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Abstract. The Tropospheric Monitoring Instrument’s (TROPOMI) level-2 aerosol layer height (ALH) product has now been

released to the general public. This product is retrieved using TROPOMI’s measurements of the oxygen A-band, radiative trans-

fer model (RTM) calculations augmented by neural networks and an iterative optimal estimation technique. The TROPOMI

ALH product will deliver aerosol layer height estimates over cloud-free scenes over the ocean and land that contain aerosols

above a certain threshold of the measured UV absorbing index (UVAI) in the ultraviolet region. This paper provides background5

for the ALH product and explores its quality by comparing ALH estimates to similar quantities derived from spaceborne lidars

observing the same scene. The spaceborne lidar chosen for this study is the Cloud-Aerosol Lidar with Orthogonal Polarisation

(CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, which flies

in formation with NASA’s A-train constellation since 2006 and is a proven source of data for studying aerosol layer heights.

The influence of the surface and clouds are discussed and the aspects of the TROPOMI ALH algorithm that will require future10

development efforts are highlighted.

1 Introduction

Aerosols are an important component of the Earth system which provide the means for the formation of clouds by acting as

cloud-condensation nuclei, affecting the Earth’s radiation budget by absorbing or scattering incoming solar radiation (Twomey,

1974), and even nurturing forests from across oceans (Yu et al., 2015; Barkley et al., 2019). A significant source of origin for15

aerosols is natural, followed by anthropogenic contribution to the Earth’s atmosphere. The IPCC (2014) report has made it

clear that the current scientific consensus acknowledges the impact of aerosols on the Earth’s radiation budget via direct,

indirect and semi-direct effects. What makes monitoring aerosols difficult is the high spatial and temporal variability of aerosol

micro and macrophysical properties (Li et al., 2009). To that extent, there are several spaceborne, ground-based and airborne

missions extensively monitoring these aerosol micro and macrophysical properties. These missions aim to reduce the gaps in20

our knowledge of aerosol radiative effects by accurately measuring aerosol properties at a high spatial and temporal resolution.

This paper specifically discusses retrieving information on the vertical distribution of aerosol layer in the atmosphere, which has

significant relevance in deriving auxiliary aerosol properties and subsequently understanding aerosol radiative effects (ARE),
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primarily absorption of radiation by aerosols. Torres et al. (1998) explicitly mention the importance of knowledge about aerosol

vertical distribution which can be used in tandem with the UV absorbing index (UVAI) to compute aerosol properties such as

aerosol optical thickness and effective single scattering albedo over cloud-free and snow-free scenes. de Graaf (2005) provide

several sensitivity analyses that detail the importance of the aerosol height in interpreting the UVAI. Sun et al. (2018) explicitly

mention in their study the requirement of accurate aerosol layer height estimates in order to derive aerosol absorption from the5

UVAI.

The global monitoring of aerosol properties can only be done using remote sensing techniques from space. The space-based

techniques currently utilised by the scientific community to retrieve aerosol vertical information are divided into two categories

— active and passive techniques; active remote sensing techniques monitor aerosol properties by measuring the interaction of

energy generated by the instrument with aerosols in the atmosphere, whereas passive techniques do the same by measuring10

the interaction of natural light with aerosol particles. There are several differences in the sensing principles between active and

passive remote sensing of aerosols, specifically in terms of vertical resolution. Active sensors such as the CALIOP instrument

provide attenuated backscatter profiles resolved vertically at a vertical resolution as fine as 30 m for different channels over a

spatial resolution as fine as 0.33 km (see Table 2 of Winker et al. (2009)). While these measured backscatter profiles provide

detailed quantitative information on the scattering species present in the atmosphere, spaceborne atmospheric profiling lidars15

have limited spatial coverage due to their limited beam width. Owing to this particular feature of active remote sensing,

spaceborne lidars currently do not revisit a specific point on Earth several times a day, or even on a daily basis. On the other

hand, passive spaceborne remote sensing has the ability to measure a specific point on Earth once a day for polar orbiting

satellite missions and several times in the day for geostationary missions. Currently however, the retrieved information on

aerosol vertical distribution from passive remote sensing techniques is much more limited when compared to active techniques20

such as orbiting lidars.

Several passive retrieval strategies that are currently in their operational phase utilise the interaction of incoming solar

radiation with the aerosol species to retrieve height information. Some notable mentions of missions that retrieve aerosol layer

height are Multiangle Imaging Spectroradiometer (MISR) on board the NASA Terra satellite (Nelson et al., 2013), the Deep

Space Climate Observatory (DSCOVR) mission with its Earth Polychromatic Imaging Camera (EPIC) (Xu et al., 2017, 2019),25

the upcoming Multi-Angle Imager for Aerosols (MAIA) mission (Davis et al., 2017), the Ozone Monitoring Instrument (OMI)

on board the NASA Aura mission (Chimot et al., 2017, 2018), and finally the TROPOMI instrument on board the Sentinel-5

Precursor mission (Veefkind et al., 2012). These instruments are examples of missions demonstrably capable of retrieving

aerosol layer height accurately. Except for TROPOMI however, there is currently no passive remote sensing mission that

provides an operational stream of retrieved aerosol layer heights. In the fourth quarter of 2019, an operational data stream30

of retrieved aerosol layer heights derived from measured oxygen A-band spectra by TROPOMI has been made available to

the general public; the TROPOMI operational UVAI product augmented by the TROPOMI ALH product has the potential to

further the operational monitoring of aerosol properties globally. This paper discusses some key features of the product and its

limitations by comparing it with co-located CALIOP profiles, and paints a future outlook of the evolution of the TROPOMI

aerosol layer height algorithm. The paper looks into more than two million colocations between TROPOMI ground pixels and35
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CALIOP profiles over an extended period of time covering several months from May 2018 till March 2019, in order to draw

conclusions on the accuracy of the TROPOMI aerosol layer height retrievals. Further on, the paper also discusses four selected

cases in and around West Africa for a deeper analysis of the comparison with CALIOP data; the choice of using the Africa as

a study area arises from the fact that a significant majority of colocations between TROPOMI and CALIOP are concentrated

around the West African region.5

In Section 2) of this paper, we discuss the data and methods used in this paper; section 2.1 describes the retrieval algorithm

and highlights different diagnostic parameters available for assessing the product’s quality. Following this, the comparison

between CALIOP and TROPOMI estimates of aerosol heights are presented in 3 — Section 3.1 presents an overall analysis of

a large number of TROPOMI-CALIOP colocations, followed by Section 3.2 which discusses selected cases for a deeper dive

into the TROPOMI product. The paper concludes with section 4, highlighting important areas of potential improvement in the10

current TROPOMI aerosol layer height product.

2 Data and Methods

2.1 TROPOMI aerosol layer height

The TROPOMI aerosol layer height product is derived from measurements of the oxygen A-band in the near infrared region

between 758 nm and 770 nm. Within this spectral range, TROPOMI measures top of atmosphere radiances and solar irradiances15

with a spectral resolution between 0.34 nm and 0.35 nm and a spectral sampling of 0.126 nm. The retrieval algorithm exploits

the absorption characteristics of molecular oxygen, which varies with the photon path length — the photon path length for an

aerosol layer closer to the surface is longer, which appears as deeper oxygen absorption lines in the measured spectrum (see

Figure 1 of Nanda et al. (2018a)).

The reported aerosol layer height is the height of a single aerosol layer for the entire atmospheric column within the scene20

measured by TROPOMI; in reality however, there can be several cases where distinctly separated elevated and boundary layer

aerosols are present in the same scene. In such cases, the retrieval algorithm is expected to retrieve an optical centroid pressure

or height of the two (or more) aerosol layers, depending on the atmospheric level of the aerosol layer from which most of the

photons are scattered back. For instance, if the elevated aerosol layer contributes significantly more than the boundary layer

aerosols to the top of atmosphere measured spectra, the aerosol layer height retrieval algorithm is expected to retrieve values25

closer to the elevated layer.

The technique for retrieving aerosol layer height is based on optimal estimation (Rodgers, 2000), where an RTM that calcu-

lates the top of atmosphere oxygen A-band spectra is fitted to TROPOMI measured oxygen A-band spectra. The cost function

that is minimised in this estimation step, χ2, is defined as

χ2 = [y−F (x,b)]TSε−1[y−F (x,b)] + (x−xa)TSa
−1(x−xa), (1)30
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where, y is the reflectance spectra calculated from measured radiances and irradiances for the oxygen A-band, F (x,b) is

the modeled reflectance for input parameters b, of which the state vector x containing aerosol layer height zaer and aerosol

optical thickness τ is a part, xa is the a priori state vector and Sε−1 and Sa
−1 are the measurement error covariance and

the a priori error covariance matrices. Optimal estimation is an iterative process, requiring several iterations to minimise the

cost function described in Equation 1. The approach is Gauss-Newton, with a maximum number of iterations set at 10. If the5

optimal estimation does not converge within these iterations, the aerosol layer height field in the final level-2 product is filled

with a fill value. For a given measurement, optimal estimation is said to have converged to a final solution if the update to the

state vector for the next iteration is less than the expected precision.

The χ2 is a measure of how close the modelled sun-normalised radiances are to the observations, with smaller values

representing a better fit. The consequence of the many assumptions in the model (described in Section 2.2 of Nanda et al.10

(2019)) result in a large χ2 (to the order of 1E4-1E7), with larger χ2 representing a larger departure between the model and the

observation. There are several reasons for these departures, the more important ones being the presence of undetected clouds

in the scene, incorrect surface reflectance information, and multiple aerosol layers. These attributes are not parameterised into

the RTM, and can be source of discrepancies between the measured and the modeled reflectances. The RTM in this case is

a neural network model that has learned parts of a full physics RTM derived from de Haan et al. (1987), described in Nanda15

et al. (2019) (Section 3). In short, the atmosphere is simplified by DISAMAR in order to reduce computational burden, and

the neural network forward model is implemented for a further performance boost in an operational environment. Nanda et al.

(2019) report a boost of three order of magnitude in computational speed using neural networks in comparison to an algorithm

that employs a full physics model.

The surface reflectance model used in the algorithm is derived from Tilstra et al. (2017), which is a Lambertian equivalent20

reflectance (LER) database with a spatial resolution of 0.25◦× 0.25 ◦. In contrast to TROPOMI’s ALH product which is

reported at 7.2 km × 3.6 km till August 6, 2019, and 5.6 km × 3.6 km thereafter, the LER database is much coarser spatially.

This can lead to several artefacts in the final product, discussed further on in this paper in Section 3.2. Another issue to note is

in the influence of bright surfaces on the retrieval. The oxygen A-band lies beyond the red edge, a wavelength region in which

vegetation has high reflectance values. This poses several challenges; a significant portion of the measured signal over land25

might be contributions from the surface reflectance (see Figure 3 from Nanda et al. (2018a)). If the aerosol optical thickness

of the measured scene is low, the contribution of the surface to the top of atmosphere radiance dominates over the contribution

from scattering by aerosols — there are more photons that get scattered back from the surface than the aerosol layer. In such

cases, the retrieval algorithm will tend to retrieve an aerosol layer closer to the surface. Generally we find that, if the contribution

to the top of atmosphere reflectance from aerosols is significantly larger than the same from the surface (i.e. the aerosol layer30

appears brighter than the surface), the retrieval algorithm will tend to retrieve a height closer to the aerosol layer (Section 5.2

and Figure 10 from Nanda et al. (2018b) discuss this observation explicitly).

The forward model parameterises aerosols with a Henyey-Greenstein scattering phase function (Henyey and Greenstein,

1941) with an asymmetry factor of 0.7, a single scattering albedo of 0.95, and a fixed aerosol optical thickness for an aerosol

layer parameterised by a single atmospheric layer with a 50 hPa thickness. The algorithm assumes a single aerosol layer for35

4

https://doi.org/10.5194/amt-2019-348
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



the entire atmosphere, which is an important simplification to note when comparing with CALIOP profiles which have the

capability to detect multiple aerosol layers.

Finally, the ALH retrieval algorithm implements a pixel selection scheme before committing to retrieving ALH estimates.

This pixel selection scheme involves auxiliary data products from TROPOMI such as the UVAI (www.tropomi.eu/document/

atbd-uv-aerosol-index) and cloud fraction estimates from the TROPOMI Fast Retrieval Scheme for Clouds from Oxygen ab-5

sorption bands (FRESCO) algorithm (Wang et al., 2008), and the cirrus reflectances derived from the Visible Infrared Imaging

Radiometer Suite (VIIRS) on the Suomi National Polar-Orbiting Partnership (Suomi NPP) satellite.

1. The maximum solar zenith angle allowed is 75◦. If the pixel does not meet this criterion, it is removed from the processing

and a flag is raised.

2. If the pixel over water lies in the sun-glint region (a maximum sun-glint angle of 18 ◦), it is processed but a sun glint10

warning flag is recorded in the level-2 product.

3. If the standard deviation of the surface elevation within the pixel is beyond 1000 m, the pixel is not processed and a flag

is raised. If it is beyond 300 m, a warning flag is raised and the pixel is processed.

4. If the surface covered by the pixel comprises of both land and water, a warning indicating mixed surface type is raised

and the pixel is processed regardless.15

5. If the pixel contains snow or ice, the pixel is not processed and a flag is raised.

6. If the TROPOMI level-2 UV Absorbing Index product reports a value below 0.0, the pixel is not processed and a flag is

raised. If the value is less than 1.0, a low UVAI flag is raised.

7. If the reported cloud fraction values from the TROPOMI FRESCO product for the pixel is beyond 0.6, the pixel is not

processed and a flag is raised.20

8. If the VIIRS average cirrus reflectance for the pixel is beyond 0.4, the pixel is not processed and a flag is raised. If it is

beyond 0.01, a warning for possible cirrus clouds is indicated.

9. If the difference between the scene albedo (calculated using a look up table) from the Level-2 UVAI product and the

surface albedo from the Tilstra et al. (2017) database at 380 nm is beyond 0.4, the pixel is removed from the processing

pool and a flag is raised for possible cloud contamination. If this is value is beyond 0.2, a warning flag is raised.25

10. The nominal TROPOMI pixels also contain radiances at a sub-pixel level, which are called small pixel radiances. If the

standard deviation of the small pixel radiances is larger than 1E-7, the scene is deemed to be non-homogeneous (possibly

containing clouds) and it is removed from the processing pool.

These relevant flags are reported in Table 1 and are available in the level-2 data products; the values for each of these flags

can be accessed with bitwise-and operations for each pixel with the value of each processing quality flag. For cloud filtering,30

5

https://doi.org/10.5194/amt-2019-348
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



the cloud_warning flag is the preferred flag for removing possibly cloudy pixels. This flag is a combination of FRESCO cloud

fraction retrievals, VIIRS cirrus reflectance retrievals and the difference between the surface albedo and the scene albedo at

380 nm. An example of applying the cloud_warning flags to filter out possibly cloudy pixels is provided in Figure 1.

Table 1. Processing Quality Flags relevant for diagnosing S5P ALH product quality. The descriptions are derived from the S5P IODD.

name value description

CONVERGED PIXELS

success 0 successful retrieval; warnings still possible.

sun_glint_warning 2048 pixel is in sun-glint region

cloud_warning 32768 combination of different cloud detection methods

UVAI_warning 65536 UVAI is lower than 1.0

snow_ice_warning 16384 scene contains snow/ice

NON-CONVERGED or MISSING PIXELS

convergence_error 19 optimal estimation did not converge

sza_range_error 7 Solar zenith ≥ 75◦

max_iteration_convergence_error 21 no convergence; retrieval exceeds maximum iterations

aot_lower_boundary_error 22 no convergence; AOT ≤ 0.0 twice in succession

other_boundary_convergence_error 23 no convergence; state vector element crosses boundary conditions twice

solar_eclipse_filter 64 pixel not processed because of solar eclipse

cloud_filter 65 pixel skipped; FRESCO cloud fraction greater than 0.6

altitude_roughness_filter 67 pixel skipped; STD of DEM in pixel > 1000.0 m

snow_ice_filter 70 pixel skipped; pixel contains snow/ice

UVAI_filter 71 pixel skipped; UVAI < 0.0

cloud_fraction_fresco_filter 72 pixel skipped; cloud fraction > 0.6

cirrus_reflectance_viirs_filter 76 pixel skipped; VIIRS cirrus reflectance > 0.4

2.2 CALIOP weighted extinction height

The Cloud-Aerosol Lidar with Orthogonal Polarisation (CALIOP) instrument is a part of the payload for the Cloud-Aerosol5

Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission (Winker et al., 2009), which orbits the Earth in a sun-

synchronous orbit. The CALIOP instrument has three backscatter receiver channel, two channels for the orthogonal measure-

ment of received backscatter signal at 532 nm and one channel for backscatter at 1064 nm. Lidar profiles from the CALIPSO

mission are a good source of data for validating retrieved aerosol layer heights from TROPOMI, because of their ability to map

the vertical structure of the atmosphere. The data from the CALIOP instrument relevant for validating TROPOMI ALH are the10

level-1 backscatter profiles and the level-2 aerosol extinction profiles.
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In this paper, the level-1 total backscatter profiles from the 532 nm channel are used as curtain plots to visualise the vertical

structure of the atmosphere. Level-2 aerosol extinction profiles from the 532 nm channel are then used to compute an aerosol

weighted extinction height ALHext, following the definition provided by Equation 1 in Koffi et al. (2012),

ALHext =

n∑

i=1

βext,iZi

n∑

i=1

βext,i

, (2)

where Zi is the height from sea level in the ith lidar vertical level i (in km), and βext,i is the aerosol extinction coefficient (in5

km−1) at the same level. The Level-2 aerosol extinction profile product from CALIOP only includes atmospheric levels where

aerosols are detected. In the case when aerosols are present over clouds, ALHext will be situated to the center of the aerosol

layer, with any possibly undetected aerosol layers below the cloud layer not included in the calculations due to attenuation

of the signal beyond the cloud layer. This is an important detail as the TROPOMI ALH algorithm cannot separate cloud

and aerosol signals from the measured radiances, and cloud contamination will affect the retrieved product. In this paper, the10

CALIOP 532 nm channel observations are chosen for analysis as the conclusions from the analysis of the results do not change

when the 1064 nm channel observations are used instead. Appendix A explains the colocation technique used in this paper.

3 Results

3.1 Comparison of TROPOMI ALH and CALIOP ALHext

TROPOMI-CALIOP colocations between 1st of May 2018 to the 28th of February 2019 are selected. Two sets of overall15

comparisons are done between CALIOP ALHext and TROPOMI ALH, one with all colocations (Figure 2a) that aren’t cloud

filtered and the other with a smaller subset of the dataset constrained by the cloud_warning flag from Table 1 (Figure 2b). The

contrast between retrievals over land and ocean is apparent in Figure 3 (cloudy scenes filtered out using the cloud_warning

flag), with a majority of the negative differences with values lower than -2 km occurring over land.

From Figure 2a , what is immediately clear is that the CALIOP ALHext are higher than the TROPOMI ALH. With an20

average difference of -2.25 km, median difference of -1.62 km and a standard deviation of 3.83 km, the retrieved ALH from

TROPOMI over land is reported to be systematically closer to the surface than CALIOP ALHext than in comparison with

retrievals over the ocean, which has a mean difference of -0.41 km, a median difference of -0.29 km and a very high standard

deviation of 6.86 km. There are several cases over the ocean where TROPOMI ALH is significantly higher than the CALIOP

ALHext, which could be due to cloud contamination. The comparison of the cloud-screened retrievals (Figure 2b) reveals that25

the retrieved ALH from TROPOMI over the ocean differs from CALIOP ALHext by -1.03 km on average, a median difference

of -0.76 km and a standard deviation of 1.97 km. More than 50% of the TROPOMI ALH retrievals over the ocean have an

absolute difference with ALHext less than 1.0 km. Retrievals over land are have a larger difference, with -2.41 km on average
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and a median of -1.75 km. The results are very skewed over land, with very large negative values dictating the average —

this is indicated by the very large standard deviation of 3.56 km. 50% of the selected colocations over land have an absolute

difference with ALHext less than approximately 1.8 km.

The distribution of the differences between TROPOMI ALH and CALIOP ALHext as a function of the retrieved UVAI

(Figure 4a) shows that for most cases, the UVAI is below 2.0. The spread of the differences in this UVAI regime is large,5

which reduces as the UVAI increases. The differences seem to be less often positive as the UVAI increases; if compared with

the behaviour observed between Figure 2a and Figure 2b where a majority of the positive differences vanish once the data is

cloud screened, such a behaviour could be related to clouds. The distribution of the differences as a function of retrieved AOT

in Figure 4b show that the majority of the colocations have AOT values between 0 and 2. Finally, the distribution of these

differences as a function of the GOME-2 LER values used for the retrievals for cases over land show that the retrievals tend to10

have a lower difference as the LER value increases — this could be a consequence of the fact that so few retrievals converge

in high LER regimes that, unless the aerosol layer has a significant contribution to the measured top of atmosphere radiance in

comparison to the surface, the retrievals tend to fail.

Retrieved ALH over land (if successful) can be closer to the surface than where the aerosol layer actually is situated vertically.

The TROPOMI ALH product, unlike the CALIOP ALHext which only considers aerosol signatures in the recorded backscatter15

profile, is also influenced by the presence of undetected clouds. These are some of the several possible sources of departures

between the observations of CALIOP and TROPOMI over the same scene further explored in the following sections.

3.2 Analysis of selected cases

3.2.1 Selected cases

The analysis presented in the previous section alone is insufficient to fully quantify the quality of the retrieved TROPOMI20

aerosol layer heights, due to the manner in which clouds are handled by both aerosol heights; TROPOMI pixels are affected

by the presence of undetected clouds whereas CALIOP aerosol extinction profiles do not consider clouds. Another significant

source of departure between TROPOMI and CALIOP is their differing sensing principles. Making conclusions on the quality of

the current TROPOMI ALH product requires case-by-case studies of selected scenes. In line with this, four cases are selected

to represent a very good mix of scenes containing elevated aerosol layers as well as aerosol layers close to the surface, high and25

low UV absorbing index, clear and cloudy scenes, clouds over and below aerosol layers, multiple aerosol layers, and retrievals

over land and the ocean.

The cases selected are Saharan desert dust and biomass burning events, three off the west coast of Sahara (desert dust) in

June 2018 and one off the South Saharan coast (biomass burning) in December 2018. All four cases have very good colocations

between TROPOMI and CALIOP, with the CALIOP ground track over the aerosol plumes (plotted with a yellow line over the30

VIIRS images in Figure 5 (1st column). The operational ALH level-2 algorithm operates on pixels falling within the sun-glint

regime, however they are excluded from the analyses presented in this paper. The retrieved UV absorbing index (UVAI) from

the operational level-2 UVAI product gives an idea about the shape of the aerosol plumes in all these cases (Figure 5 (2nd
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column)). The UVAI is influenced by many factors including the height of the aerosol layer, with lower UVAI values for

aerosol layers closer to the surface (discussed further in Appendix B). Cases a and b contain several pixels with UVAI values

greater than 3.0, whereas a majority of the TROPOMI pixels in cases c and d have TROPOMI UVAI values between 0.0 and

2.0.

It is important to note that spaceborne lidars, while having the advantage of being able to map more than one vertical layer5

in the atmosphere, suffer from attenuation of the signal in the presence of strongly backscattering species such as clouds or

aerosols with a large optical depth. In the presence of a primary strongly backscattering aerosol layer, the attenuation of the

signal may lead to undetected secondary aerosol layers beneath the primary layer. These layers, not apparent in the CALIOP

curtain plots of the measured attenuated backscatter profiles, may be detected by the level 2 aerosol extinction profile product

from the CALIOP mission, using the formula described in Equation 2. Some of these discussed situations are observed in the10

CALIOP curtain plots of the selected cases in Figure 6, especially for cases a and b, where the attenuated signal does not

detect possibly lower aerosol or cloud layers, and in case d where the attenuation of the signal due to a thick aerosol plume can

hide the surface from the received backscatter signal. TROPOMI, on the other hand, will tend to report an aerosol layer height

between these two layers as it will be influenced by photons scattered back from both layers.

3.2.2 Analysis15

The retrieved TROPOMI ALH in Figure 5 (4thrd column) represent successful retrievals for each of the selected cases. Beyond

the sun glint warning, the cloud_warning flag in Table 1 is applied to remove possibly cloud contaminated data. The retrieved

aerosol optical thickness (AOT), which is a part of the state vector, for each of the scenes are plotted over the VIIRS image

of the scene in Figure 5 (3rd column). The retrieved AOT (τaer) can act as a diagnostic tool to indicate the influence of the

surface (over bright surfaces) or the presence of undetected clouds (both over bright and dark surfaces) — in these cases, the20

retrieved AOT of the scene can be uncharacteristically high with values much greater than 3.0. All retrieved TROPOMI AOT

values beyond 5.0 are discarded as the neural network forward models are trained with AOT values less than or equal to 5.0.

A visual inspection of the figures in Figure 5 shows that the retrieved UVAI, AOT and ALH need not be spatially correlated,

as they are separate properties of the observed aerosol plumes — for instance, if the retrieved UVAI and AOT are low (case c),

the retrieved ALH need not necessarily be low. An inspection of the plots of the retrieved AOT for cases c (between latitudes25

10◦ and 15◦ and longitude -20◦) and d reveal square structures, both over the ocean and land. These square shaped spatial

artefacts are the surface albedo grids derived from the database provided by Tilstra et al. (2017), which is the current source

for surface reflectance in the ALH retrieval algorithm. In cases such as case c, the retrieved AOT contains surface information

influenced by the assumed albedo in the database. These spatial features are not as apparent in cases a and b (Figure 5, 1st and

2nd rows) as a majority of the signal in the measured top of atmosphere radiances come from aerosols and the minority from30

the surface. Another major observation is the lack of retrievals over the desert. This is within expectation, as measurements of

the top of atmosphere radiances over a cloud-free desert scene tend to contain more photons scattered back from the surface

than the aerosol layer. As a result, retrievals over bright scenes are sensitive to the assumed errors in the surface albedo, thereby

reducing sensitivity to the assumed aerosol layer height (Sanders et al. (2015), Section 2, Figure 2).
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While scenes not contaminated with clouds show a smooth spatial distribution of the retrieved ALH, the presence of clouds

may or may not add spatial variability in the ALH product. For instance, the the presence of low clouds are clear in case b

(Figure 5b) beyond latitude 21.0◦, but the retrieved ALH is spatially homogeneous with values less than 1.0 km. For each of the

selected cases, colocated CALIOP profiles in Figure 6 give additional information about the scene. These TROPOMI-CALIOP

colocations are done via the method discussed in Appendix A. The CALIOP curtain plot for case b reveals the influence of5

low clouds as well as high clouds on the cloud-screened ALH. An example of cloud-contaminated heterogeneous vertical

distribution of TROPOMI ALH in Figure 6a can be observed between latitudes 9.5◦ and 11.0◦. The cloud filtering following

the cloud_warning flag in Table 1 does not detect these low clouds (for instance above latitude 21.50◦, see Figure 6 a, b). These

are manually for comparison further on.

From Figure 2b, TROPOMI retrievals of ALH over bright surfaces are expected to differ from CALIOP ALHext, wherein10

the TROPOMI ALH product may report ALH estimates closer to the surface than CALIOP will. This is observed in case d

(Figure 5, bottom row), wherein the CALIOP curtain plot for (Figure 6d) indicates that the plume is close to the surface, with

a maximum height less than 3 km; TROPOMI ALH for biomass burning aerosol plume that extends from land to the ocean

is slightly closer to the surface in the case of land when compared to CALIOP ALHext, whereas over the ocean both height

estimates more or less are in agreement.15

For cases a and b, retrieved TROPOMI ALH does not seem to coincide with large values of the received backscatter signal

in the level-1 data, whereas it does for case c, and to a certain extent for case d (over land it tends to be closer to the surface).

Parts of the CALIOP curtain plots for cases a, b and c suggest that a possible second layer beneath the layer that is visually

obvious, or that the desert dust layer extends deeper to the surface and the CALIOP signal is simply too attenuated to detect

it. These features are to be kept in mind before proceeding on to a direct comparison of the CALIOP ALHext and TROPOMI20

ALH of these selected cases (Figure 7). For this comparison, every cloud-filtered and sun-glint-filtered TROPOMI pixel with

ALH information colocated to a specific CALIOP level-2 aerosol extinction profile is averaged and a standard deviation is also

computed. These averaged TROPOMI ALH are then compared to the CALIOP ALHext. What is immediately apparent is that,

while there seems to be an agreement between the two heights (indicated by the pearson correlation coefficient of 0.64, the

slope of fit of 1.0 and an intercept of 0.53 km), CALIOP ALHext are systematically higher than TROPOMI ALH (indicated25

by a y-intercept of the fit at 0.53 km). The CALIOP ALHext is also higher than TROPOMI ALH almost consistently in most

cases.

4 Discussion and conclusion

This paper discusses the quality of the soon to be released TROPOMI ALH product by comparing it with CALIOP data of

colocated measurements of scenes containing aerosols between the two instruments. In order to do so, CALIOP weighted30

extinction heights from the 532 nm channel were calculated following Equation 2, and then directly compared to TROPOMI

ALH. Further on, four individual cases of Saharan desert dust and biomass burning aerosol events in 2018 were selected for a

deeper analysis of the product’s quality.

10

https://doi.org/10.5194/amt-2019-348
Preprint. Discussion started: 14 October 2019
c© Author(s) 2019. CC BY 4.0 License.



From the analysis presented in this paper, TROPOMI’s neural network ALH retrieval algorithm retrieves ALH values that

compare well with CALIOP weighted extinction heights in cloud-screened cases following the cloud screening strategy us-

ing the TROPOMI ALH level-2 processing quality flags discussed in Table 1. For more than 1 million colocations between

CALIOP and TROPOMI over the ocean, the TROPOMI ALH differs from CALIOP ALHext on average by approximately -1

km and -0.76 km median, with the TROPOMI ALH values being lower than the CALIOP ALHext. Over land, the same values5

are -2.41 km on average and -1.75 km as the median. For the selected cases, largely over the ocean within a portion of the data

over land, the averaged retrieved ALH from TROPOMI differed from CALIOP ALHext by 0.53 km, with CALIOP ALHext

being higher than TROPOMI ALH. These numbers are indicative that TROPOMI ALH performs well, especially considering

the many simplifications made by the retrieval algorithm in order to optimise on the computational speed; future improvements

to the forward model may only improve the product further on.10

There is a clear distinction between TROPOMI ALH retrievals over land and the ocean as photons scattering back from

bright surfaces tend to influence ALH estimates closer towards the surface than an elevated aerosol layer. Retrieved ALH over

land, if successful, can to be closer to the surface if measured signal in the top of atmosphere contains more photons scattered

back from the deepest atmospheric layer which is the surface, in comparison to elevated aerosol layers which are higher up in

the atmosphere. This, however can change depending on the amount of aerosol information available in the spectrum compared15

to same from the surface. Any attempt in retrieving ALH over the desert generally fail, with very few exceptions. There are

several challenges, that will need further development.

The TROPOMI level-2 UVAI product is currently an ingredient in selecting pixels containing aerosols for retrieving ALH.

While this choice works quite well for cloud free scenarios, it does not do a great job when a scene that contains both aerosols

and clouds. These cloudy scenes seem to not be detected by the current cloud filtering schematic in the level-2 algorithm,20

and will require a significant update in deciding whether a pixel is cloudy or not. For cases scenes with a low aerosol load,

square shaped artefacts resulting from a surface albedo database with a resolution significantly lower than TROPOMI exist.

Currently, the GOME-2 surface LER product derived from Tilstra et al. (2017) is used operationally, and will eventually need

to be updated with a higher resolution version possibly derived from TROPOMI itself.

Finally, space based lidars such as the CALIOP instrument on board the CALIPSO mission are a very good source of25

aerosol vertical information to validate the TROPOMI ALH product. While the CALIOP level-1 backscatter profiles may be

attenuated in cases of very strong signals from the top of the aerosol layer, the weighted extinction heights in conjunction with

the backscatter profiles are sufficient for validation activities. These CALIOP profiles will be very important in assessing the

impact of future development activities of the TROPOMI ALH product.

Appendix A: Colocation30

The colocation between TROPOMI and CALIOP ground pixels is done in the following manner. First, the geographic coordi-

nates of CALIOP level 1 backscatter profiles and level 2 aerosol extinction profiles are converted into the Cartesian coordinate

system. These CALIOP coordinates are fed into a k-dimensional tree, which is a fast algorithm developed by Maneewong-
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vatana and Mount (1999) to quickly locate the nearest neighbour of a point (a TROPOMI ground pixel) to a k-dimensional tree

of points (CALIOP ground pixels). The scipy.spatial.KDtree module in python3 is used to create the k-dimensional tree of the

ground coordinates of CALIOP profiles (separate for level 1 and level 2 data). Second, all TROPOMI ground pixel coordinates

are converted to Cartesian coordinates. For each of these TROPOMI pixels, the distance to the nearest CALIOP profile is

queried using the scipy.spatial.KDtree.query function. This creates a list of TROPOMI pixels and their nearest CALIOP profile5

and a distance in meters. Finally, only co-locations with a maximum distance of 100 km and a maximum time difference of 5

hours are selected. A map of all 2,474,042 colocations (in Figure 8) shows that most of the colocations are close to the continent

of Africa. After filtering out all colocations in the TROPOMI sun-glint region, all retrieved aerosol optical thicknesses greater

than 5.0 (as the neural network is trained for all AOT less than 5.0), and filtering out ocean pixels with a surface albedo greater

than 0.05 and land pixels with a surface albedo less than 0.1 and greater than 0.4, there are in total 731,347 TROPOMI pixels10

entirely over land and 1,742,695 pixels entirely over water (see Figure 2a). After cloud screening using the cloud_warning flag

in Table 1, a total of 546,445 pixels over land and 1,036,550 pixels over the ocean remain (see Figure 2b).

Appendix B: UVAI Sensitivity to aerosol layer height

It is well-documented that the UVAI depends on aerosol layer height (Herman et al., 1997; Torres et al., 1998; de Graaf,

2005; Sun et al., 2018). Absorbing aerosols mainly interact with molecular scattered radiation beneath the aerosol layer. The15

higher the layer, the more Rayleigh scattering underneath is shielded, leading to a high UVAI value (Figure 9a). This altitude

dependence increases with aerosol absorptions (i.e. SSA) and aerosol loading (i.e. AOD), whereas it becomes weaker over

brighter surfaces where the importance of molecular scattering reduces significantly (Figure 9b). On the other hand, little

altitude dependence is found for non-absorbing aerosols (i.e. SSA = 0.99).
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Figure 1. (a) A VIIRS corrected reflectance image over the West African coast on the 8th of June, 2018. (b) All successful TROPOMI

retrievals within a certain bounding box. (c) Same as (b) but with all pixels that possibly fall within the sun glint region or are cloud

contaminated are removed (using cloud_warning flag and sun_glint_warning from Table 1).

Figure 2. Histogram of differences between CALIOP ALHext (Equation 2) and TROPOMI ALH from colocated data between May 1, 2018

and February 28, 2019. Blue histogram represents TROPOMI pixels over the ocean whereas the red histogram is for TROPOMI pixels over

land. The blue line represents the mean difference between TROPOMI ALH and CALIOP ALHext for TROPOMI pixels over the ocean,

whereas the red line represents the same for TROPOMI pixels over land. The black line at 0.0 km difference on the x-axis is plotted to aid

the reader in their interpretation of this figure. (a) All colocations except TROPOMI pixels falling in the sun glint region. TROPOMI pixels

with retrievd AOT greater than 5.0 are discarded. For pixels over land, if the GOME-2 surface albedo is less than 0.1 or greater than 0.4, they

are discarded. Similarly, over the ocean all TROPOMI pixels that have a GOME-2 surface albedo greater than 0.05 are discarded. (b) Same,

except only TROPOMI ALH retrievals that are cloud-screened using cloud_warning flag from Table 1 are included.
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Figure 3. A map of cloud filtered and sun glint filtered differences between colocated TROPOMI ALH and CALIOP ALHext considered for

Figure 2b.

Figure 4. Scatter density plots of the difference between TROPOMI ALH and CALIOP ALHext as a function of (a) TROPOMI UVAI,

(b) TROPOMI AOT and (c) GOME-2 LER for the oxygen A-band used for the TROPOMI retrievals for cases over land (with a minimum

surface albedo of 0.1). The colors represent density of plots. The y axis is optimised for each plot. The data is filtered in the same fashion as

in Figure 2, with data over the ocean and land combined for plots (a) and (b), and data only over land for plot (c).
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Figure 5. 1st column: Corrected reflectance for the four selected cases as measured by the Suomi NPP/VIIRS imager. The yellow line

represents the CALIOP ground track. 2nd column: The TROPOMI level-2 UV Absorbing Index product. The black line passing through

the TROPOMI level-2 retrievals on this plot represents the ground track of the CALIPSO mission. 3rd column: Retrieved aerosol optical

thickness from TROPOMI. 4th column: Operational TROPOMI aerosol layer height.
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Figure 6. CALIOP level-1 backscatter curtain plots for measurements in the 532 nm channel for the four selected cases in Figure 5. The blue

markers (crosses over a white box) represent co-located TROPOMI ALH retrievals within 100 km of each CALIOP profile present in this

plot. The black markers (crosses over a white box) represent the CALIOP weight aerosol heights as computed using Equation 2. TROPOMI

data that are either in sun-glint region or cloud contaminated are removed (cloud detection is done using the cloud_warning flag from Table

1).
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Figure 7. Comparison between the CALIOP weighted extinction heights (y-axis) calculated using Equation 2 and plotted in Figure 6, against

averaged TROPOMI ALH (x-axis). The blue lines represent the standard deviation of the TROPOMI heights in the averaging pool, and the

markers represent the mean TROPOMI ALH for each CALIOP ALHext. The dashed black line marks the fit between CALIOP ALHext and

TROPOMI ALH. The solid black line is a neutral line between the x and the y axes. The legend in the bottom right corner describes the

different markers used for the different cases.
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Figure 8. A map of all TROPOMI-CALIOP colocations considered for Figure 2 (data filtering discussed in Appendix A).

Figure 9. Sensitivity analysis of UV aerosol index to show the influence of different aerosol properties on the UVAI. The aerosols in these

analyses have a Henyey-Greenstein scattering phase function with an asymmetry factor of 0.7, an angstrom exponent of 1.0, the viewing

zenith angle is 0◦, the solar azimuth angle and the viewing azimuth angles are 0◦ and 60◦ respectively, the surface pressure is 1013 hPa,

and for this specific case, the solar zenith angle θ0 is 30◦. The y-axis is the UVAI for 340 nm and 380 nm, whereas the x-axis is the height

of the geometric centroid of the aerosol layer in hPa (Haer). The legend in each of the plots describe the different configurations chosen for

these sensitivity analyses. (a) looks into the sensitivity of UVAI with a fixed surface albedo of 0.05, and (b) does the same for a fixed aerosol

optical thickness of 0.5.
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