Reply to Reviewer2

We do appreciate the reviewer provide so much important comments help us improving our
manuscript. We’d like to address these comments as following.

Line 2: “that require a whole volume radar data” should read as.... “that require a whole
volume of radar data”
Response: the manuscript was modified following the reviewer’s comment.

Line 7: “with multiple precipitation events including two widespread mixture of stratiform and
convective events” May read better as..... with multiple precipitation events including two
widespread mixed stratiform and convective events”

Response: the manuscript was modified following the reviewer’s comment.

line 10: “can accurately identify the convective cells from stratiform storms with the radar data
only from the lowest scan in tilt. It can produce better results than using the separation index
only.” Would read better as....... “can accurately identify the convective cells from stratiform
rain using radar data from the lowest scan in tilt only, and produced better results than using
the separation index only.”

Response: the manuscript was modified following the reviewer’s comment.

Line 15: “convective precipitation’s are associated with” reads better as ...convective
precipitation is associated with”
Response: the manuscript was modified following the reviewer’s comment.

line 16: “while stratiform precipitations are associated” reads better as......while stratiform
precipitation is associated”
Response: the manuscript was modified following the reviewer’s comment.

line 17: what is meant by saying a convective system consists of large and dense raindrops?
Response: It was found the values of raindrop’s mass weighted mean diameter(Dm) in
stratiform and convective precipitation generally are within 1-1.9 mm and above 1.9 mm,
respectively (Chang et al., 2009). Following the review’s comment, we added more discussions
in the manuscript L:80~83

Line 53: “of the DSD-based approaches depends on the environmental regime”....Could you
expand upon this a little bit please?

Response: The separation index derived from Equations 2~5 in the manuscript depends on
several factors: the radar wavelength, temperature, drops size distribution(DSD), and drop
shape relations(DSR). The last three factors depend on environmental regime. In our work, we
demonstrated that temperature, DSD and DSR features from Taiwan very similar to Darwin,
Australia. Therefore, all the coefficients derived by BAL can be directly used in the current work.
Following the review’s comment, we added more discussions in the manuscript L:123~135.




Line 58 and 59: “classification results even it is operated”...... Reads better as.... classification
results even if it is operated”
Response: the manuscript was modified following the reviewer’s comment.

line 68: “together with other three single polarization”....Reads better as... together with the
other three single polarization”
Response: the manuscript was modified following the reviewer’s comment.

line 73: “for convective and stratiform precipitations, total 4306 minutes of DSD data”....Reads
better as...... for convective and stratiform precipitation, a total of 4306 minutes of DSD data”
Response: the manuscript was modified following the reviewer’s comment.

line 81: “stratiform precipitations generally consist of condense of small to median
raindrops”..... This sentence needs to be corrected and explained better.
Response: this sentence is modified as in L:80-83.

Line 98: “using the separation index i to identify convective precipitation from stratiform” ...
This may read better as ..using the separation index i to identify convective from stratiform

precipitation”
Response: the manuscript was modified following the reviewer’s comment.

Line 100: | assume that Nw refers to liguid water concentration... Is this true?
Response: Ny, is the normalized number concentration in the gamma drop size distribution.

Equation 5: it may help to list as equations 5a) and 5b)
Response: the manuscript was modified following the reviewer’s comment.

Lines 157 — 160: | understand the authors using the MRMS precipitation classification algorithm
as ground truth....However, he should be noted that there are many imperfections in the
system, especially since it only uses single pole information to determine echo classes
Response: We appreciate the reviewer point this out.

In the revision, we made the following statements in the revision L:170~181.:

“Thirdly, the precipitation type is confirmed by the Multi-Radar-Multi-Sensor (MRMS)
precipitation classification algorithm implemented in Taiwan (Zhang et al., 2011, 2016). In this
MRMS classification approach, a three-dimensional radar reflectivity field was mosaicked
from 4 S-band single-polarization radars (Figure 1). The composite reflectivity (CREF) and
other measurement such as temperature and moisture fields were then used in the surface
precipitation clas- sification (Zhang et al., 2016). Based on the classification results, MRMS
chooses different R(Z) relations in the rainfall rate estimation. The performance of MRMS has
been thoroughly evaluated for years for the quantitative precipitation estimation, flash flood
monitoring, severe weather, and aviation weather surveillance (e.g., Gourley et al., 2016;
Smith et al., 2016). The products are used as the benchmark and ground truth in many studies



(e.g., Grecu et al., 2016; Skofronick-Jackson and Coauthors, 2017). It should be noted that, on
the other hand, the MRMS also shows limitations since it only uses single-polarization variables
to determine the precipitation type. At the current stage, the MRMS precipitation
classification is considered as the appropriate benchmark in the training and validation of the
proposed algorithm. Moreover, since the MRMS classification is a mosaicked product derived
from 4 S-band radars, it can be viewed as an independent reference.”

Line 165: “total one hour data were used as the convective type training data in the training
data are associated with the >20 dBZs”..... What is meant by “total one hour data”?

Response: The radar data collected from 1030 UTC to 1130 UTC are used in the training. Given
the radar VCP, there are total 13 volume scans data are available.

Line 169: “ the number of support vectors is selected as 1000 and the current work”....Not
everyone who reads this article will be familiar with some of the machine learning/artificial
intelligence setting of criteria... It may help to add a few more lines on this... You have done that
in lines 170 through 172 but still it would help to go a little bit further into what is typically
done for these types of learning algorithms.

Response: We do appreciate the reviewer point this out. We added more discussion in the
revised manuscript in L:192~200.

Line 188: “results from RCMK......and MRMS could be different as large as five minutes in time
stamps”...... This may read better if written as .. results from RCMK......and MRMS could be
significantly different with timestamp differences as large as five minutes”

Response: the manuscript was modified following the reviewer’s comment.

line 190: “evaluation criteria of the possibility of detection” ... Should read as evaluation criteria
of the probability of detection”
Response: the manuscript was modified following the reviewer’s comment.

line 197: “was first validated with two widespread mixture of stratiform and convective”......
Should read as... was first validated with two widespread stratiform and convective mixed”
Response: the manuscript was modified following the reviewer’s comment.

Line 241: “it could found that the heavy precipitation band”... Should read as .. it was found that
the heavy precipitation band”
Response: the manuscript was modified following the reviewer’s comment.

Line 253: “different from some existing classification algorithms” would read better as
“different from other classification algorithms”
Response: the manuscript was modified following the reviewer’s comment.

Lines 273 — 274: “second, the performance of the proposed approach highly depends on the
training data. It should be very careful to select the training data.” This would read better as




“second, the performance of the proposed approach depends highly on the training data which
should be very carefully selected.
Response: the manuscript was modified following the reviewer’s comment.




Reply to Referee 3

We do appreciate the reviewer provide so much important comments help us improving our
manuscript. We’d like to address these comments as following.

1.)

First of all, an important comment the proposed methodology, which uses the lowest
unblocked scanning tilt, as stated by the authors at page 2 (Line 55). In my opinion, the
authors should add a discussion about the weakness of such approach, considering, for
example, the scenario in which it is applied in a complex-orography area. In such a case, the
strategy may be not suitable, because the radar signal at lowest tilt may be totally or
partially obstructed by the surrounding topography in some sectors. A possible solution to
overcome this issue may be using the lower “free” available scanning elevation but this
choice can generate inconsistencies and biases. For example, in some sectors of radar
coverage, the algorithm may receive as input the reflectivity data collected at 1° elevation,
in others the measurements sampled at 4° antenna elevation angle. The information
provided by data sampled at 1° and 4° antenna elevation angle can be very different,
depending on the precipitation type event that is taking place.

Response: Thank you for the reviewer pointing this out. First, we totally agree with the reviewer
that a discussion about the weakness of the proposed approach is necessary, which can guide
readers to evaluate and implement this approach. We added following discussion in the revised
manuscript:

1.)

2)

Line 56: Different from some existing classification techniques that require whole volume
scan of radar data, this new approach uses the lowest unblocked tilt data in the separation.
If the lowest tilt is partially or completely blocked, then next adjacent unblocked tilt is used
instead.

Line 336: Limitations of proposed approach are also included in the discussion section as:
First, this approach is developed for fast scanning and fast update purpose, therefore, data
from the lowest unblocked tilt is used as the input. However, if the radar is located in a
complex orography area, radar beam could be partially or completely blocked at some
regions. A possible solution for such scenario is using a hybrid scan data from different
scanning tilts as the input. Radar scanning tilts used in the hybrid scanning are determined by

the radar scanning geometry. Given the factor that precipitation's microphysics (such as drop
size distribution) from different altitudes may be significantly different, therefore, the
performance of proposed approach may worse than expected.

Secondly, the data from 1.4° elevation angle is used in the current work. Following figures show
the scanning geometry of RCMK, and this figure was also added in the manuscript as the reviewer
suggested. From this figure, we can find that the data from 0.5° is severely blocked by the central
mountain range. Therefore, data from 1.4° elevation angle (treated as lowest unblocked data) is
used in the current work.
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Figure 1. Blockage maps of RCMK from the first 2 elevation angles (0.5° and 1.4°). The grey scale
indicates the blockage percentages.

2.) In Section 2, | suggest to add a figure showing the scanning geometry of the C-band
polarimetric radars involved in this study. Please indicate the elevations angles used to
develop the SVM method. Moreover, itis not clear if the authors used also the measurements
provided by S-band single-polarization systems operating in the area of Taiwan.

Response: Following the reviewer’s suggestion, a figure of the scanning geometry of RCMK is
added in the revised manuscript. The data from 1.4° elevation angle (the lowest unblocked tilt)
is used in the algorithm development. We included this clarification in the revised manuscript.
The S-band single-polarization radar data is not used in the SVM approach. We clarify this too in
the revised manuscript.

3.) In Section 2, the authors describe the variables used as input to the SVM method. They
discuss about quality control of reflectivity measurements, focusing only on a specific issue,
the attenuation along the path. | suggest to extend this discussion to other radar impairments
that may have a strong impact on the performance of the proposed methods, such as the
ground clutter (which strongly affects the radar measurements quality at lowest tilt) and the
reflectivity vertical profile. In this respect, a detailed discussion should be provided about the
bright band, which is a typical signature of stratiform precipitation events.

Response: Following the reviewer’s suggestion, issues about ground clutter and VPR are
discussed in the revised manuscript. The discussion about bright band is also included as
suggested.

Line 98: Other quality control issues, including calibration, reflectivity vertical profile, and



ground clutter removal, were also considered in this work. Since this radar is used in the real-
time quantitative precipitation estimation, the biases of Z and Zpr should be within 1 dBZ and
0.1 dB, respectively. The data quality of RCMK was examined through validating the QPE
performance in different works (e.g., Wang et al., 2013, 2014). Therefore, the calibration bias
of RCMK should be within a reasonable range. A vertical profile of reflectivity (VPR) correction
is generally needed on the reflectivity field to reduce the measurement biases because of the

melting layer (Zhang et al., 2011). Given the fact that 1.4° elevation angle is used within the
maximum range of 150 km, and the melting layer is usually around 5 km in Taiwan, the radar
data is well below the melting layer. In addition, considering the vertical profile of differential
reflectivity is not well studied in the current stage, no vertical corrections are applied to fields
of Zand Zpr. Ground clutter is typically associated with a low correlation coefficient (psv ), the
pnv threshold used in this work is 0.9, which can effectively remove those non-meteorological
echoes such as ground clutter.

Line 163: On the other hand, stratiform precipitations are generally associated with a
prominent bright band signature. The melting hydrometeors increase backscatter during
stratiform rainfall, which can significantly enhance radar reflectivity. The bright band feature is
one of the obvious indicators of stratiform precipitation. Bright band signature normally can be

observed from relatively high EAs (such as above 9.9°). From low EAs, because of the
combination of radar beam broadening and low slant angle, the bright band feature spreads
into more gates and becomes not apparent. Therefore, in this work, the bright band feature
from high elevation angles isonly used in training data selection but not used as one of the
inputs.

4.) Section 2.3, in my opinion, it may useful cite some previous work that developed machine-
learning algorithm based on meteorological radar data. | suggest the following reference:
Capozzi et al. (2018), Adity Sai Srinivas et al. (2019) and Yen et al. (2019).

Response: Following the reviewer’s suggestion, these three references were added into the
revised manuscript.

Line 139: Machine learning algorithms based on meteorological radar data were well developed
during the past two decades (e.g., Capozzi et al., 2018; T. et al.,, 2019; Yen et al. 2019)

5.) As training data for convective precipitation type, the authors use the measurements
collected in a single event occurred on 23 July 2014. More specifically, for this event radar
data collected from 10:30 to 11:30 (one hour) were used. | am quite skeptical about this
choice, that the authors must justify and explain. It is well note that convective events may
be triggered by different meteorological scenarios and that may exhibit different features in
radar data according to thunderstorm types (single cell, squall line, supercell, etc.).




Response: In this work, the training data plays a critical role in the SVM development.

Therefore, we choose convective and strtiform precipitations following three major steps.

1.) First, the training data was checked following general classification principles: for example,
heavy precipitation band associated with high reflectivity for convective type precipitation;
bright band for stratiform type precipitation.

2.) Second, the ground observation is used as another reference. For example, the severe
weather report could be used as the ground observation.

3.) The classification results from MRMS is used as the third reference.

The convective type precipitation data is mainly from a thunderstorm on 23 July 2014. An
aircraft crash tragedy caused by strong downdraft is used as the ground observation. MRMS
classification algorithm classifies this event as the convective precipitation type. The radar
observation of reflectivity Z and differential reflectivity Zprat 0858 UTC is shown in Fig. 2
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Figure 2. Reflectivity (left) and differential reflectivity (right) at 0858 UTC, 23 July 2014.

A clear squall line features can be identified at this moment, which triggered the strong
updraft/downdraft. Inside this squall line, the reflectivity field is above 40 dB; differential
reflectivity field is above 1 dB. The maximum value of Zpr could be as high as 2.5 dB. Behind the
severe precipitation band, the differential reflectivity field drops to negative value because of
the attenuation issue. Fields of Zand Zpr from 1028 UTC are shown in Fig. 3. Although the
squall line signatures are not as well structed as 0858 at this moment, clear convective
precipitation features such as large reflectivity, and very positive differential reflectivity are still
very obvious. Therefore, we use those gates classified as convective type as in the training
data.

We hope these plots can address the reviewer’s concerns.
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Figure 3. Reflectivity (left) and differential reflectivity (right) at 1028 UTC, 23 July 2014.

6.) Moreover, at page 6 (line 166) the authors declare that 17281 sets of data have been used
in the training process. What does it mean “sets”? A clarification about this point is

required.

Response: We appreciate the reviewer pointing this out. A “set” means a set of data from one
radar gate (defined as azimuthal angle and range). Be more specific, a set of training data
means a vector of [Z(a,r) Zpg(a,1) i(a,r);d(a,r)]. Where “a” indicates azimuthal angle, “r’
indicates range; “d” is the desired response with “1” represents convective, and “-1” represents
stratiform.

Line 188: A total of 17281 sets of data (15144 sets of stratiform, and 2137 sets of convective) are
used in the training process. In this work, one data set is defined as the variables from a single
gate in terms of range and azimuthal angle. Be more specific, a collection of training data means
a vector of [Z(a, r) Zpr(a, r) i(a, r) d(a, r)], where a and r indicate azimuthal angle and range,
respectively. The variable d is the ground truth (with 1 and -1 represents convective and
stratiform), i.e., the desired response in the training process.

7.) In section 3, the authors present the results of their work, introducing a whole coverage
convective ratio (RCS) number. The latter is defined as parameter that provides a qualitative
assessment of the performance of SVM and other considered methods. In my opinion, an
evaluation about the reliability of SVM algorithm based on a single parameter is not
sufficient to reach robust conclusions. Therefore, | suggest to involve in the statistical
analysis other useful scores, such as the Critical Success Index and ROC curve.




Response: We agree with the reviewer that a single crietia may not sufficient to validate the
performance of proposed approach. To address the reviewer’s concerns, we made the
following modifications:

1.) Besides the convective ratio (R®) we introduced in the original manuscript, we also applied
the Probability of Detection (POD), False Alarm Ratio (FAR), and Critical Success Index (CSI)
in the performance evaluation.

2.) Since both cases of 30 August 2011 and 14 June 2012 are widespread stratiform and
convective mixed precipitation events, and the performances of proposed approach show
similarity from these two cases. We only kept the 30 August 2011 cases in the revised
manuscript for the stratiform and convective mixed precipitation case. We also added more
analysis and sensitivity test on this case.

3.) For the tropical precipitation case 08/06/2009~08/09/2009 case, we included POD, FAR, CSI
analysis, and also included sensitivity test.

Please refer section 3 in the revised manuscript for more details.

8.) Some suggestions about figures. In figure 1, | suggest to include a reference scale for terrain
elevation.

Response: Following reviewer’s suggestion, a reference scale for terrain elevation is added in
the manuscript, as shown below.
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Figure 4. The terrain of Taiwan, the location of a C-band polarimetric radar RCMK (marked with
a black square), JWDs (marked with black stars), and four S-band single polarization radar



RCCG, RCKT, RCHL, and RCWF (marked with black circles). The continuous grey-scale terrain
map shows the central mountain range of Taiwan.

9.) In figure 3, it is necessary to improve the line-style used to indicate the various algorithm.
More specifically, MRMS and SVM time series seem have a similar marker according to the
legend showed in panel (a).

Response: Following reviewer’s suggestion, we use different colors to represents the results
from different algorithms. More details could be found from the response to comment 7.).

10.) Regarding figure 4, | recommend to enlarge the panels, if it is possible. Moreover, the
color scale should not have a gradient, because the output of the algorithm is binary
(convective or stratiform).

Response: Following reviewer’s suggestion, we made following modifications: 1.) enlarge each
panels in figure 4; and 2.) change the color scale as binary.

11.) About Figures 5, 6, and 7, please clarity in the caption the meaning of black, red, and
white circles.

Response: Following reviewer’s suggestion, we added the meaning of these circles in the
caption.

12.) Finally, | suggest to carefully checking the paper to address some minor typos.
Response: Following reviewer’s suggestion, we run grammar and spelling check before
submitting the revision.




Reply to Referee 4

We appreciate the reviewer provided these important comments help us improving our
manuscript. We’d like to address these comments as following.

1. ZDRis a moment that needs to be calibrated. How stable is the ZDR calibration with time for
the C-band you are using. Usually one attempts to be within +/- 0.2 dB. Do you use birdbath
scans to calibrate ZDR?

Response: Thank you for the reviewer pointing this out. We totally agree with the reviewer that
calibration plays a critical role in radar data processing and weather radar applications. A bias
within 0.2 dB is the basic requirement on the ZDR field. In the current work, we directly used the
data provided by the radar engineers from Central Weather Bureau of Taiwan, and no further
calibration was applied on the Zpg field. We believed the quality of data is good, and the
calibration bias of ZDR should be within the reasonable range based on following two reasons:
1.) This radar belongs to Weather Wing of the Chinese Air Force (CAF), and the data became
available to the Central Weather Bureau (CWB) since 2009. Currently, RCMK is one of the
operational radars in the radar network, and its data are used in the real-time quantitative
precipitation estimation (QPE) and forecasting (QPF). The quality of the radar data is closely
examined by the engineers from CAF and CWB. Therefore, we believe this radar is well
maintained and calibrated.

2.) Same data sets (such as: 08/06/2009 ~ 08/09/2009) from this radar were also examined in
few QPE papers (e.g., Wang et al. 2013, 2014). In order to achieve less than 10% bias in QPE
products, the bias (including mis-calibration and attenuation) of reflectivity, and differential
reflectivity should be within 1 dBZ, and 0.1 dB, respectively. Based on the QPE results
estimated from this radar using different combinations of polarimetric radar variables, we
believe the bias of Z and ZDR should be within a reasonable range.

On the other hand, following the reviewer’s suggestion, we did the sensitivity analysis on the
ZDR field. In this analysis, the observed ZDR field was manually adjusted by a factor of -0.2 dB, -
0.1dB, 0.1 dB, and 0.2 dB, respectively. The separation index was recalculated with the
“biased” Zpr field. The performances from proposed approach and using separation index only
were analyzed with the “biased” fields. Please refer to the reply to comment 2 for more details
related to this test.

2. How sensitive is the separation index (eq2) to a ZDR bias? You assume implicitly a perfect
radar (hardware wise), where only attenuation corrections need to be applied (if
necessary). | wonder how sensitive your method is to some radar hardware influences or
issues. Or can you rule out any influence from radar hardware? A discussion is needed here.

Response: First, we do appreciate the reviewer pointing this out. We did not include sensitivity
analysis in the original manuscript. We believe such analysis is very useful to guide readers to
evaluate and apply this algorithm.



To address this concern, we did the sensitivity test through simulation and real data validation.
In the simulation part, the separation index i was calculated with four distinct Z values: 10 dBZ,
20 dBZ, 30 dBZ, and 40 dBZ. For each Z, ZDR changes between -0.5 dB to 2 dB, which is used to
simulate the bias on ZDR field. The simulation results could be found from revised manuscript in
section 3.3.

In the real case validation, we did the following test:

1.) After correcting the Zpi field from attenuation, we manually added AZpj values (as the
designed bias) on the corrected Z,; field. The AZpy values are: -0.2 dB, -0.1 dB, 0 dB, 0.1 dB,
and 0.2 dB, and the “biased” Zpg: are calculated as:

ZBR = Zpr + AZpp
where Z5, indicates biased Zpp.

2.) Calculate the separation index (i?) with Z3. Evaluate the impacts of AZ, on performances
of BAL® and BAL?> on cases 08/30/2011 and typhoon case (08/06/2009~ 08/09/2009).

3.) With Z5, and i? as the inputs to the proposed SVM approach, Evaluate the impacts of
AZpr on performances of SVM approach on cases 08/30/2011 and typhoon case
(08/06/2009~ 08/09/2009).

More details about simulation and real data validation could be found in section 3.2 in the revised

manuscript. In the revised manuscript, only the case from 08/30/2011 is provided. The results

from 2009 are provided as below:
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Figure 1. 96-hour averaged R%(A), CSI(B), POD(C), and FAR(D) from 6~9 August 2009.
The results from BAL with threshold Tp = -0.5, BAL with threshold Tp = 0, SVM, and
MRMS are indicated with symbols of pentagram, circle, triangle, and square,
respectively.



Are the radome effects an issue (especially for the typhoon case you present; is it possible that
part of the somewhat unusual ZDR pattern in Fig. 10 may be attributed to such a source?)

Response: Yes, we agree with the reviewer. The wet radome could be a possible issue for radar
variables such as Z and Zpg. In the revised manuscript, we added following discussion:

Line 280 Other reasons such as wet radome may also contribute to the Z and ZDR issues.

L164, can you motivate why using such a large rhohv (> 0.98) as a criterion? You seem to throw
away a lot of data e.g., if you have mixed phase precipitation with hail. Is there no hail in Taiwan?
How much of the data are not considered? What happens if you observe rhohv < 0.98. How is
the performance degrading if you have data ranges present that where considered for training.
Those rangebins cannot be classified, since you trained the data for only specific ranges? Explain
what conseguence this choice of threshold has, how sensitive your results are, and before that,
how the training results are dependent on this choice. Did you make sensitivity studies?

Response: We'd like to address the reviewer’s concern from following few different aspects:

1.) In the manuscript, we use 0.98 as the threshold of RhoHV only in the training data selection.
As reported by Kumijian (2013), pure rain generally produces very high of RhoHV (> 0.98)
observed by WSR-88D. Such value (0.98) also suggested by Ryzhkov and Zrnic (2004) as the
RhoHYV field from majority of pure rain in C-band. Such large RhoHV was also suggested in
hydrometeor classifications (e.g., Liu and Chandrasekar 2000; Park et al. 2009). For example,
Park et al. (2009) suggested that RhoHVs for light/moderate rain, and heavy rain are 0.97 and
0.95, respectively. The precipitation may be classified as the mixed rain and hail if RhoHV is
below 0.9. Following these pioneering works, we choose 0.98 as the threshold of RhoHV in
the training data selection.

In the revised manuscript, we added the reference paper on Line 186.

2.) The threshold of 0.98 for RhoHV is only applied in the training data selection. Such aggressive
threshold can assure the training data from pure precipitation, and not smeared by clutter
(including ground clutter, sea clutter, biological scatter), AP, and possible ice phase
precipitation. When we test the algorithm with precipitation events, the threshold for RhoHV
is selected as 0.90. Any pixel (gate) with RhoHV below than 0.9 is classified as non-
precipitation echo. Any pixel with RhoHV above 0.9 is treated as pure rain, and the same
support vector obtained from training data is applied.

3.) The separation index (i) was derived from two drop size distribution (DSD) parameters N, and
Do. Therefore, it only validates at liquid phase precipitation (stratiform and convective types)
as suggested by (Bringi et al. 2009). For other phase precipitation, such as mixed hail and rain,
its performance is not well studied (Bringi et al. 2009). Other hydrometeor classification
schemes are suggested for such scenario (Bringi et al. 2009). In this work, the separation index



a)

also plays an important role in the SVM approach, therefore, we limited the application of
the proposed approach only within pure water phase precipitation. We have not tested it on
the mixed phase precipitation with hail. In the revised manuscript, we emphasized this
limitation at Line 344.

The goal of this work is to propose a prototype algorithm, and this manuscript focuses on
describing this algorithm. We are working on further analyzing this approach including
deriving the new separation index for S-band radar (WSR-88D), validating its long-term
performance, including more variables (such as reflectivity texture), including multiple
elevation angles. Sensitivity test for different training data definitely is also included in this
work. We plan to report further findings in the upcoming papers.

L166, what is exactly a “data set”? A range bin with all the moments you use satisfying the
criteria for Z, RhoHV? Would be helpful to the reader who is not so familiar with this method.

Response: We appreciate the reviewer pointing this out. A “set” means a set of data from
one radar gate (defined as azimuthal angle and range). Be more specific, a set of training
data means a vector of [Z(a,r) Zpg(a,r) i(a,r);d(a,r)]. Where “a” indicates azimuthal
angle, “r’ indicates range; “d” is the desired response with “1” represents convective, and “-
1” represents stratiform.

Line 188: A total of 17281 sets of data (15144 sets of stratiform, and 2137 sets of convective)
are used in the training process. In this work, one data set is defined as the variables from a
single gate in terms of range and azimuthal angle. Be more specific, a collection of training
data means a vector of [Z(a, r) Zpr(a, r) i(a, r) d(a, r)], where a and r indicate azimuthal
angle and range, respectively. The variable d is the ground truth (with 1 and -1 represents
convective and stratiform), i.e., the desired response in the training process.

L234: the intrinsic ZDR for stratiform precipitation: isn’t it something around 0.2 dB, Or is this
different in Taiwan?

Response: Yes, the reviewer is correct. The ZDR values we provided in the manuscript is not
accurate. The ZDR values mentioned in the manuscript are within the black circle in the
following figure (Fig. 7 in the original manuscript). If we examine carefully, especially for those
gates with Z around 30 dBZ, the ZDR values are around 0.2 dB, instead of O dB.
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Zonal (km)

Fig 10: ZDR looks biased to me... There seem sector based (az, range) biases for 270 -> 90°...
you mention this in 1250 ff, but Z looks relatively reasonable here.

Response: We agree with the reviewer. In this sector, ZDR looks over corrected from
attenuation, but Z looks relatively better. One hypothesis is both coefficients a and  used in
the linear PhiDP are need be adjusted based on the DSD and DSR features. Comparing to «,
B is more sensitive to the impact of DSD and DSR.
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Abstract. A precipitation separation approach using a support vector machine method was developed and tested on a C-
band polarimetric weather radar located in Taiwan (RCMK). Different from some existing separation-methods—thatrequire
methods requiring a whole volume radarscan data, the proposed approach utilizes the polarimetric radar data from the lowest

unblocked tilt to classify precipitation echoes into either stratiform or convective type. Through-a—suppert-veetor-machine
method;-the-The inputs of radar reflectivity, differential reflectivity, and the separation index are utilized-in-the-elassification

integrated into the classification through a support vector machine algorithm. The feature vector and weight vector in the

support vector machine were optimized using well-classified training data. The proposed approach was tested with multiple

precipitation events including two-widespread-mixture-of-a widespread mixed stratiform and convective eventsevent, a tropical
typhoon precipitation event, and a stratiform precipitation event. In the evaluation, the results from the multi-radar-multi-

sensor (MRMS) precipitation classification appreach-algorithm were used as the ground truth;-and-the-perfermances—from—,
The performances from the proposed approach were further compared with the approach using the separation index onlywith

different-thresholds. It was found that the proposed method can accurately identify-the-convectiveeellsfrom-stratiform-storms
with-the-radar-data-only from-the lewest seanning-tiltJt-ean—classify the convective and stratiform precipitation, and produce

better results than using the separation index only.

1 Introduction

Convective and stratiform

s—precipitations exhibit a significant difference

in precipitation growth mechanisms and thermodynamic structures (e.g., Houghton, 1968; Houze, 1993, 1997). Generally,

conveetive—preeipitations—are—a_convective precipitation is associated with strong and-but small areal vertical air motion
(>5ms_1) . .~ P . . . ~ l_1

..and delivers a high rainfall rate (R) ;-a-stratiform—preeipitation;—on—(Anagnostou, 2004). On the other hand, stratiform
precipitation is associated with relative-weak updrafts/downdrafts (< 3 m s”!) and relatively low RfAnagnestou;2004):
Accurately-separating-convective-type-from-stratiformprecipitations—. Classifying a precipitation into either convective or
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stratiform type not only promotes the understandmg of cloud physics but also enhances the accuracy of quantitative precipita-
ipitati ithmsFor these purposes, numerous methods using ground
in situ measurements or satellite observations were developed during the past four decades (e.g., Leary and Jr., 1979; Adler
and Negri, 1988; Tokay and Short, 1996; Hong et al., 1999).

Ground-based weather radars, such as Weather Surveillance Radar, 1988, Doppler (WSR-88D), are currently used in severe
' ieationsall aspects of weather diagnosis

and analysis. Precipitation classification mefhed%—wef&deve}epeekgmwb&g using single- or dual-polarization radars were
developed during the past three decades. For a smgle polarization radar, developed elasaﬁeaﬂefralgorlthms mainly rely on

tion estimation (QPE).

radar reflectivity (Z) and its derived variables {e-g
erstaff and Listemaa, 2000; Anagnostou, 2004; Yang et al., 2013; Powell et al., 2016). For example, based-on-the-stady

from-Stetnerand-Houze(1993);-Steiner et al. (1995) (hereafter SHY95) proposed a separation approach that utilizes the tex-

ture features derived from the radar reflectivity field. In this approach, a grid point in the Z field is identified as the convective

center if its value is larger than 40 dBZ, or exceeds the average intensity taken over the surrounding background by specified
thresholds. Those grid points surrounding the convective centers are classified as convective area, and far regions are classified
as stratiform. During-theirexperiments;Penide et al. (2013) found that SHY95 miselassified-may misclassify those isolated
points embedded within stratiform precipitation or associated with low cloud-top height. Powell et al. (2016) modified the
SHY95’s approach, and the new approach can identify shallow convection embedded within large stratiform regions;-and-these
iselated-shallow-and-weak-conveetions. A neural network based convective-stratiform classification algorithm was developed
by Anagnostou (2004). Hutitizes-six-vartables-Six variables were used in this approach as inputs including storm height, reflec-
tivity at 2 km elevation, the vertical gradient of reflectivity, the difference in height, the standard deviation of reflectivity, and

the product of reflectivity and height. Similar variables are-were also used in the-a fuzzy logic based classification approach

proposed by Yang et al. (2013). In-these

Although these listed classification algorithms have been developed and validated for years, a new robust algorithm is

motivated for the following two reasons. The first is to utilize only the low tilt radar data for classification. According to the
U.S. Radar Operations Center (ROC), the WSR-88D radars are currently operated without updating a complete volume during

each volume scan, especially during precipitation events. New radar scanning schemes are designed to reorganize the updating
order for a high frequency in low elevations and a less frequency for high elevations. Therefore:-An alternative scanning scheme
enables the WSR-88D radars are able to promptly capture the storm development for weather forecast and to obtain a more
accurate precipitation estimation. These new schemes include the automated volume scan evaluation and termination (AVSET),
supplemental adaptive intra-volume low-level scan (SAILS), the multiple elevation scan option for SAILS, and the mid-volume
rescan of low-level elevations (MRLE). Under these new scanning schemes, the separation of stratiform/convective becomes a

challenge for those algorithms requirerequiring a full volume ef radar-edata—
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can-obtain-extra-information-abeut-hydremeters-scan of data. The second reason is to further explore the applications of the
olarimetric variables. Polarimetric weather radars have been well applied in radar QPE, severe weather detection, hydrometeor

classification, and microphysical retrievals (Ryzhkov and Zrnic, 2019; Zhang, 2016). Extra information about hydrometeors’

size, shape, species, and orientation —A-could be extracted through transmitting and receiving electromagnetic waves along the

horizontal and vertical directions. Therefore, the polarimetric measurements may reveal more precipitation’s microphysical and
dynamic properties. Inspired by these features, a C-band polarimetric radar precipitation separation approach was developed by

Bringi et al. (2009) (hereafter BAL), which classifies the precipitation into stratiform, convective and transition regions based

on retrieved drop size distribution (DSD) characteristics. H
environmentregime(Thompsen-etal;2045)—Streng-However, it was found that strong stratiform echoes might have similar
DSDs to weak convective echoes and lead to wrong classification results (Powell et al., 2016).

In this work, a novel precipitation separation algorithm using the separation index with other radar variables was developed
and tested on a C-band polarimetric radar located in Taiwan. This approach classifies precipitations into stratiform or convective
types-using-type with a support vector machine (SVM) method. Different from some existing classification techniques that
ntitize-the-whole—vohime require a whole volume scan of radar data, this new approach uses the unblocked-data—fromthe

lowest-seanningtilt—The-C-band-pelarimetric radar-lowest unblocked tilt data in the separation. If the lowest tilt is partiall
or completely blocked, then the next adjacent unblocked tilt is used instead. The major advantage of this method is that it can

provide real-time classification results even iif the radar is operated under AVSET, SAILS, and MRLE scanning schemes,

where the towesttitis-the-mostlow tilts are frequently scanned and updated. Adt-the-parameters-used-in-the-eurrent-approach
afemmed—ﬁem—fyptea}eem%eﬂwﬂﬂd—s&aﬂfeﬁﬂ—pfeﬂpﬁ&&e&a@%Thls paper is orgamzed as follows: Section 2 introduces
the rada :-proposed
method including radar variables and processings, the SVM method, and the training process. The performance evaluation is

shown in Section 4;-and-a-3, and the discussion and summary are given in Section 54,

2 MethodeloegyPrecipitation Separation With a Support Vector Machine Method
2.1 Radars-and-Jess-Waldvegel Disdrometers-

In the current work, the SVM precipitation elassification-separation approach was developed and validated on a C-band po-
larimetric radar (RCMK) located at Makung, Taiwan (Figure 1). The Weather Wing of the Chinese Air Force deployed this
radar and made the data available to the Central Weather Bureau (CWB) of Taiwan since 2009. Together with ether-three
single-polarization S-band WSR-88D (RCCG, RCKT, and RCHL) and one dual-polarization S-band radar (RCWF), these five
radars provide real-time QPEs—fer-QPE products to CWB to support missions of flood monitoring and prediction, landslide
forecasts and water resource management. Operating with a wavelength of 5.291 cm, RCMK performs volume scans of 10
tilts (0.5°, 1.4°, 2.4°,3.4°, 4.3°, 6.0°, 9.9°, 14.6°, 19.5°, and 25°) in every 5 minutes with the range resolution of 500 m and

angular sampling of 1°.



95

100

105

110

115

120

¥The Central Mountain Range (CMR)
of Taiwan is also shown in Figurel, which poses a major challenge for radar based products. Radars located in complex terrain
are prone to partial or total blockages, which cause data from the low elevation angles (EA) to be unavailable or problematic.
Blockage maps of RCMK are illustrated in Figure 2. Since there are severe blockages at the 0.5° for RCMK, data from the
1.4° EA is used in the algorithm development.

2.1 Input Pelarimetrie Radar-Variables-polarimetric radar variables and Prepreeesspreprocesses

The-inputs-of-Three measured or derived radar variables are proposed as inputs to the SVM approachare-three-variables: 7,
differential reflectivity fields (Zpr), and separation index (7). In most of the-precipitation classification approaches, Z is used

as i iviti i ne of the inputs because reflectivity from convective generally
show higher values than from stratiform systems—In-the-approach-developed-by-SHY95type. For example, a radar echo, with
the reflectivity of 40 dBZ and above, is automatically classified as convective type —Stratiform-preeipitations-generally-consist

other-hand;-may-produee-large-in the approach developed by SHY95.

Differential reflectivity, which is highly related to raindrop’s mass weighted mean diameter (D,,,), is another good indicator

of precipitation type. It was found the values of D, in stratiform and convective precipitation generally are within 1-1.9 mm
and above 1.9 mm, respectively (Chang et al., 2009). Higher Zp i beeatse-theyconsistoflarge-and-oblate raindropsvalues are
expected from convective than from stratiform precipitation. Therefore, the Zp p field is used as another input of the proposed

approach.
For short wavelength radars such as C-band or X-band radars, the Z and Zppr, fields may be significant-attenuated-when

the-significantly attenuated when radar beam propagates through heavy precipitation regions. Both Z and Zppr, fields need

to be corrected from attenuation before applied in the precipitation classification and QPE. Different attenuation correction

methods were proposed using the differential phase (¢ p p) measurement such as linearly-approachs-the linear ¢ pp approach,
the standard ZPHI method, and the iterative ZPHI method (e.g., Jameson, 1992; Carey et al., 2000; Testud et al., 2000; Park

et al., 2005). Because of its simplicity and easy implementation in a real-time system, the linear ¢ pp method was applied in

the current work.

Z(r)=2'(r) + a(épp(r) = $pp(0)) (1)
Zpr(r) = Zpr(r)+B(¢éppr(r) — ¢pp(0)) (1b)
where Z'(r) (Z, (1)) is the observed reflectivity (differential reflectivity) at range r; Z(r) (Zpr(r)) is the corrected value;

¢pp(0) is the system value; ¢ppp(r) is the smoothed (by FIR filter) differential phase at range r. The attenuation correction

coefficients o and S depend on DSD, drop size shape relations (DSR), and temperature. The typical range of « (5) is found
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0.06~0.15 (0.01~0.03) dB deg " for C-band radars (e.g., Carey et al., 2000; Vulpiani et al., 2012). Following the work from
Wang et al. (2014), optimal coefficients o and 3 in Taiwan are 0.088 dB deg~! and 0.02 dB deg~*, respectively. The Z and

Zpr fields are further smoothed with a 3 (azimuthal) by 3 (range) moving window function after corrected from attenuation.

Other quality control issues, including calibration, reflectivity vertical profile, and ground clutter removal, were also considered
in this work. Since this radar is used in the real-time quantitative precipitation estimation, the biases of Z and Zp, 5 should be
within 1 dBZ, and 0.1 dB, respectively. The data quality of RCMK was examined through validating the QPE performance
in different works (c.g., Wang et al., 2013, 2014). Therefore, the calibration bias of RCMK should be within the reasonable
range. A vertical profile of reflectivity (VPR) correction is generally needed on the reflectivity field to reduce the measurement
biases because of the melting layer (Zhang et al., 2011). Given the fact that 1.4 elevation angle is used within the maximum
range of 150 km, and the melting layer is usually around 5 km in Taiwan, the radar data is well below the melting layer. In
addition, considering the vertical profile of differential reflectivity is not well studied in the current stage, no vertical corrections
are applied to fields of Z and Zp 5. Ground clutter is typically associated with a low correlation coefficient (pgy);, the prv.
threshold used in this work is 0.9, which can effectively remove those non-meteorological echoes such as ground clutter.

Using the separation index ¢ to identify convective

C-band-polarimetrie-radar—Aeeordingto-BAl;—from stratiform precipitation was initially proposed by BAL, where ¢ was

calculated under a normalized gamma DSD assumption:

1= lOglo (N&?t) - lOglO (le{;p) (2)
loglO(N{j‘fp) = —16D0 + 6.3 (3)

where N is the estimated Ny (normalized number concentration) from observed Z and Zpg. and is calculated as:
Nt = Z/0.056DF 3 4)
In Equation 4, D is the median volume diameter Br-is-and can be calculated as.

Dy =0.0203Z} — 0148873 1, +0.2209Z% , + 0.5571Zpgr +0.801; —0.5< Zpp < 1.25
= —0.0355Z%  —0.3021Z% 5 +1.0556 Zp R 4 0.6844; 1.25 < Zpr <5

Dy =0.0203Z} p — 0.1488Z3, , +0.2209Z3 5 + 0.5571Zp R + 0.801; —0.5< Zpp < 1.25 (5a)
= —0.0355Z3 5 —0.3021 2% + 1.0556 Zp R + 0.6844; 1.25< Zpp <5 (5b)

The units of Zpg, Z, Ny, and Dy are dB, mm®m—3, mm~'m~3, and mm, respectively. The positive and negative values
of index 4 indicate convective and stratiform rain, respectively, and |i| < 0.1 indicates transition regions (Penide et al., 2013).
BAL pointed out that index ¢ worked well in most of the cases in their study; however, incorrect classification results are likely

obtained for low Z and high Zp g cases in some convective precipitations.



2.2 Drop size distribution and drop shape relation

155 It should be noted that the relations between 244, N,,, and Dy were derived using the DSD data collected in Darwin, Australia.
Coefficients in Equations 2~5 need be adjusted according to different-frequeney-radars-the radar frequency or/and ether-DSD
and DSR features from the specific location (Thompson et al., 2015). In the current work, the separation index i is directly
derived using Equations 2~5 is-direetly-used-as-one-of the-input-vartableswithout further adjustment. It was shown by Wang
et al. (2013) that DSD and DSR features in Taiwan is-are very similar to those measured from Darwin, Australia. Similar

160 R(Kpp) relationships were obtained using data collected from these two locations. Coefficients derived by BAL could be
directly used in Taiwan without further modification. To verify this assumption, N,, and D, were calculated using DSD data
collected by four FWBs-impact-type Joss-Waldvogel disdrometers (JWD) located in Taiwan (Figure 1). Fotal- The measurement
range and temporal resolution of these JWDs are 0.359 mm ~ 5.373 mm and 1 minute, respectively. A total of 4306-minute
data from 2011~2014 are used in N,, and Dy calculation following the approach described in Bringi et al. (2003). Similar to

165 the work presented in BAL, the distribution of 7 along median volume diameter Dy is shown in Figure 2, where the-(log19 N,
Dy) pairs from stratiform and convective types are represented with gray circles and black stars, respectively. Although the
relation described in Equation 3 can separate most stratiform from convective typestype, a large number of points are still

classified incorrectly. Therefore, the single separation index is not sufficient in the precipitation separation, and other variables

such as Z and Zppr may be used as the-supplementsupplements.

170 3 Suppert-VeetorMachines(SVM)-Method
2.1 Intreduetion-of-Support vector machines (SVM) method

2.1.1 Introduction of SVM

Machine learning aleorithms based on meteorological radar data were well developed during the past two decades (e.g., Capozzi et al., 2018

. Support vector machine (SVM) can be viewed as a kernel-based machine learning approach, which nonlinearly maps the data
175 from the low-dimension input space to a high-dimension feature space, and then linearly maps to a binary output space (Burges,
1998). Given a set of training samples, the SVM constructs an optimal hyperplane, which maximizes the margin of separation
between positive and negative examples (Haykin, 2011). Specifically, given a set of training data {(X;,y;)}¥,, the goal is to

find the optimal weights vector W and a bias b such that
u(WITX;+b0)>1  i=1,2,...,.N (6)

180 where X; € R™ is the input vector, m is the input-variable dimension (/m = 3 in this work), IV is the number of training
samples, and y; is an-the output with the value of +1 or —1 that represents convective or stratiform, respectively. The particular
data points (X;,y;) are called support vector when Equation 6 is satisfied with the equality sign. The optimum weights vector

W and bias b can be obtained through solving the Lagrangian function with the minimum cost function (Haykin, 2011).



185

190

195

200

205

210

Since the SVM can be viewed as a kernel machine, finding the optimal weight vector and bias in Equation 6 can be alterna-

tively solved through the recursive least square estimations of:
> aiyik(X,X;) =0 (7
where Ny is the number of support vectors, «; is the Lagrange multipliers, and k(X, X;) is the Mercer kernel defined as:
1
o
With the solved {;}Y ;, the SVM calculate the classification results with new input data Z € R™ as
N
Z) = sign| [Z @iy " (X;)®(2)
i=1

When f(Z) = 1, the output is classified as convective, otherwise is classified as stratiform.

€))

2.2 Trainingof the SVM

2.1.1 Training of the SVM

In the SVM approach, the weight vector and bias in Equation 6 need to be optimized through a recursive least square estimation
using the-training-datasetraining data. Since the training data play a critical role in the SVM approach, Z, Zpr and 7 from
convective and stratiform precipitation events were carefully examined through three steps. Firstly, the training data ischeeked

follewingseme-was checked following general classification principles. For example training data from convective precipita-

telatively strong reflectivity and
high vertically integrated liquid (VIL). %WWMMMM@@W
associated with a prominent bright band signature. The melting hydrometeors within the bright band increase backscatter
during stratiform rainfall, which can significantly enhance radar reflectivity. The bright band feature is one of the obvious
indicators of stratiform precipitation. Bright band signature normally can be observed from relatively high EAs (such as above
9.9°). Erom low EAs, because of the combination of radar beam broadening and low slant angle, the bright band feature spreads
into more gates and becomes not apparent. Therefore, in this work, the bright band feature from high elevation angles is only.
used in training data selection but not used as one of the inputs. Secondly, the precipitation type is verified by ground observa-

tionsteh-as-gatge-measturements-and-, such as ground severe storm ebservations—The-precipitation-types-were-finalhyreports.
Thirdly, the precipitation type is confirmed by the Multi-Radar-Multi-Sensor (MRMS) precipitation classification algorithm

implemented in Taiwan (Zhang et al., 2011, 2016). In this MRMS classification approach, a 3-dimenstenal-three-dimensional
radar reflectivity field was mosaicked from 4 S-band single-pelarization-single-polarization radars (Figure 1), and-the-The
composite reflectivity (CREF) together—with-other—fietds—and other measurements such as temperature and moisture fields

were then used in the surface prempltatlon classification (Zhang et al., 2016) Seveﬁérffefefmﬁfegeﬂe&ef—wafm%&a&fem%

tion is generally associated with rela




classification-algorithm(Zhang-et-al52016)-Based on the classification results, MRMS utilizeschooses different R(Z) rela-

tions in the rainfall rate estimation. The performance of MRMS has been thoroughly evaluated for years for the quantitative

215 precipitation estimation, flash flood monitoring, severe weather, and aviation weather surveillance (e.g., Gourley et al., 2016;
Smith et al., 2016);-and-also-. The products are used as the benchmark and/or ground truth in many studies (e.g., Grecu et al.,
2016; Skofronick-Jackson and Coauthors, 2017). 5 ipitati sificati sas

ground-truth-It should be noted that, on the other hand, the MRMS also shows limitations since it only uses single-polarization

variables to determine the precipitation type. At the current stage, the MRMS precipitation classification is considered as the
220 appropriate benchmark in the training and validation of the proposed algorithm. Moreover, since the MRMS classification

results-are-is a mosaicked product derived from 4 S-band radars, it can be viewed as an independent reference.
Training-data-for-conveetive-type-are-Convective type training data is mainly from a strong convective precipitation event on
23 July 2014. This thunderstorm, classified as convective precipitation by MRMS, was associated with strong updrafts/downdrafts
and caused an aircraft crash on the airport of Makung at 1106 UTC. Fetal-+-heur-data-The squall line features can be clearly
225 identified from this storm. Radar data collected from 1030 to 1130 UTC were used as the convective type training data;-and-the

training-data—are-assoetated-with-, The training data selection follows the criteria of Z > 20 dBZ, and correlation coefficient

(prv) > 0.98 (Kumjian, 2013). The stratiform type data are from a mixture-of stratiform-/conveetive-precipitation-even-mixed
stratiform and convective precipitation event on 30 August 2011, and only those data identified as a stratiform type by MRMS

are used in training. Fotal-A total of 17281 sets of data (15144 sets of stratiform, and 2137 sets of convective) are used in the
230 training process. The-In this work, one data set is defined as the variables from a gate in terms of range and azimuthal angle.

Be more specific, a set of training data means a vector of [Z(a,r) Z a,r) i(a,r) d(a,7)], where a and r indicate azimuthal
angle and range, respectively. The variable d is the ground truth (with 1 and -1 represents convective and stratiform), which
is as the desired response in the training process. The number of support vectors is selected as 1000 in the current work, and
the training process is considered as completed when the root-mean-square error reaches a stable value. Itsheuld-benoted-that
In the SYM

approach, the original three-dimension input space nonlinearly maps to a 1000-dimension feature space, and then linearly maps
to a binary output space (Burges, 1998). The higher dimension feature space potentially captures more input variables features
with higher computation cost. Generally, after the number of support vector reaches some number, the enhancement in the

SVM’s performance approach becomes slight. There is a balance between accuracy and computation. In the current work, the
240 numbersnumber of support vectors were-tested-at-was tested with a value of 500, 750, 1000, 2000, and 5006;-and-5000. The

235

testing of 1000 support vectors can produce less than 5% error with reasonable computation time. As the prototype algorithm
the number of support vectors is selected as 1000 in the current work.
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3 Performance Evaluation
3.1 Description of the experiments

The performance of the proposed approach was validated with feurthree precipitation events from 2009 to 2042—These-four

2011, These three precipitation events include one stratiform event;-one-strong-tropical-preeipitationevent-and-two-events-of

the-mixture-of-precipitation, one intense tropical precipitation, and one mixed convective and stratiform precipitation. Two
experiments based on the BAL approach with different thresholds (i.e., BAL? and BAL %) were also carried out in the

evaluation. In these two experiments, the separation index ¢ from each radar gate is first calculated using Equations 2~5, and
thresholds of Ty = 0 and -0.5 are then used to separate convective type from stratiform type. A pixel-gate is classified as
convective if ¢ is larger than T}, and as stratiform otherwise. This work aims at-developing-to develop a complementary method
using separation index ¢ together-with-and other variables to separate convective from stratiform type. The proposed SVM and
BAL methods beth-can classify the precipitation using the lowest tilt radar data only, which is suitable for fast scanning and
quick-updated-purposequickly updated purposes. Other classification approaches as introduced in section 1 were not examined
in the current work, because they require the data from multiple elevation angles.

The- MRMS-elassification-produets-In the evaluation, three statistical scores of probability of detection (POD), false alarm

rate (FAR), and critical success index (CSI) are first used, and MRMS classification results are used as the referenee-“‘ground
truth” in the evaluation—Beeause-the MRMS-calculation.

hit
POD = ———— 10
0 hit +miss (10
false
FAR= ——«+— 11
R hit + false (1
CSI hit (12)

" hit + false+miss

where “hit,” “false,” and “miss” are defined as a radar gate classified as convective type by MRMS and the evaluated
approach simultaneously, by the evaluated approach only, and by MRMS only, respectively. Although these scores are well
used in statistical analysis, two factors make it necessary to introduce one more criterion in the evaluation. First, MRMS results
are derived using the mosaicked field from four S-band single-polarization radars, the-coverage-and-time-stamp-are-different
from-the result-of the single radar REMK—The-elassifieation-and the classification results are produced every 10 minutes. On
the other hand, BAL? , BAL "%, and SVM generate classification results whenever RCMK completes a whole scan. The time
difference between results from RCMK (i-e-BAL? , BAL~-5, and SVM) and MRMS could be differentas large as 5 minutesin
time-stamps—Given-the-fact-that-the-conveetive-storms-. Second, a convective storm’s size, intensity, and cells locations could

change significantly during a
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these three pixel-to-pixel ev

based evaluation scores cannot really reflect the performance of the proposed approach. As a supplement, a whole coverage
convective ratio (RY?) to-evatuate-the-performaneequalitatively=is introduced in the current work:

NCOTL NCOTL
RS = 100 13
Neon ¢ Nstr Nem g N <00 -

Where N°°" and N*'" are the total pixel numbers of convective and stratiform types within the coverage, respectively. Together
with CSI, POD and FAR, these four scores are used in the performance qualitative validation. The evaluation results are shown

in the following sections;-an

3.2 Experimentresults

3.2 Experiment results

3.2.1 Widespread Mixtures-of Stratiformr-mixed stratiform and €onveetiveconyective precipitations

The performance of the proposed approach was first validated with two-widespread-mixtare-of-one widespread stratiform and
convective preeipitation-events—from-mixed precipitation event on 30 August 2011, and +H4—June-2042For-these-two-cases;

24-hour data (0000 UTC~2400 UTC) were used in the evaluation. The-Classification results from the proposed SVM were

calculated with the trained weight vector and biases, and results from the BAL approach (BAL® and BAL~%%) were also
calculated @Wm It should be noted that the threshold of -0.5 is much lower than the value suggested by

The-time-series-plots-of- RCS-are-may classify more precipitations as convective type.

The time series of R“° (A), CSI (B), FOD (C), and FAR (D) are calculated using Equations 10~13 and shown in Figure 34,
where results from - MRMS, SVM, BALY,

and BAL™9- are presented by thick-selid-thick-dashed;thin-selid-and-thin-dashed-black, red, blue, and green lines, respectively.

In—general, BAEWhen the MRMS results are applied as the ground truth, BALY obviously classifies more precipitation as

stratiform type during this 24-hour period. The time series of RS from BAL® are much lower than other three approaches.
BAL % classifies more pixels as convective than BAL? as expectedforboth-eases-ane-, and the R scores are much higher

TP 11 L EP O
a a

than BAL?. The proposed SVM shows the most similar resutts-R“S scores to MRMS comparing to BAL approaches. For

the BAL™%-5 uses a very low threshold, it classifies more plxels as a—cenveetive-typethan MRMS-inthe 14June 2012-ease
onvective type, and the obtained

10
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ROS from MRMS-SVM-BALL-scores are higher than MRMS. In term of CSL, POD, and FAR, SVM and BAL =05 are-shown
inFable-+-show similar results, but BAL? show apparently worse performance.

To better understand the performance of each approach, the classification results and radar variables (Z, Zpp, and %) from
two distinct moments were-are examined and shown in Figures 45~7. Classifieation-Figure 5 shows the classification results
from 0303 UTC 30 August 201 1svere-first-shown-in-Figare4, where BAL?, BAL™%5, SVM and MRMS are shown in pane}
“athe panel ‘A’, ‘bB’, ‘eC’, and ‘dD’, respectively. The time stamp for the MRMS result is 0300 UTCand-the-time-difference
from-the-, and about 3 minutes earlier than the other three approachesis-about3-mins. These three input variables of SVM
at 0303 UTC are shown in Figure 56, where Z, Zpr, and ¢ are presented in panel ‘aA’, ‘bB’, and ‘eC’. From Figures 3-and
4 and 5, it could be found that the R“¥ from MRMS, SVM, and BAL > show similar vatuevalues, but RS from BAL®
is obviously-distinctly low. Within the blackred circle of Figure 56, the averages of Z and Zpg both show relatively large
values (Z > 36 dBZ and Zpp > 0.75 dB), this is a clear indication of convective type precipitation. Both SVM and BAL %5
classify most of the area within the blackred circle as convective, and this result is consistent with the MRMS result. Since the
separation indexes within the black circle are below or slightly higher than 0, most of the area is classified as stratiform type
by BAL. For this moment, threshold —0.5 shows better performance than 0.

Figure 6-shows-the-7 shows another example of classification results from W&M
although SVM and BAL " ‘

he-produce similar CST
WMAWM&}Q&R“ from MRMS: SVMand BAL' <how sintilar values around 22%c but
BALBAL Y% classifies much more pixels as connective with (32%) is much higher than R¢ reaches 41'%- (Figure 6} Radar
vartables-are-shown-in-Figure-from MRMS (17%) and SVM (13%). These scores could also be found in Figure 4. In Figure
7, and-a-cirele-is-also-inserted-in-both-Figures6-It could be found from that the MRMS, SVM, and BAL”"> show similar
Wm&mand %%mpha%e—fheﬁeffefm&ﬂee—ffemﬁelﬁpﬁfeaeh%ﬂ

type270°. However, BAL "> misclassifies gates between 90° and 180° as convective type, which produces such high RS,

On the other hand,
and SVM show similar classification results in this region.

mMRMS

3.2.2 Tropical convective

Typhoon Morakot (6~10 August 2009) brought significant rainfall to Taiwan. Over 700 people were reported dead in the storm,
and the property loss was more than 3.3 billion USD. For most of the time during its landfall in Taiwan, the precipitation was
classified as a mixture of tropical convective and tropical stratiform types. The performances of SVM, BAL?, and BAL %5
were validated with-using 96-hour data from 6 to 9 August 2009, where the results from 10 August 2009 were not included in
the evaluation because no significant precipitation was observed from that day. The time series plots of RS -«(A), CSI (B),
POD (C) and FAR (D) are shown in Figure §-demenstrate-that-the-8. It could be found that scores of RS, CSI, and POD

11
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from the BAL based approaches is evidently lower than the results from SVM and MRMS, and the latter two show similar
performance during this-4-day-periodthese four days.

Classification results from BAL®?, BAL~%5 SVM (0402 UTC), and MRMS (0400 UTC) from 9 August 2009 are shown
in Figure 9a;-9b;9¢e-and-9d9A, 9B, 9C, and 9D, respectively. The classification results in those regions, highlighted with two
circles, are convective (SVM and MRMS) and stratiform (BAL® and BAL~°%). Figure 10 includes the reflectivity (10aA),
differential reflectivity (+0bB), and separation index (+0eC) from 0402 UTC, where Figure 10D is the zoom-in reflectivity
field inside the refteetivity-field-within-thered rectangular box is-shewn-inFigure+6d-(A) for more details. It eottd-was found
that the heavy precipitation band is on the top of RCMK (Figure +0¢10D), and this may cause significant attenuation and
differential-attenuationon Z and Zpr fields. Although both Z and Zpr fields were corrected using Equation 1, deficient or
over compensations on Z and Zpp, fields lead to increased uncertainty on the separation index. It may be the primary reason
causing the small values of the separation index. aFigure+6eOther reasons such as wet radome may also contribute to the
Z and Zpp issues. In Figure 10C, the separation index ¢ are equal or less than -0.5 in the circled areas, and the BAL based
approaches classify these regions as stratiform. On the other hand, these regions clearly show the convective precipitation
features in the fields of Z (16a10A) and Zpgr (16610D).

3.2.3 Stratiform precipitation event

The performances of BAL?, BAL~%%, and SVM approaches were also evaluated with a widespread stratiform precipitation
event on 26 March 2011. There were no convective type precipitations identified by MRMS, and all these three approaches

showed consistent classification results with the MRMS result during an 8-hour period evaluation.

33 Sensitivity test

The performances of BALY, BAL "’ and proposed SVM were further validated respecting to the Zpp bias. First, the impact
the calculated 7 drops when Zp g increases. Moreover, a larger Z produces a larger 4 for the same 7 p value. As introduced
The impact of the Z; calibration bias on the performance of BAL?, BAL ™", and SVM was investigated using precipitation
events from 30 August 2011, In this study, the Zp filed was first corrected from attenuation, and a AZp g was then manually.
respectively. The biased Zppp was caleulated as Z}, = Zpi + AZpp. The separation index i was calculated using ZJ), 5,
through Equations 25, and classification results from BAL” and BAL "> were then calculated. The same trained weights

12
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scores of RY (A), CSL(B), POD (C) and FAR (D) are calculated and shown in Figure 12. It should be noted that these scores
are the 24-hour averaged values. It could be found that when the AZyj; changes from -0.2 dB to 0.2 dB, the R from both
BAL? and BAL""> approaches decrease. This indicates that BAL? and BAL """ classify more precipitation as stratiform,
and this results is consistent with the simulation. Both CSI and POD from BAL” and BAL "’ show degradations with the
increase of AZpg. On the other hand, the proposed SVM shows slightly better performances when AZpp changes from
negative to positive. Both CSI and POD increase when AZp, increases, and the R also has the similar trend. One possible
reason is that convective type precipitation is normally associated with larger Zpg. As a result, positive AZpp classify more
precipitation as convective type. Similar results were also obtained from the case of 610 August 2009.

4 Conclusions

A novel precipitation classification approach using a support vector machine approach was developed and tested on a C-
band polarimetric radar located in Taiwan. Different from seme-existing-other classification algorithms that use whole volume
scan data, the proposed method only utilizes the data from the lowest unblocked tilt to separate precipitation into convective
or stratiform type. It can be applied ea-to new scanning schemes with more frequent scans at the lowest tilts and lack of
information from a higher tilt, such as AVSET, SAILS, MRLE, and etc. Three radar variables of reflectivity, differential
reflectivity, and the separation index derived by Bringi et al. (2009) are utilized in the new proposed approach, where both
reflectivity and differential reflectivity need be corrected from attenuation and differential attenuation. Although the separation

index alone can be used in the precipitation classification, there may be two potential limitations: thresholds and attentationthe

biases on reflectivity and/or differential reflectivity. Although the threshold O-is-propesed-to-separate-conveetive from-stratiform
types’0” was suggested to be used in separating convective type from stratiform type, it was found that a single threshold may
not sufficient for all cases. Other thresholds (such as -0:5-“—-0.5" used in the current work), sometimes can produce better
results than 6—Fhe-attentationis-the-other potential-issue“0”. The biases may come from mis-calibration, attenuation, wet
radome, blockage. Although both reflectivity and differential reflectivity should be corrected from attenuation before used in
the separation index calculation, the correction biases on either filed may cause large uncertainty in the derived separation index
and further lead to a wrong classification. Other factors also may have impacts on the separation index. This work attempts
to propose a complementary method to enhance the performance of using the separation index only. The proposed approach
integrates input variables with a support vector machine method. The weighs and bias vectors used in the support vector
machine were trained with typical stratiform and convective precipitation events. It should be noted that the proposed approach
has a flexible framework, and some other variables can be easily included. With newly added variables, the weighting and bias
vectors need to be retrained. The proposed approach was tested with multiple cases;-and-its-, Its performance was found similar
to a well-developed approach, MRMS, which utilizes multiple tilts radar data in the classification. It should be noted that the

time difference between RCMK (i.e., BAL? , BAL ™95, and SVM) and MRMS could be as large as 5 minutes. Therefore, the

ixel-to-pixel evaluation criteria of the critical success index (CSI), probability of detection (POD) and false alarm rate (FAR

13
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may not really reflect their performances. Although a new variable of R is used in the performance evaluation, this should

be treated as qualitative evaluation.
There are some issues reed-that need to be noticed before applying this approach into operation. First, this approach is

developed for fast scanning and fast update purpose, therefore, onty-thetowesttilt-data-data from the lowest unblocked tilt is

used as the input. With-the-highe data-as-the inputs, poten enhaneements-should-be-However, if the radar is located in

a complex orography area, radar beam could be partially or completely blocked at some regions. A possible solution for such
scenario is using data from different scanning tilts to form a hybrid scan. and the hybrid scan is then used as the input. Radar
scanning tilts used in the hybrid scanning are determined by the radar scanning geometry. Given the factor that precipitation’s
microphysics (such as drop size distribution) from different altitudes may be significantly different, therefore, the performance
of proposed approach may be worse than expected. Second, the performance of the proposed approach highly-depends-depends

highly on the training data—ttshould-be-very-careful-to-setectthe-training-data, which should be selected very careful. Third,
coefficients in the separation index calculation depends-depend on the local drop size distribution and drop shape relation

features. Therefore, new relations need to be derived for the optimal results. Feur;-Moreover, the separation index only validates

at liquid phase precipitation. For ice phase precipitation, such as mixed hail and rain, its performance is not well studied. Other
hydrometeor classification schemes could be used for such scenario. Fourth, this work only presents a prototype algorithm.

Given the flexible framework, other variables (such as differential phase) could be easily integrated into this algorithm, and the

performance could be further enhanced.
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Figure 1. The terrain of Taiwan, the location of a C-band polarimetric radar RCMK (marked with a black square), JWDs (marked with black
stars), and four S-band single-pelarization-single-polarization radar RCCG, RCKT, RCHL, and RCWF (marked with black circles). The

continuous grey-scale terrain map shows the central mountain range of Taiwan.
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Similar-to-Figure-4-The results-are-from—14-June 2012 The-time-stampfor BAL - BAL=""and-SVM-region inside the red circle is 080+
YFE-and-time-stamp-for MRMS-15-0800-UFCused in the analysis.
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Figure 7. Similar to Figure 5, but-radar-dataresults are from 68640650 UTCH4Fune2642-.
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Figure 8. The time series plot of eeﬁveeﬁvefeﬂs—te%&aﬁfe%meeﬂ%—mﬂ&ﬁff REIA), CSI(B), POD(C), and FAR(D) from 06-~09 August
2009. 96-hours data are used in each case. The results from BAL with threshold Ty = -0.5, BAL with threshold 7o = 0, SVM, and MRMS
are indicated with-thin-dashedby green, thinselidblue, thiek-dashed-red and thick-selid-black lines, respectively.

24



150

100

-100 0 100

stratiform

Meridional (km)

convective

-100 0 100
Zonal (km)

Figure 9. The classification results from BALO(aQ), BAL’O'E’(b]é), SVM(eC), and MRMS(€D). The time stamp for BAL, BAL™%®, and
SVM is 0402 UTC 9 August 2009, and time stamp for MRMS is 0400 UTC 9 August 2009.
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Figure 10. Radar variables of reflectivity(aA), differential reflectivity(bB), separation index(eC), and reflectivity within the red rectangular
box in A(dD). The radar data was collected by RCMK at 0402 UTC 9 August 2009.

26



$-z=-10dB
©-Z2=20dB
>¢Z =30 dB
-4-Z = 40 dB

-4 ! | \ !
-0.5 0 0.5 1 1.5 2

Za (dB)

Figure 11. The calculated separation index respecting to different differential reflectivity values.
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Figure 12. 24-hour averaged RYS(A), CSI(B), POD(C), and FAR(D) from 30 August 2011. The results from BAL with threshold T} = -0.5,
BAL with threshold 7 = 0, SVM, and MRMS are indicated with symbols of pentagram, circle, triangle, and square, respectively.
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