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Abstract. This study presents and evaluates several candidate approaches for downscaling observations from the Spinning

Enhanced Visible and Infrared Imager (SEVIRI) in order to increase the horizontal resolution of subsequent cloud optical

thickness (τ ) and effective droplet radius (reff ) retrievals from the native 3×3km2 spatial resolution of the narrowband channels

to 1× 1km2. These methods make use of SEVIRI’s coincident broadband high–resolution visible (HRV) channel. For four

example cloud fields, the reliability of each downscaling algorithm is evaluated by means of collocated 1× 1km2 MODIS5

radiances, which are re-projected to the horizontal grid of the HRV channel, and serve as reference for the evaluation. By using

these radiances smoothed with the spatial response function of the native SEVIRI channels as retrieval input, the accuracy at

the SEVIRI standard resolution can be evaluated and an objective comparison of the accuracy of the different downscaling

algorithms can be made. For the example scenes considered in this study, it is shown that neglecting high-frequency variations

below the SEVIRI standard resolution results in significant random absolute deviations of the retrieved τ and reff of up to10

≈ 14 and ≈ 6µm, respectively, as well as biases. By error propagation, this also negatively impacts the reliability of the

subsequent calculation of liquid water path (WL) and cloud droplet number concentration (ND), which exhibit deviations of

up to ≈ 89gm−2 and ≈ 177cm−3, respectively. For τ , these deviations can be almost completely mitigated by the use of the

HRV channel as a physical constraint, and by applying most of the presented downscaling schemes. For the accuracy of reff ,

the choice of downscaling scheme however is important: deviations are generally of similar magnitude or larger than those for15

retrievals at the SEVIRI standard resolution, indicative of their limited skill at predicting high–frequency spatial variability in

reff . A strong degradation of accuracy of reff is observed for some of the approaches, which also affects subsequent WL and

ND estimates. As a result, an approach which constrains the reff to the lower–resolution results is recommended. Overall, this

study demonstrates that an increase in horizontal resolution of SEVIRI cloud property retrievals can be reliably achieved by

use of its HRV channel, yielding cloud properties which are preferable in terms of accuracy to those obtained from SEVIRI’s20

standard-resolution. This work advances efforts to mitigate impacts of scale mismatches among channels of multi–resolution

instruments on cloud retrievals.
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1 Introduction

In studies of the role of clouds in the climate system, the bispectral solar reflective method described by Twomey and Seton

(1980); Nakajima and King (1990); Nakajima et al. (1991) is widely used to infer cloud optical and physical properties from

satellite–based sensors. Based on observations of solar reflectance (r) from a channel pair at wavelengths with conservative

scattering (usually around 0.6µm or 0.8µm) and significant absorption by cloud droplets (common channels are 1.6µm,5

2.2µm, and 3.7µm), respectively, this method simultaneously estimates the cloud optical depth (τ ) and effective droplet ra-

dius (reff) of a sampled cloudy pixel. This method however relies on a number of assumptions which are often violated in

nature: clouds are considered to be horizontally homogeneous and to have a prescribed vertical structure, which is generally

assumed to be vertically homogeneous or to show a linear increase of liquid water content as predicted by adiabatic theory

(see the discussions in Brenguier et al., 2000; Miller et al., 2016). Moreover, the observed cloud top reflectance field is usu-10

ally described by one–dimensional (1D) plane–parallel radiative transfer, which neglects horizontal photon transport between

neighboring atmospheric columns.

Use of the independent pixel approximation (IPA, see Cahalan et al., 1994a, b) produces uncertainties in the retrieved cloud

variables that are dependent upon the horizontal resolution of the observing sensor. For sensors with a high spatial resolution,

the observations resolve the actual cloud heterogeneity, which are unaccounted for in the IPA approach. This usually results15

in an overestimation of both τ and reff , as reported in Barker and Liu (1995); Chambers et al. (1997); Marshak et al. (2006).

Conversely, for observations with a low spatial resolution, the actual cloud heterogeneity cannot be resolved. As a result, an

underestimation (overestimation) of retrieved τ (reff) is usually observed (Marshak et al., 2006; Zhang and Platnick, 2011;

Zhang et al., 2012; Werner et al., 2018b). The analysis in Varnai and Marshak (2001) suggests that a horizontal scale of around

1− 2km minimizes the combined uncertainty from unresolved and resolved cloud heterogeneity. While strategies to mitigate20

the effects of unresolved cloud variability have been recently reported in Zhang et al. (2016); Werner et al. (2018a), these

techniques become less successful with lower–resolution sensors like those operated on geostationary satellites.

Remote sensing from geostationary platforms such as the Meteosat Spinning Enhanced Visible and Infrared Imager (SE-

VIRI) offers unique capabilities for cloud studies not available from polar orbiting satellites. These advantages include more

frequent temporal sampling of individual regions and the ability to capture the temporal evolution (Bley et al., 2016; Senf and Deneke,25

2017) and diurnal cycle of cloud parameters (Stengel et al., 2014; Bley et al., 2016; Martins et al., 2016; Seethala et al., 2018).

However, SEVIRI pixels are characterized by a lower spatial resolution of its narrow–band channels compared to other op-

erational remote sensing instrumentation, like the Moderate Resolution Imaging Spectroradiometer (MODIS, Platnick et al.,

2003) or the Visible Infrared Imaging Radiometer Suite (VIIRS, Lee et al., 2006). Given the increase in retrieval uncertainty

due to the IPA constraints, there is a desire to increase the resolution for geostationary cloud observations.30

The aim of this manuscript is to critically evaluate several candidate approaches for downscaling of the SEVIRI narrow–band

reflectances for operational usage and to identify the most promising of these schemes, exploiting the fact that information on

small-scale variability is available from its broadband high–resolution visible (HRV) channel. Of main concern is the ability

to accurately capture information on the small–scale reflectance variability in the 1.6µm–channel, which predominantly arises
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from variations in effective droplet radius. Conversely, cloud optical depth is expected to be well–constrained by the HRV

channel, as it can be modelled by a linear combination of the 0.6µm and 0.8µm channels with good accuracy (Cros et al.,

2006). This situation is similar to that found with other satellite instruments featuring multiple resolutions for the conservative

and absorbing channels, such as the MODIS instrument (with 250m resolution versus 500m for 1.6µm or 1km for 2.1µm),

VIIRS (375m versus 750m), and GOES–R (500m versus 1km). Therefore, we believe that our findings are also relevant5

there. This work is a companion paper to Deneke et al. (2019), which describes the overall retrieval scheme for obtaining

cloud properties and solar radiative fluxes from the Meteosat SEVIRI instrument at the spatial resolution of its HRV channel,

which will be established based on the findings of this study. The companion paper also presents an important extension of this

approach to the retrieval of solar surface irradiance, based on the schemes presented in Deneke et al. (2008) and Greuell et al.

(2013). Satellite products with high temporal and spatial resolution are of particular interest for forecasting the production of10

solar power.

A critical requirement, formulated at the start of this work, is to maintain a target accuracy for the retrieved effective radius

based on the lower–resolution observations, while hoping for further improvements. This goal was set because the error in

effective radius will propagate into other cloud products such as vertically integrated liquid or ice water path or the cloud droplet

number concentration, thereby potentially corrupting any gains in accuracy obtained from the improved spatial resolution.15

However, without an independent reference data set, it is impossible to determine whether this target can be met. Thus, higher–

resolution reflectance observations from Terra–MODIS are remapped to SEVIRI’s HRV and standard resolution grids here as

basis for a thorough evaluation of the accuracy of the retrieved cloud parameters. This allows us to objectively benchmark the

accuracy of candidate approaches by comparison of results from a true 1km resolution reflectance data set, and processed with

an identical retrieval scheme.20

The structure of the paper is as follows: section 2 describes both the SEVIRI and MODIS instruments used as basis for this

study, as well as the covered observational domain. A brief overview of the SEVIRI cloud property retrieval algorithm is given

in section 3, followed by a description of the different candidate approaches for the downscaling of the narrow–band SEVIRI

channel observations in section 4. An example of lower– and higher–resolution cloud property retrievals is presented in section

5. Finally, a statistical evaluation of the different downscaling approaches based on remapped MODIS observations is given in25

section 6 for a limited number of example cloud fields. The manuscript presents the main conclusions and an outlook in section

7.

2 Data

This section gives an overview of both the SEVIRI and MODIS instruments in section 2.1 and 2.2. Here, the respective spectral

channels of interest for this study are listed. Subsequently, the observational domain is described in section 2.3.30

3

https://doi.org/10.5194/amt-2019-334
Preprint. Discussion started: 23 September 2019
c© Author(s) 2019. CC BY 4.0 License.



2.1 SEVIRI

The current version of European geostationary satellites is the Meteosat Second Generation, which has provided operational

data since 2004 (Schmetz et al., 2002). The SEVIRI imager is installed aboard the Meteosat–8 to Meteosat–11 platforms,

which are positioned above longitudes of 9.5◦E and 0.0◦ longitude, respectively. One SEVIRI instrument samples the full disk

of the Earth from 0.0◦ longitude with a temporal resolution of fifteen minutes. However, a backup satellite positioned at 9.6◦E5

also scans a Northern subregion with a temporal resolution of five minutes (the so–called Rapid Scan Service). These samples

– in our case from Meteosat–9 – provide the observational SEVIRI data set for the following analysis.

This study mainly considers observations from SEVIRI’s solar reflectance channels 1–3, as well as from the spectrally

broader HRV band. These channels cover the visible to near-infrared (VNIR) and shortwave-infrared (SWIR) spectral wave-

length ranges. The two VNIR reflectances (r06 and r08) are sampled in bands 1 and 2, respectively, and are centered around10

wavelengths λ = 0.635µm and λ = 0.810µm. SWIR reflectances (r16) are provided by channel 3 observations, which are

centered around λ = 1.640µm. The horizontal resolution of the channel 1–3 samples is 3× 3km2. Conversely, the broadband

reflectances rHV are sampled at SEVIRI’s HRV channel at a horizontal scale of 1× 1km2. These observations cover the spec-

tral range of 0.4− 1.1µm. Further information about the spectral width of each channel and the respective spectral and spatial

response functions can be found in Deneke and Roebeling (2010).15

2.2 Terra–MODIS

The 36–band scanning spectroradiometer MODIS, which was launched aboard NASA’s Earth Observing System satellites

Terra and Aqua, has a viewing swath width of 2,330km, yielding global coverage every two days. MODIS collects data in

the spectral region between 0.415− 14.235µm, covering the VNIR to thermal–infrared spectral wavelength range. In general,

the spatial resolution at nadir of a MODIS pixel is 1,000 m for most channels, although the pixel dimensions increase towards20

the edges of a MODIS granule. Only observations from the Terra satellite launched in 1999 are used here, due to broken

detectors of the 1.64µm channel of the MODIS instrument on the Aqua satellite. Information on MODIS and its cloud product

algorithms is given in (Ardanuy et al., 1992; Barnes et al., 1998; Platnick et al., 2003). The current version of the level 1b

radiance and level 2 cloud products used is Data Collection 6.1 (C6.1).

2.3 Domain25

In this study, data from a subregion of the full SEVIRI disk has been selected. This region, which is located within the

European subregion described in Deneke and Roebeling (2010), is illustrated by the red borders in Figure 1. It is centered

around Germany due to its intended domain of application (thus, from here on it is referred to as Germany domain) and

comprises the latitude and longitude ranges of ≈ 44.30− 57.77◦ and ≈−0.33− 21.65◦, respectively. This domain includes

240× 400 lower–resolution pixels (i.e., samples at a horizontal resolution of 3× 3km2) and is far away from the edges of the30

full SEVIRI disk, ensuring that the observed viewing zenith angles are < 70◦. A relatively small domain was chosen, because

the number of pixels to be processed will expand by a factor of 3× 3, increasing the computational costs of the subsequent
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cloud property retrievals by roughly one order of magnitude. Except for some regional dependencies introduced by changes in

the prevalence of specific cloud types, we expect results of our study to also be valid for other domains.

3 SEVIRI cloud property retrieval algorithm

Retrieved cloud variables in this study are provided by the Cloud Physical Properties retrieval algorithm (CPP; Roebeling et al.,

2006), which is developed and maintained at the Royal Dutch Meteorological Institute (KNMI). It is used as basis for the5

CLAAS–1 and CLAAS–2 climate data records (Stengel et al., 2014; Benas et al., 2017) distributed by the Satellite Application

Facility on Climate Monitoring (Schulz et al., 2009). Using a lookup table (LUT) of reflectances simulated by the Doubling–

Adding KNMI (DAK: Smith and Timofeyev, 2001) radiative transfer model, observed and simulated reflectances at 0.6µm

and 1.6µm are iteratively matched to yield estimates of τ and reff . The CPP retrieval uses the cloud mask and cloud top

height products obtained from the software package developed and distributed by the satellite application facility of Support10

to Nowcasting and Very Short Range Forecasting (NWCSAF), Version 2016, as input (Le Gléau, 2016). The former product

identifies cloudy pixels for the retrieval, while the information on the height of the cloud is used to account for the effects

of gas absorption in the SEVIRI channels. An improved cloud detection scheme for the resulting higher–resolution SEVIRI

retrievals based on the HRV channel based on Bley and Deneke (2013), with modifications described in Deneke et al. (2019)

(i.e., the companion paper that describes the final retrieval algorithm), has been integrated into the retrieval, but has not been15

used for this study.

For obtaining the results presented in this study, an experimental version of the retrieval that was developed in a separate

branch has been used. This algorithm deviates in some aspects from the setup described in the companion paper. Specifically,

it uses the default climatology of ancillary data sets available as part of the CPP retrieval system, which have a lower horizontal

resolution and do not match the specific time of the retrieval. This is expected to have only minor influence on the results20

presented here, because the absolute accuracy of the retrieval is not the primary focus of this study.

4 Candidate methods for downscaling SEVIRI reflectances

This section describes the necessary steps to convert the reflectances r06, r08, and r16, available at the native SEVIRI resolution

of 3× 3km2, to reliable estimates of higher–resolution reflectances r̂06, r̂08, and r̂16, together with matching cloud properties,

at the spatial scale of 1× 1km2 of the HRV channel. This downscaling process utilizes the high–resolution rHV observations.25

As a first step, all reflectances are interpolated to the HRV grid using trigonometric interpolation, implemented based on

the discrete Fourier transform (see Deneke and Roebeling, 2010, for details). While this step increases the spatial sampling

resolution, it does not add any additional high–frequency variability. In fact, after interpolation, the reflectance values of the

central pixel of each 3× 3 pixel block equal those of the corresponding standard–resolution pixel reflectances. However, the

pixels apart from the central one contain information about the large–scale reflectance variabilty and can be considered as a30
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baseline high–resolution approach. This approach already improves the agreement with true higher–resolution retrievals, as

will be shown later in this study.

Three conceptually different downscaling techniques to improve upon this baseline method are described: (i) a statistical

downscaling approach based on globally determined covariances between the SEVIRI reflectances in section 4.1, (ii) a local

method based on assumptions about the ratio of reflectances at different scales in section 4.2, and (iii) a technique combining5

globally determined covariances between the VNIR reflectances and the shape of the SEVIRI LUT, while assuming a constant

reff within a standard SEVIRI pixel in order to constrain the SWIR reflectance in section 4.3. As variations of this last technique,

two additional approaches are considered to improve upon the constant reff constraint in section 4.4. As will be shown, each of

these approaches has advantages and disadvantages, and the impact on the cloud property retrievals will be evaluated in section

6 for a number of example scenes by means of collocated MODIS observations.10

The derived reflectances r̂06 and r̂08, as well as r̂16, include an estimate of the spectrally dependent, high–frequency vari-

ability of an image, and are based on the actually observed rHV. These reflectances are different from those obtained by

trigonometric interpolation of the respective channel observations at the native scale to the horizontal resolution of the HRV

channel (i.e., the baseline approach), which are denoted by r̃06, r̃08, and r̃16. While these variables also have a horizontal

resolution of 1× 1km2, they only capture the low–frequency variability resolved by the SEVIRI sensor.15

4.1 Statistical downscaling

The statistical downscaling algorithm for the two SEVIRI VNIR reflectances was first reported in Deneke and Roebeling

(2010) and assumes a least-squares linear model that links r06 and r08 to the reflectances in the HRV channel (see Cros et al.,

2006) in the form:

〈r̃HV〉= a · r06 + b · r08. (1)20

Here, the HRV channel observations are first filtered with the spatial response function of the lower–resolution channels, which

yields reflectances r̃HV at the same 1× 1km2 horizontal resolution, adjusted to the low–frequency variability at the spatial

scale of the channel 1–3 observations. Subsampling the central pixel of each 3× 3 = 9 pixel block subsequently yields 〈r̃HV〉
at the same 3×3km2 horizontal resolution as r06 and r08 (here, the subsampling of the field is denoted by 〈〉). The variables a

and b are fit coefficients that are determined empirically by a least–squares linear fit. In order to derive a statistically significant25

and stable linear model, the coefficients a and b are calculated hourly between 08 : 00− 16 : 00 UTC within 16–day intervals.

Results for the time step 08 : 00 UTC are derived from 5–minute SEVIRI rapid–scan data between 08 : 00−08 : 25 UTC, while

the 16 : 00 UTC time step is comprised of SEVIRI observations between 15 : 30− 16 : 00 UTC. For all time steps in between,

data is from all samples after minute 25 of the prior hour up to minute 25 of the current hour (e.g., fit coefficients for time step

09 : 00 UTC are calculated from SEVIRI observations between 08 : 30− 09 : 25 UTC).30

Values of hourly–derived fit coefficients for the Germany domain between 1 April and 31 July 2013 are shown in Figure

2(a) and 2(b) for a and b, respectively. Here, circles represent the respective fit coefficient for each 16–day interval, which

is indicated by the first Julian day in the time period. Colors highlight the different UTC time steps. It is obvious that both

6

https://doi.org/10.5194/amt-2019-334
Preprint. Discussion started: 23 September 2019
c© Author(s) 2019. CC BY 4.0 License.



coefficients a and b are very stable and show no noticeable variation from hour to hour, as well as from one 16–day interval

to another. The median fit coefficients are 0.63 (for a) and 0.40 (for b), with low interquartile ranges (IQR) of 0.03. The only

exceptions are the fit coefficients derived for the first time period of 1–17 April 2013, especially for the morning and afternoon

hours of 08 : 00− 09 : 00 and 15 : 00− 16 : 00 UTC. Here, a and b deviate significantly from the other results, with values of

≈ 0.50 and ≈ 0.52, respectively, likely due to an abundance of observations with a large solar zenith angles of θ0 > 60◦ in the5

eastern part of the domain.

The high–frequency reflectance variations for the SEVIRI HRV channel (δrHV) are calculated as the difference between the

observed rHV and r̃HV, which only resolves the low–frequency variability:

δrHV = rHV − r̃HV. (2)

Following the linear model in Eq.(1), the high–frequency variations of the channel 1 and 2 reflectances (δr06 and δr08) are10

linked to δrHV via:

δr06 = S06 · δrHV

δr08 = S08 · δrHV. (3)

The optimal slopes S06 and S08, which minimize the least–squares deviations, can be derived from bivariate statistics:

k1 =

√
b2 · var(r08)
a2 · var(r06)

15

S06 =
1 + k1 · cor(r06,r08)

a ·
[
1 + k1

2 + 2k1 · cor(r06,r08)
]

k2 =

√
a2 · var(r06)
b2 · var(r08)

S08 =
1 + k2 · cor(r08,r06)

b ·
[
1 + k2

2 + 2k2 · cor(r08,r06)
] . (4)

Here, cor(r06,r08) is the linear correlation coefficient between the channel 1 and 2 reflectances, while var(r06) and var(r08)

are the spatial variances of the respective samples. Note, that the sampling resolution of all reflectances is 3× 3km2.20

As a result, the high–resolution reflectances r̂06 and r̂08, which include the high–frequency variations, can be derived from

the interpolated reflectances as:

r̂06 = r̃06 + δr06

r̂08 = r̃08 + δr08. (5)

Note, that only r̂06 is used for the retrieval.25

Similar steps can be applied for the calculation of r̂16. Again, a simple linear model is assumed to connect r16 to the

lower–resolution 〈r̃HV〉 at the spatial scales of the channel 1–3 observations:

〈r̃HV〉= c · r16. (6)
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The symbol c is used to denote the respective fit coefficient, which needs to be determined empirically. Similar to the coeffi-

cients a and b from the linear model for the VNIR reflectances, c is calculated hourly between 08 : 00− 16 : 00 UTC within

16–day intervals. It has to be noted, however, that in contrast to the VNIR reflectances, this fit does not have a clear physical

motivation, as there is no spectral overlap with the HRV channel.

The temporal behavior of the fit coefficient c for the Germany domain for the time period between 1 April and 31 July 2013 is5

shown in Figure 2(c). In contrast to the coefficients a and b, there is a noticeable trend in the data, both diurnally and during the

transition from 1 April to 31 July. Diurnally, the variability in the hourly derived c values ranges between IQR = 0.05− 0.15,

while the median 16–day value varies between 1.04 and 1.25. Overall, the median c is 1.16, with an IQR of 0.08 (i.e., almost

three times larger than the one for the coefficients a and b). The observed trends and larger IQR in the c data set shown in

Figure 2(c) illustrate that the linear model in Eq.(6) is not ideal, and is expected to introduce significant uncertainties in the10

calculation of r̃16.

Values of r̃16 can be derived similarly to Eqs.(3–5) for the channel 1 and 2 observations:

δr16 = S16 · δrHV

S16 =
cov(r16,〈r̃HV〉)

var(r16)
r̂16 = r̃16 + δr16. (7)15

Note, that the use of linear models and bivariate statistics means that the downscaling algorithm described in this section is

an example of statistical downscaling techniques, which are common in climate science applications (e.g., Benestad, 2011).

While for the VNIR channels the spectral overlap with the HRV channel and the spectrally flat properties of clouds provide a

sound physical justification for this technique, this is not the case for the SWIR channel.

The reliability of the linear model in Eq.(1) depends upon the correlation between channel 1 and 2 reflectances (i.e.,20

cor(r06,r08)), as well as the stability of the fit coefficients a and b. The analysis in Deneke and Roebeling (2010) concludes that

the explained variance in the estimates of r̂06 and r̂08 are close to 1, corresponding to low residual variances, which indicates

that the linear model is robust. Moreover, the two fit coefficients are found to exhibit very low variability, as shown in Figures

2(a)–(b).

To verify the reliability of the linear model with a large SEVIRI data set, joint PDFs of the actually observed 〈r̃HV〉 and the25

results from Eq.(1) are shown in Figures 3(a)–(b); data is from all SEVIRI observations within the Germany domain during

June 2013. In case of an ideal linear model, as well as a perfect correlation between the two reflectances, Eq.(1) would replicate

the 〈r̃HV〉 observations. Conversely, deviations from these assumptions will yield different results from the sampled SEVIRI

reflectances. It is clear that the linear model can reliably reproduce 〈r̃HV〉, as most of the observations lie on the 1:1 line,

and Pearson’s product–moment correlation coefficient (R) is R = 0.999. While some larger deviations exist, such occurrences30

are significantly less likely (i.e., the joint probability density is several orders of magnitude lower than the most–frequent

occurrences along the 1:1 line). Regarding r16, the assumption of a linear model is evidently flawed, because the relationship

between VNIR and SWIR reflectances depends on the optical and microphysical cloud properties. As a result, a single linear

slope, which describes the whole relationship between the two reflectances for all cloud properties, will introduce significant

8
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uncertainties. This is illustrated in Figure 3(c), where the Joint PDF of 〈r̃HV〉 and the results from the linear model in Eq.(6)

are shown. The comparison between the two data sets reveals a much larger spread around the 1:1 line and a lower correlation

coefficient. Overall, the relationship resembles the shape of a LUT, displayed in form of the well–known diagram introduced by

Nakajima and King (1990), where changes in reff result in a spread in the observed SWIR reflectances (see, e.g., Werner et al.,

2016).5

To test the impact of changes in a and b on the derived r̂06 and r̂08, two experiments are conducted: (i) the fit coefficients

are derived only from cloudy pixels and are compared to the higher–resolution results from a and b, which are derived for all

pixels. (ii) the Germany domain is divided into 100×100km2–subscenes and the fit coefficients are derived more locally within

each subscene instead of globally from the full domain. Subsequently, statistics from the difference between the two data sets

are calculated. Data is from 14 June 2013 at 14:05 UTC. For experiment (i), the 1st, 50th, and 99th percentiles of the relative10

difference in r̂06 (defined as the difference between the reflectances from only cloudy data and the full data set, normalized

by the full data set) are −0.08,−0.02,0.03%, while for r̂08 the analysis yields −0.04,0.02,0.19%. Similarly, experiment (ii)

yields relative differences of −0.08,0.03,0.36% and −0.17,0.00,0.19% for r̂06 and r̂08, respectively. These deviations are

negligible compared to the measurement uncertainty and naturally, the correlation coefficients between the different data sets

are R≈ 1.00. This confirms the robustness of the linear model described in Eq.(1). For the derivation of r̂16 from Eq.(6), a15

slightly increased sensitivity to the fit coefficient c is observed. Here, experiment (i) yields percentiles of the relative difference

of −0.16,0.08,0.86%, whereas experiment (ii) results in −0.39,−0.01,0.40%. While slightly higher deviations are observed

compared to the linear model for the VNIR reflectances, the uncertainty in r̂16 induced by the variability in c is still significantly

lower than the measurement uncertainty.

4.2 Constant Reflectance Ratio Approach20

Compared to the downscaling approach in section 4.1, where fit coefficients for a linear model are derived over a large temporal

and spatial domain, this second method uses local relationships (i.e., on the pixel level) between the SEVIRI reflectances.

The Constant Reflectance Ratio Approach was introduced by Werner et al. (2018b) and is based on the assumption that the

inhomogeneity index of the HRV reflectance (Hσ,HV, defined as the ratio of standard deviation σHV to the average, pixel–level

reflectance 〈r̃HV〉) equals that for the channel 1 reflectance (Hσ,06). This implies a spectrally consistent subpixel reflectance25

variability. The relationship can be written as:

Hσ,06 = Hσ,HV

σ06

r06
=

σHV

〈r̃HV〉√
1

9−1 ·
∑i=9

i=1 (r̂06,i− r06)2

r06
=

√
1

9−1 ·
∑i=9

i=1 (rHV,i−〈r̃HV〉)2

〈r̃HV〉
, (8)

where the index i = 1,2, . . . ,9 indicates any one of the nine available 1× 1km2–subpixels within a lower–resolution SEVIRI30

pixel (i.e., at a scale of 3× 3km2). This relationship can be further simplified, assuming that this relationship is also true for

9
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individual pixels:

r̂06,i− r06

r06
=

rHV,i−〈r̃HV〉
〈r̃HV〉

r̂06,i

rHV,i
=

r06

〈r̃HV〉
. (9)

The relationship in Eq.(9) suggests that the ratio of channel 1 and HRV reflectances (i.e., narrowband and broadband VNIR

reflectances) remains constant for different scales. Thus, this approach is called the Constant Reflectance Ratio Approach.5

Finally, we can mitigate some of the scale effects by substituting the lower–resolution variables with the higher–resolution

reflectances that resolve the low–frequency variability (i.e., r̃06 and r̃HV) and solve for r̂06:

r̂06 = rHV ·
r̃06

r̃HV
. (10)

Similarly, higher–resolution SWIR reflectances r̂16 can be derived from:

r̂16 = rHV ·
r̃16

r̃HV
. (11)10

As before, the relationship implies that the ratio of VNIR and SWIR reflectances remains constant for different scales. This

assumption has been shown to be reasonable, at least for liquid water clouds over the ocean (Werner et al., 2018b).

A comparison of r̂06 and r̂16 from statistical downscaling and the Constant Reflectance Ratio Approach is presented in Fig-

ures 4(a)–(b), respectively. For both r̂06 and r̂16 the majority of data points is positioned along the 1:1 line, and the correlation

coefficient is R≈ 1.00. The derived reflectances from the two independent approaches are very similar, and the probability15

density of the few larger deviations is several orders of magnitude below the maximum probability. There are a limited number

of occurrences where r̂06 and r̂16 from the statistical downscaling approach are slightly larger than the ones from the Con-

stant Reflectance Ratio Approach. However, since these samples are three to seven orders of magnitude less likely than the

observations around the 1:1 line, they do not change the high correlation and slope of 1.00. One minor difference between the

two results concerns the number of negative r̂16, which can occur for very thin clouds (i.e., very low r̃HV and r̃16). For the20

analyzed data set, almost all such observations are the result of the statistical downscaling technique with a relative contribution

of 96.98%. However, the overall fraction of data points with a negative r̂16 is very low with a value of about 0.005%.

4.3 Lookup Table Approach

A third method to derive high–resolution cloud property retrievals for SEVIRI utilizes an iterative approach to determine δr06

and δr16 independently, based on the shape of the LUT, while constraining the observed reff to that of the baseline approach25

(i.e., simple trigonometric interpolation, which yields reflectances r̃06 and r̃16 that only resolve the large–scale variability.

While the previous approaches can be implemented as a pre–processor outside the actual retrieval, this method requires access

to the LUT and has thus been implemented through modifications of the CPP retrieval algorithm.

Again, a simple linear relationship between δrHV, δr06 and δr08 based on Eq.(2) is assumed:

δrHV = a · δr06 + b · δr08, (12)30

10

https://doi.org/10.5194/amt-2019-334
Preprint. Discussion started: 23 September 2019
c© Author(s) 2019. CC BY 4.0 License.



where the fit coefficients a and b are determined from the same techniques as described in section 4.1. The variation δrHV of

the HRV channel is obtained from the observations following Eq.(2), while δr08 is calculated as the difference between r08

from high– and low–resolution optical thickness τ based on the functional relation F of the reflectances and cloud properties

stored in the LUT (which motivates the name of this method). Therefore, δr06 can be derived from:

δr06 =
1
a
· (δrHV − b · δr08) ,5

r̂06 = r̃06 + δr06,

δr08 = F08 (τ̂, r̂eff)−F08 (τ̃, r̃eff) . (13)

Note that the addition of δr08 in the calculation of δr06 helps to account for the noticeable increase in surface albedo of

vegetation—like surfaces at λ > 700 nm (i.e., the vegetational step). This should improve the estimation of δr06 for thin clouds

(i.e., τ < 10) and cloud–edge pixels. For the SWIR reflectance, instead of relying on the imperfect linear model in Eq.(6)10

or assumptions about the inhomogeneity index Hσ,16, the adjustment δr16 is determined iteratively to conserve the coarse–

resolution, pixel–level (i.e., 3× 3km2) value of the effective droplet radius. If τ̃ and r̃eff are the cloud properties based on

trigonometric interpolation, and τ̂ and r̂eff are the higher–resolution retrievals, which are derived from an inversion of the

functional relationship (F ) between the high–resolution reflectances r̂06 and r̂16 following:

(τ̂, r̂eff) = F−1 (r̃06 + δr06, r̃16 + δr16) , (14)15

then δr16 can be determined as:

δr16 = F16 (τ̂, r̂eff = r̃eff)−F16 (τ̃, r̃eff) . (15)

This implies that a positive or negative δr06 is connected to a positive or negative δr16 using the LUT to adjust the SWIR

subpixel reflectance variations in such a way to be representative of the respective standard–resolution r̃eff . As a result, we do

not expect any improvement for the reff retrieval during the transition to smaller scales. Instead, we try to find a physically20

reasonable constraint for δr16 to achieve a reliable retrieval of the higher–resolution τ̂ , while retaining the accuracy of the

standard–resolution retrieval of r̃eff .

The LUT Approach is illustrated in Figure 5(a), where an example SEVIRI liquid–phase LUT for a specific solar zenith

angle (θ0 = 40◦), sensor zenith angle (θ = 20◦), and relative azimuth angle (ϕ = 60◦) is shown. Vertical dashed lines and values

below the grid denote fixed τ , while the horizontal dashed lines and values right of the grid denote fixed reff in units of microns.25

The green dot highlighted by the capital letter "A" represents an example SEVIRI reflectance pair of approximately r̃06 = 0.33

and r̃16 = 0.34, which maps to τ̃ = 8 and r̃eff = 12µm (i.e., the retrieval result for the high–resolution reflectances from

trigonometric interpolation). The red line highlights the r̃eff = 12µm isoline. The two horizontal, blue arrows indicate a positive

(δr06,1) and negative (δr06,2) adjustment to r̃06 based on Eq.(13). Without an adjustment to r̃16, these newly derived higher–

resolution r̂06 map to significantly larger and lower effective droplet radii of about r̂eff = 29µm and r̂eff = 5µm, respectively.30

The adjustments δr16,1 and δr16,2 simply assure that the prior effective radius retrieval is preserved (i.e., r̂eff = r̃eff ). Due to

curvature of the lines of fixed reff given by the LUT, small deviations of the coarse–resolution average from r̃16 can still occur.

11
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Note that the LUT Approach requires a prior cloud phase retrieval (either from the lower–resolution or interpolated re-

flectances) to determine the correct LUT for either liquid water or ice.

4.4 Adjusted Lookup Table Approach

In order to improve the estimation of δr16 in the LUT Approach, two modifications to the previous assumption are introduced in

this section. The first one aims to provide a more realistic estimate of r̃eff compared to the 3×3 km2 result, which subsequently5

is used to determine δr16. The value of r̃eff is derived from adiabatic theory, which provides a physically sound relationship

between the derived high–resolution cloud variables:

r̂eff = r̃eff

(
τ̂

τ̃

)a

. (16)

Based on observations, the study by Szczodrak et al. (2001) confirmed the value of a = 0.2 predicted by theory for marine

stratocumulus, so this is the value also adopted here. This approach is illustrated in Figure 5(b), where the r̃eff retrieval based10

on the interpolated reflectances at point "A" is indicated by the red reff–isoline. During the first iteration step δr06 is derived

from Eq. (13) and δr16 = 0, which maps to τ̂1 in the LUT (the exponent 1 indicates the first iteration step). This value is

highlighted by the vertical, blue line. Based on Eq. (16) the corresponding, adiabatic r̂1
eff is calculated (highlighted by the

horizontal, blue line). This value determines the adjustment δr16. Note, that the resulting reflectances at point "B" do not

exactly map to τ̃1 after the first iteration. As a result, multiple iterations are necessary to derive the final cloud properties. It15

has however been relatively simple to merge this iteration into the iterative retrieval loop of the CPP retrieval.

A second approach to improve upon the LUT Approach again utilizes the shape of the LUT to derive a local slope S =

∂r16/∂r06 from the simulated LUT reflectances. The value of S is calculated at the position denoted by τ̃ and r̃eff . In the

iterative CPP retrieval, this requires that both low– and high–resolution cloud properties are estimated during each iteration

until convergence of both properties is achieved. This approach is illustrated in Figure 5(c). Again, the initial r̃eff retrieval based20

on the interpolated reflectances at point "A1" is indicated by the red reff–isoline. The slope SA1 at this position in the LUT is

highlighted by the solid, blue line. Based on the derived slope and δr06 from Eq. (13) the corresponding δr16 can be calculated

for each iteration step. Two additional examples for initial starting points ("A2" and "A3") and the respective slopes (SA2 and

SA3) are also shown. These examples indicate the change in slope for different parts of the LUT. For small τ̃ , the slope SA3

become steeper, which leads to a larger adjustment δr16. Meanwhile, for large τ̃ > 30 (for this specific viewing geometry and25

LUT) the τ̃ and r̃eff–isolines are nearly orthogonal and the respective slope SA2 and δr16 are close to 0.

Both approaches introduced in this section have advantages and disadvantages, but promise to improve on the standard LUT

Approach. While physically sound, adiabatic assumptions might not always be appropriate, especially for highly convective

clouds or in the presence of drizzle. Meanwhile, large δr06 adjustments might map to a point in the LUT where the derived

local slopes at the position of τ̃ i and r̃i
eff might not be representative anymore.30
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4.5 Comparison of interpolated and downscaled SEVIRI reflectances

In order to illustrate the difference between the various reflectances, a statistical comparison between the downscaled results for

r̂06 and r̂16 and the observations at the native SEVIRI scale (i.e., r06 and r08) is shown in Figure 6. To allow for a pixel-to–pixel

analysis, each r06 and r08 at the original horizontal resolution of 3× 3km2 is replicated to each of the 9 available subpixels

at the HRV channel resolution. To put the resulting differences into perspective, a comparison between the downscaled and5

interpolated high–resolution reflectances is also provided. Note that only the statistical downscaling and Constant Reflectance

Ratio Approach are shown, because in the LUT Approach r̂06 and r̂16 are derived iteratively during the cloud property retrieval

and are not provided as an output variable by the algorithm.

Figure 6(a) shows a PDF of the relative difference (∆r06; shown in in red), which is defined as the difference between

r̂06 from the statistical downscaling approach and the resampled r06, normalized by r06, for an example SEVIRI scene from10

the Germany domain on 9 June 2013 at 10:55 UTC. Overall, n = 696,879 are included in the analysis. The distribution is

centered around ∆r06 ≈ 0 and is almost symmetrical on both sides. The 1st, 50th, and 99th percentiles of ∆r06 are −24.17%,

0.03%, and 27.85%, respectively. This means, that statistically the two different resolution yield similar reflectance observation,

but high–frequency variability, which is resolved by r̂06, introduces significant deviations from the results at the standard

resolution. Overall, most of the observations, defined by the 25st, 75th percentiles (i.e., 50% of the data points), are in the range15

of −3.12% to 2.87%. These differences compare well to those observed for the downscaled r̂06 from the Constant Reflectance

Ratio Approach (shown in blue). As expected, the relative differences between r̂06 and r̃06 (shown in black) are visibly smaller.

The 1st and 99th percentiles of ∆r06 are−11.28% and 12.54%, respectively, and most observations are in the range of−1.43%

to 0.99%. As before, the distribution is centered around ∆r06 ≈ 0, with a median of 0.03. The normalized root-mean-square

deviation (nRMSD; defined as the RMSD between r̂06 and r̃06, normalized by the mean r̃06) is nRMSD = 2.73%, which is20

less than half the value from the difference between r̂06 and the resampled r06 (nRMSD = 6.30%).

A similar analysis for the channel 3 reflectances r16, r̂16 (from Eq.(7)), and r̃16 is shown in Figure 6(b). As before for the

VNIR channel, the PDF of the relative differences (∆r16) is centered around≈ 0, and the 1st and 99th percentiles are−27.53%

and 28.85% for the difference between r̂16 and the resampled r16 and −13.59% and 11.40% for the difference between r̂16

and r̃16, respectively. The nRMSD is 3.16% (r16) and 6.24% (r̃16). Overall, 50% of the data points lie in the range of −2.67%25

to 2.71% (for the difference between r̂16 and r16). Again, the results from the two downscaling approaches are very similar.

It has to be noted, however, that deviations of ±3% in the reflectances at the different spatial scales can have a significant

impact on the remote sensing products of optical and microphysical cloud parameters, especially if the clouds are thin or the

pixels are partially cloudy (Werner et al., 2018a, b). These impacts become even more pronounced for the samples with larger

deviations between downscaled and native reflectances. Such effects are illustrated in section 5.30

5 Example retrievals

An example of a standard SEVIRI red, green, and blue (RGB) composite and the respective cloud property retrievals, utilizing

the native r06 and r16, are shown in Figures 7(a)–(c). In comparison, the retrieval results using the downscaled r̂06 and r̂16
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from the Adjusted Lookup Table Approach, using the LUT Slope Adjustment, are presented in Figures 7(d)–(f) for the same

cloud field. The example is a 100× 100km2–subscene of SEVIRI observations of an altocumulus field, which was acquired

on 9 June 2013 at 10:55 UTC over ocean within the Germany domain. The three illustrated parameters are an RGB composite

image of SEVIRI channel 3, 2, and 1 reflectance in panels a) and c), the cloud optical thickness τ and τ̂ in panels b) and e),

as well as the effective droplet radius reff and r̂eff in panels c) and f). For the cloud variables only liquid–phase pixels are5

shown. An increase in contrast and resolved cloud structures is visible in the higher–resolution RGB composite. Regarding the

retrieved cloud properties, the fields of lower–resolution τ and reff are a lot smoother and the results exhibit less dynamical

range than their higher–resolution counterparts. One obvious example is the bright cloudy part along 54.6◦N , where τ > 45

are observed. Moreover, the region of low reff in the north–eastern corner of the scene exhibits more nuanced values in the

higher–resolution data set. Note, that for this case, the number of failed retrievals is reduced for the Adjusted Lookup Table10

Approach (see south–eastern corner of the scene).

6 Evaluation of downscaling techniques with MODIS data

This section presents an evaluation of the different downscaling techniques which are introduced in section 4, by means of

MODIS observations. MODIS provides reflectances at a horizontal resolution of 1×1km2. These observations are re–mapped

to the higher–resolution grid of the SEVIRI rHV–band samples, and provide the means to derive reference retrievals of τ and15

reff . Note, that even though these reference retrievals are performed at a higher resolution the ”ˆ”–notation is omitted, because

these cloud products are derived from actual observations, and are not the estimates obtained from the various downscaling

techniques. Subsequently, the re–mapped, higher–resolution reflectances are smoothed using the spatial response function of

the corresponding SEVIRI channels. The reader is reminded, that these data are still available at a higher resolution than the

native 3×3km2 grid of the SEVIRI r06, r08, and r16 channels, but no longer contain any information about the high–frequency20

reflectance variability. As the simplest approach to derive higher–resolution cloud products, these results are called the baseline

results. Subsampling also enables a comparison with SEVIRI’s native 3 km observations.

These observations subsequently provide the means to apply the various downscaling techniques, as well as the simple

triangular interpolation approach, in order to compare the retrieved cloud products (i.e., τ̂ and r̂eff , as well as τ̃ and r̃eff ) to the

reference results. In addition, a comparison can be made to those cloud variables, which would be obtained at SEVIRI’s native25

spatial resolution by setting each 3× 3 pixel block to its central value.

Figure 8 shows RGB composites of the four example scenes, which comprise the data set for the evaluation of the different

downscaling techniques. The scenes are increasingly more heterogeneous, starting with a rather homogeneous altocumulus

field in Figure 8, two more heterogeneous broken altocumulus examples in Figures 8(b)–(c), and finally a broken cumulus field

in Figure 8(d).30

Meanwhile, table 1 summarizes the ten different retrieval experiments that form the comparison in this section. For the sake

of completeness, the reference data (i.e., the results from the re–mapped 1× 1km2–reflectances) are also included. The cloud

products derived from triangular interpolation of SEVIRI samples are referred to as the baseline data set, as this is the easiest
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approach and any reliable downscaling technique needs to add an improvement on those results. These results are, however,

not directly comparable with retrievals at SEVIRI’s native 3 km resolution, which are added as a separate experiment and are

obtained by sub–sampling the baseline results. Here, each central pixel of a 3× 3 block is replicated nine times and compared

to the 1 km reference. Experiments 1a and 1b denote the statistical downscaling approach from section 4.1. Here, 1a is based

on r̂06 and r̃16 (i.e., only the VNIR reflectance is downscaled; the SWIR reflectance is derived from interpolation), while 1b5

utilizes both r̂06 and r̂16 (i.e., both reflectances are downscaled and thus include small scale reflectance variability). Similarly,

retrievals based on the Constant Reflectance Ratio Approach and the LUT Approach are indicated as experiments 2a and 2b, as

well as 3a and 3b, respectively. The retrievals from the two Adjusted LUT Approaches are denoted as experiments 3c and 3d.

First, the collocation and re–mapping procedure for the native MODIS reflectances is briefly described. A comparison

between the retrieved cloud products from the interpolation, as well as the different downscaling procedures, and the reference10

results follows in section 6.2. These retrievals can be used to derive estimates of the liquid water content (WL, W̃L, and

ŴL) and the droplet number concentration (ND, ÑD, and N̂D), which are evaluated in section 6.3. While the downscaling of

SEVIRI VNIR reflectances is based on their linear relationship to the observed high–resolution rHV, the downscaling of SWIR

reflectances is based on a number of assumptions, which might induce large uncertainties in the retrieved cloud products.

Therefore, a comparison between the full downscaling techniques and the VNIR–only results is presented in section 6.4.15

6.1 Reprojection of MODIS swath radiances to the SEVIRI grid

To obtain a reliable higher–resolution reference data set, MODIS level 1b swath observations (MOD021km) have been pro-

jected to the grid of the SEVIRI HRV reflectance observations, which corresponds to the Geostationary Satellite projection

with a pixel resolution of 1× 1km2. Initially, the native HRV grid is oversampled by a factor of three in each dimension (i.e.

the target grid has a 333m resolution), and nearest–neighbor interpolation is used for the projection. This oversampled field20

is subsequently filtered with the spatial response function of the HRV channel as given by (EUMETSAT, 2006), to remove

high-frequency variability not resolved by the sensor and, in particular, the artifacts introduced by the nearest–neighbour inter-

polation technique. Finally, this field is downsampled, such that only each central pixel of a 3×3 block is retained to represent

the 1× 1km2–value.

To perform the subsequent experiments, a second set of level 1b radiances are generated, where the spatial variability25

is reduced to match that of the 3km–channels of Meteosat SEVIRI. This step again involves the filtering of the respective

reflectance field with the channel–specific spatial response function of the lower–resolution SEVIRI channels (EUMETSAT,

2006). In addition, a band–pass filter has been constructed from the difference between the modulation transfer functions of the

HRV and the 0.6µm and 0.8µm channels (weighted by the coefficients of a linear model; see Deneke and Roebeling, 2010).

This filter is used to extract the high–frequency signal of the HRV channel.30

It should be noted that retrievals based upon these radiances will be different than those based upon the original MODIS C6

radiances, or from an absolutely accurate representation of the (hypothetical) truly observed, high–resolution SEVIRI samples.

For one, it uses the linear model of Cros et al. (2006) and Deneke and Roebeling (2010) as a proxy for the HRV channel,

thereby excluding a potentially significant source of uncertainty. Moreover, MODIS acquires these reflectances under different
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viewing geometries (note that the true viewing angles are used in the CPP retrieval, so within the limits of plane–parallel

radiative transfer, this effect is accounted for), and the spectral characteristics of the MODIS and SEVIRI channels are not

entirely comparable. However, the goal of this study is to provide a consistent reference data set and retrievals from a single

retrieval algorithm core. Statistical comparisons between the operational MODIS C6.1 and SEVIRI results, as well as the new

high–resolution SEVIRI products, are presented in the companion paper Deneke et al. (2019). Moreover, some interesting use5

cases are demonstrated in that study, which can benefit from an increase in the spatial resolution of the derived SEVIRI cloud

parameters.

6.2 Results for τ and reff

Figure 9(a) shows a comparison of τ at the native SEVIRI resolution, and the reference τ at the 1 km scale for the example

cloud field in scene 2, which is shown as an RGB composite image in Figure 8(b). A total of over 13,000 cloudy pixels10

(liquid phase) are located in this scene. While for small reference τ < 20 there is a reasonable agreement between the two

data sets, there is increased scatter around the 1:1 line (indicated by the gray, dashed line) for larger values of cloud optical

thickness. For reference τ > 40, a substantial underestimation of the 3 km–τ is observed, which yields a sizable contribution

to the nRD of 15.8%. Figures 9(b)–(c) show similar scatter plots of τ and τ̂ from both experiment 2b and 3d, respectively. It is

obvious that the results from these two downscaling techniques improve the agreement to the reference retrievals significantly.15

The correlation between the data sets is increased and the nRD is strongly reduced to values of 1.182% (experiment 2b) and

1.589% (experiment 3d).

A similar comparison between the reference reff and reff at native SEVIRI resolution, as well as r̂eff from the same down-

scaling experiments, is presented in Figures 9(d)–(f). Here, the native–resolution results show a much better agreement with

the reference retrievals and, compared to the cloud optical thickness, the nRD= 5.505% is much lower. While experiment 2b20

exhibits a good agreement between reference τ and τ̂ , the comparison of retrieved r̂eff to the reference results is less favor-

able. Both the reduced correlation (R = 0.943 versus R = 0.964), as well as the increased scatter around the 1:1 line (nRD

= 6.630%) indicate that the results from experiment 2b are less reliable than the ones performed at the native 3 km resolution.

Thus, the elaborate downscaling procedure actually reduces the accuracy of the retrievals. In contrast, the retrieved r̂eff from

experiment 3d improve upon the native–resolution results, with slightly better values of R = 0.976 and nRD = 4.402%.25

Statistics of the comparison between the reference and native 3 km, baseline, and experimental retrievals are presented in

Figures 10(a)–(d) for example scenes 1–4, respectively. The parameters which are used to quantify the individual comparisons

are the median of the relative difference (abbreviated with p50) to indicate the average deviation from the reference results,

the interquartile range (IQR; defined as the relative difference between the 75th and 25th percentile of the deviation to the

reference retrievals) to indicate the spread between the different data sets, the nRD as a second measure of the spread of30

data points, and the explained variance (R2, which equals the square of Pearson’s product-moment correlation coefficient R)

between the different retrievals and the reference. Values with a green and red background highlight the respective experiment

with the best and worst comparison for the specific parameter. Yellow backgrounds, meanwhile, indicate all other experiments

in between the two extreme results. The first noteworthy observation concerns the native and baseline retrievals of τ , which

16

https://doi.org/10.5194/amt-2019-334
Preprint. Discussion started: 23 September 2019
c© Author(s) 2019. CC BY 4.0 License.



universally exhibit the largest median deviations and spread to the reference results as well as the lowest R2. Still, the difference

between native and baseline results indicates that the trigonometric interpolation to the HRV grid has significantly improved the

comparison. For scene 2, the 1st, 50th, and 99th percentiles of the absolute deviations of the native retrievals from the reference

τ are−13.54,−0.08, and 6.96, respectively. In contrast, each retrieval of τ̂ that accounts for small–scale reflectance variability,

yields significant improvements, regardless of the approach. This is especially obvious in the parameters that characterize the5

spread in the deviations, i.e., IQR and nRD, which are between 2–9 and 3–10 smaller for the various experiments and example

scenes, respectively. Experiments 1b and 2b, as well as 3d, seem to achieve the best agreement to the reference retrievals. For

the data set from experiment 3d the 1st, 50th, and 99th percentiles of absolute deviations improve to −0.30, 0.13, and 1.36,

respectively.

Regarding the effective droplet radius, the agreement between the native 3 km and baseline retrievals and the reference results10

is significantly better. It is worth pointing out that r̃eff , obtained only by interpolating reflectances to the HRV grid, performs

better than the native–resolution reff retrieval for all scenes. As an example, the 1st, 50th, and 99th percentiles of the absolute

deviations between native and reference results for example scene 2 are −1.29µm, 0.18µm, and 2.03µm, respectively. The

most reliable downscaling approach seems to be experiment 3d, which performs noticeably better than experiments 1b (note

the increased nRD and reduced R2 for scene 3), 3c (overall worst performance for scenes 1 and 2), and 2b (increased spread15

and overall issues for the heterogeneous cloud field in scene 4). This indicates that the linear model in Eq.(6), presuming

general adiabatic cloud conditions, or assumptions about a constant ratio of VNIR and SWIR reflectances are not adequate to

estimate higher–resolution r̂16, at least not for certain cloud conditions. In the case of experiment 2b, this is understandable,

since the technique was developed for partially cloudy pixels (Werner et al., 2018b). For experiment 3d, the 1st, 50th, and 99th

percentiles of the absolute deviations are comparable to the baseline data set, with values of −0.30µm, 0.13µm, and 1.36µm,20

respectively.

The notably better performance of experiment 3d than 3b with respect to r̂eff is somewhat surprising, and the specified goal

that experiment 3b maintains the accuracy of the baseline r̃eff retrieval has not been fully reached. We believe that this might

be caused by the sensitivity of the cloud property retrieval to small reflectance perturbations, in particular for broken clouds.

We plan to investigate this effect further in future studies.25

6.3 Results for WL and ND

Retrievals of τ and reff (regardless of the resolution they are derived at) provide the means to infer other commonly used

cloud variables. The WL, which describes the amount of liquid water in a remotely sensed cloud column, can be derived as the

product of retrieved cloud products (Brenguier et al., 2000; Miller et al., 2016):

WL = Γ · ρl · τ · reff . (17)30

Here, ρl and Γ are the density of liquid water and a coefficient, which accounts for the vertical structure of the cloud profile

(Γ = 2/3 for vertically homogeneous clouds, Γ = 5/9 for adiabatic clouds). Meanwhile, ND describes the number of liquid

cloud droplets in a cubic centimeter of cloudy air. Calculating ND from remote sensing products requires a number of assump-
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tions, which are summarized and discussed in Brenguier et al. (2000); Schüller et al. (2005); Bennartz (2007); Grosvenor et al.

(2018). A simplified form of the resulting equation for ND is:

ND = α · τ0.5 · r−2.5
eff , (18)

with α = 1.37 · 10−5 (see Quaas et al., 2006). Note, that Eqs.(17)–(18) can yield both baseline and downscaled results (i.e.,

W̃L and ÑD, as well as ŴL and N̂D) when they are derived from the respective cloud optical thicknesses and effective droplet5

radii.

Similar to the comparison in section 6.2, scatterplots of the reference WL, the native 3 km W̃L and the results from the

downscaling experiments 1b and 3d (ŴL ) are shown in Figures 11(a)–(c), respectively. As before, data is provided by example

scene 2 sampled on 9 June 2013 at 10:55 UTC. Compared to the native SEVIRI results, a noticeable improvement in the

correlation and nRD is achieved by utilizing the two downscaling experiments. Not only are ŴL closer to the 1:1 line, but the10

significant underestimation of the 3 km WL for larger reference results is mitigated. Especially for experiment 3d, the spread

is less than one third the value of the baseline results (4.857% versus 15.234%). Regarding the comparison between reference

and native ND, as well as N̂D, downscaling experiment 2b yields less favorable results. There is a slight decrease (increase)

in R (nRD). This is caused by the large IQR and nRD of the deviations in the retrieved r̂eff , shown in Figure 9(e), which are

amplified due to the associated power of 2.5 in Eq. (18). However, the derived values from experiment 3b are significantly15

better agreement with the reference ND.

Values of p50, IQR, nRD, and R2 for the WL and ND comparison from the four example scenes are illustrated in Figures

12(a)–(d). Due to the large deviations between the native τ and the reference retrievals, WL for the 3 km results almost uni-

versally show the largest deviations to the reference values, and thus the largest IQR and nRD, as well as the lowest explained

variance. The exception is the heterogeneous cloud field in the fourth example scene, where the large deviations between r̂eff20

from experiment 2b and the reference retrievals yield the worst comparison for the respective ŴL. As for the statistical com-

parison in section 6.2, experiment 3c overall performs worst for scenes 1 and 2. However, 27 of the 32 comparisons exhibit the

best results for experiment 3d. For the four example scenes considered in this analysis, it is obvious that the Adjusted Lookup

Table Approach, using the LUT Slope Adjustment, is preferable to other downscaling approaches and yields more reliable

high–resolution cloud variables than the standard–resolution SEVIRI results.25

For example scene 2, the the 1st, 50th, and 99th percentiles of absolute deviations of the 3 km cloud variables from the

reference WL are−88.50gm−2, 0.70gm−2, and 57.90gm−2, respectively, which for experiment 3d changes to−15.55gm−2,

3.10gm−2, and 28.95gm−2. While a slight bias is introduced, the spread of deviations is significantly reduced. Meanwhile

for ND these deviations are −77.57cm−3, −7.44cm−3, and 36.25cm−3 for the 3 km results and −55.75cm−3, −5.59cm−3,

and 27.04cm−3 for experiment 3d.30

6.4 Full downscaling versus VNIR only

Apart from the Constant Ratio Approach, the downscaling of r06 for each of the techniques presented in section 4 uses the well

established relationship between r06, r08, and the averaged 〈r̃HV〉 (see Figure 3 and the discussion in Deneke and Roebeling,
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2010). In contrast, downscaling of r16 is based on different assumptions about the microphysical structure and cloud hetero-

geneity, which induces a level of uncertainty in the subsequent cloud property retrievals. To test whether assumptions about

r16 actually improve the retrieval of τ̂ and r̂eff , this section presents retrievals that include the results from experiment 3d for

r̂06 but do not include the respective downscaling schemes for r̂16. Instead, the SWIR reflectance for each sample is provided

by the r̃16 value derived from trigonometric interpolation.5

Figure 13(a) shows PDFs of the relative difference (∆τ ) between τ̃ from the baseline test (black), as well as τ̂ retrieved

from experiments 3a (blue) and 3d (red), and the reference results (i.e., distributions of the difference between the data sets,

normalized by the reference τ ). Data is from example scene 2, shown in Figure 8(b), sampled on 9 June 2013 at 10:55 UTC.

The largest differences to the reference retrievals are observed for the baseline results, which only account for the large–scale

reflectance variability of the cloud scene. Here, relative differences cover the range of −20.44% < ∆τ < 28.22% (these values10

indicate the 1st and 99th percentile of ∆τ , respectively). The distributions for experiment 3d is noticeably thinner and these

observed ranges are reduced significantly to −2.33% < ∆τ < 3.14%. The differences ∆τ for experiment 3a look closer to

the one from the full downscaling experiment. However, the maximum of the distribution around ∆τ ≈ 0 is lower than from

experiment 3d, and the 1st percentile is actually higher than from the baseline retrievals. Clearly, the downscaling of both

VNIR and SWIR reflectances is preferable for the retrieval of τ̂ . For the effective droplet radius, the experiment comparison15

looks significantly different. Both relative differences ∆reff based on the baseline and experiment 3d results exhibit a similar

behavior and the full downscaling approach only yields small improvements on the retrievals from trigonometric interpolation.

Conversely, ∆reff from experiment 3a yields a noticeably larger spread and the retrievals become less reliable.

Regarding ∆WL and ∆ND, the results using the complete downscaling approach yield the narrowest distributions, with

significantly smaller minimum and maximum deviations (up to a factor of 5.6) compared to the VNIR–only downscaling20

technique. Compared to the baseline results the reliability of derived liquid water path from experiment 3d is also improved.

A summary of the performance of downscaling experiments 1a–3a (i.e., where only the VNIR reflectances are downscaled)

compared to that of experiments 1b-3b (i.e., the full downscaling approaches) for all four example scenes is given in table 2.

Here, the 1st, 50th, and 99th percentiles of the relative differences between τ̂ and r̂eff and the reference retrievals are listed.

An almost universal reduction in the biases is observed when both VNIR and SWIR reflectances are downscaled. These results25

provide strong evidence that simulateneous downscaling of the SWIR reflectances is essential for providing reliable higher–

resolution retrievals of τ̂ and ˆreff , as well as the subsequently calculated ŴL and N̂D.

This result is likely also relevant for retrieving cloud properties at highest–possible resolution from other multi–resolution

sensors such as MODIS, VIIRS and GOES–R: here, VNIR reflectances are generally available at highest spatial resolution,

while SWIR reflectances have a 2–4 times lower sampling resolution. Based on the previous results, smooth interpolation of the30

SWIR reflectances to the VNIR resolution cannot be recommended. Instead, downscaling approaches such as those presented

in section 4 should be adopted to avoid a scale–mismatch in the spatial variability captured by the VNIR and SWIR channels,

or equivalently, a degraded accuracy of the reff–retrieval.
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7 Conclusions

In this work, several candidate approaches to downscale SEVIRI channel 1–3 reflectances from their native horizontal resolu-

tion of 3× 3km2 to the horizontal 1× 1km2–scale of the narrowband HRV channel observations are evaluated. The goal is

to identify a reliable downscaling approach to provide the means to resolve higher–resolution, subpixel reflectance and cloud

property variations, which are only resolved by reflectances from SEVIRI’s coincident HRV channel.5

Three different methods are presented and evaluated: (i) a statistical downscaling approach using globally determined fit

coefficients based on bivariate statistics, (ii) a local approach that assumes a constant heterogeneity index for different scales

(i.e., the Constant Reflectance Ratio Approach), and (iii) an iterative approach utilizing both global statistics and the shape of

the SEVIRI LUT, while assuming a constant subpixel ˜reff (i.e., the LUT Approach). For the latter technique, two modifications

(by assuming adiabatic cloud conditions or by deriving local slopes within the LUT) are introduced, which avoid the constraint10

of a fixed r̃eff .

The different downscaling approaches are evaluated using MODIS observations of four example cloud fields at a horizontal

resolution of 1× 1km2, which are obtained by re–mapping onto the higher–resolution SEVIRI grid, followed by an optional

smoothing with the sensor spatial response function of SEVIRI. This approach has the benefit of providing a reference data

set to which the results for the different downscaling techniques can be objectively compared. Simply using trigonometric15

interpolation of radiances to the higher–resolution grid of the HRV channel (the baseline approach) provides a significant

improvement in agreement with the reference dataset for τ̂ and r̂eff compared to the native 3 km resolution results. It is shown

that either downscaling approach yields reliable retrievals of τ̂ at the horizontal resolution of the SEVIRI HRV channel. These

results compare noticeably better with the reference retrievals than the ones from the baseline approach. This improvement is

illustrated by a lower median absolute bias and spread (factor of 2–10), as well as a higher observed correlation between the20

data sets. Regarding r̂eff , the baseline results are found to be reliable. Depending on the cloud type, the various downscaling

techniques exhibit a significantly worse agreement to the reference retrievals. For more homogeneous altocumulus fields, the

LUT Approach with adiabatic assumptions seems inadequate, while for the more heterogeneous cloud fields the performance

of the statistical downscaling technique and the Constant Reflectance Ratio Approach decreases noticeably. The reliability of

r̂eff utilizing the LUT Approach with an adjustement based on the calculation of local slopes is comparable to the baseline25

results, and improves upon the results at the native 3 km resolution. Overall, a similar behavior is observed for the derived ŴL

and N̂D. Here, the LUT Approach, in combination with the use of local slopes, exhibits the best agreement to the reference

results for 27 out of the 32 comparisons (i.e., four example scenes, two cloud variables, and four evaluation parameters). Based

on these results, this method seems to be favorable compared to the other downscaling approaches. The results are preferable

to those obtained from the standard–resolution SEVIRI narrowband reflectances and pave the way for future higher–resolution30

cloud products by the MSG–SEVIRI imager. Especially for τ̂ and ŴL, these improvements are significant, as even the baseline

results show deviations from the reference data set of up to ≈ 11 and ≈ 70gm−2 for the observed example scenes.

Each of the downscaling techniques utilizes a well established relationship between the observed reflectance from SEVIRI

channels 1 and 2, as well as the one from the broadband HRV channel. To test the validity of the different assumptions for the
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downscaling of the SWIR band reflectance, the reliability of VNIR–only downscaling approaches is compared to the corre-

sponding full downscaling procedure. For the former, the 1×1km2–SWIR observations are provided by the baseline technique.

An almost universally improved reliability of the retrieved cloud products is observed when both VNIR and SWIR reflectances

are downscaled. This illustrates that, for reliable retrievals, all channels need to capture small–scale cloud heterogeneities at

the same scale. This implies that, for other multi–resolution sensors such as MODIS, VIIRS, and GOES–R ABI, downscaling5

approaches should also be adopted to avoid a scale–mismatch of resolved variability in the VNIR and SWIR channels.

Naturally, these results require more evaluation with a larger data set to validate the reliability of the approach under different

observational geometries and cloud situations. If a similarly good agreement to a set of reference retrievals is found for a broad

range of different test scenes, a significant step towards higher–resolution SEVIRI cloud observations is achieved. If our

results are confirmed, such retrievals would be a significant improvement of SEVIRI’s current standard–resolution retrievals.10

Meanwhile, more elaborate downscaling schemes could potentially improve upon the methods presented here. As an example,

one possible improvement on the Adjusted Lookup Table Approach with adiabatic assumptions would be an explicit fit of the

relationship in Eq.(16 from the native, lower–resolution variables. This might also reveal valuable insights into the validity of

the adiabatic assumption commonly adopted in remote sensing (Merk et al., 2016). In addition, a comprehensive evaluation

of the benefits of the higher–resolution SEVIRI cloud products for the subsequent estimation of solar surface irradiance is15

planned. In particular, a comparison of satellite retrievals based on Greuell et al. (2013) with observations of a dense network

of pyranometers following the approach of (Deneke et al., 2009) and (Madhavan et al., 2017) is planned, which will enable

detailed studies of the effects of spatial and temporal resolution of satellite observations.
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Figure 1. Map of the European SEVIRI domain, as defined in Deneke and Roebeling (2010). The red borders indicate the Germany domain,

which is the focus of this study.
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Figure 2. (a) Fit coefficients a, which are used to derive higher–resolution SEVIRI reflectances by means of statistical downscaling, as a

function of Julian day. Coefficients are derived hourly and in 16–day intervals for the Germany domain between 1 April and 31 July 2013.

Colors illustrate different UTC times. (b) Same as (a) but for fit coefficients b. (c) Same as (a) but for fit coefficients c.
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Figure 3. (a) Joint PDF of smoothed SEVIRI HRV reflectances (〈r̃HV〉) and those obtained from a linear model of observed SEVIRI channel

1 (r06) and channel 2 reflectances (r08), specifically a · r06 + b · r08 (see section 4.1). Data is from all 5–minute SEVIRI observations of the

Germany domain during June 2013. Only cloudy pixels are considered. The number of samples (n) and correlation coefficient (R) are given.

(b) Same as (a) but for a linear model for SEVIRI SWIR reflectances, specifically c · r16.
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Figure 4. (a) Joint PDF of downscaled SEVIRI channel 1 reflectances (r̂06) from the Reflectance Ratio Approach (detailed in section 4.2)

and those obtained from a linear model (described in section 4.1). Data is from all 5–minute SEVIRI observations of the Germany domain

during June 2013. Only cloudy pixels are considered. The number of samples (n) and correlation coefficient (R) are given. (b) Same as (a)

but for the comparison between downscaled SEVIRI channel 3 reflectances (r̂16) from the two downscaling techniques.
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Figure 5. (a) Example SEVIRI lookup table for liquid–phase clouds, illustrating the Lookup Table Approach (introduced in section 4.3)

for an observation highlighted by the reflectance pair indicated by point "A". For two different high–frequency variations of the channel

1 reflectance (δr06,1 and δr06,2) the derived high–frequency variations of the channel 3 reflectance (δr16,1 and δr16,2) is shown. See text

for more description. (b) Same as (a) but illustrating the Adjusted Lookup Table Approach (introduced in section 4.4) with the Adiabatic

Adjustment for a single δr06 example. (c) Same as (b) but with the LUT Slope Adjustment.
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Figure 6. (a) PDF of the relative difference (∆r06) between the downscaled SEVIRI channel 1 reflectances from the statistical downscaling

approach (SD r̂06) and the higher–resolution channel 1 reflectances from trigonometric interpolation (r̃06) is shown in black. Also shown is

the relative difference between r̂06 from the statistical downscaling approach (SD; shown in red), as well as the Constant Reflectance Ratio

Approach (RR; shown in blue), and the resampled original observations (r06). Data is from SEVIRI observations of the Germany domain

on 9 June 2013 at 10:55 UTC. Only cloudy pixels are considered. The 1st, 50th, and 99th percentiles are given, as well as the normalized

root-mean-square deviation (nRD; defined as the RD between the two data sets, normalized by the mean r̃06 and r06, respectively). (b) Same

as (a) but for SEVIRI channel 3 reflectances (r16, r̂16, and r̃16).
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Figure 7. (a) RGB composite image of SEVIRI channel 3, 2, and 1 reflectances at the instrument’s native horizontal resolution of 3×3km2.

Data is from a ≈ 100× 100km2 subregion within the Germany domain on 9 June 2013 at 10:55 UTC. (b) Similar to (a), but illustrating a

map of the cloud optical thickness (τ ). White colors indicate pixel with either a failed cloud property retrieval, a non–liquid cloud phase,

or non–cloud designation by the cloud masking algorithm. (c) Same as (b) but for the effective droplet radius (reff ). (d)–(f) Same as (a)-(c)

but at a horizontal resolution of 1× 1km2. The reflectances and retrievals have been derived from the Adjusted Lookup Table Approach as

described in section 4.4, using the LUT Slope Adjustment.
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Figure 8. (a) RGB composite image of SEVIRI channel 3, 2, and 1 reflectances at the horizontal resolution of 1×1km2 for example scene 1

sampled on 1 June 2013 sampled at 10:05 UTC. The reflectances have been derived from the Adjusted Lookup Table Approach as described

in section 4.4, using the LUT Slope Adjustment. (b)–(d) Same as (a) but for example scenes 2 to 4, sampled on 9, 6, and 5 June 2013 at 10:55,

11:20, and 10:25 UTC, respectively.
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Figure 9. (a) Retrieved cloud optical thickness (τ ) from the native 3 km–retrieval as a function of the reference results (τ derived from the

collocated MODIS reflectances at the 1× 1km2 scale). Data is from example scene 2, sampled on 9 June 2013 at 10:55 UTC. The gray,

dashed line represents the 1:1 line. The number of samples (n), correlation coefficient (R) and normalized root-mean-square deviation (nRD;

defined as the RD between the two data sets, normalized by the average reference τ ) are given. (b)–(c) Same as (a) but for the comparison

between τ and the results from experiments 1b and 3d (τ̂ ), respectively. (d)–(f) Same as (a)–(c) but for the effective droplet radius (reff and

r̂eff ).
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Figure 10. (a) Comparison of retrieved cloud optical thickness (τ , bottom panels) and effective droplet radius (reff , top panels) from the native

3 km resolution and baseline retrievals (i.e., only accounting for low–resolution reflectance variability), as well as the various downscaling

experiments (1b, 2b, 3b, 3c, and 3d), and the reference retrieval results. Parameters to quantify the comparisons are the median of the

relative difference to the reference (p50), relative interquartile range (IQR; 75th-25th percentile of the relative difference to the reference),

normalized root-mean-square deviation (nRD; defined as the RD between the two data sets, normalized by the average reference retrieval),

and the explained variance (R2). Green colors indicate the experiment that compares best to the reference results, i.e., highest R2 and lowest

p50, IQR, and nRD. Red colors indicate the experiment with the worst agreement to the reference retrievals, while yellow colors indicate all

experiments in between. Data is from example scene 1 sampled on 1 June 2013 sampled at 10:05 UTC. (b)–(d) Same as (a) but for example

scene 2 to 4, respectively.
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Figure 11. (a) Retrieved liquid water path (WL) from the native 3 km resolution retrieval as a function of the reference results (WL derived

from the colocated reflectances at the 1× 1km2 scale). Data is from example scene 2, sampled on 9 June 2013 at 10:55 UTC. The gray,

dashed line represents the 1:1 line. The number of samples (n), correlation coefficient (R) and normalized root-mean-square deviation (nRD;

defined as the RD between the two data sets, normalized by the average reference WL) are given. (b)–(c) Same as (a) but for the comparison

between reference WL and the results from experiments 1b and 3d (ŴL), respectively. (d)–(f) Same as (a)–(c) but for the effective droplet

radius. (ND and N̂D).

37

https://doi.org/10.5194/amt-2019-334
Preprint. Discussion started: 23 September 2019
c© Author(s) 2019. CC BY 4.0 License.



Figure 12. (a) Comparison of derived liquid water path (WL, bottom panels) and droplet number concentration (ND, top panels) from the

native 3 km resolution and baseline retrievals, as well as the various downscaling experiments (1b, 2b, 3b, 3c, and 3d), and the respective

reference results. Parameters to quantify the comparisons are the median of the relative difference to the reference (p50), relative interquartile

range (IQR; 75th-25th percentile of the relative difference to the reference), normalized root-mean-square deviation (nRD; defined as the

RD between the two data sets, normalized by the average reference retrieval), and the explained variance (R2). Green colors indicate the

experiment that compares best to the reference results, i.e., highest R2 and lowest p50, IQR, and nRD. Red colors indicate the experiment

with the worst agreement to the reference retrievals, while yellow colors indicate all experiments in between. Data is from example scene 1

sampled on 1 June 2013 sampled at 10:05 UTC. (b)–(d) Same as (a) but for example scenes 2 to 4, respectively.
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Figure 13. (a) PDFs of the relative differences (∆τ ) between the retrieved cloud optical thickness (τ ) from various downscaling methods

(i.e., the baseline test, as well as experiments 3a and 3d, shown in black, blue, and red color, respectively) and the reference results (i.e., the

original 1 km–retrievals). Data is from example scene 2 sampled on 9 June 2013 at 10:55 UTC, which is shown in Figure 8(b). The 1st, 50th,

and 99th percentiles of ∆τ for each experiment are given. (b) Same as (a) but for ∆reff , which is the relative difference for the retrieved

effective droplet radius (reff ). (c) Same as (a) but for ∆WL, which is the relative difference for the derived liquid water path (WL). (d) Same

as (a) but for ∆ND, which is the relative difference for the derived droplet number concentration (ND).
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Table 1. Description for the different retrieval experiments, which are characterized by different assumptions for the downscaling of SEVIRI

reflectances from the native horizontal resolution of 3 km to the MODIS–like 1 km scale.

Experiment Description

Reference r06 and r16 from the native 1× 1km2 MODIS scale, collocated on the higher–resolution SEVIRI grid

Baseline r̃06 and r̃16 from triangular interpolation, thus only accounting for low–frequency variabilities

Native 3 km r̃06 and r̃16 subsampled to native SEVIRI grid, and each central value repeated 3× 3 times

1a r̂06 from Statistical Downscaling Approach as described in section 4.1; r̃16 from trigonometric interpolation

1b r̂06 and r̂16 from Statistical Downscaling Approach as described in section 4.1

2a r̂06 from Reflectance Ratio Approach as described in section 4.2; r̃16 from trigonometric interpolation

2b r̂06 and r̂16 from Reflectance Ratio Approach as described in section 4.2

3a r̂06 from Lookup Table Approach as described in section 4.3; r̃16 from trigonometric interpolation

3b r̂06 and r̂16 from Lookup Table Approach as described in section 4.3

3c r̂06 and r̂16 from Adjusted Lookup Table Approach as described in section 4.4 (with adiabatic assumption)

3d r̂06 and r̂16 from Adjusted Lookup Table Approach as described in section 4.4; (with slope)
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Table 2. Comparison of the cloud property retrieval results from the downscaling experiments 1a–3a, which only account for the VNIR part,

and experiments 1b–3b, which include adjustments to both VNIR and SWIR reflectances. The comparison shows the 1st, 50th, and 99th

percentiles of the relative differences ∆τ (for the cloud optical thickness τ ) and ∆reff (for the effective droplet radius reff), which illustrate

the deviation of the different retrieval approaches from the reference results, normalized by the reference retrievals. Data is from the four

example scenes shown in Figure 8.

τ reff

Scene (%) (%)

1a 1b 2a 2b 3a 3b 1a 1b 2a 2b 3a 3d

#1

1st -4.26 -2.59 -3.13 -1.97 -3.47 -1.77 -13.20 -5.47 -12.23 -5.08 -12.55 -5.19

50th 0.28 0.19 0.16 0.00 0.52 0.81 0.82 0.11 0.81 0.00 0.85 0.76

99th 4.57 2.95 3.49 2.18 4.13 2.86 8.38 6.04 16.57 6.99 16.94 6.11

#2

1st -26.81 -19.77 -24.30 -2.64 -25.11 -2.33 -47.37 -28.00 -45.51 -12.69 -45.76 -8.58

50th 0.45 0.30 0.21 0.11 0.42 0.74 1.51 0.57 1.49 0.50 1.54 1.54

99th 8.31 4.31 6.29 2.66 6.84 3.14 53.23 18.16 48.42 19.19 49.24 12.77

#3

1st -37.33 -32.08 -33.95 -25.00 -33.65 -20.68 -66.37 -45.46 -65.10 -25.71 -64.53 -23.25

50th 0.00 0.06 0.00 0.00 0.25 0.38 0.74 0.43 0.47 0.00 0.53 0.49

99th 38.16 31.44 36.09 23.98 36.05 25.56 126.95 59.57 116.87 33.31 118.90 42.76

#4

1st -73.33 -69.72 -60.18 -61.45 -72.27 -69.12 -52.53 -36.01 -50.35 -48.35 -51.02 -33.00

50th 2.86 1.47 1.23 7.07 2.71 2.61 -0.13 0.00 -0.13 0.26 -0.13 0.13

99th 309.98 286.63 292.25 414.23 308.35 284.50 175.70 42.16 126.24 102.89 167.46 37.54
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