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Abstract. Hydroxyl (OH) short-wave infrared emissions arising from OH(4-2, 5-2, 8-5, 9-6) as measured by channel 6 of the

SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are used to derive concentrations

of OH(v=4, 5, 8, and 9) between 80 km and 96 km. Retrieved concentrations are used to simulate OH(5-3, 4-2) integrated

radiances at 1.6 µm and OH(9-7, 8-6) at 2.0 µm as measured by the Sounding of the Atmosphere using Broadband Emission

Radiometry (SABER) instrument, which are not fully covered by the spectral range of SCIAMACHY measurements. On5

average, SABER “unfiltered” data is on the order of 40% at 1.6 µm and 20% at 2.0 µm larger than the simulations using

SCIAMACHY data. “Unfiltered” SABER data is a product, which accounts for the shape, width, and transmission of the

instrument’s broadband filters, which do not cover the full ro-vibrational bands of the corresponding OH transitions. It is found

that the discrepancy between SCIAMACHY and SABER data can be reduced by up to 50%, if the filtering process is carried

out manually using published SABER interference filter characteristics and latest Einstein coefficients from the HITRAN10

database. Remaining differences are discussed with regard to model parameter uncertainties and radiometric calibration.

Copyright statement. TEXT

1 Introduction

Hydroxyl (OH) airglow stems from spontaneous emissions of metastable excited OH molecules which are mainly produced

by the exothermic reaction of H and O3 in the upper mesosphere and lower thermosphere (UMLT). Its emission layer peaks15

at an altitude of approx. 87 km and extends about 8 km (Baker and Stair, 1988; Hong et al., 2010). OH airglow covers a

broad spectral region from the ultraviolet to near-infrared spectral range and is of importance for studying photochemistry and

dynamics in the UMLT region.
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Since first confirmed by Meinel (1950), OH airglow emissions have been widely observed using various remote spectro-

scopic techniques (e.g., Offermann and Gerndt, 1990; von Savigny et al., 2004; Kaufmann et al., 2008; Smith et al., 2010; Zhu20

et al., 2012). The measurements obtained in such studies have been analyzed for various purposes. For example, rotational

temperature can be obtained from OH emissions as a proxy for kinetic temperature under the assumption of rotational local

thermodynamic equilibrium (LTE) (Offermann et al., 2010; Zhu et al., 2012; Liu et al., 2015). Gravity waves passing through

the OH airglow layer can be monitored to study the dynamics and energy balance in the UMLT (Xu et al., 2015). The under-

standing of OH relaxation mechanisms with different species can be improved by studying different OH band emissions in25

the UMLT (Kaufmann et al., 2008; Xu et al., 2012; von Savigny et al., 2012). Another important application of OH airglow is

to derive trace constituents in the UMLT, such as H and O abundances (Kaufmann et al., 2013; Mlynczak et al., 2018; Panka

et al., 2018; Zhu and Kaufmann, 2018).

OH nightglow has been globally measured, among others, by SABER (Sounding of the Atmosphere using Broadband

Emission Radiometry) operating since 2002, and SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric30

CHartographY) observing from 2002 to 2012. SABER performed observations successfully over a 17-year period, covering

one and half solar cycles, and is still measuring, and many outstanding achievements have been accomplished using these data

(e.g., Xu et al., 2007; Smith et al., 2008; Mlynczak et al., 2010; Hong et al., 2010). The OH data obtained by SABER have been

used by different investigators (Smith et al., 2010; Mlynczak et al., 2013; Panka et al., 2018; Mlynczak et al., 2018) to derive

atomic oxygen abundance in the UMLT; however, deviations of up to 60% were found in comparison with atomic oxygen35

data derived from O(1S) green-line measurements obtained by SCIAMACHY and WINDII (Wind Imaging Interferometer)

(Kaufmann et al., 2014; Zhu et al., 2015). This large deviation promoted a discussion on the absolute values of atomic oxygen

abundance (Mlynczak et al., 2018; Panka et al., 2018; Zhu and Kaufmann, 2018). Mlynczak et al. (2018) derived new atomic

oxygen data from SABER OH 2.0 µm absolute radiance measurements in the UMLT under the constraints of the global annual

mean energy budget. Panka et al. (2018) also retrieved atomic oxygen data from SABER OH 1.6 µm and 2.0 µm radiance40

ratios as an alternative approach. Further new atomic oxygen data were recently derived by Zhu and Kaufmann (2018) from

SCIAMACHY nighttime OH(9-6) band measurements using rate constants measured in the laboratory by Kalogerakis et al.

(2016), which agree with atomic oxygen data derived from SCIAMACHY O(1S) green-line and O2 A-band measurements

within a range of 10-20% (Zhu and Kaufmann, 2019). While the agreement between new atomic oxygen data obtained by

SABER and SCIAMACHY has improved, systematic deviations of up to 50% still persist (Zhu and Kaufmann, 2018). This45

systematic difference needs to be addressed in future studies.

In this study, OH nightglow limb spectra measured by SCIAMACHY were used to derive OH spectrally averaged radi-

ances at 1.6 µm and 2.0 µm as measured by SABER. The obtained radiances were compared to SABER OH radiometric

measurements to investigate whether systematic differences exist between the two datasets.
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2 OH nightglow measurements and auxiliary data50

From 2002 to 2012, OH Meinel-band near-infrared emissions were measured simultaneously by SCIAMACHY on the En-

visat and by SABER on the TIMED (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics) satellite. The spectral

range of both instruments covers several OH emission bands stemming from different vibrational states (Kaufmann et al.,

2008; Mlynczak et al., 2013). The SCIAMACHY instrument on Envisat operated in a sun-synchronous orbit with an equator

crossing local solar time of 10 a.m./p.m. The limb spectra used here were observed by SCIAMACHY in a dedicated meso-55

sphere/thermosphere mode and the limb observational range covered 24 tangent altitudes from 73 km to 148 km with a vertical

sampling of 3.3 km. SCIAMACHY was a multi-channel grating spectrometer and its channel 6 measured OH spectra arising

from upper vibrational states in the range of 2 to 9 at a spectral resolution of 1.5 nm. The measurement error of SCIAMACHY

channel 6 is about 1.2% (Zoutman et al., 2000). Channel 6 covers a spectral range from 971 nm to 1773 nm (Lichtenberg

et al., 2006). In this study, only the spectral range of channel 6 up to 1589 nm was used due to the reduced performance of60

the detector beyond this wavelength (Lichtenberg et al., 2006). It should be noted that SCIAMACHY channel 7 and 8 covered

spectral ranges of 1934-2044 nm and 2259-2386 nm, respectively, but unfortunately suffered from ice condensation on their

detectors (Lichtenberg et al., 2006).

SABER is a multi-channel radiometer and observes radiometric OH(9-7, 8-6) ro-vibrational lines with wavelengths around

2.0 µm (channel 8) and OH(5-3, 4-2) band emissions at about 1.6 µm (channel 9) (Xu et al., 2012). The altitude range of the65

observation covers 60-180 km with vertical resolution of approx. 2 km (Mertens et al., 2009). To the authors’ knowledge, there

are no publicly available references on the observed accuracy of the SABER OH channels, except for a presentation named

“SABER Instrument Performance and Measurement Requirements” published on http://saber.gats-inc.com/overview.php, which

is the official source of SABER data products. According to this document, the estimated accuracy of the 1.6 and 2.0 µm chan-

nel data is about 3% at 80-90 km and about 20% at 90-100 km. Since the SABER instrument is a radiometer, individual OH70

ro-vibrational emission lines cannot be resolved. Figure 1 shows simulated OH airglow emissions in the spectral range between

1000 nm and 2400 nm; spectral ranges covered by the instruments are shaded in different colors.

Since the spectral coverage of SCIAMACHY and SABER does not coincide, we can not compare their measurements

directly. However, both instruments observed ro-vibrational lines stemming from the same upper vibrational states. This offered

us an opportunity to calculate the number densities of the OH upper vibrational states and then simulate the same ro-vibrational75

emission bands for the purposes of comparison. In our study, OH limb spectra measured by SCIAMACHY at 1078-1100 nm,

1297-1325 nm, 1377-1404 nm, and 1575-1588 nm were used, as shown in Figure 2. The spectral ranges covered ro-vibrational

lines in the OH(5-2), OH(8-5), OH(9-6) and OH(4-2) bands, respectively, with low rotational quantum numbers N (N ≤ 3) to

reduce the potential uncertainty that can be introduced by over-populated high-N rotational states (Cosby and Slanger, 2007;

Noll et al., 2015; Oliva et al., 2015); details are discussed later. From these measurements, number densities of OH(v=4, 5, 8,80

and 9) are obtained, which are used to simulate corresponding SABER measurements.

For comparison, SABER V2.0 data were used, including OH in-band and “unfiltered” 1.6 µm and 2.0 µm data (Mlynczak

et al., 2013). The in-band OH radiance data comprised raw data that did not take into account filter transmission, while the
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Figure 1. Simulated OH airglow emission bands used in this study in a spectral range between 1000 nm and 2400 nm. Shaded light blue

region covers a spectral range observed by SCIAMACHY channel 6; shaded light red and light green regions cover two spectral ranges

measured by SABER channel 9 and 8, respectively.

“unfiltered” OH radiance data consider the interference filter characteristics measured in the laboratory (Xu et al., 2012). The

unfiltering process depends on the spectral shape of the underlying ro-vibrational distribution of the emission. This shape85

has to be determined by a model, which depends on the rotational temperature and on the transition probabilities (Einstein

coefficients). Beside using the official in-band and “unfiltered” data, separate in-band and “unfiltered” datasets were obtained

from the SCIAMACHY measurements, using the bandpass filter transmission of Baker et al. (2007) and various Einstein

coefficient datasets, for details see later. In this procedure, we also considered OH(3-1) and OH(7-5) emission lines observed

by SABER 1.6 µm and 2.0 µm channels, respectively, and their contributions to the two channels were calculated based on90

SCIAMACHY OH(3-1) and OH(7-4) measurements. In order to enhance the signal-to-noise ratio and to obtain a large number

of coincident measurements with both instruments, monthly zonal median data in 5-degree latitude bins were used. Since the

SCIAMACHY instrument can not measure nighttime temperature in the UMLT, co-located SABER measurements were also

used here. The coincidence criteria selected were ±2.5◦ in latitude and one hour in local time.

3 Methodology95

3.1 OH emission model

The exothermic reaction of H and O3 in the atmosphere was identified by Bates and Nicolet (1950) as the major source of

vibrationally excited hydroxyl radicals (OH∗) near the mesopause region.

H +O3→OH∗(v ≤ 9)+O2 (R1)
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Figure 2. Monthly zonal median OH(4-2), OH(5-2), OH(8-5), and OH(9-6) limb spectra at tangent altitude about 86 km for September

2005 in a latitude range 35◦N-40◦N. raw: the raw limb spectra measured by SCIAMACHY; fit: simulated limb spectra as measured by

SCIAMACHY from retrieval results.

Metastable excited OH∗ can be de-excited via radiative, chemical, and collisional relaxation processes. OH(v ≤ 8) is not only100

initially populated by the reaction of H + O3, but is also produced by the deactivation of higher vibrational states of OH∗

via radiative relaxation and quenching. The number density of OH(v) can be obtained from its emission line measurements

by dividing by the corresponding Einstein coefficients. The volume emission rate Vv−v′(i) of an arbitrary ro-vibrational line

within a vibrational band OH(v− v′) can be calculated as

Vv−v′(i) = nv ·
gv(i) · e−Ev(i)/(k·T )

Qv(T )
·Av−v′(i) (1)105

nv is the total number density of the corresponding upper vibrational state v and Av−v′(i) is the Einstein coefficient of the

specific state-to-state transition from vibrational level v to v′. Ev(i) and gv(i) are the rotational energy and degeneracy of the

upper rotational state of the ith line considered. k is the Boltzmann constant and T is the temperature. Qv(T ) is the rotational

partition sum of OH(v). This formula is only valid under rotational local thermodynamic equilibrium (LTE) conditions and

deviations are discussed later.110
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3.2 Retrieval model

SCIAMACHY measured integrated OH spectra along the line of sight in the tangent altitude range from approx. 73 km to

approx. 149 km. The SCIAMACHY OH limb measurements can be expressed as

y = F (x,b)+ ε (2)

y corresponds to the measured SCIAMACHY OH limb spectra. F is the functional formula of the forward model involving115

equation 1. x represents the number densities (nv) of the corresponding upper vibrational state of the emission lines. b is the

parameter vector of the forward model, e.g., Einstein coefficients. ε represents stochastic measurement errors. The retrieval

can be regarded as an approach to solving an inversion problem in the presence of indirect measurements of the properties of

interest. In our setup we assume that each atmospheric layer emits OH airglow homogeneously, and we set the retrieval grid

to be identical to the tangent altitude grid of the averaged OH limb measurements. To improve the efficiency of the retrieval,120

to suppress noise in the solution, and to achieve a smooth transition of the retrieved quantities into model data at the upper

boundary, a regularization term is added to the minimization (Rodgers, 2000):

xi+1 = xa +(KT
i S

−1
ε Ki+S

−1
a )−1KT

i S
−1
ε [y−F (xi,b)+Ki(xi−xa)] (3)

xi reaches the optimal estimate solution when the retrieval converged. Ki corresponds to the first derivative matrix of the

forward model, named the Jacobian matrix. xa represents the a-priori knowledge of the total number densities of OH(v), and125

S−1
a is the regularization matrix. Sε is a diagonal error covariance matrix of y.

4 Results and discussion

4.1 Error analysis

The confidence level of simulated volume emission rates (VERs) can be assessed by considering three main aspects: the

uncertainty of the auxiliary atmospheric quantities, i.e., temperature; the uncertainty of rate constants, i.e., Einstein coefficients;130

and the potential uncertainty introduced by over-populated high rotational states due to non-local thermodynamic equilibrium

(non-LTE) effects. The temperature uncertainty in the SABER measurements includes random and systematic errors; Dawkins

et al. (2018) summarized SABER temperature uncertainties. We consider only systematic errors in SABER temperatures,

because monthly mean data are used. The SABER systematic temperature uncertainty is approx. 1.5 K at 70-80 km, 4 K at 90

km, and 5 K at 100 km, respectively. Accordingly, VERs are affected by temperature uncertainties by less than 1% between135

80 km and 96 km on average, as obtained by Xu et al. (2012) in their investigation of the temperature dependence of the band

Einstein coefficients as well.

Many OH Einstein coefficient datasets can be found in the OH research community (see, e.g., Liu et al. (2015)). We consider

the values given in the latest HITRAN molecular spectroscopic database (Gordon et al., 2017) and the OH Einstein A values

calculated by van der Loo and Groenenboom (2007, 2008) and Brooke et al. (2016). The uncertainty of the Einstein coefficient140
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Figure 3. Simulated SABER “unfiltered” OH 1.6 µm and 2.0 µm volume emission rates from SCIAMACHY data using Einstein A values

of HITRAN, Brooke et al. (2016), and van der Loo and Groenenboom (2007, 2008) at 20◦N-40◦N for October 2007 (left); Corresponding

retrieved OH number densities of vibrational states 9, 8, 5, and 4 from SCIAMACHY data using HITRAN database (right).

affects simulated VERs in two ways: In the retrieval of vibrationally excited OH from SCIAMACHY data and in the simulation

of the SABER measurements. Figure 3 (left) shows simulated SABER “unfiltered” OH 1.6 µm and 2.0 µm VER profiles

obtained from SCIAMACHY measurements using these three Einstein coefficient datasets. Corresponding OH number density

profiles as derived using Einstein coefficients from the HITRAN database at vibrational states 9, 8, 5, and 4 are also given.

Highest VERs are obtained by using the Einstein coefficients calculated by van der Loo and Groenenboom (2007, 2008) and145

the lowest are obtained by using the HITRAN database. The differences between them are approx. 26% for the simulation of

SABER 2.0 µm VERs and approx. 19% for the simulation of SABER 1.6 µm VERs. Similar values were also obtained if we

used data for other latitude bins or time periods. The same procedure was also applied to the simulation of SABER 2.0 µm and

1.6 µm in-band data, giving similar results.Therefore, we used these results as a proxy to estimate related uncertainties of the

Einstein coefficients.150

Cosby and Slanger (2007); Noll et al. (2015); Oliva et al. (2015) reported that middle and higher excited rotational states

(N ≥ 4) of OH do not meet the LTE hypothesis and that these levels are overpopulated. An estimation of the non-LTE contribu-

tion was performed by Oliva et al. (2015) based on cross-dispersed cryogenic spectrometer measurements in the spectral range

of 0.97 µm to 2.4 µm. A combination of two Boltzmann distribution equations with cold and hot OH rotational temperatures

was used to predict the observed intensities of OH emission lines. Kalogerakis et al. (2018) re-analyzed the data used by Oliva155

et al. (2015) to estimate the OH rotational temperatures following the approach taken by Cosby and Slanger (2007) and Oliva

et al. (2015). They found that the thermalization of every OH vibrational level is incomplete.

The low spectral resolution of SCIAMACHY spectra does not allow to estimate this effect from the measured data. There-

fore, we performed model simulations using the same approach and parameter sets as Oliva et al. (2015) to quantify the effect

of incomplete thermalization on the spectral ranges used in this study. We calculated OH 1.6 µm and 2.0 µm VERs by consider-160

ing only the cold rotational temperature and then obtained them using cold and hot temperatures together as Oliva et al. (2015)

and Kalogerakis et al. (2018) did. It was found that differences between them are less than 2% for both SABER channels. The

SABER 1.6 µm and 2.0 µm channels also observe emission lines from OH(3-1) and OH(7-5), respectively. We estimated their
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influence on spectrally integrated radiances by the derivation of the corresponding emissions using SCIAMACHY OH(3-1) and

OH(7-4) nightglow measurements. These simulations show that the contributions of OH(7-5) and OH(3-1) to the two channels165

are about 3% and 1% on average, respectively.

In summary, the uncertainty of the Einstein coefficient dominates the error budget for the in-band and “unfiltered” data,

which is on the order of 20% and 26% for the SABER 1.6 µm and 2.0 µm VER simulations, respectively.

4.2 Comparison of SABER measurements and simulations

An intercomparison between 1.6 µm and 2.0 µm in-band and “unfiltered” VERs as measured by SABER and corresponding170

simulations using SCIAMACHY data and HITRAN OH Einstein coefficients is given in Figure 4 for two different latitudes

in September 2005. Error bars shown in Figure 4 represent the root mean square value of all uncertainties discussed in the

subsection 4.1. The top two plots show a comparison of the “unfiltered” data and the bottom two figures show the in-band data.

SABER measurements are always larger than the simulations using SCIAMACHY data. For the “unfiltered” data, deviations

of SABER OH 1.6 µm measurements with respect to the corresponding simulations increase with altitude from 30-45% at175

83 km to 55-80% at 96 km, depending on latitudes. The difference of SABER OH 2.0 µm measurements with respect to the

corresponding simulations is 16% at 86 km. At 96 km, it reaches 70% in latitude bins 0◦-20◦N and approx. 90% in 20◦N-40◦N.

Surprisingly, for the in-band data, the differences for the 1.6 µm and 2.0 µm channels are significantly smaller at most

altitudes. They vary in a range of 8-28% (21-50%) and 8-60% (28-100%) from 83 km to 96 km at 0◦-20◦N (20◦N-40◦N). It

should be noted that SCIAMACHY and SABER have a resolution of about 3.3 km and 2 km, respectively. A linear interpolation180

has been applied to SABER data to make a comparison with SCIAMACHY data. This may underestimate the SABER data at

peak altitudes and overestimate the SABER data at two wings besides the peak altitudes.

Figure 5 shows the global spatial distributions of SABER OH 2.0 µm VERs (bottom) and the corresponding simulations

(top) using SCIAMACHY data for the year 2007. A strong annual variation with a maximum in April and a semi-annual

oscillation are visible in the radiance data over the equator region, as it was also found by Teiser and von Savigny (2017) in a185

study of SCIAMACHY OH(3-1) and OH(6-2) volume emission rates. It is obvious that SABER VERs are significantly larger

than corresponding simulated values based on SCIAMACHY observations, as already stated. Comparing the SABER OH 1.6

µm VERs and the corresponding simulations leads to the same conclusion (not shown).

Figure 6 shows two pairs of scatter plots which elucidate the consistency of SABER “unfiltered” 1.6 µm (left) and 2.0 µm

(right) VERs and corresponding simulated values based on SCIAMACHY observations. Again, SABER data are systematically190

larger than the SCIAMACHY simulations. The SABER 1.6 µm channel data (left column in Figure 6) are 44% larger for the

“unfiltered” data and 23% larger for the in-band data, if all altitudes and latitudes are considered simultaneously in one fit. For

the 2.0 µm data (right column in Figure 6), the differences are 23% and 35% on average, respectively.

To illustrate whether this difference changes on long time scales, figure 7 shows the ratio of SABER “unfiltered” and in-

band data to the corresponding simulations based on SCIAMACHY data from 2003 to 2011. For the OH 1.6 µm “unfiltered”195

(in-band) data, the ratio value varies roughly between 1.2 (1.0) and 1.3 (1.2) for 2003-2009, reaching 1.1 for 2010 and 1.36

for 2011. The ratio varies between 1.0 (1.1) and 1.1 (1.2) for the OH 2.0 µm “unfiltered” (in-band) data. The data indicate that

8
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Figure 4. SABER 1.6 µm and 2.0 µm “unfiltered” (top) and in-band (bottom) volume emission rates and corresponding simulations from

SCIAMACHY data for September 2005 at latitude bins 0◦-20◦N (left) and 20◦N-40◦N (right). The horizontal lines represent error bars

considering the total uncertainties discussed in subsection 4.1. The grey shaded area represents the observed accuracy of SABER 1.6 µm and

2.0 µm channels.

there are no significant variations in the slope of SABER data versus SCIAMACHY simulations from 2003 to 2011 and that

there is a systematic bias between them in general.

5 Conclusions200

Near-infrared OH nightglow emissions measured by SCIAMACHY channel 6 were used in this study to simulate SABER

1.6 µm and 2.0 µm radiance measurements to assess systematic differences between the two measurements. Two different

SABER data products are used for this comparison: So called in-band data, which are the data directly obtained from the

measurements and “unfiltered” data. For the latter, the shape, width, and transmission of the instrument’s broadband filters has

been considered, and the fraction of OH lines passing the interference filter has been “upscaled” to obtain total band intensities205

of the corresponding vibrational transitions (Xu et al., 2012). If, however, in-band data is used, the data user has to apply the

broadband filter transmission curve to the model data himself. This procedure has decisive advantages, because no a-priori

assumptions have to be made to upscale partial measurements of OH vibrational bands to total band intensities. This allows to

use consistent datasets of Einstein coefficients in all processing steps.
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Figure 5. Latitude-altitude cross sections of monthly zonal median SABER “unfiltered” 2.0 µm volume emission rates (bottom) and corre-

sponding simulations (top) from SCIAMACHY data for the year 2007. The numbers represent the month of the year.

When SABER OH in-band data are compared to model simulations using SCIAMACHY data, the typical differences are210

35% for 2.0 µm and 23% for 1.6 µm radiances, whereas the differences are 23% and 44% for the “unfiltered” data, respectively.

The significance or uncertainty of these differences is affected by uncertainties in the Einstein coefficients used to “map”

SCIAMACHY to SABER data. For the in-band and “unfiltered” data, this uncertainty is estimated to be about 20% for the OH

1.6 µm channel and 26% for the OH 2.0 µm channel. Considering the radiometric uncertainty of both instruments, which is
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Figure 6. Scatter plots of SABER 1.6 µm (left) and 2.0 µm (right) volume emission rates versus the corresponding simulations using

SCIAMACHY data for the year 2007. The color bar shows the latitude. The plus marker indicates the data at 80-85 km, the x marker

represents the data at 86-90 km, and the point marker shows the data at 91-95 km. The solid line shows the linear fit to the data. a and b

represent the slope and y-intercept of the fitting line, respectively. r represents the correlation coefficient of the fitting.

estimated to be about 1% for SCIAMACHY and 3-20% for SABER, OH 2.0 µm in-band and “unfiltered” data agree within215

their combined uncertainties; OH 1.6 µm in-band data also agree remarkably well, but not for the “unfiltered” 1.6 µm data.

The OH 2.0 µm data measured by SABER and O(1S) green line emission and OH(9-6) nightglow observed by SCIAMACHY

were used in the past to obtain atomic oxygen abundances. Significant differences in atomic oxygen absolute values were

reported (Kaufmann et al., 2014; Mlynczak et al., 2018; Zhu and Kaufmann, 2018). These differences are of similar magnitude

as uncertainties in the Einstein coefficients and other model parameters used in the retrieval of those data.220
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Figure 7. Slope of SABER 2.0 µm and 1.6 µm volume emission rates versus the corresponding simulations using SCIAMACHY data from

2003 to 2011.
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