
Reply to the comments by reviewer 1 on the manuscript

”Moving Lomb-Scargle Periodogram: A way to identify time-varying periodicities in
unequally spaced time series of OH∗ temperatures”

by C.Kalicinsky et al.

We thank the reviewer for his helpful comments and recommendations. In the following, we
discuss the issues addressed by the reviewer and explain our opinions and the modifications
of our manuscript.
We enumerate the comments and repeat them in bold face. The modifications of the manuscript
are displayed in the marked-up manuscript version as colored text. Deleted parts are shown
in red and new or modified text parts in blue.

1 Comments Reviewer 1

This paper presents the application of the LS periodogram analysis, (”Moving”
LS periodogram) as a method to identify variations in unequally spaced OH tem-
perature time series, and the calculation of the FAP as a method to test the
significance of the peaks obtained in the LS periodogram analysis. However the
use of ”moving” periodogram is not new in studies of airglow variability in gen-
eral, neither in OH airglow variability in particular. Then, although the authors
describe the necessary mathematical methodology and later they apply it to a
particular set of OH airglow data the authors forget to discuss many airglow
studies that have previously used this mathematical tool for variability analysis.
Then I can not recommend this work for publication until this is resolved.

General comments:
As the authors comment in the manuscript, airglow data have many gaps (day-
night periods, moon-periods, weather...) and airglow variations are not constant,
there are some features ”more stable, repetitive and stronger” and other ”more
unstable and smaller...”. There are different papers (quite a few) that have been
devoted to study airglow variability (at different temporal scales, gravity waves,
planetary waves, tides,seasonal variations...) by using time series analysis sliding
a temporal window over a data set. This should be clarified and mentioned in
the text.
Moreover, airglow studies dealing with periodogram calculations have also needed
a method to distinguish the significant peaks, it is to say (real) peaks from the
noise and in this sense, levels of confidence that a peak be a signal have been
used in airglow studies that should also be mentioned (signals well above of the
noise level, probability that a peak (z) above a level (z0) be false, false alarm
probability function, FAP=1-(1-Prob(z>z0)ˆNi or confidence level...). However,
as the authors point out, one of the difficulty to evaluate the FAP is to find the
number of independent frequencies ”Ni” of the data due to the non-orthogonality
between different frequencies, by that ”Ni” is usually calculated by fitting the
FAP equation using different bootstrap simulations of the data set.
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In the present manuscript the authors analysis the number of independent fre-
quencies in different samples to find an analytic expression for this parame-
ter (Ni). They find that Ni increases linearly with the length of interval (T),
Ni=slope(f rang) x T, but the slope for each frequency range analysed (f rang)
also follow a linear relation with the range of frequencies (slope=m(f)+b), ob-
taining an analytic expression for Ni, Ni= (m(f)+b) xT. Finally in section 4.2,
they use this relationship to find the number of independent frequencies of a set
of OH measurements to easily calculate the FAP at one level.
I think this paper may be accepted for publications, but although the paper prop-
erly presents the necessary mathematical tools, and the enough set of simulations
to find a mathematical expression to easy calculate the number of possible inde-
pendent frequencies necessary to evaluate the FAP, the paper does not mention
some of the works that have been carried out in the studies of airglow variability
by using periodogram analysis + moving window + significance test (including
FAP). In this sense:

1. The title of the paper should change because it seems that a ”new” method
”moving periodogram” is ”first” applied in OH airglow studies, and that is
not true

We changed the title to put more emphasis on the OH time series analysis and, addi-
tionally, included the fast calculation of the FAP levels as this point is important for
the easy application of the method. The new title is:
Determination of time-varying periodicities in unequally spaced time series of OH∗ tem-
peratures using a moving Lomb-Scargle Periodogram and a fast calculation of the false
alarm probabilities

2. The introduction should be improved to give appropriate credit to previous
work in airglow variability studies using periodogram analysis.

We again searched the literature of OH and airglow studies dealing with all kind of
variations from gravity waves to seasonal variations. We found several studies using
the LSP for time series analysis but without a moving window approach. Only a few
studies showing LSP for independent time periods following each other were found. We
observed more studies using the wavelet transform after interpolation of data gaps, even
very recent ones. This, in our opinion additionally motivates our approach. Thus, we
do not believe that a moving LSP is a common or well-established approach in studies
of OH analysis.
We additionally expanded our search to other fields dealing with variations in the meso-
sphere and lower thermosphere region such as radar observations of winds. Here we
found studies using LSP or other periodograms with moving windows, but either the
significance evaluation was missing or the moving steps were much larger than the
minimum possible ones. But this shows, as the reviewer mentioned, that a moving
periodogram is surely not completely new.
However, we think that our approach, especially when considering the fast and easy
calculation of the FAP levels, is beyond that techniques frequently used in the field of
OH analysis. Nonetheless, we surely revised the introduction and included all of these
information to other studies to give credit to the other authors.
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Reply to the comments by reviewer 2 on the manuscript

”Moving Lomb-Scargle Periodogram: A way to identify time-varying periodicities in
unequally spaced time series of OH∗ temperatures”

by C.Kalicinsky et al.

We thank the reviewer for his helpful comments and recommendations. In the following, we
discuss the issues addressed by the reviewer and explain our opinions and the modifications
of our manuscript.
We enumerate the comments and repeat them in bold face. The modifications of the manuscript
are displayed in the marked-up manuscript version as colored text. Deleted parts are shown
in red and new or modified text parts in blue.

1 Comments Reviewer 2

General comments:
This manuscript describes an analysis technique to provide spectral and temporal
information based on time series with unequal spacing. It is based on a windowed
Lomb-Scargle periodogram analysis. The technique is kind of the analoque of a
wavelet transform for unequally spaced data. It is of importance for data analysis
in many different fields. The technique is certainly not only applicable to OH
rotational temperature time series and I suggest removing this emphasis from
the paper (particularly from the first sentence of the abstract). The paper also
leaves it open, whether this technique is frequently applied in other fields. If
this is a well-established technique and the main point of the paper is that it
is applied to OH temperature measurements for the first time, this should be
explicitly stated. Conversely, if this is not a routine technique, this should be
mentioned as well. The paper is well and carefully written, in my opinion. I ask
the authors to consider the general comments above and the specific comments
below and recommend accepting the paper subject to minor revisions.

We again searched the literature of OH and airglow studies dealing with all kind of varia-
tions from gravity waves to seasonal variations. We found several studies using the LSP for
time series analysis but without a moving window approach. Only a few studies showing LSP
for independent time periods following each other were found. We additionally expanded our
search to other fields dealing with variations in the mesosphere and lower thermosphere region
such as radar observations of winds. Here we found studies using LSP or other periodograms
with moving windows, but either the significance evaluation was missing or the moving steps
were much larger than the minimum possible ones. Thus, we think that our approach, es-
pecially when considering the fast and easy calculation of the FAP levels, is beyond that
techniques frequently used in the field of OH analysis (and maybe other fields). Nonetheless,
we revised the introduction and included all of these information to other studies.

1. Line 1: “We present an approach to analyse time series of OH temperatures
with unequal spacing“
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The approach is applicable to all kinds of unequally spaced time series, right?
Why narrow its applicability down to OH rotational temperatures?

This is correct. We removed ”OH temperatures” from the sentence.

2. Line 17: “are useful at all.“
Do you mean ”are not useful at all“ or ”are useful“ ?

We mean that the measurements are useful. We corrected this.

3. Lines 24 and 26: ”wavelet transformation“ -> ”wavelet transform“

We changed this.

4. Line 37: ”The power is defined as“
This is ”spectral power“, right? Perhaps ”power“ can be specified further.

Equation (1) gives the definition of the periodogram. The single values that are calcu-
lated at single frequencies then are periodogram (spectral) powers. We corrected the
sentence and a few other points to make this clearer.

5. Lines 80 and following: Is this sample time series equally spaced? This
should perhaps be mentioned.

This sample is equally spaced. We added this information.

6. Line 86: ”amplitudes itselves“ -> ”amplitudes themselves“

We corrected this.

7. Line 101: ”independent frequencies“
I suggest providing a brief qualitative statement as to what ”independent
frequencies” means in this context. Most readers will perhaps guess the
correct meaning, but it would be good to define the term.

We added additional information on the idea behind the FAP and the different prob-
abilities. The probability that a peak at a single frequency exeeds a certain value is
Prob(z>z0). Then (1-Prob(z>z0)) gives the probability that the peak is equal or below
the certain value. In a frequency range then (1-Prob(z>z0))Ni gives the probability
that all peaks are equal or below a certain value (this is given by the CDF of the max-
imum peaks; see 9.). Consequently, the FAP is then 1-CDF, thus 1-(1-Prob(z>z0)Ni .
The number of independent frequencies is the number of frequencies where potentially
peaks can occur.

8. Line 107: ”From this maximum peak heights“ -> ”this .. height“ or ”these
.. heights“ ?

Here these heights is correct.

9. Line 108: ”Consequently, the FAP is then 1-CDF.“
This cannot be derived from the information provided in this paper, right?
I suggest giving a reference for this.

As we added now some information to the derivation of the FAP (see 7.), we think
this can be derived from the given information in the paper. However, we also added
additional information in this paragraph.
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10. Line 155: I suggest to replace ”line“ by ”straight line“

We corrected this.

11. Same line: only the numerical values of the slope and intersect are given. I
suggest providing the units as well.
Equation (6): please provide the units of the quantities.

We provided the units of the two given slopes, which is 1.208 days−1 and the second
slope 2.92 is day/days, as the length of interval is given in days and frequency range
in day−1, we distinguish between these two. The dimension of the intercept is again
days−1.

12. Line 162: ”Since the peak width“
I suggest mentioning explicitly that ”width“ refers to the ”spectral width“

We added ”spectral”.

13. Line 174: ”levels .. has“ -> ”levels .. have“

We corrected this.

14. Line 191: ”deviation to“ -> ”deviation from“

We corrected this.

15. Fig 5: The black lines in panels b, c, e, f are difficult to see in some panels
-> perhaps white lines? If yes, then this should also be changed in the rest
of the figures.

We changed the black lines to white lines in all figures.

16. Line 213: ”As the variation of the amplitude occurs on a smaller time scale
than the chosen time interval for the analysis the maximum value reached
is about 0.9 K.“
I read this sentence several times, but I don’t really understand the argu-
ment. Can it be expressed in a better way?

As the time interval of the analysis is smaller then the time scale of the variation some
kind of averaging occurs. Thus, the maximum of 1 K is not reached and the observed
maximum is about 0.9 K.

17. Figures 5f, 6f, and 8b: A brief comment on the signatures at shorter periods
would be appropriate? They are not significant, but they stick out. Are
these some kind of harmonics?

The signatures at shorter periods in Figures 5f, 6f, and 8b are mainly caused by noise.
They appear much larger in the Figures of the amplitudes because there the square root
of the power enters and, thus, the differences between these regions and the maxima
get much smaller. We added a sentence to clearify this point.

18. Section 4.2: Perhaps you can mention briefly, why the 1989 was chosen?

This year was chosen because in the publication by Bittner et al. (2000) the same year
was analysed with a different method and, thus, the results can be compared.
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19. Line 268: ”wavelet transformation“ -> ”wavelet transform“

We corrected this.

20. Figure 8b: around day 85 there appears a ”vertical structure“. What is it
caused by? Probably gaps in the data. I suggest adding a brief comment to
the paper.

The vertical structure is caused by the data gaps. We added a brief comment.
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Moving Lomb-Scargle Periodogram: A way to identify time-varying
periodicities in unequally spaced time series of OH∗ temperatures
Determination of time-varying periodicities in unequally spaced
time series of OH∗ temperatures using a moving Lomb-Scargle
Periodogram and a fast calculation of the false alarm probabilities
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1Institute for Atmospheric and Environmental Research, University of Wuppertal, Germany

Correspondence: C. Kalicinsky (kalicins@uni-wuppertal.de)

Abstract. We present an approach to analyse time series of OH∗ temperatures with unequal spacing. The approach enables

the identification of significant periodic fluctuations and the derivation of time-resolved periods and amplitudes of these fluc-

tuations. It is based on the classical Lomb-Scargle periodogram (LSP), a method that can handle unequally spaced time series.

Here, we additionally use the idea of a moving window. The significance of the results is analysed with the typically used false

alarm probability (FAP). We derived the dependencies of the FAP levels on different parameters that either can be changed5

manually (length of the analysed time interval, frequency range) or that change naturally (number of data gaps). By means

of these dependencies we found a fast and easy way to calculate FAP levels for different configurations of these parameters

without the need of a large number of simulations. The general performance of the approach is tested with different artificially

generated time series and the results are very promising. Finally, we present results for nightly mean OH∗ temperatures that

have been observed from Wuppertal (51◦ N, 7◦ E, Germany).10

Copyright statement. TEXT

1 Introduction

Many time series in atmospheric sciences are characterised by an unequal spacing of the data points, e.g. due to data gaps. OH

or other airglow observations often have such data gaps in the measured time series (e.g. Espy et al., 1997; Das and Sinha,

2008; Reid et al., 2014). The OH∗ temperatures which have been observed from Wuppertal (51◦ N, 7◦ E) since the 1980s also15

exhibit an unequal spacing. The time series of nightly mean OH∗ temperatures repeatedly has data gaps mainly because of

bad weather conditions during some nights that prevent useful measurements (see e.g. Bittner et al., 2000). Within a single

night such data gaps can also occur when clouds move through the line of sight. The measurements before and after such a

cloud contimination are useful at all. Typical methods such as the fast Fourier transformation (FFT) rely on a discrete sampling
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with equal spacing. Thus, a time series like that of OH∗ temperatures has to be manipulated, e.g. with interpolation techniques20

before the analysis , which may introduce artifacts. (e.g. Espy et al., 1997; Bittner et al., 2000; Reid et al., 2014). The Lomb-

Scargle Periodogram (LSP; Lomb, 1976; Scargle, 1982) is a method that can handle this drawback, as it can be used for time

series with unequal spacing. This method has been used in different studies analysing airglow observations (e.g. Espy et al.,

1997; Takahashi et al., 2002; Gao et al., 2010; Reid et al., 2014; Egito et al., 2018; Franzen et al., 2018; Nyassor et al., 2018)

A second important point with respect to the analysis of periodicities is the variation of these periodicities with time, i.e. the25

period is not stable during the complete analysed time interval or the amplitude varies. In such cases many methods as the

FFT and the LSP will lead to results of a mean state only. The wavelet transformation is a method that is very useful then as it

delivers time-resolved information on the periodicities of the analysed time series and it is used in several studies analysing the

temporal evolution of periodic signals in airglow observations (e.g. Das and Sinha, 2008; Takahashi et al., 2013; Reid et al.,

2014; Nyassor et al., 2018). For example, In the case of the Wuppertal OH∗ temperatures Bittner et al. (2000) used the wavelet30

transformation to analyse the variability of the nightly mean OH∗ temperatures after assimilation of the data gaps in the time

series by use of the maximum entropy method (MEM). Similar to that other studies also report that the time series have to be

interpolated before the use of the wavelet transform (e.g. Das and Sinha, 2008; Reid et al., 2014) or the sampling is at least

almost evenly distributed (Nyassor et al., 2018). The goal of the presented study is to avoid such an assimilation of the data

gaps and still derive time-resolved information on the periodicities. Thus, we combined the LSP and the idea of a moving35

window to identify and characterise periodicities in unequally spaced time series even when the periodicities vary with time.

Other airglow studies also use some kind of windowed LSP, but for independent time windows following each other such as

different parts of a night (Reid et al., 2014) or months of a year (Egito et al., 2018). Some studies analysing radar observations

of winds report of periodogram analysis with a moving window (Yoshida et al., 1999, but without significance evaluation) or a

LSP analysis for at least partly overlapping windows (Luo et al., 2000). However, our study combines the LSP with a moving40

window (moved with the minimum possible time step) and, additionally, we derive a fast and easy method to calculate the

false alarm probabilities (FAP) for different situations (length of time series, frequency range, data gaps) to identify significant

results. The determination of the FAP levels is typically done with Monte-Carlo simulations which is very time-consuming

(e.g. Cumming et al., 1999; Zechmeister and Kürster, 2009). Thus, our new empirical derived relationship to calculate the

levels improves the application of the method.45

The main intention of the paper is to describe the approach from a user perspective and to illustrate the capabilities of the

approach with examples of artificial data sets as well as observations. The paper is structured as follows. In Sect. 2 the classical

LSP and the new approach are explained. The evaluation of the significance of obtained results is made in Sect. 3. Finally, the

method is applied to artificial data and observations of OH∗ temperatures in Sect. 4. A short summary is given in Sect. 5.
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2 Methodology50

2.1 Classical Lomb-Scargle Periodogram

The Lomb-Scargle Periodogram (LSP) was developed by Lomb (1976) and Scargle (1982). The power periodogram is defined

as

PX(ω) =
1

2


[∑

jXj cosω(tj − τ)
]2

∑
j cos2ω(tj − τ)

+

[∑
jXj sinω(tj − τ)

]2
∑

j sin2ω(tj − τ)

 , (1)

where Xj are the measurements at the times tj , ω is the angular frequency (ω = 2πf ), and the time offset τ is defined as55

tan(2ωτ) =

(∑
j sin2ωtj

)
(∑

j cos2ωtj

) . (2)

An advantage compared to other methods such as the FFT is that the LSP can handle unequally spaced time series. A

prerequisite is that the time series has zero mean before the calculation of the periodogram powers. With the given definition

the LSP has two useful properties: 1) It is invariant to a shift of the origin of time. 2) It is equivalent to the least squares fitting

of sinusoids (e.g. Horne and Baliunas, 1986). Scargle (1982) showed that the definition of the power periodogram is the same60

(except for a factor of 1/2) as the reduction in sum of squares (sum of squares of data – sum of squares of residual) when using

least squares fitting of sinusoids (see Scargle, 1982, Appendix C). Thus, the maximum power in the periodogram occurs at that

frequency that leads to a minimum of the sum of squares of the residuals when a sinusoid with this frequency is fitted to the

time series.

2.2 Moving LSP65

The aproach used in the following analyses is based on the classical LSP, but the whole time series is analysed sequentially.

The procedure is as follows:

A window size (time interval) , which is typically much smaller than the length of the whole time series, is defined. Then the

procedure starts at the beginning of the time series.

1. the LSP for the data points within the window (time interval) is calculated70

2. the window is moved by 1 time step (minimum possible sampling step)

3. move to step one until the end of the times series is reached

By executing this procedure one single LSP is calculated for each possible part of the time series with the length of the win-

dow (time interval). By contrast to the LSP for the whole time series at once, this procedure delivers time-resolved information

on the periodicities and amplitudes.75

3



2.3 Normalisation of the LSP

There are different ways to normalise the periodogram: sample variance (or sum of squares), known variance of data, and

variance of the residuals (see e.g. Cumming et al., 1999; Zechmeister and Kürster, 2009). Here we use the normalisation by

the sample variance and sum of squares, respectively. These two only differ by a constant factor that relies on the number of

data points N . The periodogram power in the periodogram can vary between 0 and (N − 1)/2 when using the normalisation80

by the sample variance and between 0 and 1 when using the normalisation by sum of squares (when the factor 1/2 is also

considered (compare Sect. 2.1)) (e.g. Cumming et al., 1999; Zechmeister and Kürster, 2009). As the height of a peak in the

case of the normalisation by the variance depends on the number of data points N, the peak heights for the same sinusoid differ

for different number of data points. Since the data gaps in the time series of nightly mean OH∗ temperatures are randomly

distributed, the number of data points in different possible windows of same size can vary. In order to make the peak heights in85

these different windows comparable we prefer the normalisation by the sum of squares. This type of normalisation has another

useful property. Because of the equivalence to the reduction in sum of squares when fitting a sinusoid, the normalisation by

the sum of squares leads to a normalised power that gives the contribution of the sinusoid to the total sum of squares, and,

therefore, to the total variance. In this way it is a measure of the explained variance. Here uncorrelation between different

sinusoids and/or a sinusoid and the residual is assumed. This is, at least approximately (increasing with number of data points),90

the case for sinusoids with different periods and, thus, the variances of the individual parts (sinusoids) of the time series add

up.

Alternatively, one can determine the amplitude of the sinusoid at each frequency. This is also based on the equivalence of the

periodogram power and the reduction in sum of squares. Furthermore, the variance of a sinusoid is given by A2/2, where A is

the amplitude (e.g. Horne and Baliunas, 1986; Smith, 1997). With these two relationships the amplitude can be calculated as95

A(ω) =

√
4PX(ω)

N − 1
. (3)

In total the LSP delivers information on the periodicities together with a measure of the explained variance when a sinusoid

is fitted to the data and the corresponding amplitude of the sinusoid. An example periodogram is shown in Fig. 1. The time

series that is analysed is a combination of two sinusoids with different periods and amplitudes. The first one has a period of

10 days and an amplitude of 1 K whereas the second sinusoid has a period of 35 days and an amplitude of 0.5 K. The total100

length of the time series is 60 days and the time series has equal spacing. Thus, the variance of the second sinusoid is only one

quarter of the variance of the first one. This can be seen in the normalised power (black curve in Fig. 1) where at 10 days a

value of about 0.8 is reached and at 35 days a value of about 0.2. Because of the different amplitudes, the sinusoids contribute

to 80 and 20 % to the total variance of the time series, respectively. And also the amplitudes themselves are well determined

by using Eq. 3 (see red curve in Fig. 1).105
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3 Significance evaluation

3.1 False alarm probability

An important quantity with respect to the LSP is the so called false alarm probability (FAP). It gives the probability that a peak

with a height above a certain level can occur just by chance, e.g. due to noise. The distribution of the periodogram powers

and, thus, the description of the false alarm probability depends on the type of normalisation (see e.g. Cumming et al., 1999;110

Zechmeister and Kürster, 2009). In the case of the normalisation by the sample variance the periodogram powers follow a

beta distribution (Schwarzenberg-Czerny, 1998). As the variance and the sum of squares differ by a constant factor only, the

type of distribution is the same. Hereafter, we only describe the situation for the normalisation by sum of squares. At a single

frequency the probability that a peak height z exceeds a value of z0 is given by

Prob(z > z0) = (1− z0)
N−3

2 , (4)115

where N is the number of data points (Zechmeister and Kürster, 2009). Since periods in a frequency range are analysed, one

is interested in the probability that one peak somewhere in the periodogram covering a frequency range ∆f exceeds a certain

value by chance, This is given by the FAP that is defined as which is given by the FAP. The probalitity that all peaks in this

frequency range are below or equal or certain value is given by (1−Prob(z > z0))Ni , where Ni is the number of independent

frequencies (number of frequencies where potentially peaks can occur). Then the FAP is120

FAP = 1− (1−Prob(z > z0))Ni , (5)

where Ni gives the number of independent frequencies (see e.g. Horne and Baliunas, 1986; Cumming et al., 1999; Zech-

meister and Kürster, 2009, for some discussion on FAP). There is no analytical way to describe the number of independent

frequencies, but a good way to determine Ni is the use of Monte-Carlo simulations (see e.g. Cumming et al., 1999).

The procedure to determine Ni using simulations is as follows. As already pointed out by Scargle (1982) the cumulative dis-125

tribution function (CDF) can be used to determine the FAP. We use a large number of samples of random values taken from a

Gaussian distribution each. Then we calculate the LSP for each sample and determine the height of the maximum peak within

the analysed frequency range. From these maximum peak heights we calculate the empirical CDF which gives the probability

that there is a the maximum peak and thus all other peaks in a periodogram with have a height equal or below a certain value.

The CDF is then given by (1−Prob(z > z0))Ni and consequently, the FAP is then 1-CDF. In the last step we determine Ni130

by fitting Eq. 5.

An example for the results of this procedure is shown in Fig. 2. The example shows the FAP derived from ten thousand samples

of Gaussian noise, where each sample has 60 data points and a sampling of 1 day−1, thus, the complete time interval length is

60 days. The frequency range used for the analysis is ∆f = 1/2 – 1/60 day−1. The frequency sampling during these simulations

(and all other simulations) is fixed with respect to the length of the time interval, thus, the duration of observations T , and the135
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frequency range. We evaluated the LSP atNfreq equally spaced frequencies in the frequency range ∆f , whereNfreq = 4T∆f ,

which was shown to be an adequate sampling to observe all possible peaks by Cumming et al. (1999). The blue coloured circles

show the results for Prob(z > z0) at a single frequency. The theoretical curve of Eq. 4 is shown in magenta. The determined

probability and the theoretical one match very well. The results for the FAP (1-CDF) are shown as black coloured circles. The

red curve is determined by fitting Eq. 5 to these data points. The number of independent frequencies Ni in this case is about140

72. From this curve different FAP levels can be determined. In the following we typically use a FAP level of 5%, which means

that in only 5% of the noise samples the maximum peak in the complete frequency range exceeded the corresponding peak

height value. In Fig. 2 the dashed horizontal line marks a FAP of 5% and the intersection with the red curve gives the height of

about 0.225 that corresponds to this level.

3.2 Dependency of Ni and FAP145

The number of independent frequencies Ni and the false alarm probability depends on different factors: the length of the

analysed time interval T , the data gaps within the time interval and the analysed frequency range ∆f . Since in the period

analysis of the OH∗ temperatures different situations with respect to data gaps can occur and, additionally, the length of the

window (time interval) and the frequency range can be chosen, one would have to perform simulations for all situations. As

these simulations are much more time-consuming than the calculation of the LSP itself, we want to avoid these numerous150

simulations. Thus, we examined the different dependencies to find a faster and easier way to determine Ni and, thus, the FAP

levels. The sampling of the time series used for these analyses was chosen to be 1 day−1, which is the same as for the nightly

mean OH∗ temperatures without data gaps. For the different analyses we varied only one parameter and kept the other two

fixed. In all cases ten thousand noise samples were used to determine one Ni value.

Firstly, we analysed the dependency of Ni on the length of the time interval T . Here the frequency range was kept constant and155

the time series had no data gaps. As this is the case and the sampling is 1 day−1, the length of the time interval is equal to the

number of data points N , i.e. a time interval of 60 days has 60 data points. The frequency range was fixed to ∆f = 1/2 – 1/60

day−1 for the first analysis. Since the width of a peak is inversely proportional to the length of the analysed time interval (see

e.g. Cumming et al., 1999; Zechmeister and Kürster, 2009), the number of independent frequencies Ni for a fixed frequency

range should linearly increase with increasing time interval length. Figure 3 shows the results for Ni for different time interval160

lengths T between 30 and 90 days (typical values used for the analysis of nightly mean OH∗ temperatures) as blue full circles.

Obviously, the dependency is linear. A linear fit including an additional intercept leads to an intercept of about zero. Thus, we

calculated a fit line that has to intersect the point (0,0) and only determined the slope of this line, which is 1.208 (± 0.004)

days−1. The fit is shown as a blue line in Fig. 3 a). Since the number of data points N increases with increasing length of

the time interval T , the probability that the power at a single frequency exceeds a certain value by chance decreases (compare165

Eq. 4). As this effect is larger than the opposite effect of the increase of Ni, the FAP levels also decrease. Fig. 3 b) shows the

levels of a FAP of 5% for the different time interval lengths as blue full circles.

In a second analysis we varied the frequency range and repeated the analysis that was done before. The frequency ranges lay

between 1/2 – 1/5 day−1 and 1/2 – 1/90 day−1. A smaller frequency range should include a smaller number of independent
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frequencies. As the decrease of Ni for a reduction of ∆f depends on the width of the peaks, and therefore on the length170

of the time interval T , the decrease of Ni for the same reduction of ∆f has to be larger for larger T . This can be seen in

Fig. 3 a), where example results for the frequency ranges 1/2 – 1/5 day−1 and 1/2 – 1/10 day−1 are shown in black and red,

respectively. For the smallest frequency range the lowest values can be seen and the largest decrease of Ni is observed for

the longest time interval T . Because of this dependency of the decrease of Ni on the time interval length, the fit lines are not

shifted by a constant value, but the slopes of the fit lines change. Thus, the slopes depend on frequency range ∆f . Fig. 3 c)175

shows the dependency of the slopes on the frequency range ∆f . Obviously, for the analysed frequency ranges this dependency

can be described by a straight line. A fit to the data leads to the results for the slope of 2.92 (± 0.02) day days−1 and for the

intercept of -0.203 (± 0.008) days−1. The fit line is shown as black line. With the knowledge of these parameters the number

of independent frequencies Ni can be determined for each combination within the analysed parameter range by

Ni = (2.92 day days−1 ·∆f − 0.203 days−1) ·T (6)180

In the last analysis we evaluated the dependency ofNi on the number of data gaps in a fixed time interval. The frequency ranges

for this analysis were ∆f = 1/2 – 1/5 day−1, 1/2 – 1/10 day−1, and 1/2 – 1/60 day−1. We took a time interval of 60 days and

introduced 1 to 29 randomly distributed data gaps. We only removed data points inside the complete time interval, i.e. both end

points were always there and the time interval length was always 60 days. Since the peak width spectral width of the peaks

depends on the length of the time interval, which is fixed, and not on the number of data points, the number of independent185

frequencies Ni is supposed to be almost the same for different numbers of data gaps. Fig. 4 a) shows Ni in dependency of the

number of data gaps for different frequency ranges. In all cases only a slight decrease ofNi with increasing number of gaps can

be seen. The decrease is slightly larger for that frequency ranges that lead to larger Ni values. But the relative decrease is very

similar for all shown situations. The decrease in all cases is only on the order of a few percent for 50% data gaps. This decrease

is caused by an on average very small decrease of the resolution caused by a small increase of the peak width. Although the190

number of independent frequencies is nearly constant, this does not mean that the FAP levels stay the same. Since the number

of data points N decreases with increasing number of data gaps, the probability that the power at a single frequency exceeds a

certain value increases (compare Eq. 4). Thus, the FAP for a certain peak height also increases. This increase is shown in Fig. 4

b). The effect of the decrease of Ni on the FAP levels of 5% is typically on the order of a few ‰. Thus, a non-consideration

of this decrease of Ni would lead to a very small change of the FAP levels. Furthermore, the change when considering the195

decrease would be negative, i.e. the FAP for the same height z would get smaller. Consequently, the FAP levels of 5% also

have a smaller values. Thus, a non-consideration would not change the judgement if a signal is significant or not in a false way.

When a signal exceeds a higher value it will certainly exceed a smaller value, too. Nonetheless, in the FAP levels shown later

on the effect of the data gaps on the Ni values is considered.
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4 Data evaluation200

4.1 Artificial data

In order to study the performance of the approach we analysed different time series of artificial data. In this section we present

selected examples of these time series. The total length of the time series was always 1 year (365 days) and the sampling was

1 day−1, which is the same as for the nightly mean OH∗ temperatures without data gaps.

The analysis of a single sinusoid is a very trivial problem and the approach delivers the expected results (not shown). As the205

approach shall be used in the case of non stable periodicities, we focus here on such problems. The first example shows a time

series of a periodic signal with a period that increases with time from approximately 8 days to 16 days and an amplitude of 1 K.

The time series is shown in Fig. 5 a) as black curve (the components signal (blue) and noise (green) are shown additionally

in seperate panels). The results of the analysis are shown in Fig. 5 b) and c) for the normalised power and the amplitude,

respectively. The y-axes of these two figures give the frequency and period, respectively, and the x-axes show the center days210

of the sequentially analysed time intervals. The normalised power and the amplitude are shown color coded and the black white

contour lines mark the FAP level of 5% (Ni was determined using Eq. 6). The results clearly show the change of the period

with time and the normalised power is close to one. The small deviation to from a value of one can be explained by the change

of the period which occurs on a smaller time scale than the interval size of 60 days. Thus, a sinusoid with a fixed period is not

able to explain the complete variance in each of the analysed time intervals. The results for the amplitude show values close215

to 1 K, and, thus, also the expectation. The analysis was repeated for the same periodic signal with additional noise added to

the time series and also data gaps that have been incorporated. The standard deviation of the noise was 0.5 times the standard

deviation of the signal and, thus, the variance of the noise is one quarter of that of the signal. Additionally, about 30% of the

data points have been randomly removed. The signal with gaps (blue curve), the noise (green curve) and the the complete time

series (sum of both; black curve) are shown in Fig. 5 d). The corresponding results are shown in Fig. 5 e) and f). The displayed220

FAP level of 5% was determined for each LSP individually with respect to the varying length of the time interval (when end

points are missing) and the number of data points inside these time intervals. Additionally, the small decrease of Ni due to the

data gaps was considered (see Sect. 3.2). The change of the period is still captured very well. In the case of noise and data

gaps the normalised power reduces to a value of about 0.8 as a part of the variance can be explained by the contribution of

the noise (ratio 4 to 1 for signal to noise). The amplitude shows some fluctuations, but these fluctuations go around a value of225

1 K. Additionally, the noisy behaviour at smaller periods is much better visible for the amplitudes compared to the powers,

because the square root of the powers enters the calculation of the amplitudes (compare Fig. 3) and therefore differences to the

maximum amplitude get smaller. In total, the results clearly capture the main features of the time series with respect to period,

amplitude, and explained variance.

We additionally present two further examples. The time series and the results of the analyses are shown in Fig. 6. The first time230

series is composed of a periodic signal with a period of 25 days and an amplitude that varies between 0 and 1 K (Fig. 6 a) blue

curve in upper panel) and additional noise (Fig. 6 a) green curve in middle panel). The standard deviation of the noise was again

0.5 times the standard deviation of the signal and about 30% of the data points have been removed. The complete time series
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is shown as a black curve in the lower panel of Fig. 6 a). The results for the normalised power and the amplitude are shown in

Fig. 6 b) and c), respectively. The normalised power shows an increasing value to the center of the complete time interval. This235

behaviour is caused by the contribution of the noise to the total time series, which is much larger when the amplitude is small

and decreases with increasing amplitude of the signal. The result for the amplitude nicely reflects the increase of the amplitude

to the center and the following decrease to the end of the time series. As the variation of the amplitude occurs on a smaller time

scale than the chosen time interval for the analysis some kind of averaging occurs. Thus, the theoretical maximum of 1.0 K is

not reached and the maximum value reached that is observed is about 0.9 K. In total, the main features of the signal are captured240

very well by the analysis and the correct period and the variation of the amplitude with time are detected. The last example

shows the sum of the two former ones. Thus, the complete time series (Fig. 6 d) black curve in lower panel) is composed of a

sinusoid with an amplitude of 1 K and an increasing period (Fig. 6 d) blue curve in upper panel), a periodic signal with a period

of 25 days and an amplitude that varies between 0 and 1 K (Fig. 6 d) red curve in second panel), and noise (Fig. 6 d) green

curve in third panel). The standard deviation of the noise and the amount of data gaps are the same as before. The results for245

the normalised power and amplitude are presented in Fig. 6 e) and f), respectively. The first signal can significantly be detected

during the whole time and the increase of the period from about 8 to 16 days is captured very well. As the amplitude of the

second signal increases to the center of the complete time interval, this signal can only be significantly detected in the middle

of the complete time interval. The normalised power reflects the different contributions of the two signals to the complete time

series very well. In the middle of the complete time series each single signal contributes to almost the same amount as the250

amplitude is about 1 K in both cases. The remaining part of the total variance can be explained by the noise (variance of noise

is 0.25 times variance of sum of signals). At the beginning and the end nearly only the first signal and additionally the noise

contribute to the complete time series. The results for the amplitude also show the main features of the two signals. For the

first signal the amplitude stays at around 1 K during the whole time and the increasing and thereafter decreasing amplitude

behaviour of the second signal is also captured. Compared to the former example the result for the amplitude is noisier, because255

of the larger absolute noise in the last example.

In summary, the applied method is able to detect periodic signals that vary with time, i.e. the amplitude or the period changes

with time. In cases where changes occur on much smaller time scales than the used time window the results show some kind

of averaging. Then the maximum values of the amplitude or the explained variance cannot be obtained and a mean value in

the analysed time window is derived. The method is also very useful when noise is added to the time series and additionally260

data gaps are introduced. Although about 30% of the data points have been removed, the results are very good and still reflect

the behaviour of the signals. Thus, the presented method is well suited to analyse time-varying periodicities even in the case of

unequally spaced time series.

4.2 Measurement data

The OH∗ temperatures are derived from measurements by a GRIPS (GRound-based Infrared P-branch Spectrometer) instru-265

ment operated in Wuppertal (51◦ N, 7◦ E, Germany). This GRIPS instrument measures 3 emission lines of the OH∗(3,1) band,

the P1(2), P1(3) and P1(4) line. The relative intensities of these lines are used to derive rotational temperatures (Bittner et al.,
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2000, and references therein). The OH layer from which the emissions originate is located in the mesopause region. The mean

altitude is about 87 km and the layer has a full width at half maximum (FWHM) of about 9 km (e.g. Baker and Stair, 1998;

Oberheide et al., 2006). Measurements are carried out every night, except for nights with bad weather conditions. The OH∗270

temperatures have been continuously observed from Wuppertal since mid-1987 and a GRIPS instrument is still in operation

to continue the observations. Until mid-2011 the measurements have been carried out by the GRIPS-II instrument (see Bittner

et al., 2000, 2002, for an instrument description) and after then the GRIPS-N instrument (follow-up of GRIPS-II) is used to

continue the observations (Kalicinsky et al., 2016).

Fig. 7 shows the nightly mean OH∗ temperatures for the year 1989 as an example. This year was chosen because Bittner et al.275

(2000) analysed the same year with a different technique (wavelet transform) and, thus, the results of our approach can be

compared to their results. The temperatures show the typical seasonal behaviour with a temperature minimum in summer and a

maximum in winter. This behaviour can be described with three main components: an annual, a semi-annual, and a ter-annual

cycle (Bittner et al., 2000). The red curve in the figure shows a least squares fit to the data that considers these three compo-

nents. Such fits are typically used to determine the annual average OH∗ temperatures since a simple arithmetic mean is not280

advisable because of the data gaps (e.g. Bittner et al., 2002; Offermann et al., 2010; Perminov et al., 2014; Kalicinsky et al.,

2016). The lower panel of Fig. 7 shows the residual temperatures, i.e. the OH∗ temperatures minus the determined fit curve.

Bittner et al. (2000) already showed that such residual temperatures include statistically significant periodic fluctuations. We

now analyse the residual temperatures with respect to such fluctuations using the moving LSP approach.

The results for the normalised power and the amplitude are shown in Fig. 8. Different events with significant periodic fluctu-285

ations can be detected when using the moving LSP approach. The largest event is detected at the beginning of the year. The

determined period is about 40 days and the amplitude 6 to 7 K. This behaviour can also be seen in the residual temperatures

just by eye (compare Fig. 7). It seems that the fluctuations continue with a slightly larger period and smaller amplitude, but

the result cannot be judged as significant after a center day of the interval of about 70 days. As can be seen in the residual

temperatures the number of observations between day 75 and 125 is very low and a lot of data gaps are present. The FAP290

levels for time windows including a large number of data gaps increase then and, thus, the results are not significant, although

it is likely that the signal is still there and real. Additionally, the data gaps are responsible for the vertical structure that can

be clearly observed in the amplitudes in this time region, because the gaps interupt the continuity. Around a center day of

250 days a second significant result for a fluctuation with a period of about 50 days is detected, but the amplitude is smaller

with 4 to 5 K. At the end of the year additional significant events with smaller periods of about 10 and 16 days can be seen.295

All of these significant fluctuations agree well with the findings of Bittner et al. (2000), where the authors analysed the same

observations using a wavelet transformation and assimilation technique based on the maximum entropy method to get rid of

the data gaps. Our new method enables now a safe detection of such significant fluctuations without the need of processing the

data before the analysis.
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5 Summary and conclusions300

We present an approach to analyse time series with unequal spacing with respect to significant period fluctuations. The approach

is also able to derive time-resolved information on the periods and amplitudes of the detected fluctuations. It is based on the

classical Lomb-Scargle periodogram (LSP), a method that can handle unequally spaced time series. Additionally, it uses the

idea of a moving window to enable the determination of time-resolved periods and amplitudes. The significance of the results is

analysed with the typically used false alarm probability (FAP). As the determination of the FAP levels needs many simulations,305

we derived the dependencies of the FAP levels on the length of the analysed time interval T , the frequency range ∆f , and

the number of data gaps to find a fast and easy way to calculate the FAP levels in the used parameter range. Thus, we can

avoid a large number of simulations. In the analysed parameter range the number of independent frequencies Ni shows a linear

dependency on the length of the time interval T , because the peak width is inversely proportional to T . Furthermore, the slope

of the line that describes this dependency is different for different frequency ranges, where a smaller frequency range ∆f310

reduces the slope. We used these two relationships to fastly calculate the FAP levels. The number of data gaps has only a very

minor effect, because the peak width depends on the length of the time interval and not on the number of data points.

The approach was tested with different artificially generated time series. These time series include variations of the period and

amplitude with time and, additionally, noise is added and data gaps have been introduced. In all cases the approach shows very

good results and, thus, the approach is a suitable method for the time-resolved detection of periodic fluctuations, even in the315

case of unequal spacing. Finally, we analysed the nightly mean OH∗ temperatures that have been observed from Wuppertal

(51◦ N, 7◦ E, Germany) in the year 1989. The results show several significant events with fluctuations that have periods in the

range between 10 and 50 days and amplitudes between 3 and 7 K. These significant results agree very well with the results of

a former study carried out by Bittner et al. (2000) without the need of processing the data before the analysis.

Data availability. The nightly mean OH∗ temperatures can be obtained by request to the corresponding author or to Peter Knieling (knieling@uni-320

wuppertal.de).
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Figure 1. Example LSP for a time series composed of two sinusoids. The first one has a period of 10 days and an amplitue of 1 K and the

second has a period of 35 days and an amplitue of 0.5 K. The normalised power is shown as black curve and the amplitude as red curve with

a second axis to the right.
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Figure 2. False alarm probability (FAP) and Prob(z > z0) at a single frequency derived from ten thousand of noise samples with 60 data

points each. The data sampling was 1 day−1 and the analysed frequency range ∆f = 1/2 – 1/60 day−1. The derived Prob(z > z0) is shown

with blue coloured circles and the theoretical curve (Eq. 4) is depicted in magenta. The determined FAP is shown by the black coloured

circles and the fit to these data points using Eq. 5 is displayed as red curve. The dashed horizontal line marks a FAP of 5%.
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Figure 3. a) and b): Dependency of Ni and the FAP level of 5% on the length of the time interval T and the frequency range. The analysed

frequency ranges are 1/2 – 1/5 day−1, 1/2 – 1/10 day−1, and 1/2 – 1/60 day−1 and the time series of the simulations have no data gaps.

c): Dependency of the slopes (lines from panel a) and additionally for the frequency ranges 1/2 – 1/30 day−1 and 1/2 – 1/90 day−1) on the

frequency range ∆f . The error bars show two times the standard error of the slopes.
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Figure 4. Dependency ofNi and the FAP level of 5% on the number of data gaps in a fixed time interval of length T . The analysed frequency

ranges are 1/2 – 1/5 day−1, 1/2 – 1/10 day−1, and 1/2 – 1/60 day−1 and the time interval length is 60 days.
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Figure 5. a): Time series of a periodic signal with increasing period. The upper panel shows the signal, the middle panel the noise and the

lower panel the sum of both. b) and c): Results for the normalised power and amplitude. The results are displayed at the center day of the

corresponding time window. The length of the time window was 60 days. The black white contours mark the significant results. d) – f):

Same as for a) – c) with additional noise added to the time series and data gaps.
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Figure 6. a): Time series of a periodic signal with varying amplitude and additional noise and data gaps. The upper panel shows the signal,

the middle panel the noise and the lower panel the sum of both. b) and c): Results for the normalised power and amplitude. The results

are displayed at the center day of the corresponding time window. The length of the time window was 60 days. The black white contours

mark the significant results. d): Time series of a periodic signal with increasing amplitude plus a periodic signal with varying amplitude and

additional noise and data gaps. The upper two panels show the two signals, the third panel the noise and the lower panel the sum of all. e)

and f): Same as for b) and c).
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Figure 7. Nightly mean OH∗ temperatures observed from Wuppertal in the year 1989. The red curve shows the fit of the seasonal cycle

including an annual, semi-annual, and ter-annual component. The residual temperatures (measurements minus fit) are shown in the lower

panel.
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Figure 8. Results for the normalised power and amplitude for the analysis of the temperature residual of the GRIPS observations in 1989.

The results are displayed at the center day of the corresponding time window. The length of the time window was 60 days. The black white

contours mark the significant results.
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