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Abstract. A precipitation separation approach using a support vector machine method was developed and tested on a C-band

polarimetric weather radar located in Taiwan (RCMK). Different from some existing methods requiring a whole volume scan

data, the proposed approach utilizes the polarimetric radar data from the lowest tilt to classify precipitation echoes into either

stratiform or convective type. Through a support vector machine method, the inputs of radar reflectivity, differential reflec-

tivity, and the separation index are integrated in the classification. The feature vector and weight vector in the support vector5

machine were optimized using well-classified training data. The proposed approach was tested with multiple precipitation

events including two widespread mixed stratiform and convective events, a tropical typhoon precipitation event, and a strati-

form precipitation event. In the evaluation, the results from the multi-radar-multi-sensor (MRMS) precipitation classification

approach were used as the ground truth, and the performances from proposed approach were further compared with the ap-

proach using separation index only with different thresholds. It was found that the proposed method can accurately identify the10

convective cells from stratiform rain, and produce better results than using the separation index only.

1 Introduction

Convective and stratiform precipitations exhibit significant differences in precipitation growth mechanisms and thermodynamic

structures (e.g., Houghton, 1968; Houze, 1993, 1997). Generally, convective precipitation is associated with strong but small

areal vertical air motion (> 5 m s−1) (Penide et al., 2013), and delivers high rainfall rate (R) (Anagnostou, 2004). On the15

other hand, stratiform precipitation is associated with weak updrafts/downdrafts (< 3 m s−1) and relative low R. Therefore,

classifying a precipitation into either convective or stratiform type not only promotes the understanding of cloud physics, but

also enhances the accuracy of quantitative precipitation estimation (QPE). For these purposes, numerous methods using ground

in situ measurements or satellite observations were developed during the past four decades (e.g., Leary and Jr., 1979; Adler

and Negri, 1988; Tokay and Short, 1996; Hong et al., 1999).20

Ground-based weather radars, such as Weather Surveillance Radar, 1988, Doppler (WSR-88D), are currently used in all

aspects of weather diagnosis and analysis. Precipitation classification using single- or dual-polarization radars were developed

during the past three decades. For a single-polarization radar, developed algorithms mainly rely on radar reflectivity (Z) and
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its derived variables (e.g., Biggerstaff and Listemaa, 2000; Anagnostou, 2004; Yang et al., 2013; Powell et al., 2016). For

example, Steiner et al. (1995) (hereafter SHY95) proposed a separation approach that utilizes the texture features derived25

from radar reflectivity field. In this approach, a grid point in Z field is identified as the convective center if its value is larger

than 40 dBZ, or exceeds the average intensity taken over the surrounding background by specified thresholds. Those grid

points surrounding the convective centers are classified as convective area, and far regions are classified as stratiform. Penide

et al. (2013) found that SHY95 may misclassify those isolated points embedded within stratiform precipitation or associated

with low cloud-top height. Powell et al. (2016) modified SHY95′s approach, and the new approach can identify shallow30

convection embedded within large stratiform regions, and those isolated shallow and weak convections. A neural network

based convective-stratiform classification algorithm was developed by Anagnostou (2004). It utilizes six variables as inputs

including storm height, reflectivity at 2 km elevation, vertical gradient of reflectivity, the difference in height, the standard

deviation of reflectivity, and the product of reflectivity and height. Similar variables are also used in a fuzzy logic based

classification approach proposed by Yang et al. (2013).35

Although these listed classification algorithms have been developed and validated for years, a robust algorithm utilizing

the lowest tilt radar data only is still needed for the following two reasons. First, according to U.S. Radar Operations Center

(ROC), the WSR-88D radars are currently operated without updating a complete volume during each volume scan, especially

during precipitation events. New radar scanning schemes are designed to reorganize the updating order for a high frequency

in low elevations and a less frequency for high elevations. Therefore, WSR-88D radars are able to promptly capture the storm40

development for weather forecast and to obtain a more accurate precipitation estimation. These new schemes include the

automated volume scan evaluation and termination (AVSET), supplemental adaptive intra-volume low-level scan (SAILS),

the multiple elevation scan option for SAILS, and the mid-volume rescan of low-level elevations (MRLE). Under these new

scanning schemes, the separation of stratiform/convective becomes challenge for those algorithms requiring a full volume scan

of data. Second, with the developments in radar polarimetry, polarimetric weather radars have been well applied in radar QPE,45

severe weather detection, hydrometeor classification, and microphysical retrievals (Ryzhkov and Zrnic, 2019; Zhang, 2016).

Through transmitting and receiving electromagnetic waves along the horizontal and vertical directions, a polarimetric radar can

obtain extra information about hydrometeors’ size, shape, species, and orientation. Therefore, the polarimetric measurements

may reveal more precipitation’s microphysical and dynamic properties. Inspired by these features, a C-band polarimetric radar

precipitation separation approach was developed by Bringi et al. (2009) (hereafter BAL), which classifies the precipitation into50

stratiform, convective and transition regions based on retrieved drop size distribution (DSD) characteristics. However, it was

found that strong stratiform echoes might have similar DSDs to weak convective echoes and lead to wrong classification results

(Powell et al., 2016).

In this work, a novel precipitation separation algorithm using separation index with other radar variables was developed and

tested on a C-band polarimetric radar located in Taiwan. This approach classifies precipitations into stratiform or convective55

type with a support vector machine (SVM) method. Different from some existing classification techniques that require the

whole volume scan of radar data, this new approach uses the unblocked data from the lowest scanning tilt. The major advantage

of this method is that it can provide real-time classification results even if the radar is operated under AVSET, SAILS, and
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MRLE scanning schemes, where the lowest tilt is the most frequently scanned and updated. This paper is organized as follows:

section 2 introduces the proposed method including radar variables and processings, the SVM method, and the training process.60

The performance evaluation is shown in Section 3, and the discussion and summary are given in Section 4.

2 Precipitation Separation With a Support Vector Machine Method

In the current work, the SVM precipitation separation approach was developed and validated on a C-band polarimetric radar

(RCMK) located at Makung, Taiwan (Figure 1). The Weather Wing of the Chinese Air Force deployed this radar and made

the data available to the Central Weather Bureau (CWB) of Taiwan since 2009. Together with three single-polarization S-band65

WSR-88D (RCCG, RCKT, and RCHL) and one dual-polarization S-band radar (RCWF), these five radars provide real-time

QPEs for CWB to support missions of flood monitoring and prediction, landslide forecasts and water resource management.

2.1 Input polarimetric radar variables and preprocesses

Three direct measured or derived radar variables are proposed as inputs to the SVM approach: Z, differential reflectivity

fields (ZDR), and separation index (i). In most of precipitation classification approaches, Z is used as one of inputs because70

reflectivities from convective generally show higher values than from stratiform type. For example, a radar echo with the

reflectivity of 40 dBZ and above is automatically classified as convective type in the approach developed by SHY95.

Differential reflectivity, which is highly related to raindrop’s mass weighted mean diameter (Dm), is another good indicator

of precipitation type. It was found the values of Dm in stratiform and convective precipitation generally are within 1-1.9

mm and above 1.9 mm, respectively (Chang et al., 2009). Higher ZDR values are expected from convective than stratiform75

precipitation. Therefore, ZDR field is used as another input of the proposed approach.

For short wavelength radars such as C-band or X-band radars, the Z and ZDR fields may be significantly attenuated when

the radar beam propagates through heavy precipitation regions. Both Z and ZDR fields need to be corrected from attenuation

before applied in the precipitation classification and QPE. Different attenuation correction methods were proposed using the

differential phase (φDP ) measurement such as the linear φDP approach, the standard ZPHI method, and the iterative ZPHI80

method (e.g., Jameson, 1992; Carey et al., 2000; Testud et al., 2000; Park et al., 2005). Because of its simplicity and easy

implementation in a real-time system, the linear φDP method was applied in the current work.

Z(r) = Z ′(r) +α(φDP (r)−φDP (0)) (1a)

ZDR(r) = Z ′DR(r) +β(φDP (r)−φDP (0)) (1b)

where Z ′(r) (Z ′DR(r)) is the observed reflectivity (differential reflectivity) at range r; Z(r) (ZDR(r)) is the corrected value;85

φDP (0) is the system value; φDP (r) is the smoothed (by FIR filter) differential phase at range r. The attenuation correction

coefficients α and β depend on DSD, drop size shape relations (DSR), and temperature. The typical range of α (β) is found

0.06∼0.15 (0.01∼0.03) dB deg−1 for C-band radars (e.g., Carey et al., 2000; Vulpiani et al., 2012). Following the work from
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Wang et al. (2014), optimal coefficients α and β in Taiwan are 0.088 dB deg−1 and 0.02 dB deg−1, respectively. The Z and

ZDR fields are further smoothed with a 3 (azimuthal) by 3 (range) moving window function after corrected from attenuation.90

Using the separation index i to identify convective from stratiform precipitation was originally proposed by BAL, where i

was calculated under a normalized gamma DSD assumption:

i= log10(Nest
W )− log10(Nsep

W ) (2)

log10(Nsep
W ) =−1.6D0 + 6.3 (3)95

where Nest
W is the estimated NW (normalized number concentration) from observed Z and ZDR, and is calculated as:

Nest
W = Z/0.056D7.319

0 (4)

In Equation 4, D0 is the median volume diameter, and can be calculated as.

D0 = 0.0203Z4
DR− 0.1488Z3

DR + 0.2209Z2
DR + 0.5571ZDR + 0.801; −0.5≤ ZDR < 1.25 (5a)

=−0.0355Z3
DR− 0.3021Z2

DR + 1.0556ZDR + 0.6844; 1.25≤ ZDR < 5 (5b)100

The units of ZDR, Z, Nw, and D0 are dB, mm6m−3, mm−1m−3, and mm, respectively. The positive and negative values

of index i indicate convective and stratiform rain, respectively, and |i| < 0.1 indicates transition regions (Penide et al., 2013).

BAL pointed out that index i worked well in most of the cases in their study; however, incorrect classification results are likely

obtained for low Z and high ZDR cases in some convective precipitations.

2.2 Drop size distribution and drop shape relation105

It should be noted that the relations between Z, Nw, and D0 were derived using the DSD data collected in Darwin, Australia.

Coefficients in Equations 2∼5 need be adjusted according to different frequency radars or/and other DSD and DSR features

from the specific location (Thompson et al., 2015). In the current work, the separation index i derived using Equations 2∼5 is

directly used as one of the input variables. It was shown by Wang et al. (2013) that DSD and DSR features in Taiwan is very

similar to those measured from Darwin, Australia. Similar R(KDP ) relationships were obtained using data collected from110

these two locations. Coefficients derived by BAL could be directly used in Taiwan without further modification. To verify this

assumption, Nw and D0 were calculated using DSD data collected by four impact-type Joss-Waldvogel disdrometers (JWD)

located in Taiwan (Figure 1). The measurement range and temporal resolution of these JWDs are 0.359 mm ∼ 5.373 mm and

1 minute, respectively. Total 4306-minute data from 2011∼2014 are used in Nw and D0 calculation following the approach

described in Bringi et al. (2003). Similar to the work presented in BAL, the distribution of i along median volume diameter D0115

is shown in Figure 2, where the (log10Nw,D0) pairs from stratiform and convective types are represented with gray circles and

black stars, respectively. Although the relation described in Equation 3 can separate most stratiform from convective types, a

large number of points are still classified incorrectly. Therefore, the single separation index is not sufficient in the precipitation

separation, and other variables such as Z and ZDR may be used as the supplement.
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2.3 Support vector machines (SVM) method120

2.3.1 Introduction of SVM

Support vector machine (SVM) can be viewed as a kernel-based machine learning approach, which nonlinearly maps the data

from the low-dimension input space to a high-dimension feature space, and then linearly maps to a binary output space (Burges,

1998). Given a set of training samples, the SVM constructs an optimal hyperplane, which maximizes the margin of separation

between positive and negative examples (Haykin, 2011). Specifically, given a set of training data {(Xi,yi)}Ni=1, the goal is to125

find the optimal weights vector W and a bias b such that

yi(WTXi + b)≥ 1 i= 1,2, ....,N (6)

where Xi ∈ Rm is the input vector, m is the input variable dimension (m = 3 in this work), N is the number of training

samples, and yi is an output with the value of +1 or −1 that represents convective or stratiform, respectively. The particular

data points (Xi,yi) are called support vector when Equation 6 is satisfied with the equality sign. The optimum weights vector130

W and bias b can be obtained through solving the Lagrangian function with the minimum cost function (Haykin, 2011).

Since the SVM can be viewed as a kernel machine, finding the optimal weight vector and bias in Equation 6 can be alterna-

tively solved through the recursive least square estimations of:

Ns∑

i=1

αiyik(X,Xi) = 0 (7)

where Ns is the number of support vectors, αi is the Lagrange multipliers, and k(X,Xi) is the Mercer kernel defined as:135

k(X,Xi) = ΦT (Xi)Φ(X) = exp

(
− 1

2σ2
||X −Xi||2

)
(8)

With the solved {αi}Ni=1, the SVM calculate the classification results with new input data Z ∈ Rm as:

f(Z) = sign[

[
Ns∑

i=1

αiyiΦT (Xi)Φ(Z)

]
(9)

When f(Z) = 1, the output is classified as convective, otherwise is classified as stratiform.

2.3.2 Training of the SVM140

In the SVM approach, the weight vector and bias in Equation 6 need to be optimized through a recursive least square estimation

using the training data set. Since the training data play a critical role in the SVM approach, Z, ZDR and i from convective and

stratiform precipitation events were carefully examined through three steps. Firstly, the training data was checked following

general classification principles. For example, training data from convective precipitation is generally associated with relative

strong reflectivity, no apparent bight band signature, and high vertically integrated liquid (VIL). Secondly, the precipitation145

type is verified by ground observation such as ground severe storm report. Thirdly, the precipitation type is confirmed by the
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Multi-Radar-Multi-Sensor (MRMS) precipitation classification algorithm implemented in Taiwan (Zhang et al., 2011, 2016). In

this MRMS classification approach, a 3-dimensional radar reflectivity field was mosaicked from 4 S-band single polarization

radars (Figure 1), and the composite reflectivity (CREF) together with other fields such as temperature and moisture fields

were then used in the surface precipitation classification (Zhang et al., 2016). Based on the classification results, MRMS150

chooses different R(Z) relations in the rainfall rate estimation. The performance of MRMS has been thoroughly evaluated

for years for the quantitative precipitation estimation, flash flood monitoring, severe weather and aviation weather surveillance

(e.g., Gourley et al., 2016; Smith et al., 2016), and also used as the benchmark and/or ground truth in many studies (e.g.,

Grecu et al., 2016; Skofronick-Jackson and Coauthors, 2017). It should be noted that, although the performance of MRMS

is well accepted in weather research community, there may be some imperfections in this system, especially it only uses155

single-polarization variables to determine the precipitation type. Other observations, such as the accumulated rainfall amount

measured by gauges may be another reference. However, biases in the gauge measurements and improper R(Z) relations may

causes other uncertainties. Therefore, at the current stage, MRMS precipitation classification result is the best benchmark in the

training and validation of the proposed algorithm. Moreover, since the MRMS classification results are derived from 4 S-band

radars, it can be viewed as an independent reference.160

Training data for convective type are mainly from a strong convective precipitation event on 23 July 2014. This thunderstorm,

classified as convective precipitation by MRMS, was associated with strong updrafts/downdrafts and caused an aircraft crash

on the airport of Makung at 1106 UTC. Radar data collected from 1030 to 1130 UTC were used as the convective type training

data. Moreover, the training data are selected when they are associated with Z > 20 dBZ, and correlation coefficient (ρHV )>

0.98. The stratiform type data are from a mixed stratiform and convective precipitation even on 30 August 2011, and only165

those data identified as a stratiform type by MRMS are used in training. Total 17281 sets of data (15144 sets of stratiform,

and 2137 sets of convective) are used in the training process. The number of support vectors is selected as 1000 in the current

work, and the training process is considered as completed when the root-mean-square error reaches a stable value. In the SVM

approach, the original 3-dimension input space is nonlinearly maps to a 1000-dimension feature space, and then linearly maps

to a binary output space (Burges, 1998). The higher dimension feature space potentially capture more input variables feature,170

but higher computation cost is needed. Generally, after the number of support vector reach some number, the enhancement

in the performance the SVM approach becomes slight. There is a balance between accuracy and computation. In the current

work, the numbers of support vectors were tested at 500, 750, 1000, 2000, and 5000, and 1000 can produce less than 5% error

with reasonable computation time. As the prototype algorithm, the number of support vectors is selected as 1000 in the current

work.175

3 Performance Evaluation

3.1 Description of the experiments

The performance of the proposed approach was validated with four precipitation events from 2009 to 2012. These four precip-

itation events include one stratiform event, one strong tropical precipitation event, and two events of the mixed convective and
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stratiform. Two experiments based on the BAL approach with different thresholds (i.e., BAL0 and BAL−0.5) were also carried180

out in the evaluation. In these two experiments, the separation index i from each radar gate is first calculated using Equations

2∼5, and thresholds of T0 = 0 and -0.5 are then used to separate convective type from stratiform type. A pixel is classified

as convective if i is larger than T0, and as stratiform otherwise. This work aims at developing a complementary method using

separation index i together with other variables to separate convective from stratiform type. The proposed SVM and BAL

methods both can classify the precipitation using the lowest tilt radar data only, which is suitable for fast scanning and quick185

updated purpose. Other classification approaches as introduced in section 1 were not examined in the current work, because

they require the data from multiple elevation angles.

The MRMS classification products are used as the reference “ground truth” in the evaluation. Because the MRMS results

are derived using the mosaicked field from four S-band single-polarization radars, the coverage and time stamp are different

from the result of the single radar RCMK. The classification results from RCMK (i.e., BAL0 , BAL−0.5 and SVM) and MRMS190

could be significantly different with timestamp difference as large as 5 minutes. Given the fact that the convective storms size,

intensity, and cells locations could change significantly during a 5-minute period, it is not appropriate to quantitatively evaluate

the performance using the pixel-to-pixel evaluation criteria of the probability of detection (POD) and false alarm rate (FAR).

Qualitative evaluation maybe the best option for this work, which include two major steps: 1.) Since the MRMS output has

much bigger coverage, the MRMS is first truncated according to the coverage of RCMK. This step can assure the RCMK and195

MRMS have the same precipitation grids. 2.) A whole coverage convective ratio (RCS) is introduced as:

RCS =
N con

N con +Nstr
× 100% (10)

Where N con and Nstr are the total pixel numbers of convective and stratiform types within the coverage, respectively. The

evaluation results are shown in the following sections, and the overall performances of RCS from the evaluation cases are

presented in Table 1.200

3.2 Experiment results

3.2.1 Widespread mixed stratiform and convective precipitations

The performance of the proposed approach was first validated with two widespread stratiform and convective mixed precipi-

tation events from 30 August 2011 and 14 June 2012. For these two cases, 24-hour data (0000 UTC∼2400 UTC) were used

in the evaluation. The results from the BAL approach (BAL0 and BAL−0.5) were also calculated. It should be noted that the205

threshold of -0.5 is lower than the value suggested by BAL, and more pixels will be classified as convective by BAL−0.5. The

classification results from the proposed SVM were calculated using the trained weight vector and biases, and the convective

ratios from MRMS, SVM, BAL0, and BAL−0.5 were calculated using Equation 10.

The time series plots of RCS are shown in Figure 3, where results from 30 August 2011 and 14 June 2012 are shown on

panel “a” and “b”, and the RCS from MRMS, SVM, BAL0, and BAL−0.5 are presented by thick solid, thick dashed, thin210

solid and thin dashed lines, respectively. In general, BAL−0.5 classifies more pixels as convective than BAL0 as expected for
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both cases, and SVM shows the most similar results to MRMS comparing to BAL approaches. For the 30 August 2011 case

(Figure 3a), if the MRMS results are considered as the ground truth, BAL0 shows obvious under classification of convective

type during this 24-hour period, but BAL−0.5 shows better performance. On the other hand, BAL−0.5 classifies more pixels

as a convective type than MRMS in the 14 June 2012 case (Figure 3b), but the results from BAL0 are more consistent with215

MRMS outputs. The overall RCS from MRMS, SVM, BAL0, and BAL−0.5 are shown in Table 1.

To better understand the performance of each approach, the classification results and radar variables (Z, ZDR, and i) from

two distinct moments were examined and shown in Figures 4∼7. Classification results from 0303 UTC 30 August 2011 were

first shown in Figure 4, where BAL0, BAL−0.5, SVM and MRMS are shown in panel ‘a’, ‘b’, ‘c’, and ‘d’, respectively. The

time stamp for MRMS result is 0300 UTC and the time difference from the other three approaches is about 3 minutes. These220

three input variables of SVM at 0303 UTC are shown in Figure 5, where Z, ZDR, and i are presented in panel ‘a’, ‘b’, and ‘c’.

From Figures 3 and 4, it could be found that the RCS from MRMS, SVM, and BAL−0.5 show similar value, but RCS from

BAL0 is obviously low. Within the black circle of Figure 5, the averages of Z and ZDR both show relatively large values (Z

> 36 dBZ and ZDR > 0.75 dB), this is a clear indication of convective type precipitation. Both SVM and BAL−0.5 classify

most of the area within the black circle as convective, and this result is consistent with the MRMS result. Since the separation225

indexes within the black circle are below or slightly higher than 0, most of the area is classified as stratiform type. For this

moment, threshold −0.5 shows better performance than 0.

Figure 6 shows the classification results from SVM, BAL0, BAL−0.5 (0801 UTC) and MRMS (0800 UTC) on 14 June

2012. In this case, MRMS, SVM, BAL0 show similar performance in general, but BAL−0.5 shows visible over classification of

convective cells. TheRCS from MRMS, SVM, and BAL0 show similar values around 22%, but BAL−0.5 classifies much more230

pixels as connective with RCS reaches 41% (Figure 6). Radar variables are shown in Figure 7, and a circle is also inserted in

both Figures 6 and 7 to emphasize the performance from each approach in this circle. Inside the circle, the echoes with the Z

values around 30∼35 dBZ have the chances to be either stratiform or convective type. On the other hand, the ZDR shows low

value around 0 dB, which is generally considered as the indicator of stratiform. It should be noted, it is impossible to show all

the comparison results (every 5 minutes) as Figures 4∼7 from these two cases. Therefore, the results are shown in Figure 3235

and Table 1 to quantitatively demonstrate their performance.

3.2.2 Tropical convective

Typhoon Morakot (6∼10 August 2009) brought significant rainfall to Taiwan. Over 700 people were reported dead in the storm,

and the property loss was more than 3.3 billion USD. For most of the time during its landfall in Taiwan, the precipitation was

classified as a mixture of tropical convective and tropical stratiform types. The performances of SVM, BAL0, and BAL−0.5240

were validated with 96-hour data from 6 to 9 August 2009, where the results from 10 August 2009 were not included in the

evaluation because no significant precipitation was observed. The time series plots of RCS , shown in Figure 8, demonstrate

that the RCS from the BAL based approaches is evidently lower than the results from SVM and MRMS, and the latter two

show similar performance during this 4-day period.
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Classification results from BAL0, BAL−0.5, SVM (0402 UTC), and MRMS (0400 UTC) from 9 August 2009 are shown in245

Figure 9a, 9b, 9c, and 9d, respectively. The classification results in those regions, highlighted with two circles, are convective

(SVM and MRMS) and stratiform (BAL0 and BAL−0.5). Figure 10 includes the reflectivity (10a), differential reflectivity (10b),

and separation index (10c) from 0402 UTC, where the reflectivity field within the red rectangular box is shown in Figure 10d

for more details. It was found that the heavy precipitation band is on the top of RCMK (Figure 10d), and this may cause

significant attenuation and differential attenuation on Z and ZDR fields. Although both Z and ZDR fields were corrected,250

deficient or over compensations on Z and ZDR fields lead to increased uncertainty on the separation index. It may be the

primary reason causing the small values of the separation index. In Figure 10c, the separation index i are equal or less than

-0.5 in the circled areas, and the BAL based approaches classify these regions as stratiform. On the other hand, these regions

clearly show the convective precipitation features in the fields of Z (10a) and ZDR (10b).

3.2.3 Stratiform precipitation event255

The performances of BAL0, BAL−0.5, and SVM approaches were also evaluated with a widespread stratiform precipitation

event on 26 March 2011. There were no convective type precipitations identified by MRMS, and all these three approaches

showed consistent classification results with the MRMS result during 8-hour period evaluation.

4 Conclusions

A novel precipitation classification approach using support vector machine approach was developed and tested on a C-band po-260

larimetric radar located in Taiwan. Different from other classification algorithms that use whole volume scan data, the proposed

method only utilizes the data from the lowest unblocked tilt to separate precipitation into convective or stratiform type. It can be

applied on new scanning schemes with more frequent scans at the lowest tilts and lack of information from a higher tilt, such as

AVSET, SAILS, MRLE, and etc. Three radar variables of reflectivity, differential reflectivity, and the separation index derived

by Bringi et al. (2009) are utilized in the new proposed approach, where both reflectivity and differential reflectivity need be265

corrected from attenuation and differential attenuation. Although the separation index alone can be used in the precipitation

classification, there may be two potential limitations: thresholds and attenuation. Although the threshold “0” is proposed to

separate convective from stratiform types, it was found that a single threshold may not sufficient for all cases. Other thresholds

(such as“−0.5” used in the current work), sometimes can produce better results than “0”. The attenuation is the other potential

issue. Although both reflectivity and differential reflectivity should be corrected from attenuation before used in the separation270

index calculation, the correction biases on either filed may cause large uncertainty in the derived separation index and further

lead to a wrong classification. This work attempts to propose a complementary method to enhance the performance of using

separation index only. The proposed approach integrates input variables with a support vector machine method. The weighs

and bias vectors used in the support vector machine were trained with typical stratiform and convective precipitation events. It

should be noted that the proposed approach has a flexible framework, and some other variables can be easily included. With275

newly added variables, the weighting and bias vectors need to be retrained. The proposed approach was tested with multiple
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cases, and its performance was found similar to a well-developed approach, MRMS, which utilizes multiple tilts radar data in

the classification. It should be noted that the time difference between RCMK (i.e., BAL0 , BAL−0.5 and SVM) and MRMS

could be as large as 5 minutes. Therefore, the pixel-to-pixel evaluation criteria of the probability of detection (POD) and false

alarm rate (FAR) is not feasible for the evaluation. Although a new variable of RCS is used in the performance evaluation, this280

should be treated as qualitative evaluation.

There are some issues need be noticed before applying this approach into operation. First, this approach is developed for fast

scanning and fast update purpose, therefore, only the lowest tilt data is used as the input. With the higher tilt data as the inputs,

potential enhancements should be expected. Second, the performance of the proposed approach depends highly on the training

data, which should be selected very carefully. Third, coefficients in the separation index calculation depends on the local drop285

size distribution and drop shape relation features. Therefore, new relations need to be derived for the optimal results. Four, this

work only presents a prototype algorithm. Given the flexible framework, other variables (such as differential phase) could be

easily integrated into this algorithm, and the performance could be further enhanced.
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Figure 1. The terrain of Taiwan, the location of a C-band polarimetric radar RCMK (marked with a black square), JWDs (marked with black

stars), and four S-band single polarization radar RCCG, RCKT, RCHL, and RCWF (marked with black circles).
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Figure 2. The distribution of log10(Nw) vs D0. The DSD data from stratiform and convective precipitations are presented with gray circles

and black stars, and the separator line is shown with a solid line.
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Figure 3. The time series plot of convective cells to stratiform cells ratio (RCS) from 30 August 2011 (A) and 14 June 2012 (B). 24-hours

data 0000 UTC 2400 UTC are used in each case. The results from BAL with threshold T0 = -0.5, BAL with threshold T0 = 0, SVM, and

MRMS are indicated with thin dashed, thin solid, thick dashed and thick solid lines, respectively.
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Figure 4. The classification results from BAL0 (a), BAL−0.5(b), SVM (c) and MRMS (d). The time stamp for BAL0, BAL−0.5, and SVM

is 0303 UTC 30 August 2011, and time stamp for MRMS is 0300 UTC 30 August 2011.

16

https://doi.org/10.5194/amt-2019-324
Preprint. Discussion started: 18 December 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 5. Radar variables of reflectivity (a), differential reflectivity (b), and separation index (c). The radar data was collected by RCMK at

0303 UTC 30 August 2011.
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Figure 6. Similar to Figure 4 The results are from 14 June 2012. The time stamp for BAL0, BAL−0.5, and SVM is 0801 UTC, and time

stamp for MRMS is 0800 UTC.
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Figure 7. Similar to Figure 5, but radar data from 0801 UTC 14 June 2012.
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Figure 8. The time series plot of convective cells to stratiform cells ratio (RCS) from 06 09 August 2009. 96-hours data are used in each

case. The results from BAL with threshold T0 = -0.5, BAL with threshold T0 = 0, SVM, and MRMS are indicated with thin dashed, thin

solid, thick dashed and thick solid lines, respectively.
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Figure 9. The classification results from BAL0 (a), BAL−0.5(b), SVM (c) and MRMS (d). The time stamp for BAL0, BAL−0.5, and SVM

is 0402 UTC 9 August 2009, and time stamp for MRMS is 0400 UTC 9 August 2009.
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Figure 10. Radar variables of reflectivity (a), differential reflectivity (b), separation index (c), and reflectivity within the red rectangular box

in A (d). The radar data was collected by RCMK at 0402 UTC 9 August 2009.
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Table 1. The overall performance of these four precipitation events.

RCS scores

Case BAL0 BAL−0.5 SVM MRMS

30 August 2011 8% 30% 19% 21%

14 June 2012 15% 34% 18% 20%

06∼09 August 2009 1% 4% 17% 22%

26 March 2011 0% 0% 0% 0%

Total 4.3% 12.6% 16.6% 20.4%
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