a support vector machine

method, the
:::
The

:
inputs of radar reflectivity, differential reflectivity, and the separation index are utilized in the classification5

::::::::
integrated

::::
into

:::
the

:::::::::::
classification

:::::::
through

::
a
:::::::
support

:::::
vector

::::::::
machine

::::::::
algorithm. The feature vector and weight vector in the

support vector machine were optimized using well-classified training data. The proposed approach was tested with multiple

precipitation events including two widespread mixture of
:
a
:::::::::
widespread

::::::
mixed stratiform and convective events

::::
event, a tropical

typhoon precipitation event, and a stratiform precipitation event. In the evaluation, the results from the multi-radar-multi-

sensor (MRMS) precipitation classification approach
:::::::
algorithm

:
were used as the ground truth, and the performances from

:
.10

:::
The

::::::::::::
performances

::::
from

:::
the proposed approach were further compared with the approach using

::
the

:
separation index onlywith

different thresholds. It was found that the proposed method can accurately identify the convective cells from stratiform storms

with the radar data only from the lowest scanning tilt. It can
::::::
classify

:::
the

:::::::::
convective

::::
and

::::::::
stratiform

:::::::::::
precipitation,

::::
and produce

better results than using the separation index only.

1 Introduction15

Convective and stratiform precipitation systems exhibit significant differences
:::::::::::
precipitations

::::::
exhibit

::
a
:::::::::
significant

:::::::::
difference

in precipitation growth mechanisms and thermodynamic structures (e.g., Houghton, 1968; Houze, 1993, 1997). Generally,

convective precipitations are
:
a
::::::::::

convective
:::::::::::
precipitation

::
is

:
associated with strong and

::
but

:
small areal vertical air motion

(> 5 m s�1) , while stratiform precipitations are associated with weak and mesoscale updrafts/downdrafts (< 3 m s�1)

(Penide et al., 2013). Moreover, a convective system consists of large and dense raindrops generally delivers
:::::::::::::::::
(Penide et al., 2013)20

:
,
:::
and

:::::::
delivers

::
a
:
high rainfall rate (R) ; a stratiform precipitation, on

::::::::::::::::
(Anagnostou, 2004).

:::
On

:
the other hand,

::::::::
stratiform

::::::::::
precipitation

:
is associated with relative

:::::
weak

:::::::::::::::::
updrafts/downdrafts

::
(<

::
3
::
m
:::::

s�1)
::::
and

::::::::
relatively

:
low R(Anagnostou, 2004).

Accurately separating convective type from stratiform precipitations .
::::::::::

Classifying
::

a
:::::::::::
precipitation

::::
into

:::::
either

:::::::::
convective

:::
or

1



::::::::
stratiform

::::
type not only promotes the understanding of cloud physics but also enhances the

:::::::
accuracy

:::
of quantitative precipita-

tion estimation (QPE). Numerous precipitation classification algorithms
:::
For

:::::
these

::::::::
purposes,

::::::::
numerous

::::::::
methods using ground25

in situ measurements or satellite
::::::::::
observations

:
were developed during the past four decades (e.g., Leary and Jr., 1979; Adler

and Negri, 1988; Tokay and Short, 1996; Hong et al., 1999).

Ground-based weather radars, such as Weather Surveillance Radar, 1988, Doppler (WSR-88D), are currently used in severe

weather detection, hydrometeor classification, QPE, and other meteorological applications
::
all

:::::::
aspects

::
of

:::::::
weather

:::::::::
diagnosis

:::
and

:::::::
analysis. Precipitation classification methods were developed

:::::::::
algorithms using single- or dual-polarization radars

::::
were30

::::::::
developed

:
during the past three decades. For a single-polarization radar, developed classification algorithms mainly rely on

radar reflectivity (Z) and its derived variables (e.g., Steiner et al., 1995), (hereafter SHY95) (Biggerstaff and Listemaa, 2000; Anagnostou, 2004; Yang et al., 2013; Powell et al., 2016)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Biggerstaff and Listemaa, 2000; Anagnostou, 2004; Yang et al., 2013; Powell et al., 2016). For example, based on the study

from Steiner and Houze (1993),
:::::::::::::::::
Steiner et al. (1995)

:::::::
(hereafter

:
SHY95

:
) proposed a separation approach that utilizes the tex-

ture features derived from
:::
the radar reflectivity field. In this approach, a grid point in

:::
the Z field is identified as the convective35

center if its value is larger than 40 dBZ, or exceeds the average intensity taken over the surrounding background by specified

thresholds. Those grid points surrounding the convective centers are classified as convective area, and far regions are classified

as stratiform. During their experiments, Penide et al. (2013) found that SHY95 misclassified
:::
may

::::::::::
misclassify

:
those isolated

points embedded within stratiform precipitation or associated with low cloud-top height. Powell et al. (2016) modified
:::
the

SHY950s approach, and the new approach can identify shallow convection embedded within large stratiform regions, and those40

isolated shallow and weak convections. A neural network based convective-stratiform classification algorithm was developed

by Anagnostou (2004). It utilizes six variables
:::
Six

:::::::
variables

:::::
were

::::
used

::
in

:::
this

::::::::
approach as inputs including storm height, reflec-

tivity at 2 km elevation,
::
the

:
vertical gradient of reflectivity, the difference in height, the standard deviation of reflectivity, and

::
the

:
product of reflectivity and height. Similar variables are

::::
were

:
also used in the

:
a
:
fuzzy logic based classification approach

proposed by Yang et al. (2013). In these two approaches, a full volume of radar reflectivity field is needed to calculate variables45

such as the product of rain column top height reflectivity value at 2 km, and the vertically integrated liquid water content.

According to

::::::::
Although

::::
these

::::::
listed

:::::::::::
classification

:::::::::
algorithms

:::::
have

::::
been

:::::::::
developed

::::
and

::::::::
validated

:::
for

::::::
years,

:
a
::::

new
::::::

robust
:::::::::
algorithm

::
is

::::::::
motivated

:::
for

:::
the

::::::::
following

::::
two

:::::::
reasons.

::::
The

:::
first

::
is
::
to

::::::
utilize

::::
only

:::
the

::::
low

::
tilt

:::::
radar

::::
data

:::
for

::::::::::::
classification.

:::::::::
According

::
to

:::
the

U.S. Radar Operations Center (ROC), the WSR-88D radars are currently operated without updating a complete volume during50

each volume scan, especially during precipitation events. New radar scanning schemes are designed to reorganize the updating

order for a high frequency in low elevations and a less frequency for high elevations. Therefore,
::
An

:::::::::
alternative

:::::::
scanning

:::::::
scheme

::::::
enables

:::
the

:
WSR-88D radars are able to promptly capture the storm development for weather forecast and to obtain a more

accurate precipitation estimation. These new schemes include the automated volume scan evaluation and termination (AVSET),

supplemental adaptive intra-volume low-level scan (SAILS), the multiple elevation scan option for SAILS, and the mid-volume55

rescan of low-level elevations (MRLE). Under these new scanning schemes, the separation of stratiform/convective becomes
:
a

challenge for those algorithms require
:::::::
requiring

:
a full volume of radar data.
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Polarimetric radars transmit and receive electromagnetic waves along the horizontal and vertical directions, and therefore

can obtain extra information about hydrometers
::::
scan

::
of

:::::
data.

:::
The

::::::
second

::::::
reason

::
is
::
to
::::::

further
:::::::

explore
:::
the

::::::::::
applications

:::
of

:::
the

::::::::::
polarimetric

::::::::
variables.

::::::::::
Polarimetric

:::::::
weather

:::::
radars

::::
have

::::
been

::::
well

:::::::
applied

::
in

::::
radar

:::::
QPE,

:::::
severe

:::::::
weather

::::::::
detection,

:::::::::::
hydrometeor60

:::::::::::
classification,

:::
and

::::::::::::
microphysical

::::::::
retrievals

::::::::::::::::::::::::::::::::::
(Ryzhkov and Zrnic, 2019; Zhang, 2016).

:::::
Extra

::::::::::
information

:::::
about

:::::::::::::
hydrometeors’

size, shape, species, and orientation . A
::::
could

::
be

::::::::
extracted

:::::::
through

::::::::::
transmitting

:::
and

::::::::
receiving

::::::::::::::
electromagnetic

:::::
waves

:::::
along

:::
the

::::::::
horizontal

:::
and

:::::::
vertical

:::::::::
directions.

::::::::
Therefore,

:::
the

::::::::::
polarimetric

::::::::::::
measurements

::::
may

:::::
reveal

:::::
more

::::::::::::
precipitation’s

:::::::::::
microphysical

::::
and

:::::::
dynamic

:::::::::
properties.

:::::::
Inspired

::
by

:::::
these

:::::::
features,

:
a
:
C-band polarimetric radar precipitation separation approach was developed by

Bringi et al. (2009) (hereafter BAL), which classifies the precipitation into stratiform, convective and transition regions based65

on retrieved drop size distribution (DSD) characteristics. However, the performance of DSD-based approach depends on the

environment regime (Thompson et al., 2015). Strong
::::::::
However,

:
it
::::
was

:::::
found

::::
that

:::::
strong

:
stratiform echoes might have similar

DSDs to weak convective echoes and lead to wrong classification results (Powell et al., 2016).

In this work, a novel precipitation separation algorithm
::::
using

:::
the

:::::::::
separation

:::::
index

::::
with

::::
other

:::::
radar

:::::::
variables

:
was developed

and tested on a C-band polarimetric radar located in Taiwan. This approach classifies precipitations into stratiform or convective70

types using
:::
type

:::::
with a support vector machine (SVM) method. Different from some existing classification techniques that

utilize the whole volume
::::::
require

:
a
::::::

whole
:::::::
volume

::::
scan

:
of radar data, this new approach uses the unblocked data from the

lowest scanning tilt . The C-band polarimetric radar
:::::
lowest

:::::::::
unblocked

:::
tilt

:::
data

:::
in

:::
the

:::::::::
separation.

::
If

:::
the

::::::
lowest

:::
tilt

:
is
::::::::

partially

::
or

:::::::::
completely

:::::::
blocked,

::::
then

:::
the

::::
next

:::::::
adjacent

:::::::::
unblocked

:::
tilt

::
is

::::
used

:::::::
instead.

:::
The

::::::
major

::::::::
advantage

::
of

::::
this

::::::
method

::
is
::::
that

:
it
:
can

provide real-time classification results even it
:
if

:::
the

:::::
radar is operated under AVSET, SAILS, and MRLE scanning schemes,75

where the lowest tilt is the most
:::
low

::::
tilts

:::
are frequently scanned and updated. All the parameters used in the current approach

are trained from typical convective and stratiform precipitation events. This paper is organized as follows: Section 2 introduces

the radar features and the radar data processing; Section 3 proposes the classification using support vector machine;
::::::::
proposed

::::::
method

::::::::
including

:::::
radar

::::::::
variables

:::
and

::::::::::
processings,

:::
the

:::::
SVM

:::::::
method,

::::
and

:::
the

:::::::
training

:::::::
process.

:::
The

:
performance evaluation is

shown in Section 4, and a
::
3,

:::
and

:::
the discussion and summary are given in Section 5.

:
4.
:

80

2 Methodology
:::::::::::
Precipitation

::::::::::
Separation

:::::
With

:
a
::::::::
Support

::::::
Vector

::::::::
Machine

:::::::
Method

2.1 Radars and Joss-Waldvogel Disdrometers

In the current work, the SVM precipitation classification
::::::::
separation

:
approach was developed and validated on a C-band po-

larimetric radar (RCMK) located at Makung, Taiwan (Figure 1). The Weather Wing of the Chinese Air Force deployed this

radar and made the data available to the Central Weather Bureau (CWB) of Taiwan since 2009. Together with other three85

single-polarization S-band WSR-88D (RCCG, RCKT, and RCHL) and one dual-polarization S-band radar (RCWF), these five

radars provide real-time QPEs for
::::
QPE

::::::::
products

::
to CWB to support missions of flood monitoring and prediction, landslide

forecasts and water resource management. Operating with a wavelength of 5.291 cm, RCMK performs volume scans of 10

tilts (0.5�, 1.4�, 2.4�, 3.4�, 4.3�, 6.0�, 9.9�, 14.6�, 19.5�
:
, and 25�) in every 5 minutes with the range resolution of 500 m and

angular sampling of 1�.90
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In order to understand DSD features in Taiwan from convective and stratiform precipitations, total 4306 minutes DSD data

between 2011 to 2014 were used in the analysis as shown in section 2.2. The DSD data were collected by four impact-type

Joss-Waldvogel disdrometers (JWD) , and the locations of these four JWDs are shown in Figure 1. The measurement range and

temporal resolution of these JWDs are 0.359 mm ⇠ 5.373 mm and 1 minute, respectively
:::
The

:::::::
Central

::::::::
Mountain

:::::
Range

:::::::
(CMR)

::
of

::::::
Taiwan

::
is

:::
also

::::::
shown

::
in

:::::::
Figure1,

::::::
which

:::::
poses

:
a
:::::
major

::::::::
challenge

:::
for

:::::
radar

:::::
based

:::::::
products.

::::::
Radars

:::::::
located

::
in

:::::::
complex

::::::
terrain95

::
are

::::::
prone

::
to

:::::
partial

::
or
:::::

total
:::::::::
blockages,

:::::
which

:::::
cause

::::
data

::::
from

:::
the

::::
low

::::::::
elevation

:::::
angles

:::::
(EA)

::
to

::
be

::::::::::
unavailable

::
or

:::::::::::
problematic.

::::::::
Blockage

::::
maps

:::
of

::::::
RCMK

:::
are

:::::::::
illustrated

::
in

::::::
Figure

::
2.

:::::
Since

:::::
there

:::
are

:::::
severe

:::::::::
blockages

::
at

:::
the

::::
0.5�

:::
for

:::::::
RCMK,

::::
data

:::::
from

:::
the

:::
1.4�

::::
EA

:
is
:::::
used

::
in

:::
the

::::::::
algorithm

:::::::::::
development.

2.1 Input Polarimetric Radar Variables
:::::::::::
polarimetric

::::::
radar

::::::::
variables and Preprocess

:::::::::::
preprocesses

:

The inputs of
::::
Three

::::::::
measured

:::
or

::::::
derived

:::::
radar

::::::::
variables

:::
are

::::::::
proposed

::
as

::::::
inputs

::
to the SVM approachare three variables: Z,100

differential reflectivity fields (ZDR), and separation index (i). In most of the
::::::::::
precipitation classification approaches, Z is used

as the input because reflectivities from convective systems
::
one

:::
of

:::
the

::::::
inputs

:::::::
because

:::::::::
reflectivity

::::
from

::::::::::
convective generally

show higher values than from stratiform systems. In the approach developed by SHY95
::::
type.

:::
For

:::::::
example, a radar echo

:
, with

the reflectivity of 40 dBZ and above,
:
is automatically classified as convective type . Stratiform precipitations generally consist

of condense of small to median raindrops, which generally produce a low value of ZDR. The convective precipitation , on the105

other hand, may produce large
:
in
:::
the

::::::::
approach

:::::::::
developed

::
by

:::::::
SHY95.

:

:::::::::
Differential

::::::::::
reflectivity,

:::::
which

::
is

::::::
highly

::::::
related

::
to

::::::::
raindrop’s

:::::
mass

:::::::
weighted

:::::
mean

::::::::
diameter

:::::
(Dm),

::
is

:::::::
another

::::
good

::::::::
indicator

::
of

::::::::::
precipitation

:::::
type.

::
It

:::
was

:::::
found

:::
the

::::::
values

::
of

::::
Dm::

in
:::::::::
stratiform

:::
and

:::::::::
convective

:::::::::::
precipitation

::::::::
generally

:::
are

:::::
within

:::::
1-1.9

::::
mm

:::
and

:::::
above

:::
1.9

::::
mm,

::::::::::
respectively

:::::::::::::::::
(Chang et al., 2009).

::::::
Higher

:
ZDR because they consist of large and oblate raindrops

:::::
values

:::
are

:::::::
expected

::::
from

:::::::::
convective

::::
than

:::::
from

::::::::
stratiform

:::::::::::
precipitation.

:::::::::
Therefore,

:::
the

:::::
ZDR ::::

field
:
is
:::::
used

::
as

::::::
another

:::::
input

::
of

:::
the

::::::::
proposed110

:::::::
approach.

For short wavelength radars such as C-band or X-band radars, the Z and ZDR fields may be significant attenuated when

the
::::::::::
significantly

:::::::::
attenuated

:::::
when

:
radar beam propagates through heavy precipitation

::::::
regions. Both Z and ZDR fields need

to be corrected from attenuation before applied in the precipitation classification and QPE. Different attenuation correction

methods were proposed using the differential phase (�DP ) measurement such as linearly approach,
:::
the

:::::
linear

::::
�DP:::::::::

approach,115

::
the

::::::::
standard ZPHI method, and

::
the

:
iterative ZPHI method (e.g., Jameson, 1992; Carey et al., 2000; Testud et al., 2000; Park

et al., 2005). Because of its simplicity and easy implementation in a real-time system, the linear
::::
�DP method was applied in

the current work.

Z(r) = Z
0(r)+↵(�DP (r)��DP (0)) (1a)

ZDR(r) = Z
0
DR

(r)+�(�DP (r)��DP (0)) (1b)120

where Z 0(r) (Z 0
DR

(r)) is the observed reflectivity (differential reflectivity) at range r; Z(r) (ZDR(r)) is the corrected value;

�DP (0) is the system value; �DP (r) is the smoothed (by FIR filter) differential phase at range r. The attenuation correction

coefficients ↵ and � depend on DSD, drop size shape relations (DSR), and temperature. The typical range of ↵ (�) is found
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0.06⇠0.15 (0.01⇠0.03) dB deg�1 for C-band radars (e.g., Carey et al., 2000; Vulpiani et al., 2012). Following the work from

Wang et al. (2014), optimal coefficients ↵ and � in Taiwan are 0.088 dB deg�1 and 0.02 dB deg�1, respectively. The Z and125

ZDR fields are further smoothed with a 3 (azimuthal) by 3 (range) moving window function after corrected from attenuation.

:::::
Other

:::::
quality

:::::::
control

:::::
issues,

::::::::
including

::::::::::
calibration,

:::::::::
reflectivity

::::::
vertical

::::::
profile,

:::
and

::::::
ground

::::::
clutter

:::::::
removal,

::::
were

::::
also

:::::::::
considered

::
in

:::
this

:::::
work.

:::::
Since

:::
this

:::::
radar

::
is

::::
used

::
in

:::
the

::::::::
real-time

::::::::::
quantitative

::::::::::
precipitation

::::::::::
estimation,

:::
the

:::::
biases

::
of

::
Z
::::

and
::::
ZDR::::::

should
:::
be

:::::
within

::
1

::::
dBZ,

::::
and

:::
0.1

::::
dB,

::::::::::
respectively.

::::
The

::::
data

::::::
quality

::
of

:::::::
RCMK

::::
was

::::::::
examined

:::::::
through

::::::::
validating

::::
the

::::
QPE

:::::::::::
performance

::
in

:::::::
different

::::::
works

::::::::::::::::::::::::
(e.g., Wang et al., 2013, 2014)

:
.
:::::::::
Therefore,

:::
the

:::::::::
calibration

::::
bias

:::
of

::::::
RCMK

::::::
should

:::
be

:::::
within

::::
the

:::::::::
reasonable130

:::::
range.

::
A

::::::
vertical

::::::
profile

::
of

:::::::::
reflectivity

::::::
(VPR)

::::::::
correction

::
is
::::::::
generally

::::::
needed

:::
on

:::
the

:::::::::
reflectivity

::::
field

::
to

::::::
reduce

:::
the

:::::::::::
measurement

:::::
biases

:::::::
because

::
of

:::
the

:::::::
melting

::::
layer

:::::::::::::::::
(Zhang et al., 2011).

:::::
Given

:::
the

::::
fact

::::
that

::::
1.4�

:::::::
elevation

:::::
angle

::
is
::::
used

::::::
within

:::
the

:::::::::
maximum

::::
range

:::
of

:::
150

::::
km,

::::
and

:::
the

::::::
melting

:::::
layer

::
is

::::::
usually

::::::
around

::
5
:::
km

::
in
:::::::

Taiwan,
:::

the
:::::

radar
::::
data

::
is

::::
well

::::::
below

:::
the

::::::
melting

:::::
layer.

:::
In

:::::::
addition,

::::::::::
considering

:::
the

::::::
vertical

::::::
profile

::
of

:::::::::
differential

:::::::::
reflectivity

::
is

:::
not

::::
well

::::::
studied

::
in

:::
the

::::::
current

:::::
stage,

::
no

::::::
vertical

::::::::::
corrections

::
are

:::::::
applied

::
to

:::::
fields

::
of

::
Z
::::
and

:::::
ZDR.

:::::::
Ground

:::::
clutter

::
is
::::::::
typically

:::::::::
associated

::::
with

:
a
::::
low

:::::::::
correlation

:::::::::
coefficient

::::::
(⇢HV ),

:::
the

:::::
⇢HV135

:::::::
threshold

:::::
used

::
in

:::
this

:::::
work

:
is
::::
0.9,

:::::
which

::::
can

:::::::::
effectively

::::::
remove

:::::
those

::::::::::::::::
non-meteorological

::::::
echoes

::::
such

::
as

::::::
ground

::::::
clutter.

:

Using the separation index i to identify convective precipitation from stratiform was proposed initially by BAL using a

C-band polarimetric radar. According to BAL,
::::
from

:::::::::
stratiform

:::::::::::
precipitation

::::
was

:::::::
initially

::::::::
proposed

:::
by

:::::
BAL,

:::::
where

:
i was

calculated under a normalized gamma DSD assumption:

i= log10(N
est

W
)� log10(N

sep

W
) (2)140

log10(N
sep

W
) =�1.6D0 +6.3 (3)

where N
est

W
is the estimated NW :::::::::

(normalized
:::::::
number

::::::::::::
concentration)

:
from observed Z and ZDR:

,
:::
and

::
is

::::::::
calculated

:
as:

N
est

W
= Z/0.056D7.319

0 (4)

::
In

:::::::
Equation

::
4,
:::
D0::

is
:
the median volume diameter D0 is

:::
and

:::
can

:::
be calculated as.145

D0 = 0.0203Z4
DR

� 0.1488Z3
DR

+0.2209Z2
DR

+0.5571ZDR +0.801; �0.5 ZDR < 1.25

=�0.0355Z3
DR

� 0.3021Z2
DR

+1.0556ZDR +0.6844; 1.25 ZDR < 5

D0 = 0.0203Z4
DR

� 0.1488Z3
DR

+0.2209Z2
DR

+0.5571ZDR +0.801; �0.5 ZDR < 1.25
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(5a)

=�0.0355Z3
DR

� 0.3021Z2
DR

+1.0556ZDR +0.6844; 1.25 ZDR < 5
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(5b)

The units of ZDR, Z, Nw, and D0 are dB, mm6m�3, mm�1m�3, and mm, respectively. The positive and negative values150

of index i indicate convective and stratiform rain, respectively, and |i| < 0.1 indicates transition regions (Penide et al., 2013).

BAL pointed out that index i worked well in most of the cases in their study; however, incorrect classification results are likely

obtained for low Z and high ZDR cases in some convective precipitations.
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2.2
::::

Drop
::::
size

::::::::::
distribution

::::
and

::::
drop

::::::
shape

:::::::
relation

It should be noted that the relations between Z
:
i, Nw, and D0 were derived using the DSD data collected in Darwin, Australia.155

Coefficients in Equations 2⇠5 need be adjusted according to different frequency radars
:::
the

::::
radar

:::::::::
frequency or/and other DSD

and DSR features from the specific location
:::::::::::::::::::
(Thompson et al., 2015). In the current work, the separation index i

:
is

:::::::
directly

derived using Equations 2⇠5 is directly used as one of the input variables
::::::
without

::::::
further

:::::::::
adjustment. It was shown by Wang

et al. (2013) that DSD and DSR features in Taiwan is
:::
are very similar to those measured from Darwin, Australia. Similar

R(KDP ) relationships were obtained using data collected from these two locations. Coefficients derived by BAL could be160

directly used in Taiwan without further modification. To verify this assumption, Nw and D0 were calculated using DSD data

collected by four JWDs
::::::::::
impact-type

:::::::::::::
Joss-Waldvogel

::::::::::
disdrometers

::::::
(JWD)

:
located in Taiwan (Figure 1). Total

:::
The

:::::::::::
measurement

::::
range

::::
and

::::::::
temporal

::::::::
resolution

::
of

:::::
these

::::::
JWDs

:::
are

:::::
0.359

:::
mm

:::
⇠

:::::
5.373

:::
mm

::::
and

:
1
:::::::
minute,

:::::::::::
respectively.

::
A

::::
total

::
of

:
4306-minute

data from 2011⇠2014 are used in Nw and D0 calculation following the approach described in Bringi et al. (2003). Similar to

the work presented in BAL, the distribution of i along median volume diameter D0 is shown in Figure 2, where the (log10Nw,165

D0) pairs from stratiform and convective types are represented with gray circles and black stars, respectively. Although the

relation described in Equation 3 can separate most stratiform from convective types
:::
type, a large number of points are still

classified incorrectly. Therefore, the single separation index is not sufficient in the precipitation separation, and other variables

such as Z and ZDR may be used as the supplement
::::::::::
supplements.

3 Support Vector Machines (SVM) Method170

2.1 Introduction of
:::::::
Support

::::::
vector

::::::::
machines

:
(SVM

:
)
:::::::
method

2.1.1
:::::::::::
Introduction

::
of

:::::
SVM

:::::::
Machine

:::::::
learning

:::::::::
algorithms

:::::
based

::
on

:::::::::::::
meteorological

::::
radar

::::
data

::::
were

::::
well

::::::::
developed

::::::
during

:::
the

:::
past

::::
two

::::::
decades

::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Capozzi et al., 2018; T. et al., 2019; Yen et al., 2019)

:
. Support vector machine (SVM) can be viewed as a kernel-based machine learning approach, which nonlinearly maps the data

from
:::
the

::::::::::::
low-dimension

:
input space to a high-dimension feature space, and then linearly maps to a binary output space (Burges,175

1998). Given a set of training samples, the SVM constructs an optimal hyperplane, which maximizes the margin of separation

between positive and negative examples (Haykin, 2011). Specifically, given a set of training data {(Xi,yi)}Ni=1, the goal is to

find the optimal weights vector W and a bias b such that

yi(W
T
Xi + b)� 1 i= 1,2, ....,N (6)

where Xi 2 Rm is the input vector, m is the input variable dimension (m = 3 in this work), N is the number of training180

samples, and yi is an
::
the

:
output with the value of +1 or �1 that represents convective or stratiform, respectively. The particular

data points (Xi,yi) are called support vector when Equation 6 is satisfied with the equality sign. The optimum weights vector

W and bias b can be obtained through solving the Lagrangian function with the minimum cost function (Haykin, 2011).
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Since the SVM can be viewed as a kernel machine, finding the optimal weight vector and bias in Equation 6 can be alterna-

tively solved through the recursive least square estimations of:185

NsX

i=1

↵iyik(X,Xi) = 0 (7)

where Ns is the number of support vectors, ↵i is the Lagrange multipliers, and k(X,Xi) is the Mercer kernel defined as:

k(X,Xi) = �T (Xi)�(X) = exp

✓
� 1

2�2
||X �Xi||2

◆
(8)

With the solved {↵i}Ni=1, the SVM calculate the classification results with new input data Z 2 Rm as:

f(Z) = sign[

"
NsX

i=1

↵iyi�
T (Xi)�(Z)

#
(9)190

When f(Z) = 1, the output is classified as convective, otherwise is classified as stratiform.

2.2 Training of the SVM

2.1.1
:::::::
Training

:::
of

:::
the

:::::
SVM

In the SVM approach, the weight vector and bias in Equation 6 need to be optimized through a recursive least square estimation

using the training dataset
:::::::
training

::::
data. Since the training data play a critical role in the SVM approach, Z, ZDR and i from195

convective and stratiform precipitation events were carefully examined through three steps. Firstly, the training data is checked

following some
:::
was

:::::::
checked

::::::::
following

:
general classification principles. For example, training data from convective precipita-

tion is generally associated with relative strong reflectivity , no apparent bight band signature,
::::::::
relatively

:::::
strong

:::::::::
reflectivity

:
and

high vertically integrated liquid (VIL). The precipitation type is then
:::
On

:::
the

::::
other

:::::
hand,

::::::::
stratiform

::::::::::::
precipitations

:::
are

::::::::
generally

::::::::
associated

:::::
with

:
a
:::::::::
prominent

::::::
bright

::::
band

:::::::::
signature.

::::
The

:::::::
melting

:::::::::::
hydrometeors

::::::
within

:::
the

::::::
bright

:::::
band

:::::::
increase

::::::::::
backscatter200

:::::
during

:::::::::
stratiform

:::::::
rainfall,

:::::
which

::::
can

::::::::::
significantly

::::::::
enhance

::::
radar

::::::::::
reflectivity.

::::
The

::::::
bright

::::
band

:::::::
feature

::
is

:::
one

:::
of

:::
the

:::::::
obvious

::::::::
indicators

::
of

::::::::
stratiform

:::::::::::
precipitation.

::::::
Bright

::::
band

::::::::
signature

::::::::
normally

:::
can

:::
be

:::::::
observed

:::::
from

::::::::
relatively

::::
high

::::
EAs

::::
(such

:::
as

:::::
above

:::::
9.9�).

::::
From

::::
low

::::
EAs,

:::::::
because

::
of

:::
the

::::::::::
combination

::
of

:::::
radar

::::
beam

::::::::::
broadening

:::
and

::::
low

::::
slant

:::::
angle,

:::
the

:::::
bright

::::
band

::::::
feature

:::::::
spreads

:::
into

:::::
more

::::
gates

::::
and

:::::::
becomes

:::
not

::::::::
apparent.

:::::::::
Therefore,

::
in
::::
this

:::::
work,

:::
the

:::::
bright

:::::
band

::::::
feature

::::
from

::::
high

::::::::
elevation

::::::
angles

::
is

::::
only

::::
used

::
in

::::::
training

::::
data

::::::::
selection

:::
but

:::
not

::::
used

::
as

::::
one

::
of

:::
the

::::::
inputs.

::::::::
Secondly,

:::
the

::::::::::
precipitation

::::
type

::
is
:
verified by ground observa-205

tionsuch as gauge measurements and
:
,
::::
such

::
as

:
ground severe storm observations. The precipitation types were finally

::::::
reports.

::::::
Thirdly,

:::
the

:::::::::::
precipitation

::::
type

::
is
:
confirmed by the Multi-Radar-Multi-Sensor (MRMS) precipitation classification algorithm

implemented in Taiwan (Zhang et al., 2011, 2016). In this MRMS classification approach, a 3-dimensional
:::::::::::::::
three-dimensional

radar reflectivity field was mosaicked from 4 S-band single polarization
:::::::::::::::
single-polarization

:
radars (Figure 1), and the

:::
The

composite reflectivity (CREF) together with other fields
:::
and

:::::
other

::::::::::::
measurements

:
such as temperature and moisture fields210

were then used in the surface precipitation classification (Zhang et al., 2016). Seven different categories of warm stratiform,

cold stratiform, convective, tropical stratiform, tropical convective, hail and snow are outputs of the MRMS precipitations
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classification algorithm (Zhang et al., 2016). Based on the classification results, MRMS utilizes
::::::
chooses different R(Z) rela-

tions in the rainfall rate estimation. The performance of MRMS has been thoroughly evaluated for years for the quantitative

precipitation estimation, flash flood monitoring, severe weather,
:
and aviation weather surveillance (e.g., Gourley et al., 2016;215

Smith et al., 2016), and also
:
.
:::
The

::::::::
products

:::
are used as the benchmark and/or ground truth in many studies (e.g., Grecu et al.,

2016; Skofronick-Jackson and Coauthors, 2017). Therefore, the MRMS precipitation classification results were used as the

ground truth
::
It

:::::
should

:::
be

:::::
noted

::::
that,

::
on

:::
the

:::::
other

:::::
hand,

::
the

:::::::
MRMS

::::
also

:::::
shows

:::::::::
limitations

:::::
since

:
it
::::
only

::::
uses

::::::::::::::::
single-polarization

:::::::
variables

::
to

:::::::::
determine

:::
the

:::::::::::
precipitation

::::
type.

:::
At

:::
the

::::::
current

:::::
stage,

:::
the

:::::::
MRMS

::::::::::
precipitation

:::::::::::
classification

::
is
:::::::::
considered

:::
as

:::
the

:::::::::
appropriate

::::::::::
benchmark in the training and validation of the proposed algorithm. Moreover, since the MRMS classification220

results are
:
is

:
a
:::::::::
mosaicked

:::::::
product

:
derived from 4 S-band radars, it can be viewed as an independent reference.

Training data for convective type are
:::::::::
Convective

:::
type

:::::::
training

::::
data

::
is mainly from a strong convective precipitation event on

23 July 2014. This thunderstorm, classified as convective precipitation by MRMS, was associated with strong updrafts/downdrafts

and caused an aircraft crash on the airport of Makung at 1106 UTC. Total 1-hour data
:::
The

:::::
squall

::::
line

:::::::
features

:::
can

:::
be

::::::
clearly

::::::::
identified

::::
from

:::
this

::::::
storm.

:::::
Radar

::::
data

:::::::
collected

:::::
from

::::
1030

::
to

:::::
1130

::::
UTC

:
were used as the convective type training data, and the225

training data are associated with .
::::
The

:::::::
training

::::
data

:::::::
selection

:::::::
follows

:::
the

::::::
criteria

:::
of Z > 20 dBZ, and correlation coefficient

(⇢HV )> 0.98
:::::::::::::
(Kumjian, 2013). The stratiform type data are from a mixture of stratiform /convective precipitation even

:::::
mixed

::::::::
stratiform

:::
and

:::::::::
convective

:::::::::::
precipitation

:::::
event on 30 August 2011, and only those data identified as a stratiform type by MRMS

are used in training. Total
::
A

::::
total

::
of 17281 sets of data (15144 sets of stratiform, and 2137 sets of convective) are used in the

training process. The
:
In

::::
this

:::::
work,

:::
one

::::
data

:::
set

::
is

::::::
defined

:::
as

:::
the

:::::::
variables

:::::
from

:
a
::::
gate

::
in

:::::
terms

::
of

:::::
range

::::
and

::::::::
azimuthal

::::::
angle.230

::
Be

:::::
more

:::::::
specific,

:
a
:::
set

::
of

:::::::
training

::::
data

:::::
means

::
a
:::::
vector

::
of

:
[
::::::
Z(a,r)

:::::::::
ZDR(a,r)::::::

i(a,r)
::::::
d(a,r)]

:
,
:::::
where

::
a

:::
and

::
r

::::::
indicate

:::::::::
azimuthal

::::
angle

::::
and

:::::
range,

:::::::::::
respectively.

::::
The

:::::::
variable

:
d
::
is
:::
the

:::::::
ground

::::
truth

:::::
(with

:
1
::::

and
::
-1

:::::::::
represents

:::::::::
convective

::::
and

:::::::::
stratiform),

::::::
which

:
is
:::
as

:::
the

::::::
desired

::::::::
response

::
in

:::
the

::::::
training

::::::::
process.

:::
The

:
number of support vectors is selected as 1000 in the current work, and

the training process is considered as completed when the root-mean-square error reaches a stable value. It should be noted that

with more support vectors, the SVM algorithm should have better performance but with higher computationcost
::
In

:::
the

:::::
SVM235

::::::::
approach,

:::
the

::::::
original

::::::::::::::
three-dimension

::::
input

:::::
space

::::::::::
nonlinearly

::::
maps

::
to

::
a

:::::::::::::
1000-dimension

::::::
feature

:::::
space,

::::
and

::::
then

::::::
linearly

:::::
maps

::
to

:
a
::::::
binary

:::::
output

:::::
space

::::::::::::
(Burges, 1998)

:
.
::::
The

:::::
higher

:::::::::
dimension

::::::
feature

:::::
space

:::::::::
potentially

:::::::
captures

:::::
more

::::
input

::::::::
variables

:::::::
features

::::
with

:::::
higher

:::::::::::
computation

::::
cost.

:::::::::
Generally,

:::::
after

:::
the

:::::::
number

::
of

:::::::
support

:::::
vector

:::::::
reaches

:::::
some

:::::::
number,

:::
the

:::::::::::
enhancement

:::
in

:::
the

::::::
SVM’s

::::::::::
performance

::::::::
approach

::::::::
becomes

:::::
slight.

:::::
There

::
is

::
a

::::::
balance

:::::::
between

::::::::
accuracy

:::
and

:::::::::::
computation. In the current work, the

numbers
:::::::
number of support vectors were tested at

:::
was

:::::
tested

::::
with

::
a
:::::
value

::
of 500, 750, 1000, 2000, and 5000, and

::::
5000.

::::
The240

:::::
testing

::
of
:
1000

::::::
support

:::::::
vectors can produce less than 5% error with reasonable computation time.

::
As

:::
the

::::::::
prototype

:::::::::
algorithm,

::
the

:::::::
number

::
of

:::::::
support

::::::
vectors

::
is

:::::::
selected

::
as

::::
1000

::
in
:::
the

:::::::
current

:::::
work.
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3 Performance Evaluation

3.1 Description of the experiments

The performance of the proposed approach was validated with four
::::
three

:
precipitation events from 2009 to 2012. These four245

:::::
2011.

:::::
These

::::
three

:
precipitation events include one stratiform event, one strong tropical precipitationevent, and two events of

the mixture of
:::::::::::
precipitation,

::::
one

::::::
intense

:::::::
tropical

:::::::::::
precipitation,

::::
and

:::
one

::::::
mixed

:
convective and stratiform

::::::::::
precipitation. Two

experiments based on the BAL approach with different thresholds (i.e., BAL0 and BAL�0.5) were also carried out in the

evaluation. In these two experiments, the separation index i from each radar gate is first calculated using Equations 2⇠5, and

thresholds of T0 = 0 and -0.5 are then used to separate convective type from stratiform type. A pixel
:::
gate

:
is classified as250

convective if i is larger than T0, and as stratiform otherwise. This work aims at developing
:
to
:::::::
develop

:
a complementary method

using separation index i together with
:::
and other variables to separate convective from stratiform type. The proposed SVM and

BAL methods both can classify the precipitation using the lowest tilt radar data only, which is suitable for fast scanning and

quick updated purpose
::::::
quickly

:::::::
updated

:::::::
purposes. Other classification approaches as introduced in section 1 were not examined

in the current work, because they require the data from multiple elevation angles.255

The MRMS classification products
:
In

:::
the

::::::::::
evaluation,

::::
three

::::::::
statistical

::::::
scores

::
of

::::::::::
probability

::
of

::::::::
detection

::::::
(POD),

:::::
false

:::::
alarm

:::
rate

::::::
(FAR),

::::
and

::::::
critical

::::::
success

:::::
index

:::::
(CSI)

:::
are

::::
first

:::::
used,

:::
and

::::::
MRMS

:::::::::::
classification

::::::
results

:
are used as the reference “ground

truth” in the evaluation. Because the MRMS
:::::::::
calculation.

:

POD =
hit

hit+miss
::::::::::::::::

(10)

260

FAR=
false

hit+ false
:::::::::::::::::

(11)

CSI =
hit

hit+ false+miss
::::::::::::::::::::::

(12)

:::::
where

:::::
“hit,”

:::::::
“false,”

:::
and

:::::::
“miss”

:::
are

::::::
defined

:::
as

::
a

:::::
radar

::::
gate

::::::::
classified

::
as

::::::::::
convective

::::
type

:::
by

::::::
MRMS

::::
and

:::
the

:::::::::
evaluated

:::::::
approach

:::::::::::::
simultaneously,

:::
by

:::
the

::::::::
evaluated

::::::::
approach

:::::
only,

:::
and

:::
by

:::::::
MRMS

::::
only,

:::::::::::
respectively.

::::::::
Although

:::::
these

::::::
scores

:::
are

::::
well265

::::
used

::
in

::::::::
statistical

:::::::
analysis,

:::
two

::::::
factors

:::::
make

::
it

::::::::
necessary

::
to

::::::::
introduce

:::
one

:::::
more

:::::::
criterion

::
in

:::
the

:::::::::
evaluation.

:::::
First,

::::::
MRMS

:
results

are derived using the mosaicked field from four S-band single-polarization radars, the coverage and time stamp are different

from the result of the single radar RCMK . The classification
:::
and

:::
the

:::::::::::
classification

::::::
results

:::
are

::::::::
produced

:::::
every

::
10

::::::::
minutes.

:::
On

::
the

:::::
other

:::::
hand,

:::::
BAL0

:
,
:::::::::
BAL�0.5,

:::
and

:::::
SVM

:::::::
generate

:::::::::::
classification

::::::
results

::::::::
whenever

::::::
RCMK

:::::::::
completes

:
a
::::::
whole

::::
scan.

::::
The

::::
time

::::::::
difference

:::::::
between

:
results from RCMK (i.e., BAL0 , BAL�0.5

:
, and SVM) and MRMS could be different as large as 5 minutesin270

time stamps. Given the fact that the convective storms
:
.
::::::
Second,

::
a
:::::::::
convective

::::::
storm’s

:
size, intensity, and cells locations could

change significantly during a 5-minute period, it is not feasible to evaluate the performance using the
::::
short

::::::
period.

:::::::::
Therefore,
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::::
these

:::::
three pixel-to-pixel evaluation criteria of the possibility of detection (POD) and false alarm rate (FAR). We introduce a

:::::
based

::::::::
evaluation

::::::
scores

::::::
cannot

:::::
really

::::::
reflect

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
proposed

::::::::
approach.

:::
As

::
a

::::::::::
supplement,

:
a
::::::

whole
::::::::
coverage

convective ratio (RCS) to evaluate the performance qualitatively:
:
is

:::::::::
introduced

::
in

:::
the

::::::
current

:::::
work:

:
275

R
CS =

N
con

N con +Nstr

N
con

N con +Nstr

:::::::::::

⇥ 100% (13)

Where N con and N
str are the total pixel numbers of convective and stratiform types

:::::
within

:::
the

:::::::
coverage, respectively.

:::::::
Together

::::
with

::::
CSI,

::::
POD

:::
and

:::::
FAR,

:::::
these

::::
four

:::::
scores

:::
are

::::
used

::
in

:::
the

::::::::::
performance

:::::::::
qualitative

:::::::::
validation.

:
The evaluation results are shown

in the following sections, and the overall performances of RCS from the evaluation cases are presented in Table 1. .
:

3.2 Experiment results280

3.2
::::::::::

Experiment
::::::
results

3.2.1 Widespread Mixtures of Stratiform
:::::
mixed

:::::::::
stratiform

:
and Convective

::::::::
convective

:::::::::::::
precipitations

The performance of the proposed approach was first validated with two widespread mixture of
:::
one

::::::::::
widespread stratiform and

convective precipitation events from
:::::
mixed

:::::::::::
precipitation

:::::
event

:::
on 30 August 2011

:
, and 14 June 2012. For these two cases,

24-hour data (0000 UTC⇠2400 UTC) were used in the evaluation. The
:::::::::::
Classification results from the

:::::::
proposed

:::::
SVM

:::::
were285

::::::::
calculated

::::
with

::::
the

::::::
trained

::::::
weight

::::::
vector

:::
and

::::::
biases,

::::
and

::::::
results

:::::
from

:::
the

:
BAL approach (BAL0 and BAL�0.5) were also

calculated
::
for

:::
the

::::::::::
comparison

:::::::
purpose. It should be noted that the threshold of -0.5 is

::::
much

:
lower than the value suggested by

BAL, and more pixels will be classified as convective by BAL�0.5. The classification results from the proposed SVM were

calculated using the trained weight vector and biases, and the convective ratios from MRMS, SVM, BAL0, and BAL�0.5 were

calculated using Equation 10.290

The time series plots of RCS are
::::
may

:::::::
classify

::::
more

::::::::::::
precipitations

::
as

:::::::::
convective

::::
type.

:

:::
The

::::
time

:::::
series

::
of

:::::
R

CS

:::
(A),

::::
CSI

::::
(B),

::::
FOD

::::
(C),

:::
and

::::
FAR

:::
(D)

:::
are

:::::::::
calculated

:::::
using

::::::::
Equations

::::::
10⇠13

:::
and

:
shown in Figure 3

:
4,

where results from 30 August 2011 and 14 June 2012 are shown on panel “a” and “b”, and the RCS from MRMS, SVM, BAL0,

and BAL�0.5 are presented by thick solid, thick dashed, thin solid and thin dashed
:::::
black,

:::
red,

:::::
blue,

:::
and

:::::
green lines, respectively.

In general, BAL
:::::
When

:::
the

:::::::
MRMS

::::::
results

:::
are

:::::::
applied

::
as

:::
the

:::::::
ground

:::::
truth,

:::::
BAL0

:::::::::
obviously

::::::::
classifies

:::::
more

::::::::::
precipitation

:::
as295

::::::::
stratiform

::::
type

::::::
during

:::
this

:::::::
24-hour

::::::
period.

::::
The

::::
time

:::::
series

:::
of

::::
R

CS

:::::
from

:::::
BAL0

:::
are

:::::
much

:::::
lower

::::
than

:::::
other

:::::
three

::::::::::
approaches.

::::
BAL�0.5 classifies more pixels as convective than BAL0 as expectedfor both cases, and ,

:::
and

:::
the

:::::
R

CS

:::::
scores

:::
are

:::::
much

::::::
higher

:::
than

::::::
BAL0.

::::
The

::::::::
proposed

:
SVM shows the most similar results

::::
R

CS

::::::
scores

:
to MRMS comparing to BAL approaches. For

the 30 August 2011 case (Figure 3a), if the MRMS results are considered as the ground truth, BAL0 shows obvious under

classification of convective type during this 24-hour period, but BAL�0.5 shows better performance. On the other hand,
:::::
Since300

::
the

:
BAL�0.5

::::
uses

:
a
::::
very

::::
low

:::::::::
threshold,

:
it
:
classifies more pixels as a convective typethan MRMS in the 14 June 2012 case

(Figure 3b), but the results from BAL0 are more consistent with MRMSoutputs. The overall
:::::::::
convective

::::
type,

:::
and

:::
the

::::::::
obtained

10



R
CS from MRMS, SVM, BAL0,

:::::
scores

:::
are

:::::
higher

::::
than

:::::::
MRMS.

::
In

::::
term

::
of

::::
CSI,

:::::
POD,

::::
and

::::
FAR,

:::::
SVM

:
and BAL�0.5 are shown

in Table 1.
::::
show

::::::
similar

::::::
results,

:::
but

::::::
BAL0

::::
show

:::::::::
apparently

::::::
worse

:::::::::::
performance.

To better understand the performance of each approach, the classification results and radar variables (Z, ZDR, and i) from305

two distinct moments were
:::
are examined and shown in Figures 4

:
5⇠7. Classification

:::::
Figure

:
5
::::::
shows

:::
the

:::::::::::
classification

:
results

from 0303 UTC 30 August 2011were first shown in Figure 4, where BAL0, BAL�0.5, SVM and MRMS are shown in panel

‘a
::
the

:::::
panel

::
‘A’, ‘b

:
B’, ‘c

::
C’, and ‘d

:
D’, respectively. The time stamp for

:::
the MRMS result is 0300 UTCand the time difference

from the ,
::::
and

:::::
about

:
3
:::::::

minutes
::::::

earlier
::::
than

:::
the

:
other three approachesis about 3 mins. These three input variables of SVM

at 0303 UTC are shown in Figure 5
:
6, where Z, ZDR, and i are presented in panel ‘a

:
A’, ‘b

:
B’, and ‘c

:
C’. From Figures 3 and310

4
:::
and

:
5, it could be found that the R

CS from MRMS, SVM, and BAL�0.5 show similar value
:::::
values, but RCS from BAL0

is obviously
::::::::
distinctly

:
low. Within the black

::
red

:
circle of Figure 5

:
6, the averages of Z and ZDR both show relatively large

values (Z > 36 dBZ and ZDR > 0.75 dB), this is a clear indication of convective type precipitation. Both SVM and BAL�0.5

classify most of the area within the black
:::
red circle as convective, and this result is consistent with the MRMS result. Since the

separation indexes within the black circle are below or slightly higher than 0, most of the area is classified as stratiform type315

::
by

:::::
BAL0. For this moment, threshold �0.5 shows better performance than 0.

Figure 6 shows the
:
7
::::::
shows

::::::
another

:::::::
example

:::
of classification results from SVM, BAL0, BAL

::::
0650

:::::
UTC.

:::
At

:::
this

::::::::
moment,

:::::::
although

:::::
SVM

:::
and

:::::
BAL�0.5 (0801 UTC) and MRMS (0800 UTC)on 14 June 2012. In this case, MRMS, SVM, BAL0 show

similar performance in general, but BAL�0.5 shows visible over classification of convective cells. The
:::::::
produce

::::::
similar

::::
CSI

::::
(0.30

::::
v.s.

::::
0.25)

::::
and

:::::
POD

:::::
(0.48

:::
v.s.

::::::
0.52),

:::
the

:
R

CS from MRMS, SVM, and BAL0 show similar values around 22%, but320

BAL
::::
BAL�0.5 classifies much more pixels as connective with

:::::
(32%)

:
is
:::::
much

::::::
higher

::::
than R

CS reaches 41% (Figure 6) . Radar

variables are shown in Figure
:::
from

:::::::
MRMS

::::::
(17%)

:::
and

:::::
SVM

::::::
(13%).

:::::
These

::::::
scores

:::::
could

::::
also

::
be

::::::
found

::
in

::::::
Figure

::
4.

::
In

::::::
Figure

7, and a circle is also inserted in both Figures 6
:
It
:::::
could

:::
be

:::::
found

:::::
from

:::
that

:::
the

::::::::
MRMS,

:::::
SVM,

::::
and

::::::::
BAL�0.5

:::::
show

::::::
similar

::::::::::
classification

::::::
results

::::::::
between

:::
the

::::::::
azimuthal

:::::
angle

:::
of

::::
180�

:
and 7 to emphasize the performance from each approach in this

circle. Inside the circle, the echoes with the Z values around 30⇠35 dBZ have the chances to be either stratiform or convective325

type
:::::
270�.

::::::::
However,

::::::::
BAL�0.5

:::::::::::
misclassifies

::::
gates

::::::::
between

:::
90�

::::
and

::::
180�

::
as

:::::::::
convective

:::::
type,

:::::
which

::::::::
produces

:::::
such

::::
high

::::
R

CS .

On the other hand, the ZDR shows low value around 0 dB, which is generally considered as the indicator of stratiform
::::::
MRMS

:::
and

:::::
SVM

::::
show

::::::
similar

:::::::::::
classification

::::::
results

::
in

::::
this

:::::
region.

3.2.2 Tropical convective

Typhoon Morakot (6⇠10 August 2009) brought significant rainfall to Taiwan. Over 700 people were reported dead in the storm,330

and the property loss was more than 3.3 billion USD. For most of the time during its landfall in Taiwan, the precipitation was

classified as a mixture of tropical convective and tropical stratiform types. The performances of SVM, BAL0, and BAL�0.5

were validated with
:::::
using 96-hour data from 6 to 9 August 2009, where the results from 10 August 2009 were not included in

the evaluation because no significant precipitation was observed
:::
from

::::
that

:::
day. The time series plots of RCS ,

:::
(A),

::::
CSI

::::
(B),

::::
POD

:::
(C)

::::
and

::::
FAR

::::
(D)

:::
are shown in Figure 8, demonstrate that the

::
8.

::
It

:::::
could

::
be

::::::
found

:::
that

::::::
scores

::
of

:
R

CS ,
:::::
CSI,

:::
and

:::::
POD335
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from the BAL based approaches is evidently lower than the results from SVM and MRMS, and the latter two show similar

performance during this 4-day period
::::
these

::::
four

::::
days.

Classification results from BAL0, BAL�0.5, SVM (0402 UTC), and MRMS (0400 UTC) from 9 August 2009 are shown

in Figure 9a, 9b, 9c, and 9d
:::
9A,

::::
9B,

:::
9C,

:::
and

:::
9D, respectively. The classification results in those regions, highlighted with two

circles, are convective (SVM and MRMS) and stratiform (BAL0 and BAL�0.5). Figure 10 includes the reflectivity (10a
::
A),340

differential reflectivity (10b
::
B), and separation index (10c

:
C) from 0402 UTC, where

:::::
Figure

::::
10D

::
is

:::
the

:::::::
zoom-in

::::::::::
reflectivity

::::
field

:::::
inside the reflectivity field within the red rectangular box is shown in Figure 10d

:::
(A) for more details. It could

::::
was found

that the heavy precipitation band is on the top of RCMK (Figure 10d
::::
10D), and this may cause significant attenuation and

differential attenuation on Z and ZDR fields. Although both Z and ZDR fields were corrected
::::
using

::::::::
Equation

::
1, deficient or

over compensations on Z and ZDR fields lead to increased uncertainty on the separation index. It may be the primary reason345

causing the small values of the separation index. In Figure 10c
:::::
Other

::::::
reasons

:::::
such

::
as

:::
wet

:::::::
radome

::::
may

::::
also

::::::::
contribute

:::
to

:::
the

::
Z

:::
and

:::::
ZDR ::::::

issues.
::
In

::::::
Figure

::::
10C, the separation index i are equal or less than -0.5 in the circled areas, and the BAL based

approaches classify these regions as stratiform. On the other hand, these regions clearly show the convective precipitation

features in the fields of Z (10a
::::
10A) and ZDR (10b

:::
10D).

3.2.3 Stratiform precipitation event350

The performances of BAL0, BAL�0.5, and SVM approaches were also evaluated with a widespread stratiform precipitation

event on 26 March 2011. There were no convective type precipitations identified by MRMS, and all these three approaches

showed consistent classification results with the MRMS result during
::
an 8-hour period evaluation.

3.3
::::::::

Sensitivity
::::
test

:::
The

::::::::::::
performances

::
of

::::::
BAL0,

:::::::
BAL�0.5

::::
and

::::::::
proposed

::::
SVM

:::::
were

::::::
further

::::::::
validated

::::::::
respecting

::
to
:::
the

:::::
ZDR::::

bias.
:::::
First,

:::
the

::::::
impact355

::
of

::::
ZDR::::

bias
:::

on
:
i
:::

is
::::::::::
investigated

:::::::
through

:
a
::::::

simple
::::::::::

simulation.
::
In

::::
the

:::::::::
simulation,

:::
the

:::::::::
separation

:::::
index

::
i
::
is

:::::::::
calculated

:::::
using

::::::::
Equations

::::
2⇠5

::::
with

::::
four

::::::
distinct

::
Z
:::::::
values:

::
10

:::::
dBZ,

::
20

:::::
dBZ,

::
30

:::::
dBZ,

:::
and

:::
40

::::
dBZ.

::::
For

::::
each

::
Z

:::::
value,

:::::
ZDR :::::::

changes
::::
from

::::
-0.5

::
dB

::
to

::
2

:::
dB

::
to

:::::::
simulate

:::
the

::::
ZDR::::

bias.
::::
The

:::::::
obtained

:
i
::::::
results

:::
are

:::::
shown

::
in
::::::
Figure

:::
11,

:::
and

:::
the

:::::::
symbol

::
of

:::::::
triangle,

::::::::
diamond,

:::::
cross,

:::
and

:::::::::
pentagram

:::::::
indicates

:::
the

:::::
result

:::::
from

::
10

:::::
dBZ,

::
20

:::::
dBZ,

::
30

:::::
dBZ,

:::
and

:::
40

::::
dBZ,

:::::::::::
respectively.

:
It
:::::
could

:::
be

:::::
found

:::
that

:::
for

::::
each

:::
Z,

::
the

:::::::::
calculated

:
i
:::::
drops

:::::
when

:::::
ZDR::::::::

increases.
:::::::::
Moreover,

:
a
::::::

larger
::
Z

:::::::
produces

::
a
:::::
larger

:
i
:::
for

:::
the

:::::
same

::::
ZDR::::::

value.
:::
As

:::::::::
introduced360

::
in

::::::
Section

::::
2.1,

:::
the

::::::::::
precipitation

::::
may

:::
be

::::::::
classified

::
as

::::::::
stratiform

:::::
when

:
i
::
is

::::
less

::::
than

::
0.

:::::::::
Therefore,

::::::
positive

:::::
ZDR:::::::::

calibration
::::
bias

:::
may

:::::
result

::
in
::::::::::::
misclassifying

:::::
more

:::::::::::
precipitation

::
as

::::::::
stratiform

:::::
type.

:::
The

::::::
impact

::
of

:::
the

::::
ZDR:::::::::

calibration
::::
bias

::
on

:::
the

::::::::::
performance

::
of
::::::
BAL0,

::::::::
BAL�0.5,

::::
and

::::
SVM

::::
was

::::::::::
investigated

:::::
using

::::::::::
precipitation

:::::
events

::::
from

:::
30

::::::
August

:::::
2011.

::
In

::::
this

:::::
study,

:::
the

::::
ZDR::::

filed
::::
was

:::
first

::::::::
corrected

:::::
from

:::::::::
attenuation,

::::
and

:
a
::::::
�ZDR::::

was
::::
then

::::::::
manually

:::::
added

::
on

::::
the

::::::::
corrected

::::
ZDR::::

field
:::

as
:::
the

:::::::
artificial

:::::
bias.

:::
The

:::::::
�ZDR :::

was
:::

set
:::
as:

::::
-0.2

:::
dB,

::::
-0.1

::::
dB,

:
0
::::

dB,
:::
0.1

::::
dB,

:::
and

:::
0.2

::::
dB,365

::::::::::
respectively.

::::
The

::::::
biased

::::
ZDR::::

was
:::::::::
calculated

::
as

::::::::::::::::::::
Z

b

DR
= ZDR +�ZDR.

::::
The

:::::::::
separation

:::::
index

:
i
::::

was
:::::::::
calculated

:::::
using

:::::
Z

b

DR

::::::
through

:::::::::
Equations

:::::
2⇠5,

:::
and

:::::::::::
classification

::::::
results

::::
from

::::::
BAL0

:::
and

::::::::
BAL�0.5

:::::
were

::::
then

:::::::::
calculated.

::::
The

:::::
same

::::::
trained

:::::::
weights

:::
and

::::
bias

:::::
vector

::::::::
described

::
in
:::::::
Section

::::
2.3.2

:::::
were

::::
used

::
in

:::
the

:::::
SVM

::::::::
approach.

:::::::::
Following

:::
the

::::::::
procedure

:::::::::
described

::
in

::::::
Section

::::
3.2,
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:::::
scores

::
of

:::::
R

CS

:::
(A),

::::
CSI

::::
(B),

::::
POD

:::
(C)

::::
and

::::
FAR

:::
(D)

:::
are

:::::::::
calculated

:::
and

::::::
shown

::
in

:::::
Figure

:::
12.

::
It
::::::
should

::
be

:::::
noted

::::
that

::::
these

::::::
scores

::
are

:::
the

:::::::
24-hour

::::::::
averaged

::::::
values.

::
It

:::::
could

::
be

::::::
found

:::
that

:::::
when

:::
the

::::::
�ZDR:::::::

changes
:::::
from

:::
-0.2

:::
dB

::
to

:::
0.2

::::
dB,

:::
the

::::
R

CS

:::::
from

::::
both370

:::::
BAL0

:::
and

::::::::
BAL�0.5

::::::::::
approaches

::::::::
decrease.

::::
This

::::::::
indicates

::::
that

:::::
BAL0

::::
and

::::::::
BAL�0.5

:::::::
classify

:::::
more

::::::::::
precipitation

:::
as

:::::::::
stratiform,

:::
and

:::
this

::::::
results

::
is
:::::::::
consistent

::::
with

:::
the

::::::::::
simulation.

::::
Both

::::
CSI

::::
and

::::
POD

:::::
from

:::::
BAL0

::::
and

::::::::
BAL�0.5

:::::
show

::::::::::
degradations

:::::
with

:::
the

:::::::
increase

::
of

:::::::
�ZDR.

:::
On

:::
the

:::::
other

:::::
hand,

:::
the

::::::::
proposed

:::::
SVM

::::::
shows

:::::::
slightly

:::::
better

::::::::::::
performances

:::::
when

::::::
�ZDR:::::::

changes
:::::
from

:::::::
negative

::
to

:::::::
positive.

::::
Both

::::
CSI

:::
and

:::::
POD

:::::::
increase

:::::
when

::::::
�ZDR::::::::

increases,
::::
and

::
the

:::::
R

CS

::::
also

:::
has

:::
the

::::::
similar

:::::
trend.

::::
One

:::::::
possible

:::::
reason

::
is

::::
that

:::::::::
convective

::::
type

::::::::::
precipitation

::
is

::::::::
normally

:::::::::
associated

::::
with

:::::
larger

:::::
ZDR.

:::
As

:
a
:::::
result,

:::::::
positive

::::::
�ZDR:::::::

classify
:::::
more375

::::::::::
precipitation

::
as

:::::::::
convective

:::::
type.

::::::
Similar

::::::
results

::::
were

::::
also

:::::::
obtained

:::::
from

:::
the

::::
case

::
of

:::::
6⇠10

::::::
August

:::::
2009.

:

4 Conclusions

A novel precipitation classification approach using
:
a support vector machine approach was developed and tested on a C-

band polarimetric radar located in Taiwan. Different from some existing
::::
other

:
classification algorithms that use whole volume

scan data, the proposed method only utilizes the data from the lowest unblocked tilt to separate precipitation into convective380

or stratiform type. It can be applied on
::
to new scanning schemes with more frequent scans at the lowest tilts and lack of

information from a higher tilt, such as AVSET, SAILS, MRLE, and etc. Three radar variables of reflectivity, differential

reflectivity, and the separation index derived by Bringi et al. (2009) are utilized in the new proposed approach, where both

reflectivity and differential reflectivity need be corrected from attenuation and differential attenuation. Although the separation

index alone can be used in the precipitation classification, there may be two potential limitations: thresholds and attenuation
:::
the385

:::::
biases

::
on

:::::::::
reflectivity

::::::
and/or

:::::::::
differential

:::::::::
reflectivity. Although the threshold 0 is proposed to separate convective from stratiform

types
:::
“0”

::::
was

::::::::
suggested

::
to

::
be

:::::
used

::
in

::::::::
separating

:::::::::
convective

::::
type

:::::
from

::::::::
stratiform

::::
type, it was found that a single threshold may

not sufficient for all cases. Other thresholds (such as -0.5
::::::
“�0.5” used in the current work), sometimes can produce better

results than 0. The attenuation is the other potential issue
::::
“0”.

:::
The

::::::
biases

::::
may

:::::
come

:::::
from

:::::::::::::
mis-calibration,

::::::::::
attenuation,

::::
wet

::::::
radome,

::::::::
blockage. Although both reflectivity and differential reflectivity should be corrected from attenuation before used in390

the separation index calculation, the correction biases on either filed may cause large uncertainty in the derived separation index

and further lead to a wrong classification.
::::
Other

::::::
factors

::::
also

::::
may

::::
have

:::::::
impacts

:::
on

:::
the

:::::::::
separation

:::::
index.

:
This work attempts

to propose a complementary method to enhance the performance of using
:::
the separation index only. The proposed approach

integrates input variables with a support vector machine method. The weighs and bias vectors used in the support vector

machine were trained with typical stratiform and convective precipitation events. It should be noted that the proposed approach395

has a flexible framework, and some other variables can be easily included. With newly added variables, the weighting and bias

vectors need to be retrained. The proposed approach was tested with multiple cases, and its .
:::
Its performance was found similar

to a well-developed approach, MRMS, which utilizes multiple
:::
tilts radar data in the classification.

:
It

::::::
should

::
be

:::::
noted

::::
that

:::
the

::::
time

::::::::
difference

:::::::
between

:::::::
RCMK

::::
(i.e.,

:::::
BAL0

:
,
:::::::::
BAL�0.5,

:::
and

::::::
SVM)

:::
and

:::::::
MRMS

:::::
could

::
be

::
as

:::::
large

::
as

:
5
::::::::
minutes.

:::::::::
Therefore,

:::
the

:::::::::::
pixel-to-pixel

:::::::::
evaluation

::::::
criteria

::
of

:::
the

::::::
critical

::::::
success

:::::
index

::::::
(CSI),

:::::::::
probability

::
of

::::::::
detection

::::::
(POD)

:::
and

:::::
false

:::::
alarm

:::
rate

::::::
(FAR)400
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:::
may

::::
not

:::::
really

:::::
reflect

::::
their

::::::::::::
performances.

::::::::
Although

::
a
::::
new

:::::::
variable

::
of

::::
R

CS

::
is
::::
used

::
in
:::

the
:::::::::::

performance
:::::::::
evaluation,

::::
this

::::::
should

::
be

::::::
treated

::
as

:::::::::
qualitative

:::::::::
evaluation.

:

There are some issues need
:::
that

:::::
need

::
to

:
be noticed before applying this approach into operation. First, this approach is

developed for fast scanning and fast update purpose, therefore, only the lowest tilt data
:::
data

::::
from

:::
the

::::::
lowest

:::::::::
unblocked

:::
tilt is

used as the input. With the higher tilt data as the inputs, potential enhancements should be
::::::::
However,

::
if

:::
the

::::
radar

::
is
:::::::
located

::
in405

:
a
:::::::
complex

:::::::::
orography

::::
area,

:::::
radar

:::::
beam

:::::
could

::
be

::::::::
partially

::
or

:::::::::
completely

:::::::
blocked

::
at

:::::
some

:::::::
regions.

::
A

:::::::
possible

:::::::
solution

:::
for

::::
such

:::::::
scenario

::
is

::::
using

::::
data

:::::
from

:::::::
different

::::::::
scanning

:::
tilts

::
to
:::::
form

:
a
::::::
hybrid

:::::
scan,

:::
and

:::
the

::::::
hybrid

::::
scan

::
is

::::
then

::::
used

::
as

:::
the

:::::
input.

::::::
Radar

:::::::
scanning

::::
tilts

::::
used

::
in

:::
the

::::::
hybrid

:::::::
scanning

:::
are

::::::::::
determined

::
by

:::
the

:::::
radar

:::::::
scanning

:::::::::
geometry.

:::::
Given

:::
the

:::::
factor

::::
that

::::::::::::
precipitation’s

:::::::::::
microphysics

::::
(such

:::
as

::::
drop

:::
size

:::::::::::
distribution)

::::
from

:::::::
different

::::::::
altitudes

:::
may

:::
be

::::::::::
significantly

::::::::
different,

::::::::
therefore,

:::
the

:::::::::::
performance

::
of

:::::::
proposed

::::::::
approach

::::
may

::
be

::::::
worse

:::
than

:
expected. Second, the performance of the proposed approach highly depends

:::::::
depends410

:::::
highly

:
on the training data. It should be very careful to select the training data

:
,
:::::
which

::::::
should

::
be

::::::::
selected

::::
very

::::::
careful. Third,

coefficients in the separation index calculation depends
::::::
depend

:
on the local drop size distribution and drop shape relation

features. Therefore, new relations need to be derived for the optimal results. Four,
::::::::
Moreover,

:::
the

::::::::
separation

:::::
index

::::
only

::::::::
validates

:
at
::::::
liquid

:::::
phase

:::::::::::
precipitation.

:::
For

:::
ice

:::::
phase

:::::::::::
precipitation,

::::
such

::
as

:::::
mixed

::::
hail

:::
and

::::
rain,

:::
its

::::::::::
performance

::
is

:::
not

::::
well

:::::::
studied.

:::::
Other

::::::::::
hydrometeor

:::::::::::
classification

::::::::
schemes

:::::
could

::
be

:::::
used

:::
for

::::
such

::::::::
scenario.

::::::
Fourth,

:
this work only presents a prototype algorithm.415

Given the flexible framework, other variables (such as differential phase) could be easily integrated into this algorithm, and the

performance could be further enhanced.
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Figure 1. The terrain of Taiwan, the location of a C-band polarimetric radar RCMK (marked with a black square), JWDs (marked with black

stars), and four S-band single polarization
:::::::::::::
single-polarization

:
radar RCCG, RCKT, RCHL, and RCWF (marked with black circles).

:::
The

::::::::
continuous

::::::::
grey-scale

:::::
terrain

:::
map

:::::
shows

:::
the

:::::
central

::::::::
mountain

::::
range

::
of

::::::
Taiwan.

:
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Figure 2.
:::::::
Blockage

::::
maps

::
of
::::::
RCMK

::::
from

:::
the

:::
first

:
2
::::
EAs

::::
(0.5�

:::
and

:::::
1.4�).

:::
The

::::
grey

::::
scale

::::::
indicates

:::
the

:::::::
blockage

:::::::::
percentages.

:
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Figure 3. The distribution of log10(Nw) vs D0. The DSD data from stratiform and convective precipitations are presented with gray circles

and black stars, and the separator line is shown with a solid line.

19



Figure 4. The time series plot of convective cells to stratiform cells ratio (RCS) from 30 August 2011 (A)and 14 June 2012 ,
::::

CSI(B).

,
::::::::

POD(C),
:::
and

::::::
FAR(D)

::::
from

:::
30

::::::
August

::::
2011.

:
24-hours data 0000 UTC 2400 UTC are used in each case. The results from BAL with

threshold T0 = -0.5, BAL with threshold T0 = 0, SVM, and MRMS,
:
are indicated with thin dashed

:::::::
presented

::
by

::::
green, thin solid

:::
blue, thick

dashed
:::
red and thick solid

::::
black

:
lines, respectively.
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Figure 5. The classification results from BAL0(a
:
A), BAL�0.5(b

:
B), SVM(c

:
C) and MRMS(d

:
D). The time stamp for BAL0, BAL�0.5, and

SVM is 0303 UTC 30 August 2011, and time stamp for MRMS is 0300 UTC 30 August 2011.
:::
The

:::::
region

:::::
inside

::
the

:::::
white

::::
circle

::
is
::::
used

::
in

::
the

:::::::
analysis.
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Similar to Figure 4 The results are from 14 June 2012. The time stamp for BAL0, BAL�0.5, and SVM
:::::
region

::::
inside

:::
the

:::
red

::::
circle

:
is 0801

UTC, and time stamp for MRMS is 0800 UTC
:::
used

::
in

:::
the

::::::
analysis.

Similar to Figure 4 The results are from 14 June 2012. The time stamp for BAL0, BAL�0.5, and SVM
:::::
region

::::::
inside

:::
the

:::
red

::::
circle

:
is 0801 UTC, and time stamp for MRMS is 0800 UTC

:::
used

::
in
:::
the

:::::::
analysis.

Figure 6. Radar variables of reflectivity (a
::
A), differential reflectivity(b

:
B), and separation index(c

:
C). The radar data was collected by RCMK

at 0303 UTC 30 August 2011.

Similar to Figure 4 The results are from 14 June 2012. The time stamp for BAL0, BAL�0.5, and SVM
:::::
region

:::::
inside

:::
the

::
red

:::::
circle is 0801

UTC, and time stamp for MRMS is 0800 UTC
:::
used

::
in

::
the

:::::::
analysis.
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Figure 7. Similar to Figure 5, but radar data
:::::
results

:::
are from 0801

::::
0650 UTC14 June 2012..
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Figure 8. The time series plot of convective cells to stratiform cells ratio
:::
RCS(RCS

::
A)

:
,
::::::
CSI(B),

:::::::
POD(C),

:::
and

::::::
FAR(D)

:
from 06

:
⇠09 August

2009. 96-hours data are used in each case. The results from BAL with threshold T0 = -0.5, BAL with threshold T0 = 0, SVM, and MRMS

are indicated with thin dashed
:
by

:::::
green, thin solid

::::
blue, thick dashed

::
red

:
and thick solid

::::
black lines, respectively.
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Figure 9. The classification results from BAL0(a
:
A), BAL�0.5(b

:
B), SVM(c

:
C),

:
and MRMS(d

:
D). The time stamp for BAL0, BAL�0.5, and

SVM is 0402 UTC 9 August 2009, and time stamp for MRMS is 0400 UTC 9 August 2009.
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Figure 10. Radar variables of reflectivity(a
::
A), differential reflectivity(b

:
B), separation index(c

:
C), and reflectivity within the red rectangular

box in A(d
:
D). The radar data was collected by RCMK at 0402 UTC 9 August 2009.
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Figure 11.
:::
The

::::::::
calculated

::::::::
separation

::::
index

::::::::
respecting

::
to

::::::
different

:::::::::
differential

::::::::
reflectivity

:::::
values.
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Figure 12.
::::::
24-hour

:::::::
averaged

:::::::
RCS(A),

::::::
CSI(B),

:::::::
POD(C),

:::
and

::::::
FAR(D)

::::
from

::
30

::::::
August

::::
2011.

:::
The

::::::
results

::::
from

:::
BAL

::::
with

:::::::
threshold

:::
T0 :

=
::::
-0.5,

::::
BAL

:::
with

:::::::
threshold

:::
T0 :

=
::
0,

:::::
SVM,

:::
and

::::::
MRMS

::
are

:::::::
indicated

::::
with

::::::
symbols

::
of
:::::::::
pentagram,

:::::
circle,

::::::
triangle,

:::
and

::::::
square,

:::::::::
respectively.

The overall performance of these four precipitation events. CaseBAL0BAL�0.5SVMMRMS30 August 20118%30%19%21%14

June 201215%34%18%20%06⇠09 August 20091%4%17%22%26 March 20110%0%0%0%Total4.3%12.6%16.6%20.4%
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