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Abstract. The US Department of Energy (DOE) Atmospheric Radiation Measurements (ARM) facility has been at the 

forefront of millimeter wavelength radar development and operations since the late 1990’s. The operational performance of 

the ARM cloud radar network is very high; however, the calibration of the historical record is not well established. Here, a 

well-characterized spaceborne 94-GHz cloud profiling radar (CloudSat) is used to characterize the calibration of the ARM 

cloud radars. The calibration extends from 2007 to 2017 and includes both fixed and mobile deployments. Collectively, over 15 

43 years of ARM profiling cloud radar observations are compared to CloudSat and the calibration offsets are reported as a 

function of time using a sliding window of 6 months. The study also provides the calibration offsets for each operating mode 

of the ARM cloud radars. Overall, significant calibration offsets are found that exceed the uncertainty of the technique (1-2 

dB). The findings of this study are critical to past, on-going and planned studies of cloud and precipitation and should assist 

the DOE ARM to build a legacy decadal ground-based cloud radar dataset for global climate model validation. 20 

1 Introduction 

The first millimeter wavelength cloud radars (MMCR, [Moran et al., 1998]) of the U.S. Department of Energy Atmospheric 

Radiation Measurement (ARM) facility were installed at the Tropical Western Pacific (TWP) Manus and Southern Great Plains 

(SGP) sites in 1996. Since then, the ARM facility has been at the frontier of short-wavelength radar development and operations 

for over two decades [Kollias et al., 2016].  At the beginning, emphasis was placed on demonstrating high operational stability 25 

and in developing standard hydrometeor location and spectral products ([Clothiaux et al., 2001] [Kollias et al., 2007b]).  The 

ARM facility MMCR calibration efforts were limited to subcomponent characterization (i.e. antenna gain), monitoring of the 

transmitted peak power and infrequent detailed characterization of the radar receiver by injecting signal with known amplitude. 

In 2005, the ARM facility started the deployment of its mobile facilities and the gradual modernization of the MMCR receiver. 

This led to the development of the W-band ARM Cloud Radar (WACR).  In 2009, the ARM facility embarked in a significant 30 



2 
 

expansion of its radar facilities [Mather and Voyles, 2013]. The expansion included the addition of scanning mm- and cm-

wavelength radars with Doppler and polarimetric capabilities ([Kollias et al., 2014a], [North et al., 2017]) and the development 

of the next generation profiling cloud radar, the Ka-band ARM Zenith-pointing Radar (KAZR) and its upgraded second 

generation (KAZR2).  

 5 

Part of the motivation for the ARM radar expansion, was to improve cloud microphysical retrievals through the use of dual-

wavelength ratios, that is, making use of the relative difference in radar scattering at different wavelengths. This difference 

signal is often only a few dB and as one might expect, this requirement brought the characterization of the ARM radar 

calibration to focus. Early comparisons between collocated profiling ARM cloud radar indicated differences in reported radar 

reflectivity profiles. This hardly came as a surprise to those involved in radar characterization [Atlas, 2002]. Soon after the 10 

National Aeronautics and Space Administration (NASA) Tropical Rainfall Measuring Mission (TRMM) spaceborne radar was 

in orbit, its remarkable stability made it a calibration standard and its comparison to the ground-based observations of the  

Weather Surveillance Radar -1998 Doppler (WSR-88D) network uncovered several issues with the calibration of the radars 

despite the mandate of the WSR-88D network on quantitative precipitation estimation and the implementation of routine 

calibration procedures [Bolen and Chandrasekar, 2000]. On the other hand, establishing routine calibration procedures based 15 

on engineering measurements or natural targets for the ARM profiling cloud radars is a far more challenging task. The systems 

are only vertically pointing, thus, makes the use of corner reflectors or metal spheres difficult; designed with sensitive receivers 

that can detect very low radar reflectivity targets but saturate in rain, thus, making the use of disdrometers challenging ([Gage 

et al., 2000]); operate in climate regimes that often have no or little precipitation and suffer from considerable gaseous and 

hydrometeor attenuation ([Kollias et al., 2005]; [Kollias et al., 2007a]). Furthermore, the four different profiling cloud radars 20 

(MMCR, WACR, KAZR, and KAZR2) were deployed in different climatological regimes, for small periods of time (9-24 

months mobile deployments) and often with no gaps between deployments, thus, making it even more challenging to develop 

calibration standards. At present, the ARM facility employs a larger radar operations and engineering group and has set 

procedures for characterizing the ARM radars using a combination of subsystems calibrations, corner reflectors and natural 

targets. However, these methods are still not fully operational today and certainly not applicable to the historic ARM profiling 25 

cloud radar dataset that spans over two decades.   

 

Luckily, NASA’s CloudSat mission, a 94-GHz spaceborne Cloud Profiling Radar (CPR) was launched in April 2006 

([Stephens et al., 2002]; [Tanelli et al., 2008]) on a circular sun-synchronous polar orbit providing coverage from 82º S to 82º 

N and is still operational today. In 2021, another 94-GHz spaceborne CPR with Doppler capability will be launched as part of 30 

the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) satellite a joint European Space Agency and Japanese 

Aerospace Exploration Agency mission ([Illingworth et al., 2015]; [Kollias et al., 2014b]). Over the 12-year mission of 

CloudSat, end-to-end system calibration is performed using measured backscatter off the ocean surface and the calibration of 

the CloudSat reflectivity measurements is accurate within 0.5 - 1 dB ([Li et al., 2005]; [Tanelli et al., 2008]). The CPR 
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calibration quality and stability was exploited by [Protat et al., 2011] who, first demonstrated, that using a statistical approach, 

CloudSat could be used as a global radar calibrator for ground-based profiling cloud radars. In the Protat et al., 2011 study, 

two ground-based radars, the MMCR at the North Slope of Alaska (NSA) Barrow ARM site and another 35-GHz radar system 

at Cabauw, The Netherlands were calibrated using CloudSat over a short period of time (6-12 months).  

 5 

In section 2, the ARM facility cloud radars are presented and the Protat et al. [2011] methodology is revised and improved. 

Section 3 presents the results from the application of the calibration procedure to almost the entire record of ARM profiling 

cloud radar observations at the fixed and mobile sites from 2007 to the end of 2017 (at total of 43.5 years of radar observations). 

Finally, section 4 presents a summary on our finding and their implications. The application of the technique to such a diverse 

set of radar systems and locations is expected to demonstrate the applicability of this approach to existing profiling radar 10 

networks such as the ARM facility and the future European research infrastructure network for the observations of Aerosol, 

Clouds and Trace gases (ACTRIS). 
 

2 Methodology 

 15 

Here, the ARM and CloudSat CPR measurements and the methodology used for the comparison between the ground-based 

and space-based observations are described 

 

2.1 ARM Cloud Radar Measurements 

The record of ARM profiling radar observations compared to CloudSat is detailed in Table 1. In total, ARM cloud radar 20 

observations from 14 different locations (Fig. 1) with four different radar systems (MMCR, WACR, KAZR, KAZR2) for a 

total of 43 years and 8 months long record are analysed. At couple of sites, the calibration record starts as early as the launch 

of CloudSat (mid 2006) and in several sites stops at the end of 2017. For much of the record analysed here, the WACR was 

the primary profiling cloud radar of the first ARM Mobile Facility (AMF) and as such have been deployed in different 

climatological locations. A marine version of the WACR (M-WACR) with smaller antenna and a ship-motion stabilizer has 25 

been the primary radar for marine deployments of the second AMF (AMF2). The WACR does not use pulse compression and 

operates only in co-polarization and cross-polarization modes. The single operating mode of the WACR combined with the 

fact that it uses the same frequency as the CloudSat CPR makes their comparison relatively straightforward. The MMCR used 

a complicated operating mode sequence ([Moran et al., 1998]; [Kollias et al., 2007b]) in order to meet the requirement of 

detecting all radiatively important clouds with radar reflectivity above -50 dBZ throughout the troposphere. The mode 30 

sequence includes a long pulse compression mode for detecting high level clouds (hereafter Mode 2), a very short pulse for 

boundary layer clouds detection, a nominal length general mode that covers all the troposphere (hereafter Mode 3) and a 

precipitation mode that provides additional receiver protection to avoid signal saturation. These modes operated in an 
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interleaved sequence. The KAZR system provides the chirp (hereafter mode MD) and general mode (hereafter mode GE) at 

the same time using a dual radar receiver channel with enough frequency separation to enable detection of two pulses 

transmitted at the same trigger. Finally, the KAZR2 is an improved hardware version of the KAZR, which maintains the same 

operating modes as the KAZR but introduces also a precipitation mode that transmits a reduced amplitude pulse to avoid 

receiver saturation by strong precipitation returns. The use of different operating modes comes at the expense of frequent range 5 

sidelobe artifacts from high reflectivity targets from the use of pulse compression and possible differences in the reported radar 

reflectivity from the different modes. The latter is commonly observed in radar systems that operate with different modes.  

 

Therefore, as a prelude to comparing CloudSat and ARM, we begin with a comparison of reflectivity values between ARM 

radar modes. As will become clear later, changes in the intramode reflectivity differences is often, though not always, indicative 10 

of changes in overall calibration. A detailed comparison between the reported radar reflectivities from all the radar systems 

with more than one operating mode was conducted (Fig. 2). The difference between mode 3 and mode 2 is reported for the 

MMCR systems and the difference between the GE and MD modes is reported for the KAZR and KAZR2 systems. The 

difference [dB] in the measured radar reflectivity between two modes is estimated at heights where both modes provide 

observations (e.g., the MMCR mode 2 does not provide data below 3.6 km) with high Signal-to-Noise (SNR > 0 dB), and at 15 

ranges where the averaged profiles were correlated to filter our ranges where big discrepancies due to radar artefacts were 

present. At each height, the average reflectivity profile of each mode (in linear units) is computed using a 1-month running 

window. The mean of the differences in the averaged radar reflectivity profiles between the two modes is computed and shown 

as a function time in Fig. 2. Overall, the mode reflectivity differences are small (±2 dB) and only occasionally are the 

differences much higher than 2 dB. While the absolute values of mode difference in the next generation of ARM cloud profiling 20 

radars (KAZR and KAZR2) is often similar, arguably there are fewer jumps or rapid changes. In general, it is difficult to 

identify which mode has a better calibration, because as will be shown, the calibration difference between CloudSat and ARM 

is typically larger than ±2 dB. 

 

2.2 The ARM – CloudSat comparison methodology 25 

The comparisons between the ARM radars (MMCR, KAZR and KAZR2) and the CloudSat CPR are performed independently 

for two modes for the MMCR (2 and 3) and two modes for the KAZR and KAZR2 (MD and GE). The approach is similar to 

that described in [Protat et al., 2011]. The technique consists in a statistical comparison of the mean vertical profiles of non-

precipitating ice cloud radar reflectivities from the ground-based and spaceborne radar observations. One of the improvements 

introduced in this study is that the averaging of the radar reflectivity value at each height in performed in linear space (Z) and 30 

not dBZ as in [Protat et al., 2011]. These averaged profiles use data extracted from CloudSat overpasses in a radius of 200 km 

around the ARM site and ±1 h time lag around the overpass time for the ground-based radars. Another improvement introduced 

in this study is a rigorous selection of the CloudSat overpasses within a certain radius to avoid any errors in the estimation of 
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the proximity of CloudSat columns to the ARM site location. Finally, the methodology investigates the difference between the 

ARM and CloudSat profiles in a large range of calibration offsets from -15 to +15 dB with a fine spacing of 0.1 dB rather than 

using an iterative process as in [Protat et al., 2011]. The radar reflectivity difference between the ARM and CloudSat profiles 

is evaluated only at the range of heights where enough samples from both sensors are available.   

 5 

Several factors need to be taken into account to achieve an objective statistical comparison between ground-based and space-

based observations: frequency of each radar, sensitivity, viewing geometry, attenuation correction, etc. The approximations to 

deal with all these factors introduce errors that are difficult to assess. The necessary steps required to find the calibration offset 

for each radar are described here, following the algorithm flow outlined in Fig 3. 

 10 

The CloudSat overpasses are predicted using the two-line element set (TLE) files that encode all necessary information to 

define the latitude and longitude of the satellite over the Earth’s surface at any given time. Using these files, the satellite 

position is computed with high resolution in time and the distances to each ARM radar location are used to define the overpass. 

Only CloudSat data passing in a radius between 100 and 300 km around the ARM radar location are extracted. Knowing the 

orbits of the overpasses, the CloudSat respective files are read. In this present study, the data from the fourth and fifth release 15 

(R04 and R05) of the 2B-GEOPROF product are used to extract the CPR radar reflectivity, height, DEM elevation, CPR cloud 

mask, gaseous attenuation and data quality flags. In addition, the height of the freezing level is extracted from the 2C-PRECIP-

COLUMN product. Fig 4a shows the probability density function (pdf) of the freezing level height at the North Slope of Alaska 

(NSA). 

 20 

All CPR observations within 500 m from Earth’s surface are removed to avoid residual surface clutter contaminations. In 

addition, all CPR detections at very low Signal-to-Ratio (SNR) conditions (CPR Cloud Mask < 20) and poor data quality 

points (Data Quality ≠ 0) are removed. 

 

The gaseous-attenuation correction reported in the CloudSat files is added to the reflectivity profile. The CPR reflectivity is 25 

normalized for the differences in the values used for the dielectric constant (K) using Eq. 1. CloudSat uses a value of 0.75 and 

the ARM facility uses a value of 0.99 for all MMCR, 0.84 for all WACR and 0.88 for all KAZR. 

 

Z"#$%&'() = Z"#$%&'() − 10 ∙ log23 4
K678

K"#$%&'()
9																		(1) 

 30 

On the ARM radar data processing, only data with ±1h time lag around the overpass exact time are used. All radar 

reflectivity values measured at SNR < - 15 dB conditions are removed. The ARM radar reflectivities are corrected for 

gaseous attenuation using the top-down gaseous attenuation profile (G>?@ABC) available in the CloudSat data products. The 
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G>?@ABC estimates in the operational CloudSat products are based on [Liebe 1989]. First, the profile is inverted DG>?@ABCEFG H to 

represent the gaseous attenuation for a ground-based system. If the ground-based system is the WACR (same frequency with 

CloudSat), no further conversion is needed and the G"#$%&'()EFG  is used to correct the WACR radar reflectivities. If the ground-

based system is a 35-GHz radar (MMCR, KAZR, KAZR2), then a conversion factor C is used to convert the G>?@ABCEFG  to 35-

GHz gaseous attenuation (GJK@ABC) using Eq. 2.  5 

 

GJK@ABC =
G>?@ABCEFG

C 																							(2) 

 

The conversion factor is derived using [Rosenkranz, 1998] and a large number of ARM sounding and its average value 

depends on the ARM radar location (i.e., 1.45±0.5 for AWR, 2.08±0.5  for NSA, OLI and TMP, 3.36±0.5  for ENA and SGP 10 

and 4.03±0.5  for TWP) . Considering that the averaged integrated two-way attenuation at 35-GHz at these locations is 0.4 

dB for AWR, NSA, OLI and TMP, 0.6 dB for ENA and SGP and 1.0 for TWP, the uncertainty introduced by using the 

conversion factor is 0.13 dB at AWR, 0.09 dB at NSA, OLI and TMP, 0.15 dB at ENA and SGP and 0.2 dB at the TWP 

sites. If the ARM cloud radar operates at 35-GHz, another important step is to address the difference in the scattering of ice 

particles at 35- and 94-GHz. Here, we use the relationship introduce by [Protat et al., 2010], that is applied to reflectivity 15 

values lower than 30 dBZ  and it is shown in Eq. 3: 

 

dBZ>?ABC = dBZJKABC − 10@2O.QRK2 ∙ (dBZJKABC + 100)Q.?>RJ															(3) 

 

Eq. 3 is based on assumption regarding the mas-diameter relationship of the ice particles used in the Mie scattering calculations. 20 

According to Eq. 3, differences in the radar reflectivity at 35- and 94-GHz start exceeding 1-dB at about 0 dBZ at 35-GHz. In 

the analysis presented here, the vast majority of the 35-GHz radar ice reflectivities used are below 0 dBZ. Thus, any uncertainty 

introduced by using Eq. 3 is considered negligible.  Subsequently, the ARM radar reflectivities are averaged to 1-min using 

linear averaging and 250 m vertical resolution to best match the CloudSat footprint (~1.4 km) and range resolution. If there 

are data from both radars for a given overpass, the following processing prepares the data for the final statistical comparison: 25 

 

1) The profiles are carefully separated in 2 groups: precipitating and non-precipitating ice clouds. Ice clouds are assumed at 

heights above the freezing level while liquid particles are assumed below. An ARM column is considered to be 

precipitating if at least 10% of the range gates below the freezing level report echoes higher than -10 dBZ. For CloudSat 

columns, a maximum of 35% of the heights below the freezing level are allowed to report echoes higher than -10 dBZ 30 

before the column is characterized as precipitating. Precipitating profiles are eliminated from the ARM-CloudSat 

comparison since they are not attenuated in the same way from nadir or zenith viewing geometries. This conservative 

selection will ensure that only non-precipitating ice clouds observations, that have negligible hydrometeor attenuation are 
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used. The threshold selection 35% for CloudSat is based on an extensive sensitivity study. In particular, we estimated the 

sensitivity of calibration offset for different allowed % (from 0 to 100%) of CloudSat echoes with radar reflectivity exceed 

-10 dBZ below the freezing level. The calibration offset exhibited systematic biases for threshold values higher than 35%. 

Thus, the threshold value of 35% was selected to maximize the number of CloudSat columns used and at the same time 

eliminate the possibility of systematic biases. 5 

2) The performance of the most sensitive radar is degraded to match the minimum detectable signal (MDS) of the least 

sensitive radar. Due to the large distance between CloudSat and the Earth’s troposphere, the CloudSat MDS is practically 

constant around -30 dBZ throughout the troposphere, while the ARM radar MDS decreases with the square of the range 

from the radar.   

3) If the ARM radar operates at 35-GHz, the radar reflectivity is converted to 94-GHz radar reflectivity using Eq. 3.  10 

4) Using all available columns within the selected time window (6 months), a reflectivity frequency by altitude diagram 

(CFAD) is constructed for each radar (Fig. 4b,c). This diagram will be used to generate the mean vertical reflectivity 

profile used in the final comparison (Fig. 4e). 

5) Steps 1 and 3 are repeated for all possible calibration offsets, from -15 to +15 dBZ with increments of 0.1 dBZ. At each 

iteration, the calibration offset is added to the original profile prior to the frequency conversion (prior to step 3) and 1 15 

CFAD is constructed for each calibration offset by accumulating columns from all overpasses.  

6) Each CFAD constructed with the previous methodology is representative of one averaged profile. As we have N 

calibration offsets, we have N averaged profiles for each CloudSat and ARM radar (Fig 4e).  

7) The final calibration result is found by computing the root mean square error (RMSE) between the profiles of each radar 

for each calibration and at heights with enough data points (at least 3% of the total sample size). The calibration offset 20 

representative of the profiles with the least RMSE will be the final calibration result (Fig. 4f). 

8) The probability density function (pdf) of cloud top heights (Fig. 4d) is also used for verification purposes, assuming that 

occurrences of the highest clouds should be similar when the ground and spaceborne radars have equal sensitivity, [Protat 

et al., 2010]. 

 25 

The most important factor in determining our ability to perform a good comparison is the number of available CloudSat 

profiles. Several temporal windows were considered, and the decision was made to use a time window of 6 months throughout 

this study. In addition to the length of the time window, the impact of the maximum distance of the CloudSat observations 

from the ARM site (we tested values from 100 to 300 km) was investigated. In particular, we examined the sensitivity of the 

estimated calibration offset to the selected maximum distance of the CloudSat observations. Using difference distance values 30 

from 100 to 300 km every 25 km at different sites, we investigated the behavior of the estimated calibration offsets. Our 

analysis indicated that a maximum distance of 200 km was optimum for most ARM locations and therefore, was selected as a 

fixed value throughout the study. Fig. 5 shows the number of CloudSat profiles with suitable measurements (non-precipitating 

ice) with a 6-month window for all the ARM fixed and mobile sites as a function of time. As expected, there is strong seasonal 
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variability that is dictated by the seasonal cloud type and atmospheric temperature profile variability. Of particular interest is 

the availability of suitable CloudSat profiles at the NSA. There is a significant decrease in the number of available CloudSat 

profiles during the period when the ARM facility transited from the MMCR to the KAZR radar system. The reduction in the 

number of CloudSat profiles is not related to the changes of the ARM radar system (these two systems have similar MDS) nor 

is related to significant changes in the cloud climatology at the NSA. The transition from the MMCR to the KAZR system 5 

coincided with the battery anomaly that occurred on CloudSat in 2011 and resulted in CloudSat operating since then only 

during daylight conditions, thus, effectively halving the possible number of CloudSat columns ([Stephens et al., 2018]). The 

daylight-only operations of CloudSat challenged our ability to collect a good size sample of column especially at very high 

latitudes (e.g. ARM West Antarctic Radiation Experiment (AWR) during the southern hemisphere winter).  

 10 

A total of 653 ARM – CloudSat comparisons were performed using a running 6-month time window.  The relationship between 

the minimum RMSE value achieved in a particular ARM – CloudSat comparison and the corresponding number of CloudSat 

columns is shown in Fig. 6. As expected, the RMSE value decreases with the number of samples. The analysis of the entire 

ARM-CloudSat comparison record suggests that when the number of CloudSat columns is less than 500, the comparison is 

difficult to perform.  In addition to the value of RMSE and the number of CloudSat columns, the goodness of the fit between 15 

the ARM and CloudSat cloud top height pdf’s is evaluated when the minimum RMSE is achieved. Out of the possible 653 

calibration coefficients, 616 were accepted, i.e. 94.3% success rate.   

 

3 Results 

First, the results of the ARM – CloudSat comparison at the two sites that feature the most recently acquired profiling cloud 20 
radar systems of the ARM facility are discussed. The two KAZR2 systems are located at critical climatological locations (ENA 
and OLI) and are the primary source of cloud observations. The OLI KAZR2 is compared against the CloudSat CPR for the 
period 09/2015 to 12/2017. Fig. 7a shows the calibration offset (dB) we need to add to the MD mode observation to minimize 
the RMSE with the CloudSat observations. If the calibration offset is positive, this suggests that the MD mode underestimates 
the radar reflectivity compared to CloudSat.  Although a 6-month running time window is used, considerable temporal 25 
variability is observed especially at the beginning of the period.  At the beginning of the period, -2.3 dB need to be added to 
the ARM observations to statistically minimize their differences against the CloudSat observations. During the first 4 months 
of 2016, + 3.4 to + 4.6 dB need to be added. The last estimate of this 4-month period is higher (+6.9 dB) and coincides with a 
period when considerable changes occurred in the radar hardware/software and the calibration offset is back to -2.3 dB. 
Through our analysis, every time the ARM radar hardware and/or software (including receiver signal processing) underwent 30 
a change, we noticed that the ARM-CloudSat comparison where challenging to achieve. This is attributed to the fact that part 
of the 6-month observing period uses observations with one configuration and the other part use observations with a different 
configuration. After this period, the calibration offset changes slowly increasing to +1-3 dB in early 2017 and during the latter 
part of 2017 the calibration offset is less than +0.5 dB.  
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Fig. 7b shows the calibration offset for both KAZR2 operating modes (MD and GE) using the ARM – CloudSat comparison 
methodology applied to the recorded radar reflectivities of each mode. Overall, the calibration offsets closely follow each other 
throughout the observing period. During the first six months, the calibration offset for the MD is about 1 dB higher, suggesting 
that the MD reported on average 1-2 dB lower radar reflectivities than the GE mode. This relationship is reversed around 5 
04/2016 and until the end of the observing period, the calibration offset for the MD mode is now 1-2 dB lower than that 
estimated for the GE mode. Noticeably, the reversal in relationship of the calibration offsets coincides with the period that we 
argued earlier coincides with changes in the radar configuration around 04/2016. During that period, the number of FFTs in 
the recorded radar Doppler spectra changed from 256 to 512 and the calibration was updated (Joseph Hardin, ARM radar 
engineer, personal communication). 10 
 
As discussed in section 2.1 the ARM MD and GE modes observations can be used to estimate their relative offset. Fig. 7c 
shows the difference (MD – GE) in dB of the two KAZR2 operating modes (black line). On the same plot, the difference (MD 
– GE) in dB as seen from CloudSat is also reported (circles).  Overall, a very good agreement is found between the two 
estimates of the radar reflectivity offset between the two KAZR2 modes. This suggests that the ARM – CloudSat comparison 15 
can provide high quality information regarding the absolute and relative calibration offsets between radar modes. 
 
The second KAZR2 system is operated at the ENA since the fall of 2015. Fig. 8 shows two calibration offset (dB) values for 
the KAZR 2 MD (white symbols). Contrary to the OLI site, the ENA site cloud and temperature climatology do not favor the 
collection of a large number of suitable CloudSat columns for calibration (Fig. 5). During the first 9 months of operation 20 
(10/2015 -07/2016) the calibration offset was very small (+0.3 dB) indicating that the radar was well calibrated. During the 
last 10 months of the observing period (01/2017 – 10/2017), the calibration offset is +5.2 dB.  In an attempt to independently 
verify the observed trend in the KAZR2 calibration offset, the Parsivel disdrometer particle size distribution (PSD) 
measurements available at 1-min temporal resolution are used. The difference between the Parsivel-derived radar reflectivity 
and the KAZR2 radar reflectivity is shown on Fig. 8 (white dotted line) and suggests a trend, similar to the calibration offset 25 
estimated from the ARM - CloudSat comparison.  Additional information regarding the estimation of the KAZR2 calibration 
offset using the Parsivel disdrometer can be found in Appendix A. 
 
The ARM TWP Darwin, Manus and Nauru sites are located deep in the tropics and featured MMCR systems until the first 

quarter of 2011. Only at two sites (Darwin and Manus) the MMCR systems were replaced by KAZR systems. All TWP sites 30 

terminated operations in 2014 ([Long et al., 2016]). The calibration offsets for the period 2007 to 2014 at the TWP sites are 

shown in Fig. 9.   The calibration offsets record is not continuous since the number of CloudSat columns is affected by the 

significant inter- and intraseasonal cloud and precipitation variability driven by large-scale features at different temporal-

spatial scales such as El-Nino Southern Oscillation, the Madden-Julian Oscillation, and the movement of the intertropical 

convergence zone (ITCZ). The operational record of the TWP systems is also intermittent due to the logistical challenges 35 

associated with the physical presence of ARM engineers at these sites; delays associated with the delivery of hardware 

components at the TWP sites, and poor communications for instrument monitoring especially at Manus and Nauru ([Long et 
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al., 2016]). Overall, the calibration offsets are within ± 6 dB. The ARM intramode differences in the reported radar reflectivities 

are also reported (gray circles) to help interpret the estimated calibration offset trends. The Darwin MMCR exhibits the highest 

variability in the ARM intramode differences suggesting frequent changes in the MMCR hardware and/or software. During 

these periods, no reliable ARM-CloudSat calibration offsets are estimated. [Liu et al., 2009] compared radar reflectivity 

histograms from the Darwin MMCR and CloudSat and their analysis support the suggestion that the MMCR calibration was 5 

low at Darwin in the 2006-2007 wet season. The Darwin KAZR GE calibration offset record is very sparse due to long periods 

with no observations. Noticeably, only GE mode, observations are available at the Darwin and Manus sites. At Manus, the 

ARM intramode differences are small (less than 1 dB) and remain stable over a long period (3.5 years). As a result, we have 

calibration offset estimates for the entire observed period. The Manus MMCR 2 calibration offset gradually drifts from 

negative in 2007 to near zero for almost all 2008, then increases to +7 dB in early 2009 and after the middle of 2009 to the end 10 

of its observational record slowly fluctuates ± 3 dB.  The KAZR GE calibration record is also sparse with a small calibration 

offset during its early operation and a +5 dB offset during the late period of its operational record at Manus. Finally, the record 

of MMCR observations at Nauru that overlaps with CloudSat operations in space is short (1.5 year). During that period, the 

ARM intramode differences fluctuate between two stages (+1.5 dB and near 0 dB). The ARM – CloudSat calibration offsets 

also fluctuate temporally in a similar manner between two stages (+5-6 dB and 2-3 dB).  No KAZR observations were 15 

conducted at Nauru.  

 
The ARM NSA and SGP sites are the two longest operating sites of the ARM facility ([Sisterson et al., 2016]; [Verlinde et al., 
2016]). The NSA represents a typical Arctic environment with very low temperatures while the SGP has been the observational 
centerpiece and anchor of the ARM facility since 1992. The calibration offsets for the period 2008 to 2017 at these two sites 20 
along with the ARM intramode differences are shown in Fig. 10. The NSA MMCR 2 significantly overestimates the radar 
reflectivity and a calibration offset between -4.4 to -8.4 dB (gradually increasing from 2008 to 2009) is required to minimize 
the RMSE when compared to CloudSat. This large calibration offset is consistent with the impact of corrosion on the 
waveguide that was attached to the antenna feed effectively breaking the connection between the waveguide and the feed. This 
hardware failure went unobserved until was accidently discovered during a system inspection ([Kollias et al., 2016]).  During 25 
the same period, the ARM intramode difference (Mode 3 – Mode 2) gradually increases from 0.8 to 2.5 dB.  The NSA KAZR 
MD mode is compared to Cloudsat for the period 2012 to 2017. During the first two years, the KAZR MD calibration offset 
is for the most part within ± 1 dB suggesting that the radar was well calibrated. During the 2014-2017 period, the KAZR MD 
mode calibration offset is between +3 to +6 dB and the ARM intramode (GE – MD) difference is around -1.7 dB. The SGP 
MMCR mode 2 calibration offset is significant during the period 2008-2011. In 2008 the calibration offset is between +7 and 30 
+10 dB, -3.5 to -4.5 dB in the early part of 2009 and +4 to +6 dB for remainder of the operating period of the MMCR at the 
SGP. The ARM intramode difference (Mode 3 – Mode 2) is for the most part between +0.5 to 0.9 dB. The SGP KAZR MD 
mode is compared to Cloudsat for the period 06/2011 to 12/2017. The calibration offset values are positive (+3 to +6 dB) at 
the beginning and then negative (-1 to -6 dB) during the 2014-2017 period. The ARM intramode differences (GE – MD) are 
between ± 1 dB and small shifts in their magnitude and sign correlate with periods were the calibration offset changes. 35 
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The ARM Mobile Facility (AMF) is a portable atmospheric observatory equipped with a sophisticated suite of instruments 

designed to collect essential data from cloudy and clear atmospheres in important but under-sampled climatic regions. As such, 

the AMF deployments are often the only source for ground-based observations of clouds and precipitation at some of the AMF 

deployments ([Miller et al., 2016]). Here, we report the calibration offsets for 5 deployments of the first ARM Mobile Facility 

(AMF1) and 2 deployments of the second ARM Mobile Facility (AMF2). The results are shown in Fig. 11. The AMF1 5 

deployments are: Niger, West Africa (NIM), Black Forrest, Germany (FKB), Graciosa island, Azores (GRW), Cape Cod, 

Massachusetts (PVC), and Manicaparu, Brazil (MAO) and the AMF2 deployments are: Hyytiälä, Finland (TMP) and 

McMurdo Station, Antartica (AWR). The AMF deployments are typically one-year deployments, except for the GRW and 

MAO deployments that lasted for two years. At the AMF1 deployments the main profiling cloud radar system was the WACR 

and at the AMF2 deployments a KAZR. The short duration of the mobile deployments coupled with the time needed to relocate 10 

the AMF’s to their next field location makes the AMF calibration offset record sparse. At NIM, the AMF deployment was 

over 13 months long but the WACR was deployed for only 8 months and two WACR calibration offset are estimated (+4.4 

and +4.0 dB). The following year, during the FKB AMF deployment, four WACR calibration offsets are estimated (+3.7, +3.8, 

+2.8 and 2.4 dB). During the 2-year deployment at GRW the WACR calibration offset started from a low value of +1.4 dB 

and gradually rose to +3.2 dB. At PVC, the WACR calibration offset was between +3.3 to +3.5 dB. During the same period, 15 

the WACR was deployed also in India and China, however, the short record of WACR observations during these deployments 

does not allow to conduct an ARM - CloudSat comparisons. Despite the large number of field deployments, the WACR 

calibration did not change a lot. However, during the 2-year MAO deployment, the estimated calibration offsets were higher 

and more variable (+3.9 to +8.5 dB).  

 20 

The AMF2 was established later than the AMF1, thus, its deployment record is shorter. The AMF2 deployment in Hyytiälä, 

Finland (TMP) has been considered as the first successful deployment of triple-frequency radar observations by the ARM 

facility ([Kneifel et al., 2015]) with well calibrated radar systems. The ARM – CloudSat comparison confirms that the KAZR 

MD mode was well calibrated during the TMP deployment and the calibration offsets are -0.2, +1.0 and +1.6 dB (Fig. 11). 

During the most recent AMF2 deployment at McMurdo Station (AWR), significant calibration offset was found. Due to 25 

surrounding elevated topography, AWR is the only site where additional post-processing of the CloudSat observations was 

required to eliminate antenna sidelobe contributions. In addition, the AWR high latitude location in combination with the 

restriction of daylight-only CloudSat observations limited the number of available CloudSat samples especially during the 

southern hemisphere winter (Fig. 5). As a result, most of the CloudSat samples are available at the beginning and the end of 

the field campaign. At the beginning, the calibration offset is +7.7 dB and during the latter part of the mobile deployment, it 30 

is between +3.5 and +5.1 dB (Fig. 11). The ARM intramode difference (GE – MD) is -1.2 dB at the beginning of the period 

and -0.65 dB later in the deployment.  
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4 Summary and Discussion 

 

The DOE ARM facility has been at the forefront of the development and application of profiling and scanning millimeter 

wavelength radars for over 20 years. The long record of ARM cloud radar observations represents a unique dataset that 

provides a bottom-up, high resolution view of clouds and precipitation at a number of locations around the globe. The 5 

characterization of a decade long cloud radar record from multiple locations is a necessary step for the development of unbiased 

statistics on cloud occurrence and the estimation of microphysical parameters using retrieval techniques. Once the 

characterization and reprocessing of the ARM radar observations is completed, the decade long record and its added-value 

products can be used as observational targets for Global Climate Model evaluation studies using suitable forward operators 

([Zhang et al., 2018], [Lamer et al., 2018]). 10 

 The use of CloudSat as a global calibrator for cloud radars was first proposed by [Protat et al., 2011]. Here, the [Protat et al., 

2011] technique is revised, improved and automated and the entire record of CloudSat observations (2007 – 2017) is used to 

provide a calibration reference for over 43 years of ARM profiling cloud radar observations at fixed and mobile sites. Four 

generations of ARM cloud radar systems, operating at two different radar frequencies (35- and 94-GHz) are evaluated. All the 

radar systems (with the exception of the AMF1 WACR) operate using a sequence of modes with different capabilities in order 15 

to provide a uniform radar sensitivity and performance throughout the troposphere. The offsets in the reported radar reflectivity 

by these different modes for each radar are documented as a function of time. Abrupt changes in the offset magnitude and sign 

are found to correlate well with changes in the radar calibration as deduced by the statistical comparison with CloudSat. Thus, 

changes in the reflectivity offset between the modes should be monitored and used to identify periods where the calibration 

stability is suspect and moving forward perhaps trigger more prompt additional external calibration evaluations. Furthermore, 20 

the geographical location, the seasonal variability of the clouds and precipitation occurrence and the operational status of the 

CloudSat CPR significantly affect the number of samples available within a 6-month time window to perform the ARM – 

CloudSat comparison. When the number of CloudSat columns is less than 500-1000 the comparison is difficult to perform.  

Out of the possible 653 calibration coefficients, 616 were accepted, i.e. 94.3% success rate.   

 25 
The analysis demonstrates that both historic (i.e., MMCR) and recent ARM radar operations (i.e. KAZR2) require considerable 

adjustments before they can be used in a quantitative way. The analysis from [Protat et al., 2011] and the experience gained in 

this study using the technique in a much larger dataset suggest that the accuracy of the CloudSat-based calibration of ground-

based cloud radar systems is accurate within 1-2 dB. In most cases, the observed calibration offsets exceeded this uncertainty 

value suggesting that the ARM profiling radar record contains considerable calibration biases. The reported calibration biases 30 

are expected to have a large impact on routine ARM microphysical data products such as the Continuous Baseline 

Microphysical Retrieval (MICROBASE) value-added product [Zhao et al., 2012]. In addition, cloud retrieval techniques and 

associated products are impacted by the reported calibration offsets ([Shupe et al., 2015]; [Dong et al., 2014]). For reference, 

a 3-dB calibration offset is equivalent to a factor of 2 bias in hydrometeor content or number concentration retrievals.  As part 
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of the outcome of this study, the estimated calibration offsets, the RSME’s and the number of samples as a function of time 

for each radar system evaluated here have been provided to the ARM facility. The ARM facility is currently considering 

reprocessing of the ARM radar record with these new calibration offsets. Furthermore, the gradual temporal change in the 

observed calibration offsets, the correlation of large swings in the calibration offset with periods when the ARM radar hardware 

and/or software was not operating in an optimal way, suggest that the use of CloudSat can provide reliable information that 5 

can be used to characterize the calibration of ground-based radar systems.  

 

Planned and future spaceborne radar systems such as the Earth Clouds Aerosols and Radiation Explorer (EarthCARE, 

[Illingworth et al., 2015]; [Kollias et al., 2018]) or future spaceborne radar concepts (Tanelli et al., 2018) will provide similar 

spaceborne radar measurements to evaluate large profiling cloud radar networks (e.g., ARM, ACTRIS) in the future. A project 10 

website that describes the ARM – CloudSat comparison at all the ARM sites and radar systems is now available to the entire 

user community:  http://doppler.somas.stonybrook.edu/CloudSat_GlobalCalibrator/index.html The web site contains graphics 

and animations that show the convergence of the radar reflectivity profiles and cloud top height distributions as a function of 

the calibration offset. In additional, the temporal evolution of the calibration offsets and the ARM radar mode differences are 

shown. In the future, the website will be updated to include future ARM fixed and mobile deployments and will also include 15 

a similar analysis for the European cloud radar network (ACTRIS). 

  

Finally, there is merit in extending the presented analysis to other satellite measurements. For example, NASA’s Global 

Precipitation Mission (GPM) Dual-Frequency Precipitation Radar (DPR) observations could be used in a similar manner to 

evaluate the calibration of the ARM facility cm-wavelength radars [Lamer et al., 2019]. In addition to radar calibration, the 20 

statistical comparison between cloud and precipitation properties such as cloud base height, cloud thickness, precipitation 

occurrence and intensity and liquid water path measured at the ARM facility and those derived by research satellites such as 

NASA’S A-train constellation [Stephens et al., 2018] should be considered. The ARM facility provides a bottom-up view of 

clouds and precipitation with superior vertical resolution especially in the boundary layer. Statistically significant differences 

with the top-down view provided by the A-train satellites should be considered when conducting cloud-scale process studies 25 

using global satellite datasets.    

 

5 Code/Data Availability 

 

The code used for the ARM – CloudSat comparison can be made available upon request. The ARM cloud radar observations 30 

are available online at: http://www.archive.arm.gov/discovery/ and the CloudSat observations are available online at: 

http://cloudsat.cira.colostate.edu  
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Appendix A 

 

The use of surface-based measurements of the raindrop PSD using impact or optical disdrometers to calibrate profiling and 
scanning precipitation radars is not new. This technique has been widely used in the past for calibrating profiling cm-
wavelength Doppler radars ([Gage et al., 2000]; [Tridon et al., 2013]). In the case of cm-wavelength radars, wet radome or 5 
antenna attenuation is negligible, the systems are configured to have sufficient dynamic range to detect intense precipitation 
returns without receiver saturation and the Rayleigh scattering approximation is valid in most cases.  At mm-wavelength radars, 
several factors need to be considered: the wet radome can induce considerable attenuation, at high rain rates the Rayleigh 
scattering approximation is not valid and receiver saturation occurs at lower rain rates.  Here, we use the Parsivel2 disdrometer 
(OTT Hydromet GmbH) measurements.  The disdrometer provides 1-min averaged raindrop PSD’s. From the Parsivel2 files, 10 
the variable “equivalent_radar_reflectivity” which is the radar reflectivity calculated by the ARM ingest is used. All 1-min 
Parsivel measurements where raindrops with diameter > 4.5 mm are detected are filtered out to avoid the impact of false 
detection of large raindrops in the Parsivel2 - KAZR2 comparison. The Parsivel2 time assigned to each data point indicates 
the beginning of a 1-min period of averaging. Using this time, 1-min averages of the KAZR2 reflectivities in linear units are 
estimated. Next, the KAZR2 radar reflectivities are corrected for path attenuation induced by the hydrometeor. The relationship 15 
A	(dBkm@2) = 0.28 ∙ R	(mmhr@2) is used to estimate the one-way attenuation at Ka-band ([Matrosov, 2005]). Only the 1-
min data when the Parsivel2 radar reflectivity is between 0 and 20 dBZ are used. The lower limit is used to ensure that the 
Parsivel2 samples enough raindrops. The upper limit is used to minimize the impact of wet radome attenuation and to ensure 
that the Parsivel2 radar reflectivity estimates using the Rayleigh scattering approximation have no or negligible non-Rayleigh 
effects. The KAZR2 and Parsivel2 radar reflectivity time series were investigated for possible time lag, however, given the 20 
proximity of the radar data to the ground, no significant time lag was found. Finally using a running time window of 90 days, 
the mean of the differences of the KAZR2 and Parsivel2 radar reflectivities is estimated.  
 
Fig. A1a shows the time series of the calibration offset between the Parsivel2 and the KAZR2 for different KAZR2 range 
gates. In general, the calibration offset is positive, thus, implying that the KAZR2 underestimates the radar reflectivity. 25 
However, the calibration offset varies a lot with the range gate. The KAZR2 is a pulsed radar, thus after each pulse transmission 
the receiver protection circuit (T/R switch network) needs to switch from transmit (closed receiver) to receive (open receiver) 
mode. The switch takes several hundreds of nanoseconds, thus, the KAZR2 returns from the first range gates (3 to 7) report 
lower radar reflectivity values, resulting in higher radar calibration offset values. Our analysis identified range gate 8 (240 m) 
as the closest range gate to the surface that is unaffected by the KAZR2 T/R switch network. Above range gate 8, the calibration 30 
offset continues to decrease, highlighting the impact of the evaporation in modifying the raindrop PSD. The scatter plots 
between the KAZR2 radar reflectivity at range gate 8 and the Parsivel2 radar reflectivities during the two extensive periods 
are shown in Fig. A1b, c. These two periods match the periods used to estimate calibration offsets using the ARM – CloudSat 
comparison technique (Fig. 8).  The ARM – CloudSat comparison indicated calibration offsets of 0.3 and 5.2 dB and the ARM 
– Parsivel2 comparison indicated calibration offsets of 0.57 and 3.91 dB.  35 
 
Disdrometers have certainly the potential to monitor the calibration of profiling cloud radars and this topic warrants additional 

analysis using comprehensive datasets from different cloud radar systems and for different climatological conditions. For 
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example, Frequency Modulated Continuous Wave (FMCW) radars ([Küchler et al., 2017]) do not have T/R switch networks, 

but careful analysis is required to ensure proper alignment of the two antennas or correct for the antenna parallax problem 

([Sekelsky and Clothiaux, 2002]). Furthermore, careful analysis is required to avoid using radar returns that saturate the radar 

receiver especially at short ranges and to account for non-Rayleigh scattering in the case of 94-GHz radar systems. This careful 

analysis is beyond the scope of this study.  5 
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Table 1: Information on the sites (name and location), the type of radar and the start and end date of the calibration period 
 

Site Radar Lat (°); Long (°) Start time 
[mm/yyyy] 

End time 
[mm/yyyy] 

ENA KAZR2 39.09;    -28.03 12/2015 12/2017 
OLI KAZR2 70.49;  -149.88 07/2015 12/2017 
AWR KAZR -77.85;   166.73 12/2015 01/2017 
NSA KAZR 71.32;  -156.62 10/2011 12/2017 
NSA MMCR 71.32;  -156.62 01/2008 12/2009 
SGP KAZR 36.60;    -97.48 02/2011 12/2017 
SGP MMCR 36.60;    -97.48 01/2008 12/2010 
TMP KAZR 61.84;     24.29 01/2014 09/2014 
MAO WACR -3.21;   -60.60 03/2014 12/2015 
PVC WACR 42.03;   -70.05 10/2012 06/2013 
GRW WACR 39.09;   -28.03 01/2009 12/2010 
FKB WACR 48.54;      8.40 04/2007 12/2007 
NIM WACR 13.48;      2.18 04/2006 12/2006 
TWP-Darwin KAZR -12.42;  130.89 02/2011 04/2014 
TWP-Darwin MMCR -12.42;  130.89 01/2007 02/2011 
TWP-Manus KAZR -2.06;  147.42 10/2011 10/2013 
TWP-Manus MMCR -2.06;  147.42 05/2007 03/2011 
TWP-Nauru MMCR -0.52;  166.92 05/2007 02/2009 
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Figure 1: Location of the fixed and mobile ARM profiling cloud radars calibrated using the CloudSat Cloud Profiling Radar 15 
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Figure 2: The difference [dB] in the radar reflectivity reported between different ARM modes. For KAZR/KAZR2 systems the GE 

– MD difference and for MMCR systems the Mode 3 – Mode 2 differences are reported. 
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Figure 3: Algorithm flowchart of the calibration of the ARM Cloud Radars using CloudSat Observations 
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Figure 4: Example of the CloudSat – ARM radar calibration at the NSA for mode 2 of the MMCR for the period 01/2008 to 12/2009. 

(a) the seasonal distribution of the melting layer heights, (b) the distribution with height of the ARM radar reflectivities, (c) the 10 
distribution with height of the CloudSat radar reflectivities, (d) the comparison of the CloudSat (black) and ARM (red) cloud top 

height histograms. The solid red line indicates the cloud top height distribution from the archived ARM radar data and the dashed 

red line indicates the cloud top height distribution after 6.2 dB is subtracted by the ARM radar reflectivities, (e) the comparison of 

the CloudSat (black) and ARM (red) mean radar reflectivity profiles. The solid red line indicates the ARM mean radar reflectivity 

profile using the archived ARM radar data and the dashed red line indicates the ARM radar reflectivity profile after 6.2 dB is 15 
subtracted by the ARM radar reflectivities, (f) the RSME value between the radar reflectivity profiles for different calibration 

offsets. 
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Figure 5: The number of CloudSat profiles found within a ± 3 month window to be suitable for calibrating the ARM cloud radars 15 
as a function of time for the different ARM sites.  
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Figure 6: The relationship between the minimum RMSE [dB] achieved in a particular ARM – CloudSat comparison and the 

corresponding number of CloudSat columns.  
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Figure 7: (a) The OLI KAZR2 MD mode calibration offset as reported by the CloudSat-ARM comparison (circles). The colors 

indicate the RSME of the CloudSat-ARM comparison for different radar calibration offsets, (b) The AMF3 (Oliktok Point, Alaska) 

KAZR2 MD and GE modes calibration offset as reported by the CloudSat-ARM comparison. The size of the circles indicates the 

ratio of the sample size of the CloudSat columns for any given calibration offset estimate relative to the maximum sample size of 

CloudSat columns observed during the same period by the same mode, (c) The difference between the MD-GE modes as reported 15 
by the CloudSat-ARM comparison and as reported by the ARM radar mode to ARM radar mode comparison.   
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Figure 8:  The ENA KAZR2 calibration offset as reported by the CloudSat-ARM comparison (star symbol) and by the KAZR2 and 

Parsivel disdrometer comparison (line). The colors indicate the RSME of the CloudSat-ARM comparison for different radar 

calibration offsets. 15 
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Figure 9: The calibration offset for the MMCR mode 2 and KAZR GE mode at the Tropical Western Pacific (TWP) sites of (a) 5 
Darwin, (b) Manus and (c) Nauru based on the ARM – CloudSat comparison. The size of the circles indicates the ratio of the sample 

size of the CloudSat columns for any given calibration offset estimate relative to the maximum sample size of CloudSat columns 

observed during the same period by the same mode. The gray circles indicate the ARM mode 3 -mode 2 difference as estimated from 

the ARM radar mode intercomparison. 
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Figure 10: The calibration offset for the MMCR mode 2 and KAZR GE mode at (a) NSA and (b) SGP sites based on the ARM – 

CloudSat comparison. The size of the circles indicates the ratio of the sample size of the CloudSat columns for any given calibration 5 
offset estimate relative to the maximum sample size of CloudSat columns observed during the same period by the same mode. The 

gray circles indicate the ARM MMCR mode 3 -mode 2 and KAZR GE -MD mode difference as estimated from the ARM radar 

mode intercomparison.  
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Figure 11: The radar calibration offset we should add to the reported ARM cloud radar reflectivities in order to minimize their 

differences with those reported by the CloudSat CPR at the ARM Mobile Facilities (AMF) sites. The size of the circles indicates the 

ratio of the sample size of the CloudSat columns for any given calibration offset estimate relative to the maximum sample size of 5 
CloudSat columns observed during the same period by the same mode. Circles correspond to 94-GHz (WACR) calibration offsets 

and squares correspond to 35-GHz (KAZR) calibration offsets. 
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Figure A1: (a) The calibration offset between the KAZR2 and Parsivel2 estimated using KAZR2 measurements from difference 

range gates (from the 3rd to the 20th), (b) the calibration offset for the period 01/01/2016 to 06/01/2016 using the 8th KAZR2 range 

gate and (c) the calibration offset for the period 01/01/2017 to 10/01/2017 using the 8th KAZR2 range gate. These two periods 

correspond to the periods used for the ARM - CloudSat calibration offsets shown in Fig. 8.  5 


