
Reply to Referee  
 
We appreciate the reviewer provided these important comments help us improving our 
manuscript. We’d like to address these comments as following. 
 
 
First, language and text have to be improved. In this respect, I have noticed that several 
sentences do not appear sufficiently connected among them, with sentences and concepts that 
do not appear derived from the previous arguments. Moreover, several typos remain (for 
example lines 137, 146, 160).  
   
Response:  We appreciated the reviewer’s comments. We double checked language and text 
parts in the manuscript. Got helps from writing center and professional writing software. Issues 
in grammar, sentence, and word should be corrected. 
 
  
Second, I agree with the comment of Reviewer 1 on the quality of the datasets: only two 
meteorological events have been used for the training datasets, and the 17281 datasets are 
largely unbalanced towards stratiform data. I understand that this work deal of a prototype 
algorithm, and in this respect I could be acceptable so few events, anyway this limitation has to 
be clearly and extensively reported in the text (including §2.3.2, abstract and conclusions), and 
the indicated unbalance justified in some extent.  
 
Response: Following the reviewer’s comment, the limitations of the training data, including the 
total number and stratiform/convective ratio are clearly explained in abstract, section 2.3.2, and 
conclusions. 
In abstract: The weight vector and bias in the support vector machine were optimized using well-
classified data from two precipitation events.  
In section 2.3.2: It should be noted that the size of training data is considered as small, and the 
data ratio of convective and stratiform is not well balanced. Much more data from various 
precipitation events should be included in the training process if the proposed algorithm is 
implemented in operation. 
In section conclusion: Moreover, only very limited training data is used in the current work. Much 
more data from various precipitation events should be included in the training process if the 
proposed algorithm is implemented in operation.  
 
Finally, I retain answers to Reviewers acceptable, but not fully addressed in the text. In other 
words, answers give a detailed justification to the points indicated by Reviews but the revised 
text in most cases addresses the point in a sentence not sufficiently complete. My general 
comment is to take answers to Reviewers and insert them in the text as much as possible “as 
is”. In particular, I retain necessary the justifications for the following points:  
1. The selection of the datasets, as previously indicated;  

 
Response: Please refer to the response to the first comment. 



  
The explanation for the 11 mm/hour value, citing the two formulas and the threshold of 40 dBZ 
with its reference;  
The sentences on the QPE accuracy have to be revised according to the answer to Reviewer (in 
my opinion much clear than the sentence in the text), and the paper of Kirsch et al. 2019 have 
to be included in references;  
 
Response: Following the reviewer’s comment, the manuscript is modified as: 

Convective type precipitation also produces a higher rainfall rate (R) than stratiform type 
(Anagnostou, 2004). Given the fact that the radar reflectivity (Z) from a stratiform precipitation 
generally is less than 40 dBZ (Steiner et al., 1995) (hereafter SHY95), the R estimated from 

stratiform precipitation is less than 11 mm hr−1 following the standard Marshall-Palmer 

relationship (Z = 200R1.6). In order to obtain accurate rainfall estimation, different R(Z) 
relationships according to the precipitation types should be applied in the quantitative 
precipitation estimation (QPE) (Kirsch et al., 2019).  

 
The justifications on the RhoHV values have to be absolutely inserted in the text, in particular 
points 1 and 2 of the answer to Reviewer that I suggest to include as much as possible “as is”. 
On the other hand, I agree that the following discussion in the answer on the small differences 
using different thresholds have to be reported in the text but in a much more compact form. 
Anyway, the discussion on the �HV, in the revised text is only in conclusions and in a form too 
concise, while it is absolutely necessary address properly this point , as done in the answer to 
the Reviewer;  
Response: Following the reviewer’s comment, following discussions were added into the 
manuscript as: 

It should be noted that the ρHV threshold of 0.9 is used in the training data selection for both 
convective and stratiform precipitations. As reported in Park et al. (2009), the liquid phase 
precipitations (e.g., light to heavy rain) are associated with relatively high ρHV (>0.92). Other 
types of precipitations, such as the mixture of rain and hail, wet snow, and crystals may 
produce low ρHV (<0.85). Since the i is derived based on the raindrop size distribution 
assumption, the proposed SVM approach is only valid for liquid phase precipitation 
classification. The classification of other types of precipitation is not in the scope of this work. 
Therefore, 0.9 is a reasonable ρHV threshold in the training data selection. The training data 
used in this work is from pure liquid precipitation events, and the average ρHV is above 0.98. 
Similar training results are expected if higher ρHV threshold is used in the training data selection. 

 
  
The sentence “In this work, we only use bright band […] to remove bright band signature” of 
the answer, has to be addressed better in the text;  



 
Response: to address the reviewer’s comment, we made the following modification in the 
revised manuscript. 
1.) Move the description about the bright band into section 2.1. 
2.) The sentences about bright band was modified as: 

Second, a VPR correction is generally needed on the reflectivity field to reduce the 
measurement biases because of the melting layer (Zhang et al., 2011). The enhanced 
backscattering amplitudes of melting hydrometeors within the melting layer (bright band) 
significantly enhance radar reflectivity. The bright band feature is one of the obvious 
indicators of stratiform precipitation, and normally can be observed from relatively high EAs 

(such as above 9.9◦). Given the fact that data from 1.4◦ elevation angle is used within the 
maximum range of 150 km, and the melting layer is usually around 5 km in Taiwan, the 
radar data used in this work is well below the melting layer. Therefore, no VPR corrections 
are applied on the fields of Z and ZDR.  

3.) The section in training data selection was modified as:  
For example, training data from convective precipitation is generally associated with 
relatively large reflectivity and high vertically integrated liquid (VIL). On the other hand, 
stratiform precipitations are generally associated with a prominent bright band signature.  

 
  
When presenting the two principal study cases, it is necessary explicitly declare that small circle 
areas will be used for further analysis, reporting the justification of the answer to the Reviewer;  
 
Response: following illustration is added into the revised manuscript: 

A circle is inserted in Figures 5 and 6 to emphasize a region where BAL and SVM show different 

performances. Within this circle, BAL0 (BAL−0.5) classifies the least (most) echoes as convective, 
and SVM shows the most similar results as MRMS. The averages of Z and ZDR within this region 
both show relatively large values (Z > 36 dBZ and ZDR > 0.75 dB) as shown in Figure 6. This is a 

clear indication of convective type precipitation. Both SVM and BAL−0.5 classify most of the area 
within the red circle as convective, and this result is consistent with the MRMS result. Since the 
separation indexes within the black circle are below or slightly higher than 0, most of the area is 

classified as stratiform type by BAL0. For this moment, threshold −0.5 shows better performance 
than 0. Similar reasons may be applied to other regions. 

  
Even if obvious, the values of the statistical parameters of the pure stratiform case have to be 
reported for symmetry with the other two cases, as declared in the answer but not done;  

Response: The following sentence was added in the revision: 



These three approaches showed consistent classification results with the MRMS result during an 

8-hour period evaluation. For all three approaches, the scores of POD, FAR, CSI, and RCS are 1, 0, 
1, and 0, respectively.  

  
Finally, also the justification respect the Zdr calibration bias have to be included in the text.  

Response: The following justification respect to ZDR calibration bias was added in the text. 

First, since this radar is used for the real-time QPE purpose, the calibration biases of Z and ZDR 
should be within 1 dB and 0.1 dB, respectively. The data quality of RCMK was examined through 
validating the QPE performance in different works (e.g., Wang et al., 2013, 2014). Therefore, 
the calibration biases (Z and ZDR) of RCMK should be within reasonable ranges.  
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Abstract. A precipitation separation approach using a support vector machine method was developed and tested on a C-

band polarimetric weather radar located in Taiwan (RCMK). Different from some existing
::::
those

:
methods requiring a whole

volume scan data, the proposed approach utilizes polarimetric radar data from the lowest unblocked tilt to classify precipitation

echoes into either stratiform or convective type. In this algorithm, inputs of radar reflectivity, differential reflectivity, and the

separation index are integrated through a support vector machine. The weight vector and bias in the support vector machine5

were optimized using well-classified training data
:::
data

::::
from

::::
two

::::::::::
precipitation

::::::
events. The proposed approach was tested with

three precipitation events,
:
including a widespread mixed stratiform and convective event, a tropical typhoon precipitation event,

and a stratiform precipitation event. Results from the Multi-Radar-Multi-Sensor (MRMS) precipitation classification algorithm

were used as the ground truth in the performance evaluation. The performance of the proposed approach was also compared

with the approach using the separation index only. It was found that the proposed method can accurately classify the convective10

and stratiform precipitations , and produce better results than the approach using the separation index only.

1 Introduction

Convective and stratiform precipitations exhibit
:
a significant difference in precipitation growth mechanismsand thermodynamic

structures,
:::::::::::::
thermodynamic

:::::::::
structures,

:::
and

:::::::::::
precipitation

::::::::
intensities

:
(e.g., Houghton, 1968; Houze, 1993, 1997). Generally, a

:::
For

:::::::
example,

:
convective precipitation is

:::::::
generally

:
associated with strong but small areal vertical air motion (> 5 m s�1)(Penide et al., 2013)15

, and delivers a high rainfall rate (R) (Anagnostou, 2004). On the other hand, a ,
:::
but

:
stratiform precipitation is associated

with weak updrafts/downdrafts (< 3 m s�1) and relatively low
::::::::::::::::
(Penide et al., 2013).

::::::::::
Convective

:::::::::::
precipitation

:::
also

::::::::
produces

::
a

:::::
higher

::::::
rainfall

::::
rate

:
(R(

:
)
::::
than

::::::::
stratiform

::::
type

:::::::::::::::::
(Anagnostou, 2004).

::::::
Given

:::
the

:::
fact

::::
that

:::
the

::::
radar

::::::::::
reflectivity

:::
(Z)

::::
from

:::::::::
stratiform

::::::::::
precipitation

::::::::
generally

::
is

:::
less

::::
than

::
40

::::
dBZ

:::::::::::::::::
(Steiner et al., 1995)

::::::::
(hereafter

::::::::
SHY95),

:::
the R <

::::::::
estimated

::::
from

:::::::::
stratiform

::::::::::
precipitation

:
is
::::
less

::::
than 11 mm hr�1 ). Classifying a precipitation

::::::::
following

:::
the

::::::::
standard

:::::::::::::
Marshall-Palmer

::::::::::
relationship

::::::::::::::
(Z = 200R1.6).

::
In20

::::
order

::
to

::::::
obtain

:::::::
accurate

::::::
rainfall

:::::::::
estimation,

::::::::
different

:::::
R(Z)

:::::::::::
relationships

::::::::
according

::
to

:::
the

::::::::::
precipitation

:::::
types

::::::
should

::
be

:::::::
applied

::
in

:::::::::
quantitative

:::::::::::
precipitation

:::::::::
estimation

:::::
(QPE)

::::::::::::::::
(Kirsch et al., 2019)

:
.
:::::::::
Therefore,

:::::::
accurate

:::::::::
classifying

::::::::::
precipitation

:
into either con-

vective or stratiform type can promote our understandings in
::
of cloud physics and thermodynamics. Moreover, since different

1



radar reflectivity (Z) and R relationships are used in the quantitative precipitation estimation (QPE ), accurate classification

results also can help selecting the optimal relationship and improving the QPE ,
::::

and
:::::::
enhance

:::::
QPE accuracy. For these pur-25

poses, numerous methods using ground in situ measurements or satellite observations were developed and applied
:::::
during

:::
the

:::
past

:::::
forty

::::
years

:
(e.g., Leary and Jr., 1979; Adler and Negri, 1988; Tokay and Short, 1996; Hong et al., 1999).

Ground-based weather radars, such as Weather Surveillance Radar, 1988, Doppler (WSR-88D), are currently used in all

aspects of weather diagnosis and analysis. Precipitation classification algorithms using single- or dual-polarization radars were

developed during the past three decades. For a single-polarization radar, developed algorithms mainly rely on Z and its derived30

variables (e.g., Biggerstaff and Listemaa, 2000; Anagnostou, 2004; Yang et al., 2013; Powell et al., 2016). For example,

Steiner et al. (1995) (hereafter SHY95 ) proposed a separation approach that utilizes the texture features derived from the radar

reflectivity field. In this approach, a grid point in the Z field is identified as the convective center if its
::
Z value is larger than

40 dBZ, or exceeds the average intensity taken over the surrounding backgroundby specified thresholds. Those grid points

surrounding the convective centers are classified as convective area, and far regions are classified as stratiformarea. Penide35

et al. (2013) found that SHY95 may misclassify those isolated points embedded within stratiform precipitation or associated

with low cloud-top height. Powell et al. (2016) modified the SHY950s approach, and the new approach can identify shallow

convection embedded within large stratiform regions. A neural network based convective-stratiform classification algorithm

was developed by Anagnostou (2004). Six variables were used in this approach as inputs,
:
including storm height, reflectivity

at 2 km elevation, the vertical gradient of reflectivity, the difference in height, the standard deviation of reflectivity, and the40

product of reflectivity and height. Similar variables were also used in a fuzzy logic based classification approach proposed by

Yang et al. (2013).

Motivations of developing a new classification algorithm are mainly from two aspects. First, according to the U.S. Radar

Operations Center (ROC), the WSR-88D radars are currently operated without updating a complete volume during each volume

scan, especially during precipitation events. New radar scanning schemes are designed to update data from low elevations in45

:
at
:

a high frequency and data from high elevations in
::
at a low frequency. Such

::
an

:
alternative scanning scheme enables the

WSR-88D radars to promptly capture the storm development, which can
::
and

:
enhance the weather forecast capabilityand QPE

accuracy. These new schemes include the automated volume scan evaluation and termination (AVSET), supplemental adaptive

intra-volume low-level scan (SAILS), the multiple elevation scan option for SAILS, and the mid-volume rescan of low-level

elevations (MRLE). With these new scanning schemes,
::
the

:
separation of stratiform/convective becomes a challenge for those50

algorithms requiring a full volume scan of data. Therefore, a separation algorithm using only low tilt radar data is desired.

The second reason is to further explore the applications of the polarimetric variables. Polarimetric weather radars have been

well applied in radar QPE, severe weather detection, hydrometeor classification, and cloud microphysics retrieval (Ryzhkov

and Zrnic, 2019; Zhang, 2016). Extra information about hydrometeors’ size, shape, and orientation could be obtained through

transmitting and receiving electromagnetic waves along the horizontal and vertical directions. Therefore, the polarimetric55

::::::::::
Polarimetric measurements may reveal more precipitation ’s microphysical and dynamic properties. Inspired by these features,

a C-band polarimetric radar precipitation separation approach was developed by Bringi et al. (2009) (hereafter BAL), which

classifies the precipitation into stratiform, convective,
:
and transition regions based on retrieved drop size distribution (DSD)
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characteristics. However, it was found that strong stratiform echoes might have similar DSDs to weak convective echoes and

lead to wrong classification results (Powell et al., 2016).60

In this work, a novel precipitation separation algorithm using the separation index with other radar variables
::::::
support

::::::
vector

:::::::
machine

::::::
(SVM)

:::::
based

::::::::::::
classification

::::::
method

:
was developed and tested

:::
test on a C-band polarimetric radar located in Tai-

wan. This approach classifies precipitations into stratiform or convective type with a support vector machine (SVM) method.

Different from
:::::
Unlike

:
some existing classification techniques that require a whole volume scan of radar data, this new approach

uses
::::
only

::::::
requires

:
the lowest unblocked tilt data in the separation. If the lowest tilt is partially or completely blocked, then the65

next adjacent unblocked tilt is used instead. The major advantage of this method
::
in

:::
the

:::::::::::
classification

:::::::
instead.

::::
This

::::::::
method’s

:::::
major

::::::::
advantage

:
is that it can provide classification results even when the radar is operated under AVSET, SAILS, and MRLE

scanning schemes. Under these schemes, a complete volume scan is not available. This paper is organized as follows: Section

2 introduces the proposed method
:
, including radar variables and data processing, the SVM method, and the training process.

The performance evaluation is shown in Section 3, and the discussion and summary are given in Section 4.70

2 Precipitation Separation With a Support Vector Machine Method

In the current work, the SVM precipitation separation approach was developed and validated on a C-band polarimetric radar

(RCMK) located at Makung, Taiwan (Figure 1). The Weather Wing of the Chinese Air Force deployed this radar and made

the data available to the Central Weather Bureau (CWB) of Taiwan since 2009. Together with three single-polarization S-band

WSR-88D (RCCG, RCKT, and RCHL) and one dual-polarization S-band radar (RCWF), these five radars provide real-time75

products to CWB to support missions of flood monitoring and prediction, landslide forecasts,
:
and water resource management.

The wavelength of RCMK is 5.291 cm, and its range and angular resolutions are 500 m and 1�, respectively. RCMK performs

volume scans of 10 tilts (0.5�, 1.4�, 2.4�, 3.4�, 4.3�, 6.0�, 9.9�, 14.6�, 19.5�, and 25�) in every 5 minutes.

The Central Mountain Range (CMR) of Taiwan is also shown in Figure1, which poses a major challenge for radar based

::
to

::::
radar

:
products. Radars located in complex terrain are prone to partial or total blockages, which cause data from the low80

elevation angles (EA) to be unavailable or problematic. Blockage maps of RCMK are illustrated in Figure 2. Since there are

severe blockages at the 0.5� for RCMK, data from the 1.4� EA is used in the algorithm development.

2.1 Input polarimetric radar variables and preprocesses

Three measured or derived radar variables are proposed as inputs to the SVM approach: Z, differential reflectivity fields (ZDR),

and separation index (i). In most of precipitation classification approaches
::::::
Because

:::::::::
convective

:::::::::::
precipitation

::::::::
generally

::::::
shows85

:::::
higher

:::::::::
reflectivity

::::::
values, Z is

::::
well used as one of the inputs because reflectivity fields from convective precipitations generally

show higher values than the fields from stratiform precipitations
::
in

::::
most

:::
of

:::
the

:::::::::::
precipitation

:::::::::::
classification

::::::::::
approaches. For

example, a radar echo, with the reflectivity of 40 dBZ and above, is automatically classified as convective type in the approach

developed by SHY95.
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Differential reflectivity, which is highly related to raindrop’s mass weighted mean diameter (Dm), is another good indicator90

of precipitation type. It was found the values of Dm in stratiform and convective precipitation generally are within 1-1.9 mm

and above 1.9 mm, respectively (Chang et al., 2009). Higher
::::::::
Therefore,

::::::
higher ZDR values are expected from convective than

from stratiform precipitations. Therefore, the ZDR field is used as another input in the proposed approach.

For short wavelength
:::::::::::::
short-wavelength

:
radars such as C-band or X-band radars, the Z and ZDR fields will be significantly

attenuated when radar beam propagates through heavy precipitation regions. Both Z and ZDR fields need to be corrected from95

attenuation before applied in the precipitation classification and QPE. Different attenuation correction methods were proposed

using the differential phase (�DP ) measurement such as the linear �DP approach, the standard ZPHI method, and the iterative

ZPHI method (e.g., Jameson, 1992; Carey et al., 2000; Testud et al., 2000; Park et al., 2005). Because of its simplicity and easy

implementation in a real-time system, the linear �DP method was applied in the current work.

Z(r) = Z
0(r)+↵(�DP (r)��DP (0)) (1a)100

ZDR(r) = Z
0
DR

(r)+�(�DP (r)��DP (0)) (1b)

where Z 0(r) (Z 0
DR

(r)) is the observed reflectivity (differential reflectivity) at range r; Z(r) (ZDR(r)) is the corrected value;

�DP (0) is the system value; �DP (r) is the smoothed (by FIR filter) differential phase at range r. The attenuation correction

coefficients ↵ and � depend on DSD, drop size shape relations (DSR), and temperature. The typical range of ↵ (�) is found

0.06⇠0.15 (0.01⇠0.03) dB deg�1 for C-band radars (e.g., Carey et al., 2000; Vulpiani et al., 2012). Following the work from105

Wang et al. (2014), optimal coefficients ↵ and � in Taiwan are 0.088 dB deg�1 and 0.02 dB deg�1, respectively. The Z and

ZDR fields are further smoothed with a 3 (along azimuthal angle) by 3 (along range) moving window function after corrected

from attenuation.

Other quality control issues
::
on

::
Z
::::

and
:::::
ZDR:::::

fields, including calibration, reflectivity vertical profile
::::::
vertical

:::::::
profiles

:::
of

:::::::::
reflectivity

:::::
(VPR)

:::::::::
correction, and ground clutter removal, were also considered in this work. Since

:::::
First,

::::
since

:
this radar is110

used in
::
for

:
the real-time QPE , the

:::::::
purpose,

:::
the

:::::::::
calibration

:
biases of Z and ZDR should be within 1 dBZ,

::
dB

:
and 0.1 dB,

respectively. The data quality of RCMK was examined through validating the QPE performance in different works (e.g., Wang

et al., 2013, 2014). Therefore, the calibration bias
:::::
biases

:::
(Z

:::
and

::::::
ZDR) of RCMK should be within the reasonable range. A

vertical profile of reflectivity (VPR )
::::::::
reasonable

:::::::
ranges.

:::::::
Second,

:
a
::::
VPR

:
correction is generally needed on the reflectivity field

to reduce the measurement biases because of the melting layer (Zhang et al., 2011).
:::
The

::::::::
enhanced

::::::::::::
backscattering

::::::::::
amplitudes115

::
of

::::::
melting

::::::::::::
hydrometeors

:::::
within

:::
the

:::::::
melting

::::
layer

::::::
(bright

:::::
band)

::::::::::
significantly

::::::::
enhance

::::
radar

::::::::::
reflectivity.

:::
The

:::::
bright

:::::
band

::::::
feature

:
is
::::
one

::
of

:::
the

:::::::
obvious

:::::::::
indicators

::
of

::::::::
stratiform

::::::::::::
precipitation,

:::
and

::::::::
normally

:::
can

:::
be

::::::::
observed

::::
from

::::::::
relatively

::::
high

::::
EAs

:::::
(such

:::
as

:::::
above

:::::
9.9�). Given the fact that data from 1.4� elevation angle is used within the maximum range of 150 km, and the melting

layer is usually around 5 km in Taiwan, the radar data used in this work is well below the melting layer. In addition, since the

vertical profile of ZDR is not well studied in the current stage, no vertical
:::::::::
Therefore,

::
no

:::::
VPR corrections are applied to

::
on

:::
the120

fields of Z and ZDR. Ground
:::::
Third,

:::::
since

::::::
ground

:
clutter is typically associated with a low correlation coefficient (⇢HV ). The

:
,
:
a ⇢HV threshold used in this work is

::
of 0.85 , which can effectively

:
is
::::
used

::
in
:::
the

:::::::
current

::::
work

::
to

:
remove radar echoes from

non-meteorological objects such as ground clutter (Park et al., 2009).
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Using
:::::::
Another

::::
input

:::::::
variable

::
is the separation index ito identify convective from stratiform precipitation ,

::::::
which was initially

proposed by BAL, where .
::::
The i was calculated under a normalized gamma DSD assumption:125

i= log10(N
est

W
)� log10(N

sep

W
) (2)

log10(N
sep

W
) =�1.6D0 +6.3 (3)

where N
est

W
is the estimated NW (normalized number concentration) from observed Z and ZDR, and is calculated as:

N
est

W
= Z/0.056D7.319

0 (4)130

In Equation 4, D0 is the median volume diameter and can be calculated as.

D0 = 0.0203Z4
DR

� 0.1488Z3
DR

+0.2209Z2
DR

+0.5571ZDR +0.801; �0.5 ZDR < 1.25 (5a)

=�0.0355Z3
DR

� 0.3021Z2
DR

+1.0556ZDR +0.6844; 1.25 ZDR < 5 (5b)

The units of ZDR, Z, Nw, and D0 are dB, mm6m�3, mm�1m�3, and mm, respectively. The positive and negative values

of index i indicate convective and stratiform rain, respectively, and |i| < 0.1 indicates transition regions (Penide et al., 2013).135

BAL pointed out that index i worked well in most of the cases in their study; however, incorrect classification results are likely

obtained for low Z and high ZDR cases in some convective precipitations.

2.2 Drop size distribution and drop shape relation

It should be noted that the relations between i, Nw, and D0 were derived using the DSD data collected in Darwin, Australia.

Coefficients in Equations 2⇠5 need
:
to

:
be adjusted according to the radar frequency or/and DSD and DSR features from the140

specific location (Thompson et al., 2015). In the current work, the separation index i is directly derived using Equations 2⇠5

without further adjustment. It was shown by Wang et al. (2013) that DSD and DSR features in Taiwan are very similar to those

measured from Darwin, Australia. Similar R(KDP ) relationships were obtained using data collected from these two locations.

Coefficients derived by BAL could be directly used in Taiwan without further modification. To verify this assumption, Nw

and D0 were calculated using DSD data collected from four impact-type Joss-Waldvogel disdrometers (JWD) located in145

Taiwan (Figure 1). The measurement range and temporal resolution of these JWDs are 0.359 mm ⇠ 5.373 mm,
:
and 1 minute,

respectively. A total of 4306-minute data from 2011⇠2014 are
:
is
:
used in Nw and D0 calculation following the approach

described in Bringi et al. (2003). Similar to the work presented in BAL, the distribution of i along median volume diameter

D0 is shown in Figure 2, where
:
3.
:::::::

Sample
:::::
pairs (log10Nw, D0) pairs from stratiform and convective types are represented

with gray circles and black stars, respectively. Although the relation described in Equation 3 can separate most stratiform from150

convective type, a large number of points are still classified incorrectly. Therefore, the single separation index is not sufficient

in the precipitation separation, and other variables such as Z and ZDR may be used as supplements.
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2.3 Support vector machines (SVM) method

2.3.1 Introduction of SVM

Machine learning
:::::::
Artificial

::::::::::
intelligence

::::
(AI) algorithms using meteorological radar data were well developed during the past155

two decades
:
.
::::
With

:::
the

:::::::::
assistance

:::
of

:::
AI,

:::::::
weather

::::::
radar’s

::::::::::
capabilities

:::
in

:::::
severe

:::::::
weather

::::::::::
prediction,

::::::
rainfall

::::
rate

::::::::::
estimation,

:::::::
lightning

::::::::
detection

:::::
were

:::::::::
apparently

::::::::
improved

:
(e.g., Capozzi et al., 2018; T. et al., 2019; Yen et al., 2019). A support vector

machine (SVM )
:::::::
Inspired

::
by

:::::
these

::::::::::::
enhancements,

:
a
:::::::::::

precipitation
:::::::::
separation

::::::::
approach

:::::
using

:
a
:::::
SVM

:::
was

:::::::::
developed

::::
and

:::::
tested

::
in

:::
the

::::::
current

:::::
work.

:::::::::
Generally,

:
a
:::::
SVM

:
can be viewed as a kernel-based machine learning approach, which nonlinearly maps

the data from the low-dimension input space to a high-dimension feature space, and then linearly maps to a binary output space160

(Burges, 1998). Given a set of training samples, the SVM constructs an optimal hyperplane, which maximizes the margin of

separation between positive and negative examples (Haykin, 2011). Specifically, given a set of training data {(Xi,yi)}Ni=1, the

goal is to find the optimal weights vector W and a bias b such that

yi(W
T
Xi + b)� 1 i= 1,2, ....,N (6)

where Xi 2 Rm is the input vector, m is the variable dimension (m = 3 in this work), N is the number of training samples,165

and yi is the output with the value of +1 or �1 that represents convective or stratiform, respectively. The particular data points

(Xi,yi) are called support vector when Equation 6 is satisfied with the equality sign. The optimum weights vector W and bias

b can be obtained through solving the Lagrangian function with the minimum cost function (Haykin, 2011).

Since the SVM can be viewed as a kernel machine, finding the optimal weight vector and bias in Equation 6 can be alterna-

tively solved through the recursive least square estimations of:170

NsX

i=1

↵iyik(X,Xi) = 0 (7)

where Ns is the number of support vectors, ↵i is the Lagrange multipliers, and k(X,Xi) is the Mercer kernel defined as:

k(X,Xi) = �T (Xi)�(X) = exp

✓
� 1

2�2
||X �Xi||2

◆
(8)

With the solved {↵i}Ni=1, the SVM calculate
::::::::
calculates the classification results with new input data Z 2 Rm as:

f(Z) = sign[

"
NsX

i=1

↵iyi�
T (Xi)�(Z)

#
(9)175

When f(Z) = 1, the output is classified as convective, otherwise is classified as stratiform.

2.3.2 Training of the SVM

In the SVM approach, the weight vector and bias in Equation 6
:::
and

:::
the

:::::::
standard

::::::::
deviation

::::::
vector

::
in

::::::::
Equation

::
8 need to be

optimized through a recursive least square estimation using training data. Since the training data play
::::
plays

:
a critical role
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in the SVM approach, Z, ZDR and i from convective and stratiform precipitation events were carefully examined through180

three steps. Firstly, the training data was checked following general classification principles. For example, training data from

convective precipitation is generally associated with relatively strong
::::
large

:
reflectivity and high vertically integrated liquid

(VIL). On the other hand, stratiform precipitations are generally associated with a prominent bright band signature. The melting

hydrometeors within the bright band increase backscatter during stratiform rainfall, which can significantly enhance radar

reflectivity. The bright band feature is one of the obvious indicators of stratiform precipitation. Bright band signature normally185

can be observed from relatively high EAs (such as above 9.9�). In this work, the bright band feature from high elevation

angles is only used in training data selection but not used as one of the inputs.
:::::::::
signatures. Secondly, the precipitation type is

verified by ground observation, such as ground severe storm reports. Thirdly, the precipitation type is confirmed by the Multi-

Radar-Multi-Sensor (MRMS) precipitation classification algorithm implemented in Taiwan (Zhang et al., 2011, 2016). In

this MRMS classification approach, a three-dimensional radar reflectivity field is mosaicked from 4 S-band single-polarization190

radars (Figure 1). The composite reflectivity (CREF) and other measurements
:
, such as temperature and moisture fields, are then

used in the surface precipitation classification (Zhang et al., 2016). The performance of MRMS has been thoroughly evaluated

for years in QPE, flash flood monitoring, severe weather
::::::::::
observation, and aviation weather surveillance (e.g., Gourley et al.,

2016; Smith et al., 2016). It was found that MRMS system can provide robust and accurate products, and these products were

used as the benchmark
::::::::::
benchmarks and/or ground truth

::::
truths

:
in many studies (e.g., Grecu et al., 2016; Skofronick-Jackson195

and Coauthors, 2017). At the current stage, the MRMS precipitation classification is considered as the appropriate benchmark

in the training and validation of the proposed algorithm. Moreover, since the MRMS classification is a mosaicked product

derived from 4 S-band radars, it can be viewed as an independent reference.
:::::::::
Therefore,

:::
the

::::::
MRMS

:::::::::::
precipitation

:::::::::::
classification

:
is
:::::::::
considered

:::
as

:::
the

:::::::::
appropriate

::::::::
reference

::
in

:::
the

:::::::
training

:::
and

:::::::::
validation.

:

Convective type training data is mainly from a strong convective precipitation event on 23 July 2014. This thunderstorm,200

classified as convective precipitation by MRMS, was associated with strong updrafts/downdrafts and
:::::::
Apparent

::::::
squall

::::
line

::::::
features

:::::
could

::
be

::::::::
identified

:::::
from

:::
this

::::::::::::
thunderstorm,

:::
and

::::::
MRMS

::::::::
classified

::::
this

::::::::::
precipitation

:::::
event

::
as

:::
the

:::::::::
convective

::::
type.

::::::
Strong

:::::::::
downdrafts

::::::::
triggered

::
by

::::
this

:::::
storm

:
caused an aircraft crash on the airport of Makung at 1106 UTC. The squall line features

can be clearly identified from this storm. Radar data collected from 1030 to 1130 UTC were
:::
was

:
used as the convective type

training data. The training data,
::::
and

::::
data

:
selection follows the criteria of Z >20 dBZ , and ⇢HV >

:::
and

::::::
⇢HV >0.9. Some205

convective type radar data from the
::::::
samples

::::
from

:
a mixed stratiform and convective precipitation event on 30 August 2011

are also used as the convective training data. These convective radar data are identified by the MRMS results.
:::::::
included

:::
as

::::::::
convective

:::::
type

::::
data.

:
The stratiform type data are

:
is

:
from the precipitation event on 30 August 2011, and only those data

identified as a stratiform type by MRMS are used in training.
:
It

::::::
should

:::
be

:::::
noted

::::
that

:::
the

::::
⇢HV::::::::

threshold
:::

of
:::
0.9

::
is

::::
used

:::
in

::
the

:::::::
training

::::
data

::::::::
selection

:::
for

::::
both

:::::::::
convective

:::
and

:::::::::
stratiform

:::::::::::
precipitations.

:::
As

:::::::
reported

:::
in

::::::::::::::
Park et al. (2009),

:::
the

::::::
liquid

:::::
phase210

:::::::::::
precipitations

:::::
(e.g.,

::::
light

::
to

:::::
heavy

:::::
rain)

:::
are

:::::::::
associated

::::
with

::::::::
relatively

::::
high

:::::
⇢HV :::::::

(>0.92).
:::::
Other

:::::
types

::
of

::::::::::::
precipitations,

:::::
such

::
as

:::
the

:::::::
mixture

::
of

::::
rain

:::
and

:::::
hail,

:::
wet

:::::
snow,

::::
and

:::::::
crystals

::::
may

:::::::
produce

:::
low

:::::
⇢HV ::::::::

(<0.85).
:::::
Since

:::
the

:
i
::
is

:::::::
derived

:::::
based

:::
on

:::
the

:::::::
raindrop

:::
size

::::::::::
distribution

:::::::::::
assumption,

:::
the

::::::::
proposed

::::
SVM

::::::::
approach

::
is
:::::
only

::::
valid

:::
for

:::::
liquid

:::::
phase

:::::::::::
precipitation

::::::::::::
classification.

:::
The

:::::::::::
classification

::
of

:::::
other

:::::
types

::
of

::::::::::
precipitation

::
is
:::
not

::
in
:::
the

:::::
scope

:::
of

:::
this

:::::
work.

:::::::::
Therefore,

:::
0.9

::
is

:
a
:::::::::
reasonable

:::::
⇢HV ::::::::

threshold
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::
in

::
the

:::::::
training

::::
data

::::::::
selection.

::::
The

::::::
training

::::
data

::::
used

::
in
::::
this

::::
work

::
is
:::::
from

::::
pure

:::::
liquid

::::::::::
precipitation

::::::
events,

::::
and

:::
the

::::::
average

:::::
⇢HV215

:
is
::::::
above

::::
0.98.

::::::
Similar

:::::::
training

::::::
results

:::
are

:::::::
expected

::
if
::::::
higher

::::
⇢HV ::::::::

threshold
::
is

::::
used

::
in

:::
the

:::::::
training

::::
data

::::::::
selection.

A total of 17281 data sets (15144 sets of stratiform, and 2137 sets of convective) are used in the training process. In this

work, one
:::
One

:
data set is defined as the variables from a gate in terms of range and azimuthal angle. Be more specific, a

set of training data means a vector of [Z(a,r) ZDR(a,r) i(a,r) d(a,r)], where a and r indicate azimuthal angle and range,

respectively. The variable d is the ground truth (with 1and /-1 represents convectiveand
:
/stratiform), which is

:::
and

:::
acts

:
as the220

desired response in the training process.
:
It
::::::
should

::
be

:::::
noted

::::
that

::
the

::::
size

::
of

:::::::
training

::::
data

:
is
:::::::::
considered

::
as

::::::
small,

:::
and

:::
the

::::
data

::::
ratio

:::::::
between

:::::::::
convective

:::
and

::::::::
stratiform

::
is
:::
not

::::
well

::::::::
balanced.

::::::
Much

::::
more

::::
data

:::::
from

::::::
various

:::::::::::
precipitation

:::::
events

::::::
should

::
be

::::::::
included

::
in

:::
the

:::::::
training

:::::::
process

:
if
:::
the

::::::::
proposed

::::::::
algorithm

::
is
:::::::::::
implemented

::
in

:::::::::
operation.

The number of support vectors is selected as 1000 in the current work, and the training process is considered as completed

when the root-mean-square error reaches a stable value. In the SVM approach, the original three-dimension input space non-225

linearly maps to a 1000-dimension feature space, and then linearly maps to a binary output space (Burges, 1998). The higher

dimension feature space
:::
(the

:::::::
number

::
of

::::::
support

::::::
vector)

:
potentially captures more input variables features with higher compu-

tation cost. Generally, after the number of support vector reaches some number, the enhancement in the SVM ’s performance

::
of

::::
SVM

:
approach becomes slight. There is a balance between accuracy and computation

:::
cost. In the current work, the number

of support vectors was tested with a value of 500, 750, 1000, 2000, and 5000. Since 1000 support vectors can produce less than230

5% error with reasonable computation time, they are used in the current work.

3 Performance Evaluation

3.1 Description of the experiments

The performance of the proposed approach was validated with three precipitation events from 2009 to 2011
:
, including one strat-

iform precipitation, one intense tropical precipitation, and one mixed convective and stratiform precipitation.
::
In

:::
the

:::::::::
validation,235

:
a
::::
⇢HV:::::::::

threshold
::
of

::::
0.85

::
is
::::
first

::::
used

:::
to

::::::
remove

:::::
radar

::::::
echoes

::::
not

::::::::
associated

:::::
with

:::::
liquid

:::::
phase

:::::::::::
precipitation

:::::
such

::
as

::::::
clutter

:::
and

:::
AP

:::::::::::::::
(Park et al., 2009)

:
.
::
As

:::::::::
discussed

::
in

::::::
section

:::::
2.3.2,

:::::
some

:::
ice

::::::
phased

:::
or

:::::
mixed

:::::::::::
precipitation

::::
such

:::
as

:::::
snow,

:::
the

:::::::
mixture

::
of

:::
hail

::::
and

::::
rain,

:::
and

:::::::
crystals

::::
may

::
be

:::::::::
associated

::::
with

::::
low

::::
⇢HV ::::::::

(<0.85).
::::::::
However,

:::
this

:::::
work

::::::::
proposed

::
an

::::::::
approach

::
to

:::::::
classify

:::::
liquid

:::::
phase

::::::::::
precipitation

::::
into

:::::
either

:::::::::
stratiform

::
or

:::::::::
convective

:::::
types.

:::::::::::
Classification

:::
of

::::
other

:::::::::::::
meteorological

::::::
targets

::
is

:::
not

::
in

:::
the

:::::
scope

::
of

:::
this

::::::
work. Two experiments based on the BAL approach with different thresholds (i.e., BAL0 and BAL�0.5) were240

also validated with the same events. In these two experiments, the separation index i from each radar gate was first calculated

using Equations 2⇠5, and thresholds of T0 = 0 and -0.5 were then used to separate convective type from stratiform type. A

gate is classified as convective type if obtained i is larger than T0, and as stratiform type otherwise. It was suggested that

positive (negative) i is generally associated with convective (stratiform) precipitation (Bringi et al., 2009). Therefore, T0 = 0

was selected as one of the thresholds. Another aggressive threshold of -0.5 was also tested in the current work, which will245

classify much
::::
many

:
more pixels as convective. This work aims to develop a complementary method using separation index i

and other variables to separate convective from stratiform type. The proposed SVM and the BAL methods only use the lowest
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tilt unblocked radar data in the classification, which is suitable for fast scan and quick update purposes. Other classification

approaches
:::::::::::
Performances

::
of

::::
those

::::::::::
approaches

::::::::
requiring

:::::::
multiple

::::::::
elevation

::::::
angles as introduced in section

::::::
Section 1 were not

examined in the current work, because they require the data from multiple elevation angles. Therefore, their performance is not250

examined in
:::
are

:::
not

::::::::
discussed

::
in

:
this work.

In the evaluation, three statistical scores of probability of detection (POD), false alarm rate (FAR), and critical success index

(CSI) are used, and MRMS classification results are used as the “ground truth” in the calculation.

POD =
hit

hit+miss
(10)

255

FAR=
false

hit+ false
(11)

CSI =
hit

hit+ false+miss
(12)

where “hit,” “false,” and “miss” are defined as a radar gate classified as convective type by MRMS and the evaluated approach

simultaneously, by the evaluated approach only, and by MRMS only, respectively. Since these scores only partially capture the260

performance due to the time gap between MRMS and RCMK results (SVM and BAL), a new evaluation score R
CS (whole

coverage convective ratio) is also used as a supplement:

R
CS =

N
con

N con +Nstr
⇥ 100% (13)

Where N
con and N

str are the total pixel numbers of convective and stratiform types within the coverage, respectively. The

evaluation results are shown in the following sections.265

3.2 Experiment results

3.2.1 Widespread mixed stratiform and convective precipitations

The performance of the proposed approach was first validated with one widespread stratiform and convective mixed precipi-

tation event on 30 August 2011, and 24-hour data (0000 UTC⇠2400 UTC) were used in the evaluation. Classification results

from the proposed SVM were calculated with the trained weight vector and biases, and results from the BAL approach (BAL0270

and BAL�0.5) were also calculated for the comparison purpose. It should be noted that the threshold of -0.5 is much lower than

the value suggested by BAL, and BAL�0.5 will classify more precipitations as convective type.

The time series of RCS (A), CSI (B), FOD (C), and FAR (D) are calculated using Equations 10⇠13 and shown in Figure 4,

where results from MRMS, SVM, BAL0, and BAL�0.5 are presented by black, red, blue, and green lines, respectively. When

the MRMS results are applied as the ground truth, BAL0 obviously classifies more precipitation as stratiform type during this275

24-hour period. The time series of RCS from BAL0 are much lower than
::
the

:
other three approaches. BAL�0.5 classifies more
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pixels as convective than BAL0 as expected, and the R
CS scores are much higher than BAL0. The proposed SVM shows the

most similar RCS scores to MRMS comparing to BAL approaches. Since the BAL�0.5 uses a very low threshold, it classifies

more pixels as convective type, and the obtained R
CS scores are higher than MRMS. In term of CSI, POD, and FAR, SVM

and BAL�0.5 show similar results ,
:
in

:::::
terms

::
of

::::
CSI,

:::::
POD,

::::
and

:::::
FAR, but BAL0 show apparently worse performance.280

To better understand the performance of each approach, the classification results and radar variables (Z, ZDR, and i) from

two distinct moments are examined and
::
as shown in Figures 5⇠7. Figure 5 shows the classification results from 0303 UTC

30 August 2011, where BAL0, BAL�0.5, SVM and MRMS are shown in the panel ‘A’, ‘B’, ‘C’, and ‘D’, respectively. The

time stamp
:::::::::
timestamp for the MRMS result is 0300 UTC, and about 3 minutes earlier than the other three approaches. These

three
::::
Three

:
input variables of SVM at 0303 UTC are shown in Figure 6, where Z, ZDR, and i are presented in panel ‘A’, ‘B’,285

and ‘C’. From Figures 4 and
:
A
:::::

circle
::

is
:::::::

inserted
:::
in

::::::
Figures

:
5 , it could be found that the R

CS from MRMS, SVM, and
:::
and

:
6
::
to

:::::::::
emphasize

:
a
::::::
region

:::::
where

:::::
BAL

:::
and

:::::
SVM

:::::
show

:::::::
different

::::::::::::
performances.

::::::
Within

::::
this

:::::
circle,

:
BAL�0.5 show similar values,

but RCS from BAL0 is distinctly low. Within the red circle of Figure 6, the
::::::::
(BAL�0.5)

::::::::
classifies

:::
the

::::
least

::::::
(most)

::::::
echoes

:::
as

:::::::::
convective,

::::
and

:::::
SVM

:::::
shows

:::
the

:::::
most

::::::
similar

::::::
results

::
as

:::::::
MRMS.

::::
The

:
averages of Z and ZDR :::::

within
::::

this
::::::
region both show

relatively large values (Z > 36 dBZ and ZDR > 0.75 dB) , this
::
as

::::::
shown

::
in

::::::
Figure

::
6.

::::
This

:
is a clear indication of convective290

type precipitation. Both SVM and BAL�0.5 classify most of the area within the red circle as convective, and this result is

consistent with the MRMS result. Since the separation indexes within the black circle are below or slightly higher than 0, most

of the area is classified as stratiform type by BAL0. For this moment, threshold �0.5 shows better performance than 0.
::::::
Similar

::::::
reasons

::::
may

::
be

:::::::
applied

::
to

::::
other

:::::::
regions.

:

Figure 7 shows another example of classification results from 0650 UTC. At this moment, although SVM and BAL�0.5295

produce similar CSI (0.30 v.s. 0.25) and POD (0.48 v.s. 0.52), the R
CS from BAL�0.5 (32%) is much higher than R

CS from

MRMS (17%) and SVM (13%). These scores could also be found in Figure 4. In Figure 7, It could be found from that the

MRMS, SVM, and BAL�0.5 show similar classification results between the azimuthal angle of 180� and 270�. However,

BAL�0.5 misclassifies gates between 90� and 180� as convective type, which produces such high R
CS . On the other hand,

MRMS and SVM show similar classification results in this region.300

3.2.2 Tropical convective

Typhoon Morakot (6⇠10 August 2009) brought significant rainfall to Taiwan. Over 700 people were reported dead in the storm,

and the property loss was more than 3.3 billion USD. For most of the time during its landfall in Taiwan, the precipitation was

classified as a mixture of tropical convective and tropical stratiform types. The performances of SVM, BAL0, and BAL�0.5

were validated using 96-hour data from 6 to 9 August 2009, where the results from 10 August 2009 were not included in the305

evaluation because no significant precipitation was observed from that day. The time series plots of RCS (A), CSI (B), POD

(C) and FAR (D) are shown in Figure 8. It could be found that scores of RCS , CSI, and POD from the BAL based approaches

is evidently lower than the results from SVM and MRMS, and the latter two show similar performance during these four days.

Classification results from BAL0, BAL�0.5, SVM (0402 UTC), and MRMS (0400 UTC) from 9 August 2009 are shown

in Figure 9A, 9B, 9C, and 9D, respectively. The classification results within two regions, highlighted with two circles, are310
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convective (SVM and MRMS) and stratiform (BAL0 and BAL�0.5). Radar variables from 0402 UTC are shown in Figure 10

including the reflectivity (A), differential reflectivity (B), and separation index (C), respectively. Figure 10D is the zoom-in

reflectivity field inside the red rectangular box (A) for more details. It was found that a heavy precipitation band is on the top

of RCMK (Figure 10D), and this may cause significant attenuation on Z and ZDR fields. Although both Z and ZDR fields

were corrected using Equation 1, deficient or excessive compensations on Z and ZDR fields lead to increased uncertainty on315

the separation index. It may be the primary reason causing the small values of the separation index. Other reasons such as wet

radome may also contribute to the Z and ZDR issues. In Figure 10C, the separation index i are equal or less than -0.5 in the

circled areas, and the BAL based approaches classify these regions as stratiform. On the other hand, these regions clearly show

the convective precipitation features in the fields of Z (10A) and ZDR (10B).

3.2.3 Stratiform precipitation event320

The performances of BAL0, BAL�0.5, and SVM were also evaluated with a widespread stratiform precipitation event on 26

March 2011. This is a typical stratiform precipitation event, and there were no convective type pixels identified by MRMS.

These three approaches showed consistent classification results with the MRMS result during an 8-hour period evaluation.

Since no convective type pixels were detected by these three approacheseither, evaluation scores were not calculated and

presented
::
For

:::
all

::::
three

::::::::::
approaches,

:::
the

::::::
scores

::
of

:::::
POD,

:::::
FAR,

::::
CSI,

:::
and

:::::
R

CS

:::
are

::
1,

::
0,

::
1,

:::
and

::
0,

::::::::::
respectively.325

4 Conclusions

A novel precipitation classification approach using a support vector machine approach was developed and tested on a C-band

polarimetric radar located in Taiwan. Different from other classification algorithms that use a complete volume scan data, the

proposed method only utilizes the data from the lowest unblocked tilt to separate precipitation into convective or stratiform

type. This feature makes this approach an optimal option in new scanning schemes such as AVSET, SAILS, MRLE, and etc.330

Three radar variables of reflectivity, differential reflectivity, and the separation index derived by Bringi et al. (2009) are utilized

in the new proposed approach. Both reflectivity and differential reflectivity need be corrected from attenuation and differential

attenuation before applied in this approach. Although the separation index alone can be used in the precipitation classification,

there are two potential limitations: thresholds and biases on reflectivity and/or differential reflectivity. A threshold of “0” was

suggested in separating convective type from stratiform type, however, .
::::::::
However,

:
it was found that a single threshold may not335

be sufficient for all cases. Other thresholds (such as “�0.5” used in the current work), sometimes can produce better results than

“0”. On the other hand, although both reflectivity and differential reflectivity should be corrected from attenuation before used

in the separation index calculation, the correction biases on either filed may cause large uncertainty in the derived separation

index and further lead to a wrong classification
::::::
decision.

This work attempts to propose a complementary method to enhance the performance of using the separation indexonly. The340

proposed approach integrates input variables with a support vector machine method. The weights vector and bias
:::::::::
parameters

used in the support vector machine were trained with typical stratiform and convective precipitation events. It should be noted
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that the proposed approach has a flexible framework, and some other variables can be easily included. With new
::::
newly

:
added

variables, the weight vector and bias need to be retrained. In the current work, the proposed approach was tested with multiple

precipitation events. Its performance was found better than using then separation index only and similar to a well developed345

approach, MRMS, which utilizes multiple tilts radar data in the classification. It should be noted that although the proposed

approach shows better scores (POD, FAR, CSI and R
CS), this evaluation should be treated as qualitative evaluation instead of

statistical analysis. In order to obtained statistical evaluation results, more long-term precipitation events are needed.

There are some issues that need to be noticed before applying this approach into operation
:::
for

:::
the

::::::::
operation

:::::::
purpose.

First, this approach is developed for
::
the

:
fast scan and fast update purpose, and data from the lowest unblocked tilt is usedas350

the input. If the radar is located in a complex orography area, radar beams could be partially or completely blocked at
::
in

some regions. A possible solution for such
:
a
:
scenario is using data from different tilts to form a hybrid scan, and the hybrid

scan is then used as the input. Given the fact that precipitation’s microphysics (such as drop size distribution) from different

altitudes may be significantly different, the performance of
:::
the proposed approach may be worse than expected. Second, the

performance of the proposed approach depends highly on the training data, which should be selected very careful
:::::::
carefully.355

In the current work, a threshold of ⇢HV > 0.9 is used in the data selection. Using
:
a
:

lower threshold may cause different

performance, and more investigations on this issue are needed.
::::::::
Moreover,

::::
only

::::
very

::::::
limited

:::::::
training

::::
data

:
is
:::::
used

::
in

:::
the

::::::
current

:::::
work.

:::::
Much

::::
more

::::
data

:::::
from

::::::
various

:::::::::::
precipitation

:::::
events

::::::
should

:::
be

:::::::
included

::
in
:::
the

:::::::
training

:::::::
process

:
if
:::

the
::::::::

proposed
:::::::::
algorithm

:
is
:::::::::::
implemented

::
in
:::::::::

operation.
:
Third, coefficients in the separation index calculation depend on the local drop size distribution

and drop shape relation features. Therefore, new relations need to be derived for the optimal results. Moreover, the separation360

index only validates at liquid phase precipitation. For ice phase precipitation, such as mixed hail and rain, its performance is

not well studied. Other hydrometeor classification schemes could be used for such
:
a
:
scenario. Fourth, the mis-calibration may

significantly affect the performance of the proposed approach. The calibration biases for Z and ZDR should be within 1 dBZ

and 0.2 dB, respectively. Moreover, this work only presents a prototype algorithm. Given the flexible framework, other variables

(such as differential phase) could be easily integrated into this algorithm, and the performance could be further enhanced.365
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Figure 1. The terrain of Taiwan, the location of a C-band polarimetric radar RCMK (marked with a black square), JWDs (marked with black

stars), and four S-band single-polarization radar RCCG, RCKT, RCHL, and RCWF (marked with black circles). The continuous grey-scale

terrain map shows the central mountain range of Taiwan.
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Figure 2. Blockage maps of RCMK from the first 2 EAs (0.5� and 1.4�). The grey scale indicates the blockage percentages.
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Figure 3. The distribution of log10(Nw) vs D0. The DSD data from stratiform and convective precipitations are presented with gray circles

and black stars, and the separator line is shown with a solid line.
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Figure 4. The time series plot of RCS(A), CSI(B), POD(C), and FAR(D) from 30 August 2011. 24-hours data 0000 UTC 2400 UTC are

used in each case. The results from BAL with threshold T0 = -0.5, BAL with threshold T0 = 0, SVM, MRMS, are presented by green, blue,

red and black lines, respectively.
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Figure 5. The classification results from BAL0(A), BAL�0.5(B), SVM(C) and MRMS(D). The time stamp for BAL0, BAL�0.5, and SVM

is 0303 UTC 30 August 2011, and time stamp for MRMS is 0300 UTC 30 August 2011. The region inside the white circle is used in the

analysis.
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Figure 6. Radar variables of reflectivity (A), differential reflectivity(B), and separation index(C). The radar data was collected by RCMK at

0303 UTC 30 August 2011. The region inside the red circle is used in the analysis.
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Figure 7. Similar to Figure 5, results are from 0650 UTC.
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Figure 8. The time series plot of RCS(A), CSI(B), POD(C), and FAR(D) from 06⇠09 August 2009. 96-hours data are used in each case.

The results from BAL with threshold T0 = -0.5, BAL with threshold T0 = 0, SVM, and MRMS are indicated by green, blue, red and black

lines, respectively.
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Figure 9. The classification results from BAL0(A), BAL�0.5(B), SVM(C), and MRMS(D). The time stamp for BAL0, BAL�0.5, and SVM

is 0402 UTC 9 August 2009, and time stamp for MRMS is 0400 UTC 9 August 2009.
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Figure 10. Radar variables of reflectivity(A), differential reflectivity(B), separation index(C), and reflectivity within the red rectangular box

in A(D). The radar data was collected by RCMK at 0402 UTC 9 August 2009.

25


