
Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2019-345-RC1, 2019 
© Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.  

Interactive comment on “Cloud Detection over Snow and Ice with Oxygen A- and B-band 
Observations from the Earth Polychromatic Imaging Camera (EPIC)” by Yaping Zhou et 
al.  5 

Anonymous Referee #1  

Received and published: 29 October 2019  

This study presents an updated DSCOVR/EPIC cloud detection over snow and ice surfaces. It 
improves the current scheme by better accounting for changes in surface altitude and the solar or 
viewing zenith angles.  10 

The topic is appropriate, the method physically sound, the general structure sensible, and the 
improvements in EPIC’s cloud flagging look good. However, some of the radiative transfer 
choices seem unphysical, details needed for replication are missing, and discussion of several 
important issues is absent. Unfortunately, the revisions I pro- pose may mean re-running the 
radiative transfer and recalculating the thresholds so I request major revisions.  15 

I expect that the main conclusions of the paper to be solid and that the authors should have little 
trouble in dealing with my comments. With revisions I would judge the science and presentation 
to be of higher quality and would support its publication.  

Thank you for a thorough review of the paper and many insightful comments. 

1. Specific comments:  20 

1.1 General flow and clarity The order is sensible but important details sometimes appear late 
in the paper in a way that confused me. For example, I don’t see an explicit statement that the 
training & validation is versus the GEO/LEO dataset until P11. This should be in the 
introduction and mentioned when talking about performance (e.g. P4L18). It’s also not 
immediately clear what is new. So the old algorithm doesn’t account for surface height (P16L11, 25 
16 pages in!), but what else exactly? Please explain in the introduction, and see the line-by-line 
technical comments.  

Thank you for pointing out this. We introduced the validation dataset in the introduction and also 
explicitly stated that limitation of current algorithm by using fixed threshold. 

1.2 Incomplete information regarding methodology How did you get the regression statistics 30 
(e.g. P9L26–30)? I first assumed simultaneous multi-variate least squares, but P12L7 makes me 
think not. In Table 1 do you have error bars? I also think your equation is complex (see section 
below), how do you handle the imaginary part?  
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The threshold values are indeed derived using multivariate least squares regression, but only 
from the clear sky simulations (Figure 1, i-j) and clear sky observations (Figure 5, a-b). We have 
mentioned the particular methodology in multiple places (P7L20-25, P11L1-5, P14L5-7) now.  

We added multiple correlation coefficients in Table 2.  

In the original derivation, we missed a negative sign in Eq. (6), thus after multiplying (-1) after 5 
first logarithmic function, there is no negative sign in Eq. (8).  

I don’t see your snow & ice surface definition until P11L23–25 which I think says you’re using 
GEO/LEO data, and only “permanent” snow, i.e. not seasonal? But then why are there so many 
samples over N America and Eurasia in Figure 7(a) but not in Figure 8(a)? If you develop using 
permanent snow then this needs to be said in the introduction and potential issues with e.g. snow-10 
covered forests with lower albedo need to be discussed.  

Thanks for pointing this out. We actually included seasonal snow and ice over water categories 
in selecting the collocation dataset. The snow/ice cover information was included in the Langley 
GEO/LEO composite dataset, which was based on the Near-real-time Ice and Snow Extent 
(NISE) data set from the National Snow & Ice Data Center (NSIDC). We added more details to 15 
the text. 

We have stated in the introduction that current work is focused on cloud mask over snow/ice 
surfaces. We’ve also added radiative transfer simulations for surface albedo at 0.6 and 1.0 to 
cover the range of snow and ice albedos. Results show that within the solar zenith angle range 
where EPIC does its retrieval, the clear sky A-band and B-band ratios are not sensitive to surface 20 
albedo. 

On P12L16–24 “when applied to a different dataset”. What is this different dataset? Did you 
subsample the full dataset? Does this different set have the same distribution of SZA, time etc?  

We derived the set of regression coefficients using a training dataset from January and July 2017.  
A different dataset here refers to similar data but from different months, e.g., January and July of 25 
2016. We changed the “different dataset” to “different data period”. 

1.3 Mathematical issues P6L25 Eq. (7) and (8). Could you expand on the switch to c0? I work it 
out as complex:  

ln (Rabs/Rref ) = mce−z/H 

− ln (Rabs/Rref ) = −mce−z/H 30 
ln (−ln(Rabs/Rref )) = ln(−mce−z/H ) = ln(−1) + ln(mce−z/H ) 
ln(− ln Rabs/Rref )) = iπ + ln (c) + ln (m) − z/H 
c0 =iπ+ln(Kaw1ρ0H) 
Please explain my error or comment on how this affects your regression.  
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As mentioned above, we missed a negative sign in Eq. 6, thus there should be no negative sign in 
Eq. 8.  

Minor points: dln(x) is widely used in calculus, how about something without another standard 
meaning, like dbln(x) or ln”(x). I also think you lost an (Rabs/Rref ) in Eq.(9) on P7L5.  

Thanks for the suggestion. We used dbln throughout in the text and added missing (Rabs/Rref ). 5 

1.4 Radiative transfer (RT) description & choices  

I think that the general approach is sensible but some details aren’t clear and several RT inputs 
are physically unrealistic. These are my biggest technical issue with the paper and are the 
primary reason I propose major revisions.  

You simulate liquid clouds above 2.5 km, consistently 1 km thick, and over frozen surfaces up to 10 
15 km in altitude with albedo of 0.8.  

Firstly, CALIOP sees liquid in Arctic clouds <2.5 km (Cesana et al. 2012, doi: 
10.1029/2012GL053385) and the ARM site in Alaska also sees lots of these lower clouds (e.g. 
Zhao & Wang 2010, doi: 10.1029/2010JD014285). Your higher clouds should typically be ice, 
which may affect both Rref (τ ) and the in-cloud path lengths.  15 

We took the effort to implement ice cloud in the RT model. The analysis now uses ice cloud 
simulations instead of water cloud. 

I would like to see sub-2.5 km clouds included in your RT. You might need to exclude them 
from your threshold calculation to prevent too many false positives, but these low clouds are 
particularly difficult for LEO/GEO-based infrared detection. The implications of this for your 20 
testing & validation should be discussed and even if you find you can’t reliably test for these low 
clouds, then you should be explicit about this limitation.  

Instead of using even increment of cloud top height starting from 2.5km, we now use cloud top 
height from 1, 3, 5 km, then increase 2.5 km afterwards. The figures (Figure 3a and 3b) show 
results for cloud top at 1, 3, 5 km, because for higher clouds, the band ratios have large 25 
sensitivity; hence they are not of main concern.  

The fixed geometric thickness also might affect your thresholds somewhat. A 1 km thick liquid 
cloud with τ = 3 is very low Nd and should have unrealistically large within-cloud path lengths. 
This might contribute to the discussion on P10L15–19. I’d propose a thickness that varies 
realistically with τ based on number concentration or a published relationship (e.g. for liquid 30 
clouds Eq. 2 from Chiu et al. 2014, doi: 10.5194/acp-14- 8389-2014).  

The Chiu et al. 2014 study was based on data from ARM SGP site and may not be applicable 
directly to the polar regions. The CALIOP data shows quite a large range of geometric thickness 
and optical thickness in Antarctic clouds. To test cloud geometrical thickness sensitivity, we 
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conducted additional radiative transfer simulations with cloud thickness varying from 0.5 km to 
4km. Results from these sensitivities are added in figure 4.   

Your 0.8 albedo for both bands needs support. At the very least, you need to consider what this 
means for e.g. snow covered forests where the albedo is substantially lower, and may vary 
between the bands. Perhaps some simple physical argument with discussion of the limitations 5 
might be enough.  

We conducted additional clear sky and cloudy sky simulations with surface albedo of 0.6 and 1.0 
to cover a broader range of potential snow and ice albedo. Our thresholds derivation only needs 
clear sky simulations. For which case, the oxygen band ratios vary very little for changes in 
surface albedo from 0.6 to 1.0 except when zenith angle is very large (> 75°). Thus thresholds 10 
derived with surface albedo 0.8 can be applied to all snow and ice surfaces with little problem. 
For cloudy sky simulations, as expected, the sensitivity of oxygen band ratios to clouds are 
higher for darker surfaces.  

Finally, I don’t know surfaces on Earth >10 km altitude. Why include your 15 km surfaces? 
Your observation sample should lack such cases, does this affect the regression statistics for the 15 
RT sample in Table 1?  

Thanks for pointing this out. Our original thought was that the sensitivity to surface height can 
also provide information on the sensitivity to clouds (if we regard clouds as hard targets). We 
now limit the surface height to 7.5 km maximum. The regression coefficients are very similar. 
We updated the figures 6-11 using the new coefficients.  The difference with the old version is 20 
very small. 

In addition, we conducted cloud sensitivity with surface height of 2.5 km. As expected, results 
show that that higher surface elevation tends to make cloud detection more difficult.   

I’d also appreciate some other details. The paragraph P8L9–16 is a good place to explicitly state 
that within-cloud absorption by O2 is included in your RT (it is, right?). I also assume the EPIC 25 
ILS are broad enough that line broadening barely matters but would like a comment on this plus 
a reference to your spectroscopic database.  

#1: Yes, the O2 absorption within clouds is considered. This is done by assuming a fixed O2 

molecule vertical profile (US standard or other specified atmosphere). 
#2: line broadening caused by pressure and also line absorption parameters depending on 30 
temperature is considered. A high-resolution line by line calculation is first done in O2 A- and B-
band and then the results are convolved with the filter transmission function of EPIC. The line 
parameter database is HITRAN. ARTS (Atmospheric Radiative Transfer Simulator) is used to 
calculate the gas absorption cross section from the HITRAN line parameters. Additional 
information of RT model is added in the text.	35 

Summary: I believe your RT should include clouds <2.5 km (which may be liquid, supported by 
appropriate references), but higher clouds should contain ice and geometric thicknesses should 
vary realistically in tau. Then just recalculate the thresholds and statistics. I suspect your results 
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will be robust to these choices, but some details could differ and your results would be more 
physically defensible. I think you should also at least discuss the very high surface altitudes and 
whether your regressions are affected.  

We conducted more RT sensitivity analysis following both reviewers’ suggestions. 

1) For clear skies, we included additional simulations for different surface albedo values (new 5 
Figure 2). We found that clear sky O2 band ratios are not sensitive to surface albedo (in the 
0.6~1.0 range) except for high zenith angles. Note cloud mask thresholds are derived with 
clear sky simulation data. We discarded surface elevation greater than 7.5 km cases.  

2) For cloudy skies, since it’s over cold regions (snow/ice surfaces) we used ice cloud in the 
simulation instead of water cloud. Besides variations in cloud optical thickness and cloud 10 
height (more low clouds), we tested the sensitivity due to surface albedo, cloud geometric 
thickness and surface elevation.  The new Figure. 4 shows how cloud sensitivity changes 
with various parameters at the low zenith angles.  

1.5 Discussion of LEO/GEO limitations  

It’s fair enough that you test versus GEO/LEO, but you should explain how their limitations are 15 
relevant to your analysis. Examples of the sorts of references that should be included in the 
discussion are Wang et al. (2016, doi: 10.1002/2016JD025239) for MODIS collection 6, 
Karlsson & Håkansson (2018, doi: 10.5194/amt-11-633-2018) for AVHRR and Shang et al. 
(2018, doi: 10.1038/s41598-018-19431-w) for Himawari-8.  

Thank you for the suggestion and references. The GEO/LEO cloud detection is now discussed in 20 
the text in Section 4 when detailed GEO/LEO cloud data is introduced. 

Technical comments 
2.1 General: Please check for missing articles or pluralisation where you currently  

treat normal nouns as proper nouns. Example insertions in square brackets:  

P4L2 “the height of [the] effective reflective layer” 25 
P4L4: “for use over [the] land surface” or “for use over land surface[s]” 
P4L12: “but [a] large discrepancy is found” 
P4L17 “over snow/ice surface” → “over snow- or ice-covered surfaces” (the hyphens here are an 
opitional style choice)  

There are others. Plus the Andes, which takes the definite article despite its capitalisation:  30 

P15L30: “. . .and the southern tip of [the] Andes” P16L12–13: “. . .southern tip of [the] Andes 
could. . .”  

Done. 

2.2 Line-by-line  
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P1L24–26: When talking about performance statistics, please mention against what you are 
comparing. Some form of: “against a product based on multiple other passive sensors” or similar.   

Done. 

P3L1–7 para: “reference channel”, change to “weakly absorbing reference channel” to help those 
unfamiliar with the approach.  5 

Done. 

P1L27: “Less significant” – I don’t see significance tests, perhaps “less substantial”? P2L7–8: 
not sure what long haul means.  

Fixed. 

P2L12: “narrow” is not an absolute. On P3L3 you mention the channel centres, could you add 10 
typical FWHM or another statistic that describes the spectral width there?  

FWHMs are added in P3L5-6. 

P2L19: “winter”, “summer” please specify (I assume) “boreal”   

Done. 

P4L10: “are performing reasonably well” – this value judgment depends on assumptions about 15 
the performance of other cloud flags. I would prefer “show good agreement” with some 
performance statistic(s) in brackets.  

Overall CM accuracy of 80.2% and 85.7% correct cloud detection rate are described in the next 
sentence.  

P4L11–12: comment that “accuracy rate” and “correct cloud detection rate” will be defined later, 20 
or describe here.  

Add “accuracy and correct cloud detection rate are defined in Section 5”. 

P5L2: “based on well-known and well-mixed atmospheric O2 gaseous absorption” – this looks 
to me like the adjectives both refer to “absorption”, but it isn’t exactly “well- mixed absorption” 
you mean. How about something like “well-known gaseous absorption of well-mixed 25 
atmospheric O2”.  

Suggestion followed. Thanks! 

P5L3: “..gaseous absorption, therefore, changes in observed radiance in the expected O2 band” – 
I find “therefore” a weird link here, I don’t think it’s the O2 band that’s “expected”. How about 
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“. . .gaseous absorption. Changes in observed radiance in the O2 band are expected to 
contain. . .”  

Thanks again for the suggestion. 

P8L14 “convoluted with” → “convolved with” (I believe this is the verb for mathematical 
convolution, please check).  5 

“Convoluted” changed to “convolved”  

P8L21–22: a reference or pointer to the atmosphere definitions would be handy.  

References to these atmospheric profiles are added. 

P9L1: “duplicate the quantitative relationship”. . . maybe “simplified relationship”? The RT 
model uses quantitative relationships too.  10 

“quantitative” changed to “simplified”. 

P14L23–28: this is a stylistic preference, but why pick a, b, c, d? In my opinion the standard 
notation (TP/TN/FP/FN for True/False Positive/Negative) is more easily understood and would 
make help me to interpret Equations (11)–(13) on sight.  

Suggestions taken. 15 

P16L2: “Comparison show that. . .” → “Comparison shows that” (typo missing “s”)  

Fixed. 

P16L7–8 – “indicates high cloud fraction (>80 %) over. . .”, I’d just say “indicates cloud 
fraction > 80 % over. . .” because “high cloud fraction (>80 %)” could also be >80 % coverage 
of high-altitude clouds. This also appears on P14L17, where “high cloud fraction” is >95 %. I’d 20 
be tempted to change “low cloud fraction (<5 %) and high cloud fractions (>95 %) categories” to 
“cloud fraction < 5 % and cloud fraction > 95 % categories”.  

Suggestion taken. 

P16L17: “achieved high accuracy. . .” → “has improved accuracy” (“high” again seems too 
subjective to me).  25 

Done 

P17L1–3 this explanation seems physical but I don’t think it’s accessible to a non- specialist. 
How about: “This method is based on the fact that photons reflected by clouds above the surface 
will travel, on average, a shorter distance through the atmo- sphere and so experience less 
absorption by O2” or similar?  30 
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Suggestion taken. Thanks! 

P17L16: “these performance matrices”. I would prefer “metrics” because you haven’t explicitly 
introduced results as a matrix previously, and also these values are not the matrix itself, but 
derived from it (e.g. accuracy score = trace of normalised confusion matrix).  

Thanks for pointing this out. It was meant to be “metrics”. 5 

P17L11: “Model derived algorithm is chosen because of its stable performance”. Do you mean 
that you chose the model algorithm because it performs better for the sample that was not used in 
training the obs based dataset? If so, please change sentence to say this and, as requested earlier, 
describe how the datasets differ.  

Done. 10 

P26L9: “. . .on the right side of black lines will be identified as clear sky. . .”: this implies that 
you use the black lines as a threshold, but I think you prefer the red dashed lines. Please rephrase 
to be clear that the black lines are a possible selection but you don’t use them (if this is true).  

The figure caption is modified for clarification. 

P27L5: This is very nitpicky, but the (d) colour bar makes it look like you have continuous cloud 15 
mask values. I’d personally change the colour bar tick mark locations to be the actual flag values 
(1, 2, 3, 4 instead of 1.0, 1.6,. . .)  

Color bar ticks are modified. 

P28L1 : Figure 5, could you add a legend or some text indicator on one of the panels for the 
colours? This isn’t vital given it’s in the caption, but it would be nicer.  20 

Bar legend is added. 

P32L5: Figure 9 caption: “matrix” → “metrics” as above.   

Fixed 

Interactive	comment	on	“Cloud	Detection	over	Snow	and	Ice	
with	Oxygen	A-	and	B-band	Observations	from	the	Earth	25 

Polychromatic	Imaging	Camera	(EPIC)”	by	Yaping	Zhou	et	
al.	 
Anonymous	Referee	#2	 

Received	and	published:	22	November	2019	 
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Zhou	et	al.	described	a	cloud	detection	algorithm	over	snow	and	ice	with	oxygen	A	and	B	band.	They	
have	demonstrated	that	the	new	cloud	mask	algorithm	is	an	improvement	compared	to	the	current	
EPIC	cloud	mask	algorithm.	They	derived	an	analytic	relationship	between	the	double	logarithm	of	
the	O2	band	ratios	and	the	surface	elevation	and	the	zenith	angles.	They	also	showed	the	limit	of	
the	algorithm	for	optically	thin	clouds	and	low	elevations.	I	think	the	paper	is	fit	the	topic	of	AMT.	 5 

Thank	you	for	reviewing	the	paper	and	providing	thoughtful	comments.	

Specific	comments	 

Page	8	lines	9-16.	The	authors	described	briefly	the	radiative	transfer	simulator	for	EPIC.	Does	the	
simulator	have	sphericity	correction	at	the	solar	and	viewing	zenith	angles	larger	than	80	degree?		

The	sphericity	is	not	considered	in	the	model.	This	is	not	a	problem	for	EPIC,	as	the	standard	Level	10 
2	cloud	products	are	only	generated	for	view	zenith	angle	<	760	 

Page	8	lines	25-28.	 

Why	the	surface	height	in	the	simulations	is	from	0	to	15	km	with	2.5	km	increment?	The	surface	
height	larger	9	km	is	not	useful	and	the	increment	of	2.5	km	is	too	large.	The	increment	of	0.5	km	
would	be	a	better	option.		15 

We removed simulations beyond surface height above 7.5km. It would be better to use increment 
of 0.5 km in height, but since the function with height is close to linear, we didn’t redo the clear 
sky simulation.  

Page	9,	lines	26	–	30	It	is	not	clear	how	the	coefficients	were	derived.	Could	you	explain	it	in	detail?		

We	used	a	multivariate	linear	regression	to	do	the	fitting.	The	regression	takes	surface	elevation	(Z)	20 
and	ln	(m)	as	two	independent	variables	and	db	ln	(Rabs/Rref)	as	dependent	variable.	The	derived	
coefficients	are	used	to	prediction	expected	db	ln	(Rabs/Rref)	and	then	Rabs/Rref	.	More	details	are	
added	in	the	text. 

Page	10	lines	24-26	How	did	you	select	the	snow/ice	surfaces?	
	25 

Initially	we	used	surface	albedo	of	0.8	to	represent	snow	and	ice	surfaces	in	the	model.	Additional	
simulations	are	performed	for	surface	albedo	at	0.6	and	1.0	to	cover	the	range	of	albedos	over	
snow,	sea	ice	surfaces.	In	the	observational	data,	we	used	the	surface	type	information	included	in	
the	Langley	GEO/LEO	composite	data,	which	is	based	on	the	IGBP	surface	type	dataset	and	the 
Near-real-time Ice and Snow Extent (NISE) data set from the National Snow & Ice Data Center 30 
(NSIDC). 	We	have	added	detailed	references	in	the	text.	

Page	12	lines	4-9	Please	explain	more	details	about	the	regression.	How	did	you	design	the	model	
to	predict	the	median	.	.	.?	

The	same	multivariate	linear	regression	is	applied	to	the	observational	data.		The	nature	of	
regression	is	to	provide	a	function	that	minimizes	the	total	squared	error	which	will	approximately	35 
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pass	cross	the	median	of	each	sample	bins.	But	our	cloud	mask	threshold	is	to	find	the	upper	bound	
of	clear	sky	value	so	that	all	clear	sky	pixels	will	be	under	that	curve	idealistically.	In	reality,	
because	there	are	many	overlaps	between	clear	and	cloudy	pixels	as	shown	in	Figure	5c	and	5d,	we	
could	only	move	the	divider	up	slightly	to	balance	the	clear	and	cloudy	detection.		

	5 
Page	12	lines	20	-21	What	‘non-negligible	uncertainties’	do	you	mean	here?	Fig.	1	I,j		

The	reference	cloud	mask	we	used	is	based	on	GEO/LEO	retrievals,	which	has	its	own	uncertainties.	
Cloud	contamination	is	one	of	the	main	causes	of	scatter	in	the	clear	sky	regression.	Other	causes	
may	include	uncertainties	in	geolocation,	surface	elevation,	atmospheric	profile	etc.. 

The	’Fitted	threshold’	is	not	easy	to	understand.	Do	you	mean	the	fitted	A-band	and	B-band	ratio?	10 
Do	you	use	the	simulated	A-band	ratio,	m,	z,	to	derive	the	coefficients	in	Table1,	then	calculate	
the	’Fitted	threshold’	using	these	coefficients?	Fig.1i,j	shows	that	the	fit	is	almost	linear.	Will	it	cause	
scatter	if	the	coefficients	are	applied	to	other	data	not	in	the	simulations?	If	the	surface	albedo	is	0.6	
or	0.9,	could	you	get	the	same	coefficients?		

You are right. The fitted threshold refers to A-band and B-band ratios computed with regression 15 
coefficients. Ideally, everything being equal, the ratios for cloud sky should be larger than that of 
a clear sky. As mentioned earlier, we are trying to find the upper bound of the clear sky ratios. 
The regression is derived with simulations using surface albedo of 0.8. To test if these 
coefficients work for other surface albedos, we conducted new clear sky sensitivities with 
surface albedo of 0.6 and 1.0 and results are shown in Fig. 2. In majority of the cases, the clear 20 
sky A-band and B-band ratios are not sensitive to surface albedo, the fitting is problematic at 
large zenith angles (>76°) that EPIC does not retrieve. 

Fig.2	Since	the	algorithm	also	detects	clouds	over	snow/ice	on	top	of	mountains,	could	you	make	a	
similar	plot	for	surface	height	of	2.5	km	or	5	km?		

We	added	cloudy	sky	sensitivities	for	surface	elevation	of	2.5	km	(Figure	4).	Compared	to	surface	at	25 
sea	level,	the	cloud	detection	algorithm	is	less	sensitive	over	high	mountains;	more	thin	and	low	
clouds	will	be	undetected.	Discussions	are	added	to	the	text. 

Fig.	3	How	do	you	explain	the	scatter	in	the	clear-sky	plots?		

The	reference	cloud	mask	used	here	is	based	on	multi-sensor,	including	those	from	both	
geosynchronous orbit	(GEO)	or	low	Earth	orbits	(LEO).	In	general,	the	sensors	used	have	better	30 
cloud	detection	capabilities	than	EPIC,	but	misclassifications	still	exist.	The	scatter	we	see	can	come	
from	multiple	sources,	include	cloud	contamination,	surface	elevation	uncertainty,	cross-sensor	
consistency,	geolocation	error,	atmospheric	profile	uncertainties,	etc.		

Fig.	4	It	seems	that	you	have	to	use	more	digits	in	the	colorbar	for	(a,b).	For	(d)	please	use	integer	in	
the	colorbar.		35 

Done. 
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Abstract 

 

Satellite cloud detection over snow and ice has been difficult for passive remote sensing 

instruments due to the lack of contrast between clouds and the bright and cold surfaces; cloud 

mask algorithms often heavily rely on shortwave IR channels over such surfaces.  The Earth 20 

Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory 

(DSCOVR) does not have infrared channels, which makes cloud detection over snow/ice even 

more challenging. This study investigates the methodology of applying EPIC’s two oxygen 

absorption band pair ratios in A-band (764 nm, 780 nm) and B-band (688 nm, 680 nm) for cloud 

detection over the snow and ice surfaces. An elevation and zenith angle-dependent threshold 25 

scheme has been developed based on radiative transfer model simulations.  The new scheme 

achieves significant improvements over the existing algorithm. When compared against a 

composite cloud mask based on geosynchronous Earth orbit (GEO) and low Earth orbit (LEO) 

sensors, the positive detection rate over snow/ice increased from around 36% to 65% while the 
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false detection rate dropped from 50% to 10% for observations of January 2016 and 2017. The 

improvement during the summer months is less substantial due to relatively better performance 

in the current algorithm. The new algorithm is applicable for all snow and ice surfaces including 

Antarctic, sea ice, high-latitude snow, and high-altitude glacier regions. This method is less 

reliable when clouds are optically thin or below 3 km because the sensitivity is low in oxygen 5 

band ratios for these cases.  

 

1. Introduction  

  

The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate 10 

Observatory (DSCOVR) was launched in 2015. The unique orbit of DSCOVR allows the EPIC 

instrument to take continuous measurements of the entire sunlit side of the Earth from the nearly 

backscattering direction (scattering angles between 168.5° and 175.5°) from the first Lagrangian 

(L1) point of the Earth-Sun orbit, approximately 1.5 million km away. The EPIC instrument has 

10 narrow spectral channels in the UV and Vis/NIR (317-780 nm) spectral range that enable 15 

retrieval of atmospheric ozone, cloud, and surface vegetation information. The focal plane of the 

EPIC system is a 2048 × 2048 pixel charge-coupled device (CCD) array that covers the entire 

disk with a nadir resolution of 8 km. However, due to the limited transmission capacity, all 

channels except the 443 nm channel are reduced to 1024 x 1024 arrays through onboard 

processing and interpolated back to full resolution after being downlinked. The operation of the 20 

instrument and the downlink speed limit the temporal frequency of measurements to be 

approximately once every 1.5 and 2.5 hours in boreal winter and summer, respectively. Detailed 

descriptions of the EPIC instrument can be found in Herman et al. (2018), Marshak et al. 

(2018), and Yang et al. (2019).  

 25 

The EPIC cloud product, including cloud mask (CM), cloud effective pressure (CEP), cloud 

effective height (CEH), and cloud optical thickness (COT), are developed with fewer spectral 

channels available compared with many spectroradiometers currently onboard the polar and 

geostationary satellites (Yang et al., 2019). For example, the Moderate-resolution 

Imaging Spectroradiometers (MODIS) cloud algorithm uses simultaneous two-channel retrievals 30 

of COT and cloud effective radius (CER) separately for the water and ice clouds, with the cloud 
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phase pre-determined by more spectral tests. Since EPIC does not have a particle size-sensitive 

channel, and has limited capability to determine the cloud phase, the EPIC COT retrieval uses a 

single channel and derives two sets of COT, one for assumed ice phase and one for assumed 

liquid phase, each with fixed CER (Yang et al., 2019; Meyer et al., 2016). CEP is derived based 

on two oxygen (O2) band pairs, each consisting of an absorption and a reference channel (A-5 

band: 764 nm, FWHM 1.02nm and 780 nm, FWHM 1.8 nm; and B-band: 688 nm, FWHM 0.84 

nm and 680 nm, FWHM 1.6 nm) (Marshak et al. 2018), respectively. The O2 absorption bands 

are sensitive to cloud height because the presence of clouds, especially thick clouds, reduces the 

absorbing air mass that light travels through; hence the ratio of the absorbing and reference 

bidirectional reflectance functions (BRF) becomes larger. Since O2 absorption at 764 nm is 10 

stronger than 688 nm, the A-band ratio has higher sensitivity than the B-band ratio (Yang et al., 

2013).  

 

Satellite cloud detections are usually based on the contrast between clouds and the 

underlying earth surface. Clouds are generally higher in reflectance and lower in temperature 15 

than the surface, which makes simple threshold approaches in the visible and infrared window 

channels effective in cloud detection (e.g., Saunders and Kriebel, 1988; Rossow and Garder, 

1993; Yang et al., 2007; Ackerman et al., 2010). However, there are many situations 

when simple visible and infrared threshold tests are not able to separate clouds from surface or 

from heavy atmospheric aerosols such as dust and smoke. The contrasts between clouds and 20 

surface are weak in the visible channels when the surface is bright, and weak in the IR channels 

when the surface temperature is very low or the cloud is very low. Additionally, partially cloudy 

pixels due to small-scale cumulus or cloud edge also increase the detection difficulty. The 

official MODIS CM algorithm uses more than 20 spectral channels to detect clouds in various 

situations.  In particular, it heavily relies on shortwave infrared channels at 1.38, 1.6, 2.1µm and 25 

thermal channels at 11 and 13.6 µm for cloud detection over snow and ice (Frey et al., 2008; 

Ackerman et al., 2010) 

 

The lack of infrared and near-infrared channels in EPIC makes cloud detection very 

challenging, especially over snow and ice surfaces. The current EPIC CM algorithm adopts a 30 

general threshold method, which uses two sets of spectral tests for each of the three scene 
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types: ocean, land, and ice/snow (Yang et al., 2019). Over ocean, the 680 nm and 780 nm 

channels are used for cloud detection, because clouds and sea surface contrast well in both 

channels. Over land, because of large variations in surface reflectivity at the 680 nm and 780 nm, 

these two channels can no longer be used alone for cloud detection. Instead, the algorithm 

uses the 388 nm channel and the A-band reflectivity ratio, i.e., R764/R780 for cloud detection. The 5 

388 nm channel is used because of its low reflectivity over land surface. The A-band ratio is used 

based on the same mechanism as the cloud height retrieval because clouds reduce O2 band 

absorption by increasing the height of the effective reflective layer. The A-band ratio of a cloudy 

pixel is thus expected to be higher than that of a clear pixel in the otherwise same situation.  The 

A-band ratio is selected for use over the land surface because it has higher sensitivity than the B-10 

band ratio. Over snow- and ice-covered regions, the O2 A- and B-band ratios are used for cloud 

detection since the contrast between surface and clouds is small in the visible and UV channels. 

Evaluation using the collocated cloud retrievals from other sensors show that the EPIC CM 

performs very well in general. The EPIC CM has an overall 80.2% accuracy rate and 85.7% 

correct cloud detection rate (accuracy and correct cloud detection rate are defined in Section 5), 15 

but a large discrepancy is found over the snow- or ice-covered surfaces, where the EPIC 

algorithm significantly underestimates cloud fraction, especially over ice and snow-covered 

Antarctic (Yang et al., 2019). One of the reasons is that the current algorithm uses empirically 

derived fixed A-band and B-band ratio thresholds without considering the photon path changes 

due to sun/sensor geometry and surface elevation.   20 

The current work aims to improve EPIC cloud masking through a better understanding of the 

variability of the O2 band ratios under various clear and cloudy conditions over snow/ice surface. 

Radiative transfer model simulations and observed reflectance will be examined to derive 

dynamic thresholds for the O2 band ratios so that the new algorithm is applicable to all snow/ice 

surface, i.e., Antarctic, Greenland, snow in high latitude and glaciers over high mountains. 25 

To compute radiation fluxes from EPIC and NISTAR instruments on board the DSCOVR 

satellite (Su et al. 2018, 2019), the Clouds and the Earth's Radiant Energy System (CERES) team 

at NASA Langley Research Center created a composite cloud product from GEO/LEO satellites 

by projecting the GEO/LEO retrievals to the EPIC grid at each EPIC observing time 

(Khlopenkov et al., 2017).  The procedure ensures that every EPIC image/pixel has a 30 

corresponding GEO/LEO composite image/pixel with approximately same size and observation 
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time. The LEO satellites include NASA Terra and Aqua MODIS and NOAA AVHRR while 

geosynchronous satellite imagers include Geostationary Operational Environmental Satellites 

(GOES) operated by NOAA, Meteosat satellites by EUMETSAT, and the Multifunctional 

Transport Satellites (MTSAT) and Himawari-8 satellites operated by the Japan Meteorological 

Agency (JMA). Compared to EPIC, the GEO/LEO sensors are usually better equipped for cloud 5 

detection over snow and ice. For this study, the GEO/LEO cloud mask is used as a reference for 

EPIC threshold finding and result comparison purposes. The time differences between the 

GEO/LEO and the EPIC observations are included in the product files. To limit uncertainties, we 

only use pixels where the GEO/LEO and EPIC observations are within 5 minutes. 

 10 

The remainder of the paper is organized as follows: Section 2 provides an analytical 

discussion on the relationship between the O2 band ratios with the relative airmass and surface 

elevation. Section 3 conducts sensitivity studies through radiative transfer modeling, and 

describes the threshold derivation procedure using the model simulations. Section 4 describes the 

new cloud mask algorithm for the EPIC instrument over snow and ice. Section 5 reports on the 15 

new algorithm validation. Finally, Section 6 provides a brief summary and discussion.  

 

2. An analytical guide with monochromatic radiative transfer  

 

Oxygen absorption has been applied to remote sensing of cloud and aerosol extensively (e.g., 20 

Grechko, et al. 1973; Fischer, J. and Grassl, 1991; Min et al. 2004; Stammes et al., 2008; Wang 

et al., 2008; Vasilkov et al. 2008; Ferlay et al., 2010; Yang et al. 2013; Ding et al. 2016; 

Richardson et al, 2019). The underlying physics is based on the well-known gaseous absorption 

of well-mixed atmospheric O2. Changes in observed radiance in the O2 band are expected to 

contain information on how clouds or atmospheric aerosols interrupt the normal absorption 25 

photon path and/or provide additional scattering at different vertical levels. The cloud detection 

using the O2 absorption band ratios is based on the fact that clouds decrease the photon path 

length within the atmosphere. Clouds reduce the oxygen absorption optical thickness while their 

impact on the nearby reference channels is negligible. As a result, everything being equal, the 

BRF ratios between the absorption and the reference channels are expected to be larger for 30 

cloudy sky than clear sky. In reality, photon paths can be very complicated: Yang et al. (2013) 
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listed six pathways for a photon to reach the sensor. To simplify the discussion, we only focus on 

completely clear or cloudy cases.  To determine a threshold for separating clear sky and cloudy 

sky, the first step is to understand factors that affect the clear sky O2 band ratios. The second step 

is to understand how O2 band ratios change with the presence of different kinds of clouds. This 

step helps determine where thresholds can be drawn between clear sky and cloudy sky and what 5 

kind of sensitivity or uncertainty can be expected with this method. 

 

  The radiances entering the sensor consist of many components including the directly 

reflected sunlight by clouds, aerosol, surface and Rayleigh scattering through single- and 

multiple-scattering processes. Rayleigh optical thickness at the Oxygen A- and B-band regions 10 

are about 0.02 and 0.04, respectively. Hence, for clear sky over a bright surface, we can neglect 

the contribution of single and multiple scattering. Thus, the monochromatic BRF at the top of 

atmosphere can be related to the column optical depth via Beer’s Law as:  

 

𝑅"#$ = 𝑇"#$'( ∗ 𝛼"#$ ∗ 𝑇"#$
+, = 	𝛼"#$𝑒
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 20 

where 𝑅"#$ and	𝑅@AB are the BRF for the oxygen band and its reference band, respectively. 

BRF at the top of atmosphere is a product of downward transmittance (Tdn), spectral surface 

reflection albedo a, and upward transmittance (Tup).  𝜏 and 𝜏@"N are optical thickness values due 

to O2 absorption and Rayleigh scattering at nadir, respectively, and are functions of surface 

elevation Z. 𝑚 is the total airmass accounting for the slant path for both incoming (Tdn) and 25 

reflected light (Tup). The absorption channels are subject to both absorption and Rayleigh 

scattering while the reference channels only incur Rayleigh scattering. The ratio of 𝑅"#$ and	𝑅@AB 

led to cancellation of Rayleigh scattering and surface albedo since the two channels are very 

close, such that  
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O7PQ
O6RS

= 𝑒/1(3)0
:
;5

:
;<9	= 𝑒/1(3)∗T                (4) 

  

The absorption optical thickness at a given location decreases exponentially with surface 

elevation following the approximate relationship in Eq. (5) (Petty, 2006): 

 5 

𝜏(𝑧) = 𝐾"𝑤G𝜌Y𝐻 exp 0−
_
`9 = 𝑐 ∗ exp 0−

_
`9        (5) 

    

Here H is the scale height, and 𝐾",𝑤G,	𝜌Y	are the mass absorption coefficient, mixing ratio of 

oxygen, and density of air at sea level, respectively. 𝑐 = 𝐾"𝑤G𝜌Y𝐻, and can be assumed constant 

for our problem. To relate the O2 band ratios directly to surface elevation and zenith angles in 10 

two separate terms, we take a double logarithm on both sides of Eq. (4), and substitute 𝜏 with Eq. 

(5), which leads to  

  

ln	( O7PQ
O6RS

) = −𝑐 ∗ exp 0−
_
`9 ∗ 𝑚						    (6) 

Define 15 

	𝑑𝑏𝑙𝑛	(O7PQ
O6RS

) = ln i− ln	(
O7PQ
O6RS

)j																													(7) 

    

We have 

𝑑𝑏𝑙𝑛(O7PQ
O6RS

) = ln 𝑐 − _
`
+ ln𝑚           (8) 

 20 

Here dbln refers to the double logarithm, and the minus sign before the second logarithm 

function is added to avoid negative values.  Eq. (8) decouples the effect of elevation and zenith 

angles in dbln(O7PQ
O6RS

), which allows estimation of coefficients in Eq. (8) with simple multivariate 

linear regression using two independent terms Z and ln 𝑚:  

𝑑𝑏𝑙𝑛 0
O7PQ
O6RS9 ≈ 𝑐Y + 𝑐G𝑍 + 𝑐m ln𝑚            (9) 25 
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Here c0, c1, c2 will be regression coefficients and can be used to predict the expected 

𝑑𝑏𝑙𝑛 0
O7PQ
O6RS 9.	Once 𝑑𝑏𝑙𝑛(O7PQ

O6RS
)	is	solved,	the O2 band ratios can be derived with Eq. (10): 

 
O7PQ
O6RS

= exp	(−exp	(𝑑𝑏𝑙𝑛 0
O7PQ
O6RS 9))																												(10) 

 5 

The above derivation shows that the clear sky O2 band ratios can be analytically predicted 

using surface elevation and zenith angles. Of course, many approximations have been used such 

as cancellation of Rayleigh extinction and surface BRF for the pair channels and constant 

absorption scale height. Due to large surface albedo, contributions of Rayleigh scattering are also 

neglected.  The contribution of Rayleigh scattering in the reflectance is about 0.01-0.02, and this 10 

may cause an uncertainty of 1% to 2% in the band ratio for bright surfaces. In cases of dark 

surfaces such as over ocean, the surface albedo is so small (~0.05) that the Rayleigh scattering 

starts to dominate the observed reflectance, and the simple equations derived here will result in a 

large bias. However, with albedos relatively large (around 0.8), our sensitivity studies find the 

ratios relatively stable, even though the single channel reflectances change in proportion to the 15 

surface albedo. The coefficients in Eq. (9) can be derived from either radiative transfer model 

simulations or real observational data from EPIC using multivariate least squares fitting. The 

advantage of the former is the exact knowledge of the model’s atmosphere and clear or cloudy 

conditions. Conversely, its disadvantage is a limited number of atmospheric profiles and 

sometimes simplistic or even unrealistic cloud input to the model. The advantage of using 20 

observational data is the abundant radiance measurements that could be used as training dataset 

while the disadvantage is the limited knowledge of atmospheric profiles and uncertainties in 

clear pixel identification. A common practice for developing a cloud mask algorithm is to use 

retrievals of simultaneous measurements from other better-equipped instruments or ground 

observations as the truth. Exact same-time overpass is quite rare even with the vast data volume 25 

from the polar orbiting satellites such as Terra and Aqua, and cloud detection over snow and ice 

from instruments such as MODIS is itself subject to large uncertainty. This could lead to some 

false cloud/clear identification in the training dataset and bias the results. Based on the above 

reasoning, we first derive the O2 band ratio thresholds with both model simulations and 
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observations, and then determine which set of coefficients is better suited for the EPIC cloud 

mask algorithm.   

 

3. Radiative transfer simulations 

3.1 Model setup 5 

 

We used a radiative transfer simulator for EPIC (Gao et al., 2019) to generate the A-band 

and B-band reflectances over snow and ice surfaces. The EPIC simulator is built upon a radiative 

transfer model (Zhai et al., 2009, 2010) that solves multiple scattering of monochromatic light in 

the atmosphere and surface system. Gas absorptions due to ozone, oxygen, water vapor, 10 

nitrogen dioxide, methane, and carbon dioxide are incorporated in all EPIC bands. The gas 

absorption cross sections are computed from the HITRAN line database (Rothman et al. 2013) 

using the Atmospheric Radiative Transfer Simulator (ARTS) (Buehler et al., 2011). Line 

broadening caused by pressure and line absorption parameters’ dependence on temperature are 

considered. In the O2 A- and B-bands, radiances from line-by-line radiative transfer simulations 15 

are convolved with EPIC filter transmission functions. The model atmosphere assumes a one-

layer cloud with a molecular layer both above and beneath. The O2 absorption within clouds is 

considered by assuming a fixed O2 molecule vertical profile (US standard or other specified 

atmospheres). 

 For clear sky simulations, four atmospheric vertical profiles distributed with FASCODE 20 

(Chetwynd et al. 1994), originally from Intercomparison of Radiation Codes in Climate Models 

(ICRCCM) project (Barker et al. 2003), are used: 1976 US standard atmosphere, mid-latitude 

winter, subarctic summer and subarctic winter atmospheres. Surface albedo values used in the 

simulations are 0.6, 0.8 and 1.0 to represent snow or ice surface. The snow albedo varies from 

0.5 to 0.9 depending on snow age, grain size, purity and sun angle, etc. (Warren, 1982) while ice 25 

albedo varies between 0.5 and 0.7. The daily mean snow albedo over Antarctica is generally over 

0.8 (Pirazzini, 2004).  

For cloudy sky cases, simulations for both water and ice clouds are conducted since both 

phases are found over the polar regions (e.g., Cesana et al. 2012, Zhao and Wang 2010). For 

water clouds, a gamma size distribution with effective radius of 10 µm and an effective variance 30 
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of 0.1 is assumed; for ice clouds, a fixed particle size (30µm) with a particle shape of severely 

roughened aggregate of hexagonal columns is assumed (Yang, et al., 2013). The cloud layer has 

varied optical thickness ranging from 0.2 to 30 and cloud top height from 1.0 km to 15 km above 

the ground. The cloud geometrical thickness varies from 0.5 km to 4 km.   

The model simulates a variety of cases with 17 solar zenith angles ranging from 0° to 80°, 18 5 

view zenith angles from 0° to 85°, and 37 azimuth angles from 0° to 180°, all with an increment 

of 5°. In addition to the varying sun-sensor geometry, the reflecting surface elevation is set from 

0 to 7.5 km with a 2.5 km increment for the clear sky sensitivity tests while the cloudy sky 

simulations are performed at sea level and 2.5 km above sea level. See Table 1 for a complete list 

of the model parameters.    10 

3.2 Clear sky simulations 

 

We first examine whether the clear sky radiative transfer simulations are consistent with  the 

simplified relationship between the O2 band ratios and surface elevation and total airmass at 

typical surface albedo of 0.8 as discussed above (Eq. 9). A direct inspection of O2 band ratios at 15 

fixed view zenith angle and relative azimuth angles with surface elevation indicates a nearly 

linear relationship between the two (Fig. 1a, 1b). The relationship depends on the solar zenith 

angle. At higher solar zenith angle, not only the ratios are lower at all surface elevations but also 

the rate of change with height (	z=
z_
	)  is larger. However, the same relationship can be expressed 

as a quasi-linear relationship between Z and the double logarithm of O2 band ratios at fixed 20 

zenith angles as indicated by Eq. (9) (Fig. 1c, 1d).  

   

The variation of O2 band ratios with solar zenith angles has been discussed in previous works 

(Fischer, J. and Grassl, 1991; Wang et al. 2008; Yang et al., 2013; and Gao et al., 2019). Here we 

show a more quantitative dependence of O2 band ratios as a function of the total relative airmass 25 

(m) defined in Eq. (3) at fixed surface elevation (sea level in this case, Fig. 1e, 1f).  The inverse 

relationship of O2 band ratios with m is evident.  Although EPIC is positioned close to the 

backscattering direction, there is a small difference in qs and qv, generally smaller than 6°. The 

red dots show the simulations when the difference between qs and qv is smaller than 6° to mimic 
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the EPIC sun-view geometry. The relationship derived from samples with restricted view zenith 

angles is not much different from that of all samples. Figures 1g-h further project this 

relationship as logarithm of m versus double logarithm of O2 band ratios as shown in Eq. (9). We 

notice that the linear relationship holds very well except for very large relative airmass (ln (m) > 

2.5, which corresponds to zenith angles > 80°).  5 

  

To account for both elevation and zenith angle effect, a multivariate least square regression is 

applied in which Z and ln (m) are taken as two independent terms and dbln(O7PQ
O6RS

) is the dependent 

variable for the simulations with view zenith angle difference less than 6° as suggested in Eq. 

(9). The results indicate high confidence of the fitting with multi-correlation coefficients 10 

reaching 0.998 for both A-band and B-band (Fig. 1i, 1j). The coefficients c0, c1, and c2 are listed 

in Table 2.  The set of regression coefficients derived from simulations at surface albedo 0.8 also 

predict very well the A-band ratios from simulations using different surface albedos (0.6 and 1.0) 

(Fig. 2a), with obvious divergence occurring only at large zenith angles (>80°) where no 

retrieval is performed for EPIC (Fig. 2b).  15 

  

 Table 2 also lists the set of coefficients derived from observations utilizing information 

from collocated GEO/LEO pixels. Details will be discussed in Section 4. 

  20 

3.3 Cloudy sky simulations 

 

The coefficients in Table 2 can be applied to Eq. (9) to compute an expected clear sky band 

ratios. In order to test the feasibility of using the derived clear sky band ratios as the thresholds 

for clear and cloudy pixel separation, we first evaluate the sensitivity of O2 band ratios to cloud 25 

properties.  This is done by adding clouds with different optical thickness, cloud top height and 

geometric thickness in the radiative transfer simulations, and then comparing the O2 band ratios 

of cloudy sky with those of clear sky under the same sun-view geometry. The results from solar 

and view zenith angles of 30° and 60° and relative azimuth angle of 160° are shown in Figure 3, 

with the corresponding clear sky values shown as the filled and open triangles, respectively. We 30 

notice that the O2 band ratios generally increase with the optical thickness and are higher for 

cloudy sky than for clear sky but with certain exceptions. At low zenith angles (< 30°), we find 

Deleted: we use

Deleted: to fit

Deleted: dln(O7PQ
O6RS

)35 

Deleted: 1. Table 1

Deleted: the next section

Deleted: ¶
Table 1. Regression coefficients to equation (9) using model 
simulation data and observations. ¶40 ... [1]

Deleted: 1

Deleted: ratio

Deleted: of

Deleted:  and

Deleted: for45 

Deleted: 2

Deleted: the

Deleted: Figure 2 shows



 

 22 

very low sensitivity of O2 band ratios with cloud optical thickness when cloud top height is 1 km 

(Fig. 3a, 3b). Likewise, the sensitivity to cloud top height is very low at low optical thickness 

(tau = 1.7) for the A-band (Fig. 3c).  For the B-band, the O2 ratios decrease with cloud top height 

up to 5 km before increasing again at tau = 1.7 (Fig. 3d). Note that these figures show that adding 

a layer of optically thin cloud (COT < 3) actually decreases the ratio at 30° zenith angle. The 5 

reason is that under this circumstance the reflectance of the reference channel increases more 

than the absorption channel, which indicates an increase in the photon path. The causes of 

photon path increase include multiple scattering inside the cloud and surface-cloud interaction. 

The strong surface-cloud interaction over the bright surface of snow/ice partly contributes to the 

low sensitivity of O2 band ratios for the low and thin clouds compared with relatively darker 10 

surfaces (Further illustrated in Fig. 4). The sensitivity of O2 band ratios to cloud optical thickness 

and height increases with solar and view zenith angles, as can be seen from the SZA = VZA = 

60° curves.  

 

As the cloud mask only works when cloudy sky O2 band ratios are greater than the clear sky 15 

ratios, the difference between the two at low zenith angles (vza = sza = 30°)  is shown as a 

function of two major factors: COT and CTOP for the A-band and the B-band at surface albedo 

0.8, cloud geometric thickness of 1km and sea level conditions (Fig. 4a, 4b), along with their 

sensitivities with altered geometric thickness (Fig. 4c, 4d), surface albedo (Fig. 4e, 4f), and 

surface elevation (Fig. 4g, 4h). If a difference larger than 0.01 is required to confidently detect 20 

cloud, we notice that the cases at the lower left side of each figure, which correspond to low 

COT and CTOP will present difficulty in cloud detection. Smaller cloud geometric height (Fig. 

4c, 4d) and surface albedo (Fig. 4e, 4f) tend to increase the sensitivity while higher surface 

elevation (Fig. 4g, 4h) tends to decrease the sensitivity as compared to the cases in Fig. 4a and 4b 

for A-band and B-band, respectively. These results show that O2 band ratios can be used to 25 

detect clouds that are thick and/or high with much confidence over snow and ice surfaces. 

Difficulties still exist in detecting thin clouds or low clouds at low zenith angles (<30°). Note 

that the A-band has better sensitivity than the B-band as expected. It should be pointed out that 

for most of the cases, the solar zenith angles are larger than 30° since snow and ice are present 

mainly in regions of high latitudes.   30 
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4. EPIC cloud mask over snow/ice  

 

The regression results from Eq. (9) can be used as the thresholds for cloud detection. As 

discussed in Section 2, we can derive the thresholds using either radiative transfer simulations or 

satellite observations. The previous section discussed the path of using modeling results, here we 5 

attempt to derive the thresholds based on the real EPIC data. 

 

For this purpose, the Langley GEO/LEO composite cloud product (Khlopenkov et al., 2017) 

and EPIC L1B data from January and July of 2017 are used as the training dataset, and data from 

January and July 2016 are used for validation. The cloud retrievals in the composite data follows 10 

Minnis et al. (2011). Because of EPIC’s large pixel size, one EPIC pixel corresponds to many 

GEO/LEO pixels each with its own cloud mask and optical properties retrievals, hence a 

composite pixel reports a cloud fraction based on cloud masks of the GEO/LEO pixels within it. 

It should be noted that cloud detections over snow and ice surfaces from instruments on 

GEO/LEO satellites are difficult as well. For example, the AVHRR-based cloud fraction was 15 

found to be basically unbiased over most of the globe except over the polar regions where a 

considerable underestimation of cloudiness could be seen during the polar winter when 

compared with cloud information from the Cloud-Aerosol Lidar with Orthogonal Polarization 

(CALIOP) onboard the CALIPSO satellite. The overall probability of detecting clouds in the 

polar winter could be as low as 50 % over the highest and coldest parts of Greenland and 20 

Antarctica, with a large fraction of optically thick clouds remaining undetected (Karlsson et al. 

2018). Wang et al. (2016) shows MODIS from Terra and Aqua misidentifies cloud as clear as 

high as 20% over snow covered or sea ice regions in Antarctic. They show that misidentification 

of clear as cloud also occurs quite frequently in Eastern Antarctica during boreal spring and fall. 

Over snow covered high mountains, a recent study by Shang et al. (2018) found the cloud 25 

detection rate was 73.55% and 80.15%, respectively for the Advanced Himawari Imager (AHI) 

and MODIS over Tibetan Plateau. All these studies use the CALIOP cloud detection as ground 

truth and highlight the large uncertainties in cloud detection from passive radiometers over 

snow/ice surfaces and over high mountain areas.   

 30 

Deleted:  using the same theoretical guide as provided in 
Section 2. 

Deleted: For this purpose, a collocated dataset from 
GEO/LEO composite cloud product and EPIC L1B data for 
January and July of 2017 are used.  The GEO/LEO 35 
composite dataset was generated by the Clouds and the 
Earth's Radiant Energy System (CERES) team at the NASA 
Langley Research Center by projecting the GEO/LEO 
retrievals to the EPIC grid at each EPIC observing time 
(Khlopenkov et al., 2017). This ensures that every EPIC 40 
image/pixel has a corresponding GEO/LEO composite 
image/pixel with approximately same size and observation 
time. The LEO satellites include NASA Terra and Aqua 
MODIS and NOAA AVHRR while geosynchronous satellite 
imagers include Geostationary Operational Environmental 45 
Satellites (GOES) operated by NOAA, Meteosat satellites by 
EUMETSAT, and the Multifunctional Transport Satellites 
(MTSAT) and Himawari-8 satellites operated by Japan 
Meteorological Agency (JMA). The cloud retrievals in the 
composite data follows Minnis et al. (2011).50 



 

 24 

Keeping these in mind, we use the GEO/LEO composite cloud product as the training and 

validation dataset because of its pole-to-pole coverage and availability. The cloud fraction and 

surface scene types from the composite dataset are used to select the clear pixels (100% clear) 

over snow/ice surface (when 90% of the scene type is permanent snow or ice, seasonal snow, or 

ice over water). Surface type is reported in the Langley GEO/LEO dataset, which is based on the	5 

IGBP	surface	type	dataset	and	the Near-real-time Ice and Snow Extent (NISE) data set from the 

National Snow & Ice Data Center (NSIDC) (Brodzik and Stewart, 2016). To reduce the 

uncertainties, we further restrict the difference between the GEO/LEO and the EPIC to be within 

5 minutes. We also restrict the analysis on pixels with view zenith angle less than 80°. The 

surface elevation data is from the National Geophysical Data Center (NGDC) TerrainBase 10 

Global Digital Terrain Model (DTM), version 1.0 (Row and Hastings, 1994). 

The same type of multivariate least square regression is performed for the clear sky pixels 

using the elevation and logarithm of total relative airmass as independent variables, and the 

double logarithm of the O2 band ratios as the dependent variables as suggested by Eq. (9). The 

derived regression coefficients (Table 2) are quite close to those derived from the model 15 

simulations with slightly larger scatter (Fig. 5a, 5b). One major source of uncertainty may come 

from the GEO/LEO cloud identification. As mentioned above, cloud detection over snow and ice 

is very challenging even for GEO/LEO satellites with more spectral channels. Cloud 

contaminated pixels might have lower or higher O2 band ratios than the clear sky values 

depending on the optical thickness of the cloud and the sun/viewing geometry (Fig. 3).  Other	20 

sources	of	uncertainties,	such	as	geolocation,	surface	elevation	and	atmospheric	profile	can	also	

contribute	to	the	larger	scatter	in	the	observational	data. 

 Obviously, the clear sky thresholds predicted from observational data have to be adjusted to 

provide a better overall performance since the regression model is designed to predict the median 

rather than the upper bound of clear sky band ratios. The same regression coefficients applied to 25 

cloudy sky samples indicate many overlapping of O2 band ratios from clear sky and cloudy sky 

pixels (Fig. 5c, 5d). A threshold value too high will guarantee the clear sky identification but 

underestimate cloudy pixels, and too low will lead to overestimation of cloudy pixels. To achieve 

the best overall clear sky and cloudy sky performance, we set the threshold value by increasing 
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the ratios derived from Eq. (10) by 0.025 so that the cloud mask threshold is close to the upper 

quantile of the clear sky values (red dashed line in Fig. 5c and 5d).   

 

Results show that using the set of coefficients derived from the model simulations captures 

most of the clear sky samples without being adjusted (Figures not shown). We found that even 5 

though the thresholds derived from the observational data perform slightly better when applied 

back to the same training dataset, they underperform the model derived algorithm when applied 

to a different data period (January and July of 2016). One likely reason is that the cloud 

identification in the observational training dataset has its own non-negligible uncertainties. These 

uncertainties will not affect the performance in the training dataset but affect the algorithm 10 

performance in a different data period. For this purpose, we adopt the algorithm derived from the 

model simulations for the rest of this paper.  

 

Following the current EPIC cloud mask algorithm, we also set an upper and a lower 

threshold that is 0.02 above or below the model predicted threshold (RT0). A cloud mask (CM) 15 

confidence level is determined for each pair of the O2 band ratios based on whether the ratios fall 

between these intervals/thresholds: 

 

CM = 
{

4																		Ratio > 𝑅𝑇Y + 0.02; 				CldHC
	3			𝑅𝑇Y < Ratio	 < 𝑅𝑇Y + 0.02; 						CldLC		
2			𝑅𝑇Y − 0.02 < Ratio < 𝑅𝑇Y; 							ClrLC
		1																		Ratio < 𝑅𝑇Y − 0.02; 					ClrHC

	�
   

 20 

 Here, CldHC, CldLC, ClrHC, and ClrLC refer to Cloud with High Confidence, Cloud with 

low Confidence, Clear with High Confidence; Clear with low Confidence, respectively. The final 

confidence level is determined by combing the two results from the A- and B-band tests 

according to Table 3. Note that we only define high confidence cloud (CldHC) or high 

confidence clear (ClrHC) when both tests show cloud or clear with high confidence.   25 

An illustration of EPIC O2 band ratios and the derived cloud mask over the Antarctic on 

Dec.23, 2017 is shown in Figure 6, along with cloud fraction derived from GEO/LEO composite. 

In this figure, the A-band and B-band ratios show not only the presence of clouds but also the 

effect of elevation, as the low values over Ross Ice Shelf are clearly influenced by the low 30 
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elevation in that area. The new cloud mask detects the majority of the cloud area, but some 

portion of clouds over this region is missing. This could be because the clouds in this scene over 

the Ross Ice Shelf are low.   

 

5. Algorithm validation 5 

 

Using the thresholds from radiative transfer simulations, we reprocessed the EPIC cloud 

mask over snow/ice surface for all the collocated pixels in three months, January 2016, 2017 and 

July 2017.  

 10 

We divide the GEO/LEO cloud fraction into 4 categories to match with the CM in EPIC: 

 

GEO/LEO CM = 
{

4:																		cloud	fraction	³	95%
	3:		50%	£	cloud	fraction < 95%		
2:			5%	£	cloud	fraction < 50%	
		1:																		cloud	fraction < 5%	

�
   

 

  Figure 7 shows the distributions of the EPIC cloud mask values corresponding to each of 15 

the GEO/LEO cloud fraction range for the three months. The figure also compares the 

performance of the original EPIC algorithm (V01) and the newly developed algorithm. As can be 

seen from the figure, the original algorithm overestimates the clear sky fraction (blue bars) for 

observations in January 2016 and 2017, evidenced by the high blue bar values in both the 

GEO/LEO cloud fraction <5% and cloud fraction >95% categories. There are also a considerable 20 

amount of pixels in the GEO/LEO low cloud fraction category being classified as cloudy by the 

original algorithm (yellow and red bars). Improvement is evident for the new algorithm, where 

most of the pixels with cloud fraction < 5% have CM = 1 or 2 (high and low confidence clear, 

respectively), while pixels with cloud fraction >95% more likely have CM values of 4 and 3 

(high and low confidence cloudy, respectively).   25 

To quantitatively measure the performance of the cloud masking algorithms, we further 

define a binary partition of Positive (CM = 1, 2) and Negative (CM = 3, 4) cloud identification 

for both EPIC and GEO/LEO, which results in 4 total combinations. Successful retrievals consist 

of TP (True Positive) and TN (True Negative) cases, in which both algorithms identify the pixel 
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as cloudy and clear, respectively, and unsuccessful retrievals consist of FN (False Negative) and 

FP (False Positive) – where EPIC identifies a pixel as clear and cloudy respectively, opposite to 

GEO/LEO cloud mask. Assuming GEO/LEO is the “truth,” a number of parameters as a measure 

of EPIC’s CM accuracy are computed: 

 5 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑁 + 𝐹𝑃										(11) 

𝑃𝑂𝐶𝐷 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁																																		(12) 

𝑃𝑂𝐹𝐷 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃																																		(13) 

 

Here POCD and POFD are the probability of correct detection and probability of false 10 

detection, respectively. For January 2016 and 2017, compared to the current product, the 

accuracies have been improved considerably from a low 57-60% to around 83%. The POCD is 

nearly doubled (from 36% to 64-67%) and a significant reduction of POFD (a drop from around 

50% to 10%). The original algorithm performs relatively well in July 2017 with a probability of 

correct detection (POCD) at 77.5% and a low probability of false detection (POFD) of 16.5%; 15 

hence the improvement for this month is relatively small.  

 

Figure 8 shows the cloud fraction on a 1o x 1o grid for January 2017 over snow/ice covered 

Antarctica.  Note that here we lift the 5 min time difference limitation and use all available pixels 

with view zenith angles less than 75° from the GEO/LEO composites (Khlopenkov et al., 2017) 20 

in order to have a full coverage of the region. The cloud fraction map from GEO/LEO shows a 

belt of high cloud fraction originated from mid-latitude storm track reaching the edge of the 

continent. Onto the icy plateau of East Antarctica, cloud fraction quickly decreases.  High cloud 

fraction is found over West Antarctica.  The cloud fraction from the original algorithm shows 

quite an opposite cloud distribution pattern between West and East Antarctica. This is likely due 25 

to fixed threshold that is too low for the high elevation in East Antarctica and too high for the 

low elevation in West Antarctica.  By taking the elevation into account, the new algorithm 

identifies the regional cloud distribution much better. In addition, the new algorithm also has a 

better cloud fraction match around the edge of the Antarctic continent. 
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To examine the performance of the new algorithm on the global scale, we plotted gridded 

cloud fraction over snow/ice surfaces for the entire globe in January 2016 (Fig. 9). The number 

of snow/ice pixels used for the map are also shown, because sample numbers affect the quality of 

monthly mean.  We notice that the number of snow/ice pixels per grid is much higher in January 5 

over Antarctica. There are also considerable amounts of snow/ice pixels in northern hemisphere 

high-latitude regions and the southern tip of the Andes. There is no retrieval north of 50° N due 

to no daylight or view zenith angle too large in January (DSCOVR only has observations for the 

daytime Earth). Comparisons show that the new algorithm improves cloud distributions 

noticeably. 10 

 

Figure 10 shows a similar map but for July 2017. During the boreal summer, the cloud mask 

algorithm has retrievals over the entire northern hemisphere but not for part of Antarctica south 

of 65 °S due to the polar night. The GEO/LEO cloud fraction map indicates cloud fraction > 

80% over snow/ice surface over most of the regions in July except over Greenland. The original 15 

algorithm has similar cloud fraction in most areas over snow and ice surfaces, except over 

southeast Greenland where it has significantly more cloud than the other part of Greenland. This 

is likely due to the original algorithm’s failure to take into consideration the high elevation there. 

On the other hand, the underestimation of cloud fraction at the southern tip of the Andes could be 

due to its failure to take into account the large solar and view zenith angles in summer. The new 20 

algorithm detects significantly lower amount of cloud fraction in Greenland and improves the 

cloud detection in the aforementioned high mountain areas.  

 

 Even though the new cloud mask has improved accuracy and general pattern match with 

the GEO/LEO retrievals, regional differences between the two can still be quite large. This is 25 

partly due to the large uncertainty of cloud detection from GEO/LEO over snow/ice itself, and 

partly due to the intrinsic difficulty of using O2 band ratios in detecting the low cloud and thin 

cloud as discussed before. In addition, the time difference between EPIC and GEO/LEO 

observations can also impact the comparison between the two. Stratifying the performance based 

on difference in the observation time, we find a larger difference in the observing time leads to 30 

slightly lower POPD, higher POFD and an overall decreasing accuracy (Fig. 11).  
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6. Summary and discussion 

 

Due to limited spectral channels, especially the lack of infrared and near infrared channels in 

the DSCOVR EPIC instrument, cloud detection for EPIC over snow and ice poses a great 5 

challenge. The existing EPIC cloud mask algorithm employs two oxygen pair ratios in A-band 

(764 nm, 780 nm) and B-band (688 nm, 680 nm) for cloud detection over the snow and ice 

surfaces. This method is based on the fact that photons reflected by clouds above the surface will 

travel, on average, a shorter distance through the atmosphere and so experience less absorption 

by O2; hence a threshold can be set to separate cloudy pixels from clear pixels. However, clear 10 

sky O2 band ratios depend on a number of factors such as surface elevation and sun/viewing 

geometry that impact the total absorption airmass; these factors need to be accounted for.  

 

In this study, we use both the radiative transfer theory and model simulations to quantify the 

relationship between the O2 band ratios with surface elevation and zenith angles.  Thresholds are 15 

derived as a function of surface elevation and sun-view geometry based on both model 

simulation results and observations. Model derived algorithm is chosen because it performs 

better when applied to the observations that were not used in the training dataset. The new 

algorithm increases the accuracy of EPIC cloud mask over snow and ice surfaces in winter by 

more than 20%. This is achieved through a significant reduction of false detection rate from 50% 20 

to 10% and nearly doubling of the correct detection rate.  The improvement in the summer 

month July is mild, with the main improvement observed over Greenland.  Of course, these 

performance metrics are based on comparison with GEO/LEO cloud mask which has quite large 

uncertainty over snow and ice surfaces itself. In addition to significant improvement in cloud 

detection over Antarctic, the new algorithm also improves cloud detection over Greenland and 25 

some mid-latitude high mountain areas. 

 

Limitations of this method include difficulties in identifying thin cloud with optical 

thickness less than 3 or low cloud below 3 km due to the lack of sensitivity in O2 band ratios 

under these circumstances. Compared with the infrared-based techniques, one advantage of this 30 

oxygen band technique is that it is relatively insensitive to the surface and atmosphere 
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temperature. Therefore, the method presented in this work provides a solution to polar cloud 

detection when infrared channels are not available. We anticipate that cloud detection using 

oxygen band technique to be of great value in the future missions.  
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Table 1: Parameter setup in radiative transfer model simulations  

Clear Sky 

Simulations 

Atmospheric Profiles Standard US 1976; Mid-Latitude Winter; Sub-

Arctic Summer; Sub-Arctic Winter;  

Solar Zenith Angles 0-80°, every 5° 

View Zenith Angles 0-75°, every 5 

Relative Azimuth Angles 0-180°, every 5° 

Surface Elevation 0.0, 2.5, 5.0, 7.5 km      

Surface Albedo 0.8, 0.6, 1.0 

Cloudy Sky 

Simulations 

Atmospheric Profiles Standard US 1976 

Solar Zenith Angles 0-80°, every 5°, (30°, 60° for surface elevation = 

2.5 km and surface albedo = 0.6) 

View Zenith Angles 0-75°, every 5 

Relative Azimuth Angles 0-180°, every 5° 

Surface Elevation 0, 2.5 km 

Cloud Top Height 1.00, 3.00, 5.00, 7.50, 10.00, 12.50, 15.00 km 

Cloud Geometric 

Thickness 

0.50, 1.00, 2.00, 4.00 km 

Cloud Optical Thickness 0.22, 0.82, 1.72, 3.06, 5.05, 8.03, 12.46, 19.09, 

28.96 

 Surface Albedo  0.8, 0.6 
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Table 2. Regression coefficients for equation (9) and multiple correlation coefficients (Rmulti) 

derived from model simulated data and observations, respectively.  

                  A-band              B-band  

 c0 c1 c2 Rmulti c0     c1 c2 Rmulti 

Simulations -0.3100 -0.1341 0.5202 0.998 -1.0201 -0.1361 0.4888 0.999 

Observations -0.1764 -0.1152 0.4542 0.958 -0.8672 -0.1185 0.3995 0.934 

 

 

 5 

Table 3. The logic table for combining the cloud mask results from the A- and B-band tests. 

Acronyms CldHC: Cloud with High Confidence; CldLC: Cloud with low Confidence; ClrHC: 

Clear with High Confidence; ClrLC: Clear with low Confidence.  

  A-band Test 

  CldHC CldLC ClrLC ClrHC 

B-band test 

CldHC CldHC CldLC CldLC CldLC 

CldLC CldLC CldLC CldLC ClrLC 

ClrLC CldLC CldLC ClrLC ClrLC 

ClrHC CldLC ClrLC ClrLC ClrHC 
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Figure 1. Relationships between model simulations of clear sky A-band (left column) and B-

band (right column) ratios with surface elevation and relative airmass.  a, b) O2 band ratios as a 

function of surface elevation; c, d) double logarithm of O2 band ratios versus surface elevation; e, 

f ) O2 band ratios as a function of total relative airmass; g, h) double logarithm of O2 band ratios 5 

versus logarithm of total relative airmass; i, j) scatter plot of fitted thresholds and O2 band ratios.  

The red points in Panels e-j show the simulations when the difference between qs and qv is 

smaller than 6° to mimic the EPIC sun-view geometry. The fitted thresholds are computed with a 

multivariable linear regression in which double logarithms of O2 band ratios are expressed as a 

function of surface elevation and logarithmic of total relative airmass. The simulations use 4 10 

atmospheric profiles: mid-latitude winter, subarctic summer, subarctic winter, standard US 

atmosphere. Surface albedo is set at 0.8 to represent snow and ice surface.   
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Figure 2. Scatter plot of model simulated A-band ratios (y-axis) at surface albedo = 0.6 (blue), 

0.8 (black) and 1.0 (red) versus computed with regression derived with the set of simulations at 

surface albedo = 0.8 (x-axis) for (a) view zenith angles < 75°, and (b) all view zenith angles. 5 

Absolute solar zenith angle and view zenith angles differences are smaller than 6° for both plots. 

The results are from simulations using standard US atmosphere.    
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Figure 3. Model simulated Oxygen band ratios as a function of cloud optical thickness (COT) 

with cloud top height at 2.5 km (black), 5.0 km (blue) and 7.5 km (red) and solar zenith angles at 

30° (solid line) and 60° (dotted lines), respectively for (a) A-band and (b) B-band. View zenith 5 

angle is the same as the solar zenith angle and relative azimuth angle is 160° for all the 

simulations. The clear sky simulations are marked with filled and unfilled triangles for solar and 

view zenith angles at 30° and 60°, respectively. Both clear sky and cloudy sky simulations use 

standard US atmosphere and zero ground elevation. Relative Azimuth Angle is 160. Surface 

albedo is set at 0.8 to represent snow and ice surface.   10 
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Figure 4. The difference of O2 band ratios (cloudy sky - clear sky) as a function of COT and 

CTOP at SZA = VZA = 30°, RAZM = 160° at (a, b) surface albedo (ALB) = 0.8, surface height 
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(SHT) = 0 km (sea level), and cloud geometric thickness (CGT) = 1 km; the rest are the same as 

(a, b), but with the change of one parameter for (c, d) CGT = 0.5 km ; (e, f) ALB = 0.6 ; and (g, 

h) SHT = 2.5 km.  The right panel is for A-band and the left panel is for B-band.  
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Figure 5.  Scatter plot of regression fit versus A-band (left) and B-band (right) ratios for clear sky 

(a, b) and cloudy sky (c, d) pixels from EPIC measurements over global snow and ice surfaces in 5 

January and July 2017.  The regression is derived with clear sky oxygen band ratio as a function 

of surface elevation and airmass. The pixels on the left (right) side of black lines could be 

identified as cloudy (clear) as the observed ratios is larger (smaller) than the predicted threshold. 

The dashed lines (increase the predicted ratios by 0.025) provide better division of clear and 

cloudy pixels.  10 
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Figure 6. Section of an EPIC granule on Dec 23, 2017, 1707 UTC time with matching GEO/LEO 5 

overpass within 5 minutes of the EPIC scan over western Antarctic. (a) A-band ratio, (b) B-band 

ratio, (c) cloud fraction from GEO/LEO composite, (d) Cloud mask from the new algorithm.   
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Figure 7. Number of pixels in each pixel-by-pixel matchup category between cloud mask from 

EPIC and GEO/LEO composite cloud fraction over snow/ice surfaces for January 2016 (a, b), 

January 2017 (c, d), and July 2017 (e, f). Left is from the current EPIC cloud mask algorithm and 

the right is from the new algorithm. Blue, cyan, yellow and red bars are for EPIC cloud mask 5 

equals to 1, 2, 3, 4, respectively. POCD: probability of correct detection; POFD: probability of 

false detection. 
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Figure 8. Cloud Fractions derived from (a) composite GEO/LEO retrievals, (b) original EPIC 

cloud mask, (c) new EPIC cloud mask over Antarctic in January 2017.   5 
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 5 
 

Figure 9. (a) Number of ice/snow pixels and monthly mean cloud fractions derived from (b) 

GEO/LEO composites, (c) original EPIC cloud mask algorithm, and d) new algorithm in 1° x 1° 

grids for January 2016.  
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Figure 10. (a) Number of ice/snow pixels and monthly mean cloud fractions derived from (b) 5 

GEO/LEO composites, (c) original EPIC cloud mask algorithm, and d) new algorithm in 1° x 1° 

grids for July 2017.  

  

Deleted: 8



 

 49 

 

 

 
 

Figure 11. Performance metrics for January 2017 as a function of time difference between EPIC 5 

and GEO/LEO instrument measurements. POCD: probability of correct detection; POFD: 

probability of false detection. 
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