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Abstract. To obtain better performance of meteorological applications, it is necessary to distinguish radar echoes from 

meteorological and non-meteorological targets. After a comprehensive analysis of the computational efficiency and radar 10 

system characteristics, we propose a fuzzy logic method that is similar to the MetSignal algorithm; the performance of this 

method is improved significantly in weak signal regions where polarimetric variables are severely affected by noise. In 

addition, post-processing is adjusted to prevent anomalous propagation at far range from being misclassified as 

meteorological echo. Moreover, an additional fuzzy logic echo classifier is incorporated into post-processing to suppress 

misclassification in the melting layer. An independent test set is selected to evaluate algorithm performance, and the 15 

statistical results show an improvement in the algorithm performance, especially with respect to the classification of 

meteorological echoes in weak signal regions. 

1 Introduction 

Weather radar with dual-polarization capability has a wider range of application than conventional weather radar (i.e., single-

polarization weather radar), in terms of providing information regarding the shape, size, spatial orientation, and physical 20 

composition of hydrometeors (Kumjian 2013a; Kumjian 2013b; Kumjian 2013c). Significant improvements have been made 

in meteorological and hydrological applications (e.g., data assimilation, quantitative precipitation estimation, and 

hydrometeor classification) after using polarimetric radar data (Giangrande and Ryzhkov 2008; Jung et al. 2008a; Jung et al. 

2008b; Park et al. 2009). However, the existence of non-meteorological echoes (NMET; e.g., ground clutter (GC), 

anomalous propagation (AP), and clear-air echoes (CA)) in radar data often reduces the application performance. Therefore, 25 

it is necessary to separate radar data that contain meteorological echoes (MET; e.g., rain, snow, and hail) from those that 

contain NMET, before these applications are implemented. 

Several effective algorithms for distinguishing between NMET and MET have been proposed in recent years. Lakshmanan 

et al. (2014) developed an algorithm based on neural networks for radar data quality control. The raw values and local 
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variance of polarimetric variables and Doppler moments, as well as features calculated from 3D virtual volume, are selected 30 

as neural network inputs. The output of the neural network is the MET probability at each range gate. The range gates are 

then clustered into contiguous regions, and the probabilities are averaged within each cluster. The average probability is 

compared with a preset probability threshold to determine whether the cluster is retained (considered as MET) or censored 

(considered as NMET). A MET–NMET classifier was developed by Tang et al. (2014) to perform reflectivity data quality 

control using polarimetric radar variables and atmospheric environmental data. The algorithm combines a simple correlation 35 

coefficient filter as the primary determinant and applies a set of physically-based rules to handle some special MET (e.g., 

hail, non-uniform beam filling, and melting layer (ML)) and NMET (e.g., random clutter with high correlation coefficient). 

Krause (2016) proposed an algorithm, MetSignal, to distinguish between MET and NMET using polarimetric radar data, 

which has a simple design and allows users to adjust its performance according to a specific situation. The MetSignal 

algorithm is based on fuzzy logic technique with a few post-processing rules; it has been selected to be implemented on the 40 

WSR-88D network in the United States. In addition, the performance of different methods in the context of distinguishing 

between MET and NMET is compared in Rico-Ramirez and Cluckie (2008) and Islam et al. (2012). Further, the importance 

of different features is also evaluated by Lakshmanan et al. (2015). 

Compared with the other two methods (Tang et al. 2014; Krause 2016), the most obvious disadvantage of the neural network 

method proposed by Lakshmanan et al. (2014) is the heavy computation intensity; this renders it unsuitable for operational 45 

applications, especially for radar systems with a high spatial and/or temporal resolution. Although the method proposed by 

Tang et al. (2014) has a higher computational efficiency, it may result in undesirable performance if applied in polarimetric 

radar systems with imperfect hardware technology or without noise correction (Gourley et al. 2006; Schuur et al. 2003), 

which is primarily attributed to excessive dependence on the correlation coefficient. Fuzzy logic is a multiple-input classifier 

method that can minimize the impact from a single erroneous input. In addition, the MetSignal algorithm has the highest 50 

computational efficiency among the three methods (Krause 2016; Tang et al. 2014). Therefore, the framework of the 

MetSignal algorithm is adopted in this paper. 

Like most methods in the context of distinguishing between MET and NMET based on polarimetric radar data, the 

MetSignal algorithm has high expectations for polarimetric features and sets high weights for them. However, the fluctuation 

of polarimetric variables is very violent in the weak signal regions and regions affected by ML, which is not conducive to the 55 

purpose of distinguishing MET and NMET (Krause 2016; Rico-Ramirez and Cluckie 2008). The suppression of 

misclassification in ML regions is included in the post-processing of the MetSignal algorithm; however, the necessary 

consideration is lacking in weak signal regions, where polarimetric variables are severely affected by noise. The main 

purpose of the improved method proposed in this paper is to improve the performance of the MetSignal algorithm in weak 

signal regions, hence referred as “MetSignal_noise”. Additional adjustments and improvements over the MetSignal 60 

algorithm are also included in the MetSignal_noise algorithm. 
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The rest of this paper is organized as follows. Section 2 briefly describes the radar system used in this study and the available 

measurements. Subsequently, a detailed explanation of the proposed algorithm is provided in Section 3, and Section 4 

presents the algorithm performance evaluation results. Finally, conclusions are provided in Section 5. 

2 Instrument and data 65 

The radar data used in this study were collected by a C-band dual-polarization Doppler weather radar owned by the Nanjing 

University of Information Science and Technology (NUIST-CDP). The main parameters of the NUIST-CDP are listed in 

Table 1. NUIST-CDP is designed and manufactured by Beijing Metstar Radar Company in China and is deployed at the 

university campus (32.21 °N, 118.72 °E). The routine scanning mode of NUIST-CDP is set to volume scanning with 14 

elevation angles (0.5, 1.5, 2.4, 3.4, 4.3, 5.3, 6.2, 7.5, 8.7, 10, 12, 14, 16.7, and 19.5°) at a 7-min scan update rate. The 70 

available measurements include the reflectivity factor at horizontal polarization (Z), Doppler velocity (V), Doppler spectrum 

width (W), differential reflectivity (ZDR), differential propagation phase shift (PhiDP), co-polar correlation coefficient (CC), 

signal-to-noise ratio (SNR), and signal quality index (SQI), all at a radial range resolution of 75 m. 

The NUIST-CDP data are seriously affected by GC and AP, which is attributed to the absence of clutter filtering in the 

signal processing. The strong CA are one of the main sources of error for some meteorological and hydrological applications 75 

(Stumpf et al. 1998; Zhang et al. 2011), which often appears in the NUIST-CDP data during the warm season. In addition, 

NUIST-CDP has a higher pulse repetition frequency than the operational radar (Crum et al. 1993), which implies the 

existence of a shorter maximum detection range and more frequent second-trip echoes. Considering that the second-trip echo 

is formed by meteorological targets, the algorithm temporarily classifies it as MET. The identification and removal of 

second-trip echoes will be considered in future research. 80 

3 Method 

3.1 MetSignal 

Since a similar algorithm framework is used in both the MetSignal and the MetSignal_noise algorithms, a brief description 

of the MetSignal algorithm is presented first. Figure 1 summarizes the major steps of the MetSignal algorithm as a block 

diagram. 85 

Except for the raw radar variables (i.e., Z, V, and CC), two texture parameters (i.e., SD(ZDR) and SD(CC)) are also input as 

features into the fuzzy logic echo classifier. The SD(ZDR) and SD(CC) are estimated by calculating standard deviations of 

ZDR and CC along a radial for 21 range gates (1.5 km in NUIST-CDP) centered on the target gate, which can characterize 

the magnitude of small-scale fluctuations in ZDR and CC. It is worth noting that the SD(PhiDP) input in the raw version of 

the MetSignal algorithm was removed to avoid texture estimation errors because of phase folding. Although there are some 90 



4 
 

conventional methods to solve phase folding (Wang and Chandrasekar 2009), they fail when applied to radar data mixed 

with first- and second-trip echoes. 

The fuzzy logic technique is adopted in the echo classifier, which is a classification methodology widely used in the weather 

radar community (Gourley et al. 2007; Lin et al. 2012; Liu and Chandrasekar 2000). The additive method is applied in 

MetSignal algorithm to obtain the aggregation value for the MET (AMET) to maximize the probability of detection (the 95 

multiplicative method is another way, which aims to minimize false classification; Zrnić et al. 2001): 

𝐴"#$ =
&'"('
&'

 ,            (1) 

where x is one of the five features mentioned above, and Wx and MFx are the weights (the weight setting for each feature is 

shown in Table 2) and membership function value of x, respectively. 

For the classification method using fuzzy logic, the membership functions selection often determines the final classification 100 

performance to a certain extent. Considering that the characteristics of radar variables depend on the specific radar systems 

as well as the climatological and geographical location of the radar, the membership functions are objectively determined by 

the statistical analysis of the NUIST-CDP measured data. Table 3 summarizes the data used for training, which are manually 

extracted by experienced meteorologists through a simple graphical user interface and consist of several typical events; these 

include GC, AP, CA, stratiform precipitation, and convective precipitation. It is worth mentioning that because there is not 105 

enough observation data as evidence, the training set does not include extremely complex situations (e.g., the boundary or 

transition zone between MET and NMET) to prevent the introduction of subjective bias. 

The normalized frequency distributions of the features are shown in Fig. 2, which are derived using the training set. The 

method proposed by Cho et al. (2006) is used to determine the membership functions; it has a higher efficiency than the 

iterative method used in Krause (2016): 110 
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where FMET and FNMET are the normalized frequencies of MET and NMET. The trapezoidal functions are adopted to 

indicate the membership functions by fitting the results of Eq. (2) using the least-squares method (the red lines in Fig. 2). 

After getting the AMET by the calculation of Eq. (1), we compared it to a preset threshold. The target gate will be classified as 

MET if AMET exceeds the threshold; otherwise, it will be classified as NMET. Similar to membership functions, this 115 

threshold is also local, needing statistical analysis to get the optimal result. The normalized frequency distributions of AMET, 

which are derived using the training set, are shown in Fig. 3a. It can be seen that there is a certain degree of overlap between 

the distribution of MET and NMET, and an obvious intersection is about 0.5 (the red lines in Fig. 3a). Therefore, 0.5 can be 

considered as an optimal AMET threshold of the MetSignal algorithm on the NUIST-CDP. 

After obtaining the preliminary results of the fuzzy logic echo classifier, a set of post-processing rules are adopted in the 120 

MetSignal algorithm to adjust the classification results appropriately to make them more reasonable. These rules include a 

ZDR filter for eliminating residual CA (the range gates with absolute value of ZDR exceeding 4.5 dB are considered as 
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NMET), a CC filter (the range gates with CC less than 0.65 are considered as NMET), and forced classification as MET will 

also be performed in range gates where Z at a height of 3 km in the previous volume scan at the same location exceeds 11 

dBZ, which will help to prevent misclassification in ML regions. A typical case of CA (02:23 UTC 7 May 2017) shown in 125 

Fig. 4 can well demonstrate the need for post-processing (take the ZDR filter as an example). In the field of AMET (Fig. 4b), 

many regions exceed the threshold (0.5), which will cause CA to be misclassified as MET. The primary reason for this 

problem is that the CA in these regions have relatively uniform ZDR and small SD(ZDR) (Figs. 4c and 4d), which causes an 

incorrect increase of MFSD(ZDR) and AMET. Compared with the classification result directly based on the output of the fuzzy 

logic echo classifier (Fig. 4e), the misclassification is effectively suppressed after post-processing (Fig. 4f). 130 

3.2 Improvements and adjustments in MetSignal_noise 

3.2.1 The limitation of the use scope of V 

As shown in Fig. 2b, although the V of NMET is mainly concentrated near 0 m/s while the V of MET is uniformly 

distributed in the whole range, there is still a large overlap between them in the regions where the absolute value of V is 

large. The broadening of the NMET frequency distribution is mainly attributed to the existence of CA, which is similar to 135 

that of MET in terms of V (Wilson et al. 1994). Considering that the V does not play a role in distinguishing MET from CA, 

some constraint conditions should be set to limit the use scope of V in the fuzzy logic echo classifier. Since the CA usually 

have smaller Z and larger W than GC and AP (Fang et al. 2004; Wilson et al. 1994), a 2D histogram method is adopted to 

analyze the NMET´s V vs. Z and V vs. W relationships in the training set to find the thresholds of Z and W for separating 

CA from other NMET, as far as possible. As shown in Fig. 5a, the 2D histogram of V vs. Z of NMET presents an orthogonal 140 

shape, which is composed of GC and AP with V approximately equal to 0 m/s and CA with Z below 30 dBZ and V 

uniformly distributed in the whole range. As shown in Fig. 5b, the 2D histogram of V vs. W of NMET is uniform overall, 

except for the region where V is close to 0 m/s and W is less than 2 m/s. This region is very concentrated and should be 

composed of GC and AP due to its static and stable characteristics. Therefore, the V is used in fuzzy logic echo classifier as 

a feature only when Z is greater than 30 dBZ or W is less than 2 m/s. The normalized frequency distribution and membership 145 

function of V after setting thresholds of Z and W is shown in Fig. 5c. Compared with Fig. 2b, the frequency distribution of 

NMET in Fig. 5c is more concentrated at 0 m/s, and the broadening has also been significantly reduced; meanwhile, that of 

MET remains uniformly distributed in the entire range without any notable changes. 

3.2.2 The decrease of CC in the region of GC and AP 

As illustrated in Fig. 2c, there is a significant overlap between NMET and MET in the region where CC is above 0.8, which 150 

increases the difficulty in distinguishing between NMET and MET and is also contrary to the common knowledge that 

NMET has a low CC (Kumjian 2013a). After analyzing a large amount of data, it is found that NMET of high CC mainly 

come from the GC and AP, which may be due to the characteristics of the NUIST-CDP (e.g., spatial resolution and dwell 
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time). Therefore, the method proposed by Zrnić et al. (2006)—CC is averaged along the radial using a 21-range gates 

window (1.5 km in the NUIST-CDP)—is adopted to reduce the CC of NMET with the abnormal high value. As shown in 155 

Fig. 6, it is a typical case of AP (23:53 UTC 24 May 2017) sampled by the NUIST-CDP. Compared with the raw CC in Fig. 

6b, where some regions of GC and AP have high CC, the CC after average processing in Fig. 6c decreased significantly in 

these regions and almost all of them were below 0.9, which was expected to improve the classification performance to some 

extent. 

The distance averaging of CC may produce some undesired side effects in the boundary region between MET and NMET, 160 

that is, the CC of MET is decreased while the CC of NMET is increased. However, their influence coverage is very limited 

because the window size is only 1.5 km. In addition, the impact on the averaging results will be further reduced when one of 

the echo types (MET or NMET) in the window accounts for a large proportion. 

3.2.3 Improvements in weak signal regions 

As shown in Fig. 7, the NUIST-CDP observed a typical case of mixed precipitation accompanied by CA within 50 km 165 

(13:24 UTC 30 May 2017). A comprehensive analysis of AMET (Fig. 7a) as well as Z (Fig. 7b) and SNR (Fig. 7c) reveals that 

MET with lower SNR near the echo edge has lower AMET than MET in the core regions with larger SNR, which even close 

to the AMET of CA. This is because the estimation accuracy of polarimetric variables usually depends on SNR (Bringi and 

Chandrasekar 2001). As shown in Figs. 7d and 7e, significant fluctuation of ZDR and decrease of CC can be observed near 

the echo edge. Meanwhile, their texture (i.e., SD(ZDR) in Fig. 7f and SD(CC) in Fig. 7g) has also significantly increased in 170 

these regions. 

To understand the dependence between polarimetric features and SNR in more detail, a boxplot method is adopted to 

analyze the MET in the training set. As shown in Fig. 8a, the boxplot of SNR vs. ZDR takes the shape of a dumbbell. The 

broadening distribution of ZDR with the increase of SNR is attributed to the large raindrops, strong attenuation, and the 

resonance effect produced by hailstones, which is easy to be understood and corresponds to common knowledge (Kumjian 175 

2013c). The MET with smaller SNR usually consists of drizzle, dry snow, and even cloud particles, which should have ZDR 

close to 0 dB; hence, is often used in ZDR calibration as natural targets (Ryzhkov et al. 2005). Therefore, the ZDR 

broadening with the decrease of SNR should not be attributed to the microphysical properties of MET, but the artifacts 

owing to the influence of noise. Similarly, as shown in Fig. 8b, the magnitude (dispersion) of CC decreases (increases) with 

decrease of SNR when SNR is less than 15 dB. These anomalies in ZDR and CC should be attributed to the weak signal 180 

affected by noise, which leads to the polarimetric variables being unable to represent the real microphysical information in 

MET; further, it also leads to the increase of SD(ZDR) (Fig. 8c) and SD(CC) (Fig. 8d). 

Considering the dependence between polarimetric features and SNR, the polarimetric features are stratified by three SNR 

intervals (less than 5 dB, 5–15 dB, and larger than 15 dB), and different processing methods are used for each of these 

intervals. First, the data of SNR below 5 dB are directly regarded as noise and not classified. This is because the MET in this 185 

interval is extremely affected by noise and is also too weak to play an important role in meteorological and hydrological 
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applications. In addition, as polarimetric variables with low SNR may increase the texture of adjacent gates, the method 

proposed by Rico-Ramirez and Cluckie (2008)—masking the polarimetric variables of SNR below 5 dB in texture 

calculation—is adopted to reduce the risk of misclassification. Then, the normalized frequency distributions of polarimetric 

features in Fig. 2 are separated based on different SNR intervals (i.e., 5–15 dB and larger than 15 dB) and the results are 190 

shown in Fig. 9. As shown in Figs. 9a and b, the long trailing of CC of the MET caused by low SNR in Fig. 2c is well 

distinguished from the “normal” MET that has the CC of approximately 1 and not less than 0.8. In addition, the odd bimodal 

distributions of SD(ZDR) (Fig. 2d) and SD(CC) (Fig. 2e) are also well decomposed after stratification by SNR (Figs. 9c, d, e, 

and f), which renders the membership functions more pertinent and a better characterization of the polarimetric features is 

obtained at different SNR intervals. 195 

The AMET obtained by the MetSignal_noise algorithm is shown as Fig. 10a. To better compare the performance of the 

MetSignal and MetSignal_noise algorithms, the AMET obtained by the MetSignal algorithm with SNR less than 5 dB is 

masked (Fig. 10b). The difference between them is mainly reflected in the regions of echo edge and near the radar, which is 

predominantly contributed by two factors. First, the fluctuation of polarimetric variables is reduced by masking the 

polarimetric variables of low SNR (Figs. 10c and 10d), and the texture of polarimetric variables affected by noise is 200 

significantly alleviated (Figs. 10e and 10f). Second, the polarimetric features can characterize MET and NMET more 

detailed by adjusting the membership functions based on different SNR intervals (Fig. 9). 

Like the method used to determine the AMET threshold of the MetSignal algorithm, the AMET threshold of the 

MetSignal_noise algorithm is set to 0.65 based on the normalized frequency distributions shown in Fig. 3b. Compared with 

Fig. 3a, the distributions of MET and NMET in Fig. 3b are more focus on both ends and their overlap is significantly 205 

reduced, which can also show that the MetSignal_noise algorithm has a better classification performance than the MetSignal 

algorithm. 

3.2.4 Post-processing adjustments for ML regions 

The last step in the post-processing of the MetSignal algorithm is to check the constant-altitude plan position indicator 

(CAPPI) of Z at 3 km in the previous volume scan. The range gates will be force-classified as MET if the CAPPI at the same 210 

location exceeds 11 dBZ; this aims to prevent the misclassification in ML regions. However, due to the strong super-

refraction caused by specific weather conditions (Doviak and Zrnić 2006), the NUIST-CDP sometimes detects AP more than 

11 dBZ at a far range (corresponding to an altitude higher than 3 km), which will misclassify AP as MET after post-

processing. Fig. 11 shows the same AP case as in Fig. 6. Although the AMET obtained by the MetSignal algorithm (Fig. 11a) 

has a low value (i.e., the classification result is more likely to be NMET), there are still many range gates misclassified as 215 

MET in the final result (Fig. 11b) due to improper post-processing. In consideration of the potential risk of misclassifying 

AP into MET in this post-processing step, this post-processing rule has been removed in the MetSignal_noise algorithm. 

However, the lack of special precaution in the ML regions causes a frequent misclassification occurrence, because MET in 

ML regions and NMET have similar characteristics in polarimetric features. Therefore, an additional fuzzy logic echo 
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classifier, without the polarimetric features input, is implemented in the post-processing of the MetSignal_noise algorithm in 220 

the potential ML regions (initially defined as the regions over 2.5 km in height based on the statistical analysis using the 

training set), for range gates classified as NMET in the first fuzzy logic echo classifier. Considering that AP in the potential 

ML regions may not be classified effectively by solely using Z and V, the SD(Z) (using the same estimation method as 

SD(ZDR) and SD(CC)) is input into the additional fuzzy logic echo classifier, to improve the classification performance. 

Figure 2f shows the normalized frequency distribution and membership function of SD(Z), which are also derived from the 225 

training set, but only use data in the potential ML regions. If these range gates (classified as NMET in the first fuzzy logic 

echo classifier in the potential ML regions) are classified as MET in the additional fuzzy logic echo classifier, then these are 

highly probable to be influenced by ML and should be reclassified as MET. 

As shown in Fig. 12, the NUIST-CDP observed a typical case of stratiform precipitation (10:49 UTC 23 May 2017). 

Although the bright band characteristic of Z is not very obvious (Fig. 12d), the location of the ML region at a range of about 230 

100 km can be well revealed by ZDR and CC (Figs. 12e and 12f). As shown in Fig. 12b, the AMET before post-processing 

(the result of the first fuzzy logic echo classifier) has an obvious low value in the ML region, due to the similar 

characteristics of polarimetric features between MET in ML regions and NMET. The AMET after post-processing (the range 

gates classified as NMET in the first fuzzy logic echo classifier will be substituted for the AMET of the additional fuzzy logic 

echo classifier) is shown in Fig. 12a; the abnormal decrease of AMET before the post-processing in the ML region is 235 

effectively suppressed. The final classification result (Fig. 12c), based on AMET after post-processing, shows good 

performance in the ML region. 

In addition to the ML region, some other special MET with abnormal polarimetric features will also cause the 

misclassification of the algorithm (e.g., the threshold of the ZDR filter setting in the post-processing could be reached if wet 

hailstones are inside the radar sample volume). Therefore, the additional fuzzy logic echo classifier can also mitigate these 240 

problems to some extent by eliminating polarimetric features in the input. 

4 Evaluation 

To objectively evaluate the MetSignal_noise algorithm performance and its improvement compared with the MetSignal 

algorithm, a test set independent of the training set is selected and listed in Table 4 (the same extraction method as the 

training set). Two methods were used to compute skill: the fraction of correct classification for each echo type (FCC) and the 245 

overall Heidke skill score (HSS; Doswell et al. 1990), which is computed as: 

𝐻𝑆𝑆 = 0 12345
1,5 5,2 , 1,4 4,2

 ,          (3) 

where a represents the number of hits, b the false alarms, c the misses, and d the correct nulls. 

The skill results of the MetSignal and MetSignal_noise algorithms based on the test set are shown in Table 5. To facilitate 

the analysis of the dependence between the classification performance and SNR, the computation of the classification skill is 250 
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stratified by three SNR intervals (larger than 15 dB, 5–15 dB, and larger than 5 dB). By comparing the classification 

performance of the two algorithms in MET, it is found that the classification skill of the MetSignal_noise algorithm is 

significantly higher than that of the MetSignal algorithm, especially in the SNR interval greater than 5 dB and less than 15 

dB. This can verify that the MetSignal_noise algorithm can improve the classification performance of the MetSignal 

algorithm at low SNR by stratifying polarimetric features based on SNR intervals, and masking low SNR polarimetric 255 

variables in texture calculation. The better performance of the MetSignal_noise algorithm in the SNR interval greater than 15 

dB is mainly owed to the fact that membership functions of polarimetric features are more targeted after SNR stratification. 

Compared with the difference of classification skill in MET between the two algorithms, the difference in NMET is smaller. 

The classification performance of the MetSignal algorithm in NMET is slightly better than that of the MetSignal_noise 

algorithm in the SNR interval greater than 5 dB and less than 15 dB, which should be attributed to the misclassification of 260 

CA into MET in the potential ML regions after post-processing because non-polarimetric features (i.e., Z, V, and SD(Z)) 

cannot effectively distinguish CA from MET (Lakshmanan et al. 2007; Tang et al. 2014). The main reason for the lower 

classification skill of the MetSignal algorithm in the SNR interval greater than 15 dB is that the Z of AP is sometimes more 

than 11 dBZ at 3 km, and will be classified as MET in the post-processing of the MetSignal algorithm. 

In addition to evaluating the performance of the MetSignal and MetSignal_noise algorithms, it is also necessary to perform a 265 

sensitivity analysis of the four improvement steps in the MetSignal_noise algorithm, i.e., ignore one of the improvement 

steps and analyze its impact on classification performance. All sensitivity analyses were performed in the range of SNR 

larger than 5 dB, and included four parts: 1) SA1 (without the limitation of the use scope of V); 2) SA2 (without the decrease 

of CC in the region of GC and AP); 3) SA3 (without the improvements in weak signal region); and SA4 (without the 

adjustments of post-processing for ML region). The results of the sensitivity analysis are summarized in Table 5. Compared 270 

with SA3 and SA4, the SA1 and SA2 have less influence on the skill scores of the MetSignal_noise algorithm. The main 

reason is that the first two improvement steps mainly focus on NMET, but the classification performance of the MetSignal 

algorithm on NMET is very satisfactory (the difference of FCCNMET between MetSignal algorithm and the MetSignal_noise 

algorithm is only 0.9 % in the range of SNR larger than 5 dB). In addition, the weights of V and CC in the fuzzy logic echo 

classifier are small. Although the MetSignal_noise algorithm focuses on the improvement in the weak signal region, SA3 275 

does not have a substantial decrease in the skill scores compared to the MetSignal algorithm. The main reason is that the 

additional fuzzy logic echo classifier in the post-processing can correctly reclassify the misclassified MET in potential ML 

regions, where weak signal echoes appear frequently. The decrease of FCCMET in SA4 is mainly attributed to the 

misclassification in ML regions. However, due to the limited data affected by ML, the magnitude of the decrease is not very 

notable. The reason for the decrease of FCCNMET in SA4 is the same as the MetSignal algorithm; that is, some of AP is 280 

misclassified as MET after post-processing (MetSignal algorithm). From the HSS of the sensitivity analysis, it can be seen 

that ignoring any improvement step will reduce the overall score. Therefore, all the improvements have a positive effect on 

the classification performance, even if some improvements do not play an important role. 
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5 Conclusions 

An improved fuzzy logic method, MetSignal_noise, is proposed in this paper to distinguish between MET and NMET using 285 

polarimetric radar data from the NUIST-CDP. The most significant improvement over the raw version (MetSignal) is its 

better classification performance in weak signal regions by stratifying polarimetric features based on SNR intervals and 

masking low SNR polarimetric variables in texture calculation. In addition, the thresholds of Z and W are set to limit the 

scope of V in order to improve its classification performance and prevent its contribution to the misclassification of CA. An 

averaging method along the radial is also used to decrease the abnormally high value of CC from GC and AP. The post-290 

processing rule used to prevent misclassification in ML regions in the MetSignal algorithm sometimes reclassifies AP at far 

range into MET; therefore, it has been removed in the MetSignal_noise algorithm, and substituted by an additional fuzzy 

logic echo classifier without the polarimetric features input. 

An independent test set is selected to evaluate the algorithm performance; the results show that the MetSignal_noise 

algorithm is overall better than the MetSignal algorithm, especially in low SNR regions. However, the MetSignal_noise 295 

algorithm is slightly worse than the MetSignal algorithm in SNR intervals greater than 5 dB and less than 15 dB. This is 

because some CA are reclassified as MET after post-processing because non-polarimetric features cannot effectively 

distinguish CA from MET. Although increasing the height threshold of the potential ML region can improve this defect as 

CA does not usually appear at high altitudes (Wilson et al. 1994), this will cause some low ML regions to miss the post-

processing. At present, a CA identification method based on radial continuity is under development, which is expected to 300 

greatly reduce the risk of CA misclassification. The altitude of ML depends on the season and geographical location (Zhang 

and Qi 2010). Therefore, real-time ML identification algorithms (Giangrande et al. 2008; Zhang et al. 2008) or atmospheric 

environmental data (Tang et al. 2014) have been considered as additions to the MetSignal_noise algorithm in the following 

study to select a better height threshold. Moreover, the advanced clutter suppression algorithm based on signal processing 

(Hubbert et al. 2009a; Hubbert et al. 2009b; Torres et al. 2014) should be considered to be introduced into the NUIST-CDP. 305 

This is because when the ML appears at a lower altitude (frequently occurs in winter precipitation events), it will be fully 

mixed with the ground clutter. Then even if the height of ML is accurately located, the ML region may still be misclassified 

as NMET. The sensitivity analysis of the MetSignal_noise algorithm shows that all the improvements have a positive effect 

on the classification performance, even if some improvements are not significant. In addition, we plan to identify and 

eliminate the second-trip echo in a future work to further improve data quality. 310 
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TABLE 1: Main parameters of NUIST-CDP. 

Parameters NUIST-CDP 

Transmitter Klystron (5,600 MHz) 

Pulse width 0.5 us 

PRF 1,000 Hz 

Peak power 250 kW 

Receiver Simultaneous Horizontal/Vertical 

Noise figure 3 dB 

Dynamic range 90 dB 

Sensitivity -109 dBm 

Antenna feeder Paraboloid 

Antenna gain 48.5 dB 

Reflector diameter 8.5 m 

Beam width 0.54° 

 405 
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TABLE 2: The weight setting for each feature in the MetSignal algorithm. 

Feature Weight 

Z 1 

V 1 

CC 1 

SD(ZDR) 2 

SD(CC) 1 

 
  410 
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TABLE 3: List of events used for training membership functions (UTC). 

Date Description 

00:00–01:00 1 May 2017 AP 

01:00–02:00 2 May 2017 stratiform precipitation 

04:00–05:00 3 May 2017 CA 

14:00–15:00 3 May 2017 convective precipitation 

18:00–19:00 4 May 2017 GC 

20:00–21:00 5 May 2017 stratiform precipitation 

00:00–01:00 6 May 2017 GC 

08:00–09:00 6 May 2017 stratiform precipitation 

06:00–07:00 7 May 2017 CA 

18:00–19:00 7 May 2017 convective precipitation 

22:00–23:00 8 May 2017 GC 

01:00–02:00 11 May 2017 AP 

09:00–10:00 11 May 2017 convective precipitation 
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17:00–18:00 11 May 2017 stratiform precipitation 

13:00–14:00 12 May 2017 CA 

22:00–23:00 13 May 2017 AP 

06:00–07:00 14 May 2017 convective precipitation 

17:00–18:00 14 May 2017 stratiform precipitation 

01:00–02:00 15 May 2017 CA 

22:00–23:00 16 May 2017 AP 

14:00–15:00 18 May 2017 CA 

09:00–10:00 19 May 2017 stratiform precipitation 

08:00–09:00 20 May 2017 convective precipitation 
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TABLE 4: List of events used for evaluating algorithm performance (UTC). 415 

Date Description 

04:00–05:00 21 May 2017 CA 

09:00–10:00 22 May 2017 convective precipitation 

05:00–06:00 23 May 2017 stratiform precipitation 

22:00–23:00 23 May 2017 GC 

22:00–23:00 24 May 2017 AP 

22:00–23:00 26 May 2017 AP 

12:00–13:00 28 May 2017 CA 

05:00–06:00 30 May 2017 stratiform precipitation 

10:00–11:00 30 May 2017 convective precipitation 

22:00–23:00 31 May 2017 stratiform precipitation 
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TABLE 5: The classification performance of MetSignal and MetSignal_noise algorithms, and the sensitivity analysis of different 

improvement steps in MetSignal_noise algorithms. All skill scores were computed based on data in test set. 420 

 MetSignal MetSignal_noise sensitivity analysis 

5 < SNR < 15 [dB] SNR > 15 [dB] SNR > 5 [dB] 5 < SNR < 15 [dB] SNR > 15 [dB] SNR > 5 [dB] SA1 SA2 SA3 SA4 

FCCMET 79.8 % 98.7 % 86.8 % 99.2 % 99.7 % 99.4 % 99.1 % 99.1 % 95 % 97.1 % 

FCCNMET 95.8 % 96.4 % 96.2 % 94.9 % 98.4 % 97.1 % 96.6 % 96.8 % 96.6 % 96.4 % 

HSS 0.756 0.95 0.83 0.94 0.981 0.965 0.957 0.959 0.916 0.935 

 
  



20 
 

 

 
Figure 1: Block diagram of the MetSignal algorithm. 425 
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Figure 2: The normalized frequency distributions and membership functions of features. (a) Z, (b) V, (c) CC, (d) SD(ZDR), (e) 430 
SD(CC), and (f) SD(Z) (in the regions over 2.5 km in height). 
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 435 

Figure 3: The normalized frequency distributions and thresholds of AMET. (a) MetSignal, and (b) MetSignal_noise. 
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 440 
Figure 4: (a) Z, (b) AMET (MetSignal), (c) ZDR, (d) SD(ZDR), (e) MetSignal before post-processing, and (f) MetSignal after post-
processing. All from the NUIST-CDP at 02:23 UTC 7 May 2017 from an elevation of 2.4°. 
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 445 

 

Figure 5: (a) The 2D histogram of V vs. Z of NMET. (b) The 2D histogram of V vs. W of NMET. (c) The normalized frequency 
distribution and membership function of V after setting thresholds of Z and W. 
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 450 

 

Figure 6: (a) Z, (b) CC, and (c) CC after averaging along the radial using a 1.5-km window. All from the NUIST-CDP at 23:53 
UTC 24 May 2017 from an elevation of 0.5°. 
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Figure 7: (a) AMET (MetSignal), (b) Z, (c) SNR, (d) ZDR, (e) CC, (f) SD(ZDR), and (g) SD(CC). All from the NUIST-CDP at 13:24 
UTC 30 May 2017 from an elevation of 3.4°. 460 
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Figure 8: The boxplot of SNR vs. polarimetric features of MET. (a) ZDR, (b) CC, (c) SD(ZDR), and (d) SD(CC). 
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Figure 9: The normalized frequency distributions and membership functions of polarimetric features stratified by SNR. (a) CC (5 
< SNR < 15 dB), (b) CC (SNR >15 dB), (c) SD(ZDR) (5 < SNR < 15 dB), (d) SD(ZDR) (SNR >15 dB), (e) SD(CC) (5 < SNR < 15 470 
dB), and (f) SD(CC) (SNR >15 dB). 
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Figure 10: (a) AMET (MetSignal_noise), (b) AMET (MetSignal) after masking SNR less than 5 dB, (c) ZDR after masking SNR less 
than 5 dB, (d) CC after averaging along the radial using a 1.5-km window and masking SNR less than 5 dB, (e) SD(ZDR) after 480 
masking SNR less than 5 dB, and (f) SD(CC) after masking SNR less than 5 dB. All from the NUIST-CDP at 1324 UTC 30 May 
2017 from an elevation of 3.4°. 
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Figure 11: (a) AMET (MetSignal), (b) MetSignal, and (c) The CAPPI of Z at the altitude of 3 km. (a) and (b) from the NUIST-CDP 
at 23:53 UTC 24 May 2017 from an elevation of 0.5° while (c) at 23:46 UTC 24 May 2017 (the previous volume scan of (a) and (b)). 490 
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 495 

 

 

Figure 12: (a) AMET (MetSignal_noise) after post-processing, (b) AMET (MetSignal_noise) before post-processing, (c) 
MetSignal_noise, (d) Z, (e) ZDR, and (f) CC. All from the NUIST-CDP at 10:49 UTC 23 May 2017 from an elevation of 2.4°. 


