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Abstract. A precipitation separation approach using a support vector machine method was developed and tested on a C-band
polarimetric weather radar located in Taiwan (RCMK). Different from those methods requiring a whole volume scan data, the
proposed approach utilizes polarimetric radar data from the lowest unblocked tilt to classify precipitation echoes into either
stratiform or convective type. In this algorithm, inputs of radar reflectivity, differential reflectivity, and the separation index are
integrated through a support vector machine. The weight vector and bias in the support vector machine were optimized using
well-classified data from two precipitation events. The proposed approach was tested with three precipitation events, including
a widespread mixed stratiform and convective event, a tropical typhoon precipitation event, and a stratiform precipitation event.
Results from the Multi-Radar-Multi-Sensor (MRMS) precipitation classification algorithm were used as the ground truth in the
performance evaluation. The performance of the proposed approach was also compared with the approach using the separation
index only. It was found that the proposed method can accurately classify the convective and stratiform precipitations and

produce better results than the approach using the separation index only.

1 Introduction

Convective and stratiform precipitations exhibit a significant difference in precipitation growth mechanisms, thermodynamic
structures, and precipitation intensities (e.g., Houghton, 1968; Houze, 1993, 1997). For example, convective precipitation is
generally associated with strong but small areal vertical air motion (> 5 m s~1), but stratiform precipitation is associated with
weak updrafts/downdrafts (< 3 m s~!) (Penide et al., 2013). Convective precipitation also produces a higher rainfall rate (R)
than stratiform type (Anagnostou, 2004). Given the fact that the radar reflectivity (Z) from stratiform precipitation generally
is less than 40 dBZ (Steiner et al., 1995) (hereafter SHY95), the R estimated from stratiform precipitation is less than 11
mm hr~! following the standard Marshall-Palmer relationship (Z = 200R'). In order to obtain accurate rainfall estimation,
different R(Z) relationships according to the precipitation types should be applied in quantitative precipitation estimation
(QPE) (Kirsch et al., 2019). Therefore, accurate classifying precipitation into either convective or stratiform type can promote

our understandings of cloud physics and thermodynamics, and enhance QPE accuracy. For these purposes, numerous methods
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using ground in situ measurements or satellite observations were developed and applied during the past forty years (e.g., Leary
and Jr., 1979; Adler and Negri, 1988; Tokay and Short, 1996; Hong et al., 1999).

Ground-based weather radars, such as Weather Surveillance Radar, 1988, Doppler (WSR-88D), are currently used in all
aspects of weather diagnosis and analysis. Precipitation classification algorithms using single- or dual-polarization radars were
developed during the past three decades. For a single-polarization radar, developed algorithms mainly rely on Z and its derived
variables (e.g., Biggerstaff and Listemaa, 2000; Anagnostou, 2004; Yang et al., 2013; Powell et al., 2016). For example, SHY95
proposed a separation approach that utilizes the texture features derived from the radar reflectivity field. In this approach, a grid
point is identified as the convective center if its Z value is larger than 40 dBZ, or exceeds the average intensity taken over the
surrounding background. Those grid points surrounding the convective centers are classified as convective area, and far regions
are classified as stratiform. Penide et al. (2013) found that SHY95 may misclassify those isolated points embedded within
stratiform precipitation or associated with low cloud-top height. Powell et al. (2016) modified SHY95's approach, and the
new approach can identify shallow convection embedded within large stratiform regions. A neural network based convective-
stratiform classification algorithm was developed by Anagnostou (2004). Six variables were used in this approach as inputs,
including storm height, reflectivity at 2 km elevation, the vertical gradient of reflectivity, the difference in height, the standard
deviation of reflectivity, and the product of reflectivity and height. Similar variables were also used in a fuzzy logic based
classification approach proposed by Yang et al. (2013).

Motivations of developing a new classification algorithm are mainly from two aspects. First, according to the U.S. Radar Op-
erations Center (ROC), the WSR-88D radars are currently operated without updating a complete volume during each volume
scan, especially during precipitation events. New radar scanning schemes are designed to update data from low elevations at a
high frequency and data from high elevations at a low frequency. Such an alternative scanning scheme enables the WSR-88D
radars to promptly capture the storm development, and enhance the weather forecast capability. These new schemes include
the automated volume scan evaluation and termination (AVSET), supplemental adaptive intra-volume low-level scan (SAILS),
the multiple elevation scan option for SAILS, and the mid-volume rescan of low-level elevations (MRLE). With these new
scanning schemes, the separation of stratiform/convective becomes a challenge for those algorithms requiring a full volume
scan of data. Therefore, a separation algorithm using only low tilt radar data is desired. The second reason is to further explore
the applications of the polarimetric variables. Polarimetric weather radars have been well applied in radar QPE, severe weather
detection, hydrometeor classification, and cloud microphysics retrieval (Ryzhkov and Zrnic, 2019; Zhang, 2016). Extra infor-
mation about hydrometeors’ size, shape, and orientation could be obtained through transmitting and receiving electromagnetic
waves along the horizontal and vertical directions. Polarimetric measurements may reveal more precipitation microphysical and
dynamic properties. Inspired by these features, a C-band polarimetric radar precipitation separation approach was developed
by Bringi et al. (2009) (hereafter BAL), which classifies the precipitation into stratiform, convective, and transition regions
based on retrieved drop size distribution (DSD) characteristics. However, it was found that strong stratiform echoes might have
similar DSDs to weak convective echoes and lead to wrong classification results (Powell et al., 2016).

In this work, a support vector machine (SVM) based classification method was developed and test on a C-band polarimetric

radar located in Taiwan. Unlike some existing classification techniques that require a whole volume scan of data, this new
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approach only requires the lowest unblocked tilt data in the separation. If the lowest tilt is partially or completely blocked,
the next adjacent unblocked tilt is used in the classification instead. This method’s major advantage is that it can provide
classification results even when the radar is operated under AVSET, SAILS, and MRLE scanning schemes. This paper is
organized as follows: Section 2 introduces the proposed method, including radar variables and data processing, the SVM
method, and the training process. The performance evaluation is shown in Section 3, and the discussion and summary are given

in Section 4.

2 Precipitation Separation With a Support Vector Machine Method

In the current work, the SVM precipitation separation approach was developed and validated on a C-band polarimetric radar
(RCMK) located at Makung, Taiwan (Figure 1). The Weather Wing of the Chinese Air Force deployed this radar and made
the data available to the Central Weather Bureau (CWB) of Taiwan since 2009. Together with three single-polarization S-band
WSR-88D (RCCG, RCKT, and RCHL) and one dual-polarization S-band radar (RCWF), these five radars provide real-time
products to CWB to support missions of flood monitoring and prediction, landslide forecasts, and water resource management.
The wavelength of RCMK is 5.291 cm, and its range and angular resolutions are 500 m and 1°, respectively. RCMK performs
volume scans of 10 tilts (0.5°, 1.4°,2.4°,3.4°,4.3°,6.0°,9.9°, 14.6°, 19.5°, and 25°) every 5 minutes. The Central Mountain
Range (CMR) of Taiwan is also shown in Figurel, which poses a major challenge to radar products. Radars located in complex
terrain are prone to partial or total blockages, which cause data from the low elevation angles (EA) unavailable or problematic.
Blockage maps of RCMK are illustrated in Figure 2. Since there are severe blockages at the 0.5° for RCMK, data from the
1.4° EA is used in the algorithm development.

2.1 Input polarimetric radar variables and preprocesses

Three measured or derived radar variables are proposed as inputs to the SVM approach: Z, differential reflectivity fields (Zpr),
and separation index (7). Because convective precipitation generally shows higher reflectivity values, Z is well used as one of
the inputs in most of the precipitation classification approaches. For example, a radar echo, with the reflectivity of 40 dBZ and
above, is automatically classified as convective type in the approach developed by SHY95. Differential reflectivity, which is
highly related to raindrop’s mass weighted mean diameter (D),,), is another good indicator of precipitation type. It was found
the values of D,,, in stratiform and convective precipitation generally are within 1-1.9 mm and above 1.9 mm, respectively
(Chang et al., 2009). Therefore, higher Zp g values are expected from convective than from stratiform precipitations.

For short-wavelength radars such as C-band or X-band radars, the Z and Zpp fields will be significantly attenuated when
radar beam propagates through heavy precipitation regions. Both Z and Zpp fields need to be corrected from attenuation
before applied in the precipitation classification and QPE. Different attenuation correction methods were proposed using the
differential phase (¢ pp) measurement such as the linear ¢ pp approach, the standard ZPHI method, and the iterative ZPHI

method (e.g., Jameson, 1992; Carey et al., 2000; Testud et al., 2000; Park et al., 2005). Because of its simplicity and easy
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implementation in a real-time system, the linear ¢ p p method was applied in the current work.

Z(r)=Z'(r)+a(épp(r) — ¢pp(0)) (1a)
Zpr(r) = Zpr(r)+ B(¢pp(r) — ¢pp(0)) (1b)

where Z'(r) (Z, (1)) is the observed reflectivity (differential reflectivity) at range r; Z(r) (Zpr(r)) is the corrected value;
¢pp(0) is the system value; ¢ppp(r) is the smoothed (by FIR filter) differential phase at range r. The attenuation correction
coefficients o and 8 depend on DSD, drop size shape relations (DSR), and temperature. The typical range of « () is found
0.06~0.15 (0.01~0.03) dB deg’1 for C-band radars (e.g., Carey et al., 2000; Vulpiani et al., 2012). Following the work from
Wang et al. (2014), optimal coefficients o and 3 in Taiwan are 0.088 dB deg~' and 0.02 dB deg ™", respectively. The Z and
Zpr fields are further smoothed with a 3 (along azimuthal angle) by 3 (along range) moving window function after corrected
from attenuation.

Other quality control issues on Z and Zpp fields, including calibration, vertical profiles of reflectivity (VPR) correction,
and ground clutter removal, were also considered in this work. First, since this radar is used for the real-time QPE purpose, the
calibration biases of Z and Zppg should be within 1 dB and 0.1 dB, respectively. The data quality of RCMK was examined
through validating the QPE performance in different works (e.g., Wang et al., 2013, 2014). Therefore, the calibration biases (Z
and Zppr) of RCMK should be within reasonable ranges. Second, a VPR correction is generally needed on the reflectivity field
to reduce the measurement biases because of the melting layer (Zhang et al., 2011). The enhanced backscattering amplitudes
of melting hydrometeors within the melting layer (bright band) significantly enhance radar reflectivity. The bright band feature
is one of the obvious indicators of stratiform precipitation, and normally can be observed from relatively high EAs (such as
above 9.9°). Given the fact that data from 1.4° elevation angle is used within the maximum range of 150 km, and the melting
layer is usually around 5 km in Taiwan, the radar data used in this work is well below the melting layer. Therefore, no VPR
corrections are applied on the fields of Z and Zpg. Third, since ground clutter is typically associated with a low correlation
coefficient (prv), a prry threshold of 0.85 is used in the current work to remove radar echoes from ground clutter (Park et al.,
2009).

Another input variable is the separation index ¢, which was initially proposed by BAL. The ¢ was calculated under a normal-

ized gamma DSD assumption:

i = logio(Ni") — logio(Nyi) (2)
logio(N3”) = —1.6Dg +6.3 v

where N{,"[‘,"t is the estimated Ny (normalized number concentration) from observed Z and Zp g, and is calculated as:

N&t = 7/0.056 D531 “4)
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In Equation 4, Dy is the median volume diameter and can be calculated as.

Dy = 0.0203Z% p — 0.14887% 1 +0.2209Z% 5, +0.5571Zpr +0.801; —0.5 < Zpp < 1.25 (5a)
= —0.03557% 5 —0.3021Z%  + 1.0556 Zp R + 0.6844; 1.25 < Zpr <5 (5b)

The units of Zpgr, Z, N, and Dy are dB, mm®m—3, mm—'m~3, and mm, respectively. The positive and negative values
of index ¢ indicate convective and stratiform rain, respectively, and |i| < 0.1 indicates transition regions (Penide et al., 2013).
BAL pointed out that index ¢ worked well in most of the cases in their study; however, incorrect classification results are likely

obtained for low Z and high Zp R cases in some convective precipitations.
2.2 Drop size distribution and drop shape relation

It should be noted that the relations between ¢, N,,, and Dy were derived using the DSD data collected in Darwin, Australia.
Coefficients in Equations 2~5 need to be adjusted according to the radar frequency or/and DSD and DSR features from the
specific location (Thompson et al., 2015). In the current work, the separation index ¢ is directly derived using Equations 2~5
without further adjustment. It was shown by Wang et al. (2013) that DSD and DSR features in Taiwan are very similar to those
measured from Darwin, Australia. Similar R(K pp) relationships were obtained using data collected from these two locations.
Coefficients derived by BAL could be directly used in Taiwan without further modification. To verify this assumption, N,,
and Dy were calculated using DSD data collected from four impact-type Joss-Waldvogel disdrometers (JWD) located in
Taiwan (Figure 1). The measurement range and temporal resolution of these JWDs are 0.359 mm ~ 5.373 mm, and 1 minute,
respectively. A total of 4306-minute data from 2011~2014 is used in V,, and Dy calculation following the approach described
in Bringi et al. (2003). Similar to the work presented in BAL, the distribution of ¢ along median volume diameter Dy is shown
in Figure 3. Sample pairs (log19N,,, Dp) from stratiform and convective are represented with gray circles and black stars,
respectively. Although the relation described in Equation 3 can separate most stratiform from convective type, a large number
of points are still classified incorrectly. Therefore, the single separation index is not sufficient in the precipitation separation,

and other variables such as Z and Zpgr may be used as supplements.
2.3 Support vector machines (SVM) method
2.3.1 Introduction of SVM

Artificial intelligence (AI) algorithms using meteorological radar data were well developed during the past two decades. With
the assistance of Al, weather radar’s capabilities in severe weather prediction, rainfall rate estimation, lightning detection
were apparently improved (e.g., Capozzi et al., 2018; T. et al., 2019; Yen et al., 2019). Inspired by these enhancements, a
precipitation separation approach using a SVM was developed and tested in the current work. Generally, a SVM can be viewed
as a kernel-based machine learning approach, which nonlinearly maps the data from the low-dimension input space to a high-
dimension feature space, and then linearly maps to a binary output space (Burges, 1998). Given a set of training samples, the

SVM constructs an optimal hyperplane, which maximizes the margin of separation between positive and negative examples
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(Haykin, 2011). Specifically, given a set of training data {(X;,y;)}¥,, the goal is to find the optimal weights vector W and a
bias b such that

u(WTX;+0)>1  i=1,2,...,.N (6)

where X; € R™ is the input vector, mn is the variable dimension (m = 3 in this work), NV is the number of training samples,
and y; is the output with the value of 41 or —1 that represents convective or stratiform, respectively. The particular data points
(X;,y;) are called support vector when Equation 6 is satisfied with the equality sign. The optimum weights vector 1 and bias
b can be obtained through solving the Lagrangian function with the minimum cost function (Haykin, 2011).

Since the SVM can be viewed as a kernel machine, finding the optimal weight vector and bias in Equation 6 can be alterna-

tively solved through the recursive least square estimations of:

NS

> aigik(X,X;) =0 (7

i=1

where Ny is the number of support vectors, «; is the Lagrange multipliers, and (X, X;) is the Mercer kernel defined as:

1

X X) = 07 (6)8(X) = eap (511X - Xl ®
o

With the solved {c; } , the SVM calculates the classification results with new input data Z € R™ as:

N
f(Z) = sign| [Z @y " (X;)®(2) €))
i=1

When f(Z) = 1, the output is classified as convective, otherwise as stratiform.
2.3.2 Training of the SVM

In the SVM approach, the weight vector and bias in Equation 6 and the standard deviation vector in Equation 8 need to
be optimized through a recursive least square estimation using training data. Since the training data plays a critical role in the
SVM approach, Z, Zpg and 7 from convective and stratiform precipitation events were carefully examined through three steps.
Firstly, the training data was checked following general classification principles. For example, training data from convective
precipitation is generally associated with relatively large reflectivity and high vertically integrated liquid (VIL). On the other
hand, stratiform precipitations are generally associated with prominent bright band signatures. Secondly, the precipitation
type is verified by ground observation, such as ground severe storm reports. Thirdly, the precipitation type is confirmed by the
Multi-Radar-Multi-Sensor (MRMS) precipitation classification algorithm implemented in Taiwan (Zhang et al., 2011, 2016). In
this MRMS classification approach, a three-dimensional radar reflectivity field is mosaicked from 4 S-band single-polarization
radars (Figure 1). The composite reflectivity (CREF) and other measurements, such as temperature and moisture fields, are then
used in the surface precipitation classification (Zhang et al., 2016). The performance of MRMS has been thoroughly evaluated

for years in QPE, flash flood monitoring, severe weather observation, and aviation weather surveillance (e.g., Gourley et al.,
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2016; Smith et al., 2016). It was found that MRMS system can provide robust and accurate products, and these products
were used as benchmarks and/or ground truths in many studies (e.g., Grecu et al., 2016; Skofronick-Jackson and Coauthors,
2017). Moreover, since the MRMS classification is a mosaicked product derived from 4 S-band radars, it can be viewed as
an independent reference. Therefore, the MRMS precipitation classification is considered as the appropriate reference in the
training and validation.

Convective type training data is mainly from a precipitation event on 23 July 2014. Apparent squall line features could
be identified from this thunderstorm, and MRMS classified this precipitation event as the convective type. Strong downdrafts
triggered by this storm caused an aircraft crash on the airport of Makung at 1106 UTC. Radar data collected from 1030 to 1130
UTC was used as the convective type data, and data selection follows the criteria of Z >20 dBZ and pyv >0.9. Some samples
from a mixed stratiform and convective precipitation event on 30 August 2011 are also included as convective type data. The
stratiform type data is from the precipitation event on 30 August 2011, and only those data identified as a stratiform type by
MRMS are used in training. It should be noted that the pgy threshold of 0.9 is used in the training data selection for both
convective and stratiform precipitations. As reported in Park et al. (2009), the liquid phase precipitations (e.g., light to heavy
rain) are associated with relatively high pzy (>0.92). Other types of precipitations, such as the mixture of rain and hail, wet
snow, and crystals may produce low pgy (<0.85). Since the 7 is derived based on the raindrop size distribution assumption,
the proposed SVM approach is only valid for liquid phase precipitation classification. The classification of other types of
precipitation is not in the scope of this work. Therefore, 0.9 is a reasonable pyy threshold in the training data selection. The
training data used in this work is from pure liquid precipitation events, and the average prry is above 0.98. Similar training
results are expected if higher pf7y threshold is used in the training data selection.

A total of 17281 data sets (15144 sets of stratiform, and 2137 sets of convective) are used in the training process. One data
set is defined as the variables from a gate in terms of range and azimuthal angle. Be more specific, a set of training data means
a vector of [Z(a,r) Zpr(a,r) i(a,r) d(a,r)], where a and r indicate azimuthal angle and range, respectively. The variable
d is the ground truth (with 1/-1 represents convective/stratiform), and acts as the desired response in the training process. It
should be noted that the size of training data is considered as small, and the data ratio between convective and stratiform is not
well balanced. Much more data from various precipitation events should be included in the training process if the proposed
algorithm is implemented in operation.

The number of support vectors is selected as 1000 in the current work, and the training process is considered as completed
when the root-mean-square error reaches a stable value. In the SVM approach, the original three-dimension input space non-
linearly maps to a 1000-dimension feature space, and then linearly maps to a binary output space (Burges, 1998). The higher
dimension feature space (the number of support vector) potentially captures more input variables features with higher compu-
tation cost. Generally, after the number of support vector reaches some number, the enhancement of SVM approach becomes
slight. There is a balance between accuracy and computation cost. In the current work, the number of support vectors was tested
with a value of 500, 750, 1000, 2000, and 5000. Since 1000 support vectors can produce less than 5% error with reasonable

computation time, they are used in the current work.
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3 Performance Evaluation
3.1 Description of the experiments

The performance of the proposed approach was validated with three precipitation events from 2009 to 2011, including one
stratiform precipitation, one intense tropical precipitation, and one mixed convective and stratiform precipitation. In the valida-
tion, a pgry threshold of 0.85 is first used to remove radar echoes not associated with liquid phase precipitation such as clutter
and AP (Park et al., 2009). As discussed in section 2.3.2, some ice phased or mixed precipitation such as snow, the mixture
of hail and rain, and crystals may be associated with low pry (<0.85). However, this work proposed an approach to classify
liquid phase precipitation into either stratiform or convective types. Classification of other meteorological targets is not in the
scope of this work. Two experiments based on the BAL approach with different thresholds (i.e., BAL® and BAL~%%) were
also validated with the same events. In these two experiments, the separation index ¢ from each radar gate was first calculated
using Equations 2~5, and thresholds of 7y = 0 and -0.5 were then used to separate convective type from stratiform type. A
gate is classified as convective type if obtained ¢ is larger than Tj, and as stratiform type otherwise. It was suggested that
positive (negative) ¢ is generally associated with convective (stratiform) precipitation (Bringi et al., 2009). Therefore, Ty = 0
was selected as one of the thresholds. Another aggressive threshold of -0.5 was also tested in the current work, which will
classify many more pixels as convective. Performances of those approaches requiring multiple elevation angles as introduced
in Section 1 are not discussed in this work.

In the evaluation, three statistical scores of probability of detection (POD), false alarm rate (FAR), and critical success index

(CSI) are used, and MRMS classification results are used as the “ground truth” in the calculation.

hit

POD=———— 10
hit +miss (10)
false
FAR= ———— 11
R hit + false (1
hit

1= 12
cs hit+ false +miss (12)

where “hit,” “false,” and “miss” are defined as a radar gate classified as convective type by MRMS and the evaluated approach
simultaneously, by the evaluated approach only, and by MRMS only, respectively. Since these scores only partially capture the
performance due to the time gap between MRMS and RCMK results (SVM and BAL), a new evaluation score R (whole

coverage convective ratio) is also used as a supplement:

con

cs _
R - Ncon _|_Nst7’

x 100% (13)

Where N and N*'" are the total pixel numbers of convective and stratiform types within the coverage, respectively. The

evaluation results are shown in the following sections.
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3.2 Experiment results
3.2.1 Widespread mixed stratiform and convective precipitations

The performance of the proposed approach was first validated with one widespread stratiform and convective mixed precipi-
tation event on 30 August 2011, and 24-hour data (0000 UTC~2400 UTC) were used in the evaluation. Classification results
from the proposed SVM were calculated with the trained weight vector and biases, and results from the BAL approach (BAL®
and BAL~%%) were also calculated for the comparison purpose. It should be noted that the threshold of -0.5 is much lower than
the value suggested by BAL, and BAL % will classify more precipitations as convective type.

The time series of R“ (A), CSI (B), FOD (C), and FAR (D) are calculated using Equations 10~13 and shown in Figure 4,
where results from MRMS, SVM, BALY, and BAL~%5 are presented by black, red, blue, and green lines, respectively. When
the MRMS results are applied as the ground truth, BAL? obviously classifies more precipitation as stratiform type during this
24-hour period. The time series of R from BAL? are much lower than the other three approaches. BAL~-° classifies more
pixels as convective than BALY as expected, and the R scores are much higher than BAL®. The proposed SVM shows the
most similar R“S scores to MRMS comparing to BAL approaches. Since the BAL %> uses a very low threshold, it classifies
more pixels as convective type, and the obtained R scores are higher than MRMS. SVM and BAL~°"> show similar results
in terms of CSI, POD, and FAR, but BAL® show apparently worse performance.

To better understand the performance of each approach, the classification results and radar variables (Z, Zpg, and ¢) from
two distinct moments are examined as shown in Figures 5~7. Figure 5 shows the classification results from 0303 UTC 30
August 2011, where BAL?, BAL~%% SVM and MRMS are shown in the panel ‘A’, ‘B’, ‘C’, and ‘D’, respectively. The
timestamp for the MRMS result is 0300 UTC, and about 3 minutes earlier than the other three approaches. Three input variables
of SVM at 0303 UTC are shown in Figure 6, where Z, Zpr, and 7 are presented in panel ‘A’, ‘B’, and ‘C’. A circle is inserted in
Figures 5 and 6 to emphasize a region where BAL and SVM show different performances. Within this circle, BAL® (BAL %)
classifies the least (most) echoes as convective, and SVM shows the most similar results as MRMS. The averages of Z and
Zpr within this region both show relatively large values (Z > 36 dBZ and Zpg > 0.75 dB) as shown in Figure 6. This is a
clear indication of convective type precipitation. Both SVM and BAL "% classify most of the area within the red circle as
convective, and this result is consistent with the MRMS result. Since the separation indexes within the black circle are below
or slightly higher than 0, most of the area is classified as stratiform type by BAL’. For this moment, threshold —0.5 shows
better performance than 0. Similar reasons may be applied to other regions.

Figure 7 shows another example of classification results from 0650 UTC. At this moment, although SVM and BAL~0-
produce similar CSI (0.30 v.s. 0.25) and POD (0.48 v.s. 0.52), the RCS from BAL % (32%) is much higher than RCS from
MRMS (17%) and SVM (13%). These scores could also be found in Figure 4. In Figure 7, It could be found that the MRMS,
SVM, and BAL 9% show similar classification results between the azimuthal angle of 180° and 270°. However, BAL 05
misclassifies gates between 90° and 180° as convective type, which produces such high R““. On the other hand, MRMS and

SVM show similar classification results in this region.
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3.2.2 Tropical convective

Typhoon Morakot (6~10 August 2009) brought significant rainfall to Taiwan. Over 700 people were reported dead in the storm,
and the property loss was more than 3.3 billion USD. For most of the time during its landfall in Taiwan, the precipitation was
classified as a mixture of tropical convective and tropical stratiform types. The performances of SVM, BAL?, and BAL %5
were validated using 96-hour data from 6 to 9 August 2009, where the results from 10 August 2009 were not included in the
evaluation because no significant precipitation was observed from that day. The time series plots of R“* (A), CSI (B), POD
(C) and FAR (D) are shown in Figure 8. It could be found that scores of R, CSI, and POD from the BAL based approaches
is evidently lower than the results from SVM and MRMS, and the latter two show similar performance during these four days.

Classification results from BAL®?, BAL~%5 SVM (0402 UTC), and MRMS (0400 UTC) from 9 August 2009 are shown
in Figure 9A, 9B, 9C, and 9D, respectively. The classification results within two regions, highlighted with two circles, are
convective (SVM and MRMS) and stratiform (BAL® and BAL~%-%). Radar variables from 0402 UTC are shown in Figure 10
including the reflectivity (A), differential reflectivity (B), and separation index (C), respectively. Figure 10D is the zoom-in
reflectivity field inside the red rectangular box (A) for more details. It was found that a heavy precipitation band is on the top
of RCMK (Figure 10D), and this may cause significant attenuation on Z and Zpg fields. Although both Z and ZpR fields
were corrected using Equation 1, deficient or excessive compensations on Z and Zpp fields lead to increased uncertainty on
the separation index. It may be the primary reason causing the small values of the separation index. Other reasons such as wet
radome may also contribute to the Z and Zpp issues. In Figure 10C, the separation index ¢ are equal or less than -0.5 in the
circled areas, and the BAL based approaches classify these regions as stratiform. On the other hand, these regions clearly show

the convective precipitation features in the fields of Z (10A) and Zppr (10B).
3.2.3 Stratiform precipitation event

The performances of BAL?, BAL™°-5, and SVM were also evaluated with a widespread stratiform precipitation event on 26
March 2011. This is a typical stratiform precipitation event, and there were no convective type pixels identified by MRMS.
These three approaches showed consistent classification results with the MRMS result during an 8-hour period evaluation. For

all three approaches, the scores of POD, FAR, CSI, and RS are 1,0, 1, and 0, respectively.

4 Conclusions

A novel precipitation classification approach using a support vector machine approach was developed and tested on a C-band
polarimetric radar located in Taiwan. Different from other classification algorithms that use a complete volume scan data, the
proposed method only utilizes the data from the lowest unblocked tilt to separate precipitation into convective or stratiform
type. This feature makes this approach an optimal option in new scanning schemes such as AVSET, SAILS, MRLE, and etc.
Three radar variables of reflectivity, differential reflectivity, and the separation index derived by Bringi et al. (2009) are utilized

in the new proposed approach. Both reflectivity and differential reflectivity need be corrected from attenuation and differential
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attenuation before applied in this approach. Although the separation index alone can be used in the precipitation classification,
there are two potential limitations: thresholds and biases on reflectivity and/or differential reflectivity. A threshold of “0” was
suggested in separating convective type from stratiform type. However, it was found that a single threshold may not be sufficient
for all cases. Other thresholds (such as “—0.5” used in the current work), sometimes can produce better results than “0”. On
the other hand, although both reflectivity and differential reflectivity should be corrected from attenuation before used in the
separation index calculation, the correction biases on either filed may cause large uncertainty in the derived separation index
and further lead to a wrong decision.

This work attempts to propose a complementary method to enhance the performance of using the separation index. The
proposed approach integrates input variables with a support vector machine method. The parameters used in the support vector
machine were trained with typical stratiform and convective precipitation events. It should be noted that the proposed approach
has a flexible framework, and some other variables can be easily included. With newly added variables, the weight vector
and bias need to be retrained. In the current work, the proposed approach was tested with multiple precipitation events. Its
performance was found better than using then separation index only and similar to a well developed approach, MRMS, which
utilizes multiple tilts radar data in the classification. It should be noted that although the proposed approach shows better scores
(POD, FAR, CSI and R®®), this evaluation should be treated as qualitative evaluation instead of statistical analysis. In order to
obtained statistical evaluation results, more long-term precipitation events are needed.

There are some issues that need to be noticed before applying this approach for the operation purpose. First, this approach
is developed for the fast scan and fast update purpose, and data from the lowest unblocked tilt is used. If the radar is located
in a complex orography area, radar beams could be partially or completely blocked in some regions. A possible solution for
such a scenario is using data from different tilts to form a hybrid scan, and the hybrid scan is then used as the input. Given
the fact that precipitation’s microphysics (such as drop size distribution) from different altitudes may be significantly different,
the performance of the proposed approach may be worse than expected. Second, the performance of the proposed approach
depends highly on the training data, which should be selected very carefully. In the current work, a threshold of pgy > 0.9
is used in the data selection. Using a lower threshold may cause different performance, and more investigations on this issue
are needed. Moreover, only very limited training data is used in the current work. Much more data from various precipitation
events should be included in the training process if the proposed algorithm is implemented in operation. Third, coefficients
in the separation index calculation depend on the local drop size distribution and drop shape relation features. Therefore, new
relations need to be derived for the optimal results. Moreover, the separation index only validates at liquid phase precipitation.
For ice phase precipitation, such as mixed hail and rain, its performance is not well studied. Other hydrometeor classification
schemes could be used for such a scenario. Fourth, the mis-calibration may significantly affect the performance of the proposed
approach. The calibration biases for Z and Zpp should be within 1 dBZ and 0.2 dB, respectively. Moreover, this work only
presents a prototype algorithm. Given the flexible framework, other variables (such as differential phase) could be easily

integrated into this algorithm, and the performance could be further enhanced.
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Figure 1. The terrain of Taiwan, the location of a C-band polarimetric radar RCMK (marked with a black square), JWDs (marked with black
stars), and four S-band single-polarization radar RCCG, RCKT, RCHL, and RCWF (marked with black circles). The continuous grey-scale

terrain map shows the central mountain range of Taiwan.
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Figure 4. The time series plot of RY%(A), CSI(B), POD(C), and FAR(D) from 30 August 2011. 24-hours data 0000 UTC 2400 UTC are
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Figure 5. The classification results from BAL®(A), BAL™%5(B), SVM(C) and MRMS(D). The time stamp for BALY, BAL™%%, and SVM

is 0303 UTC 30 August 2011, and time stamp for MRMS is 0300 UTC 30 August 2011. The region inside the white circle is used in the
analysis.
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Figure 6. Radar variables of reflectivity (A), differential reflectivity(B), and separation index(C). The radar data was collected by RCMK at
0303 UTC 30 August 2011. The region inside the red circle is used in the analysis.
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Figure 9. The classification results from BAL°(A), BAL~%5(B), SVM(C), and MRMS(D). The time stamp for BAL®, BAL™°-%, and SVM
is 0402 UTC 9 August 2009, and time stamp for MRMS is 0400 UTC 9 August 2009.
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Figure 10. Radar variables of reflectivity(A), differential reflectivity(B), separation index(C), and reflectivity within the red rectangular box
in A(D). The radar data was collected by RCMK at 0402 UTC 9 August 2009.
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