
Referee #2, Review #1:

Review:

Scientific Significance: good
Scientific Quality: good
Presentation Quality: good
For final publication, the manuscript should be accepted as is.

Suggestions for revision or reasons for rejection (will be published if
the paper is accepted for final publication):
The paper has been improved a lot, although I have to confess that
I still do not like the way the paper has been structured. I am still
not convinced about their choice not to include the smoothing-bias
error in the total error. I would have preferred a more pragmatic
approach. Having said that, I have also to confess that this is a very
good piece of work and there could be people who could appreciate
this work more than I do.

Reply: The authors appreciate the tolerance of the reviewer who suggests ac-
ceptance of the manuscript although it does not comply with their personal
preference.

Action: None.
Referee #1, Review #2:

We would like to note that a lot of issues mentioned by the reviewer in the first
review and which are included here in quotes have already been solved in our
revised version and answered in our initial rebuttal. We do not discuss these
issues again here, except if the new review refers to these issues. Instead, we
concentrate on the new comments.

Review: Rating:
Scientific Significance: fair
Scientific Quality: good
Presentation Quality: fair
For final publication, the manuscript should be rejected.

Suggestions for revision or reasons for rejection (will be published if
the paper is accepted for final publication)
After reading the paper a second time I must admit that I have even
stronger reservations than the first time. Instead of my initial rec-
ommendation “major revision” I now disagree with publication in a
form which resembles the present structure of the paper. In general I
note that the revisions made in response to my comments have been
minor, not addressing in full my major concerns.
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Let me clarify my judgement by reviewing my major general com-
ments (between quotes) in my first review:
“My first major reservation: the purpose of the paper is the formula-
tion of the list of recommendations for a more uniform and complete
error reporting in level-2 satellite data products (see the last line of
the abstract and section 7). However, the bulk of the material pre-
sented in the paper is basically a review of real-world implementations
of optimal-estimation based (and related) profile retrievals. As such
the authors could consider to split the document into two papers, a
review of profile retrievals and a shorter more focussed paper about
unified error reporting.”

“Several sections of the paper are providing useful functional back-
ground information for section 7. But for quite some sections I could
not find the link with the final recommendations. Examples are sec-
tion 5.4 and also parts of 4, 5.1 and 6.4 (e.g. 6.4.3 to 6.4.6), 6.7.
Because of these sections the paper is very long.”

“Section 5.4 is a review of (profile) retrieval approaches, but contains
a lot of material which is not directly relevant for the paper. Per-
sonally, I would propose to shorten this section, keeping possibly the
tables (and references) and keeping those remarks which are impor-
tant in the context of error reporting. This review-like section also
leads to a very long list of references. It would be good to mention
only those references that bring new information to the discussion
how to present the retrieval errors.”

Suddenly the authors claim that the paper is meant to be a review.
However, this is completely unclear based on the title and abstract
alone. The abstract contains several sentences which would fit bet-
ter in the bulk of the paper. Only the last sentence of the abstract
specifies what the paper will contribute to the existing literature,
namely a list of recommendations. This is in contrast with some
words that have now been added to the introduction about the paper
being meant as a review. The link between the conditions section (2)
and the recommendations section (7) on the one hand, and the rest
of the paper on the other hand, is still not very strong.

The authors have responded to this major reservation, but by im-
plementing minor fixes like cross-references and clarifications of links
between the sections. This does not address my more fundamental
observations that the review part of the paper is not serving the rec-
ommendations part at the end of the paper.

I would strongly urge the authors to re-think the purpose of the pa-
per. I suggest:
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- either a review of profile retrievals (focussing on the error formula-
tion),
- or a shorter recommendation paper on how to present retrieval data
products to users,
- or both (two papers).

In it’s present form I think the material presented in the paper is
not fully compliant with either a review or a recommendation paper.
So this would require major adjustments to the text and the logical
structure of the paper. Currently the paper is very long because of
the review nature.

Reply: The paper was from the beginning meant as an overview paper of the
TUNER special issue. As such it summarizes the existing relevant literature
the TUNER work is based on and presents the recommendations developed in
the TUNER activity. It is not true that we “suddenly claim that the paper is
meant to be a review”. For Review Papers in AMT it is mandatory to obtain
approval by the Executive Editors prior to submission in order to make sure
that the envisaged content fits in with an AMT review paper. We have taken
this step on 17 September 2019 and have obtained the approval in an e-mail
from Executive Editor Thomas Wagner. And during submission we have clicked
“Review paper”. There is nothing sudden about our claim that this paper is
meant as a review paper.
During the correspondence with the Executive Editors, they were informed
about the content of the paper, in particular, that it includes conditions of ade-
quacy, a comprehensive methodical review-like part, and recommendations. The
Executive Editors have approved this general outline and have recommended to
submit the paper as a review paper. Most likely information about this funda-
mental decision was not available to the reviewer.

Beyond this more formal argument, we strongly disagree with the statement that
the review part does not serve the recommendations part of the paper. Many
of the error components at issue in the recommendations part are caused by the
approximations and simplifications employed in real-world retrieval schemes.
This provides a strong link between Section 5 and the recommendations in Sec-
tion 7. We think it would be of very limited use to make recommendations
as to which error estimates correlations, averaging kernels and so forth shall
be reported without explaining to the data provider how to do it. Thus, the
knowledge communicated in Section 6 is needed to follow the recommendations
in Section 7. We have brought this argument already in our initial rebuttal.
Unfortunately, the reviewer did not provide any feedback to our justification,
so we do not know with what exactly the reviewer disagrees, and why.

Action: It has been made clear in the abstract that the paper contains also a
review of common retrieval and error estimation schemes.
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Review: “After reading the first sections of the paper it was not fully
clear to me what is really the problem which is addressed? In what
sense are retrieval products not comparable? Please provide (generic)
examples of retrieval products which miss information which makes a
direct comparison between retrievals, or comparisons with indepen-
dent data di�cult or impossible. In what sense is there a need for a
new set of recommendations, e.g. what is missing after the work of
e.g. QA4EO or the GUM?”

The authors address this first point with an extra sentence in the
introduction, which is useful. However, I would like this to be dis-
cussed more systematically/methodologically in the main text with a
clear link to the recommendations.

Reply: We agree that our work has to be put into the context of existing work,
which we do in Section 3.1. Here we explain that existing work is either not
targeted at indirect measurements (GUM) or is heavily targeted at formal pro-
cedures and workflows while staying extremely vague with respect to the tech-
nical and scientific content (QA4EO), at least where instrument-overarching
documents are concerned. For example, the concept of the averaging kernels
is not even mentioned in the QA4EO documentation, at least not at any de-
tectable place. Their “guide to expression of uncertainty of measurements” is
restricted to general rules of error propagation, without any consideration of
problems specific to remote sensing of atmospheric composition or temperature,
and without consideration of errors resulting from less than ideal, real world
retrieval schemes.

Action: We have made our discussion of QA4EO more specific. Further we
have added examples where non-intercomparable data characterization caused
problems in the past.

Review:“The final set of recommendations are focussing on profile
retrievals. But the tables include also total column retrieval exam-
ples (e.g. DOAS). I think this is a missed opportunity, and I would
encourage the authors to formulate explicitly what their recommen-
dations are for column retrieval products (some recommendations are
generic, but several parts of section 7 explicitly refer to profiles).”

The authors clarify how the formalism (sec 6.4) includes column re-
trievals as a limiting case. In practice, total column products are
organized di↵erently than profile products, and error treatments also
di↵er. Many satellite products are total columns products, so I re-
ally miss a more detailed discussion of the variability in total column
approaches. The addition of specific recommendations how to har-
monise column products would be very useful.
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Reply: We do not quite understand which point the reviewer wants to make,
because the comment is quite vague. In particular, we do not see why column
retrievals should be so fundamentally di↵erent from profile retrievals that our
framework is turned inapplicable. We are somewhat confused by this comment,
for the following reasons:

1. The retrieval and error estimation schemes discussed in this paper are
fully applicable to column retrievals which do not rely on the assumption
of an optically thin atmosphere (e.g. mid IR, SWIR). Also what we write
about the di↵erent error sources (various measurement errors, parameter
errors, radiative transfer modelling errors) is equally applicable to DOAS
retrievals assuming an optically thin atmosphere.

2. DOAS is mentioned as an example why our framework should be inappli-
cable to column retrievals. But DOAS is not limited to column retrievals.
This method is used for profile retrievals as well.

3. It is often thought that the use of a di↵erential signal where only the
structured part of the measurement provides the information is a unique
characteristic of DOAS type measurements. This is, however, not correct:
To parametrize the background signal and to obtain the information only
from the structured part of the measurement has been a standard approach
in, e.g., mid-infrared solar occultation spectroscopy (e.g. ATMOS in the
1980s) and in mid-infrared limb emission spectroscopy since its beginnings
(e.g. MIPAS). And we have not been able to identify any reason why our
framework should not be applicable to the DOAS concept.

4. Similarly, it is often thought that the two-step retrieval is a unique charac-
teristic of DOAS. Also this is not quite correct. Early IR solar occultation
measurements used this approach as well. Beyond this, dividing data
analysis in these two steps (step 1: from the measurement to the slant
path column amount; step 2 from the slant path column amount to the
profile or vertical column) is a mere technical but no logical di↵erence.
The Jacobian of the full problem can easily be calculated by application
of the chain rule to the two steps. Thus, our formalism is applicable to
the two-step retrieval as well.

5. In our paper, also the column averaging kernel has been discussed, as well
as the XCO2 retrievals, and the “downwelling factor” approach. Thus, it
is not true that the paper is only about profile retrievals and that column
retrievals appear only in the tables.

The only point that we missed so far was the discussion of the relevance of the air
mass factor and its dependence on the a priori profile. We have now included this
issue and make reference to the related literature (Eskes and Boersma, 2003).
We admit that this omission was inadequate but it could easily be repaired. We
consider it as over-exaggerated to conceive our entire framework as inapplicable
to column retrievals only because we missed the air-mass factor issue so far.
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The claim of incommensurability of profile and column retrieval uncertainties
would be counter-unificationist and would thus counteract the purpose of this
paper and the TUNER activity.

Action We have included a section on DOAS retrievals. We also have added a
section dealing with the parametrization of the background signal. Further we
discuss now the Eskes and Boersma variant of the column averaging kernel. And
finally we have added some examples of error sources in DOAS-type retrievals.

Review: “Arguably the atmospheric composition data assimilation
community is the main user of satellite retrieval products. This com-
munity and their needs are basically not discussed in the paper. More
generally the users of the data do not receive much attention, and the
requirements are discussed from a L2 data provider point of view.
This is my second major reservation. Some parts of the text re-
fer to the validation activities, but this is not presented in a very
structured way. The needs and feedback from the validation and
assimilation communities on existing L2 satellite products would be
an important starting point to discuss requirements for satellite data
products. Some assimilation users would prefer to work directly with
the level-1b data, an option which is also not discussed.”

I still find it hard to accept that recommendations are given on how
to report the errors without referring to the user community. Di↵er-
ent use applications have di↵erent needs. The authors mention that a
companion paper is addressing this. The reporting is the interface be-
tween data provider and user, so both sides should be addressed. As
example, there are also very practical considerations like file sizes:
error information can easily become by far the largest part of the
dataset. The role and activities of the space agencies (NASA / EU-
METSAT / ESA / CNSA / JAXA) in unifying data products should
also be mentioned.

Personally I think a generalised set of recommendations for the L2
retrieval teams that fit all (unspecified) applications of the data is of
limited use.

Reply: We disagree. We have boiled down experience of decades of cooper-
ations with and support of data users (including assimilation and validation
scientists) into our conditions of adequacy. What we then report is basically
the how’s and why’s of error propagation from level 1 data (calibrated measure-
ments of radiances or transmittances) to level 2 data (profiles of temperature or
concentrations or column amounts of trace gases). What the data user does is
a transformation of level 2 data to a higher order data product (e.g. di↵erences
between modeled and retrieved data, time series, averages, correlations and so
forth). The error propagation from level 2 to these higher order products is
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a topic in itself and not just another aspect of what we do here. The goal of
this paper is to provide guidance how to provide the data user with all diagnos-
tics needed to perform the error propagation from level 2 to higher level data
products. How to use these diagnostics properly is beyond the scope of this
paper and deserves a paper of its own. It remains unclear why recommenda-
tions fitting all (unspecified) applications of the data should be of limited use.
We consider the stance that for di↵erent user communities or agencies di↵erent
error propagation laws have to be applied as untenable.

Many of our recommendations aim at bringing down the size of the error data
to a realistic size by reporting representative data instead of individual error
estimates for each single measurement.

Action: None.

Review: “The recommendations in section 7 are not always formu-
lated as a recommendation, but leave room for interpretation and
implementation. I sometimes found the CoA points in section 2 even
more clear and explicit than the recommendation points. It may be
useful to split the list in section 7 in actual (strong) recommendations
and related discussion points. Sometimes it is not so clear what is ac-
tually recommended by the authors, e.g. due to a trade-o↵ between
completeness and data volume, or aspects are left to the retrieval
teams to decide (e.g. point 1, 2, 3, 4, 16, 18).”

This is acknowledged by the authors, but the number of recommen-
dations has not changed, and the authors have not made a division
in recommendations and related discussion points. I still think that
reducing the number would make the concluding recommendations
more useful.

Reply: The reviewer does not pinpoint one single recommendation as obsolete,
inadequate or not useful. It is the mere number which is criticised. As already
said in our initial reply, reducing the number of recommendations would make
them less specific and more vague.

Action: The discussion points have been separated from the recommendations.

Review: “I was expecting recommendations also regarding the nam-
ing (see section 3). The authors discuss in particular “error” versus
“uncertainty”, but do not really provide a clear guidance on what to
use. Also, the consistency or inconsistency with the GUM activity are
not clear to me after reading the section. The reader is referred to a
paper in preparation. Retrieval data files contain parameters labelled
as “precision”, “accuracy”, “trueness” etc. and di↵erent guidelines
exist from di↵erent space agencies and for di↵erent application areas.
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It would be useful if the authors can discuss naming conventions also
in this paper and express a clear opinion/recommendation.”

The authors reply that this would always be in conflict with part of
the community. I had hoped for a stronger recommendation. For
instance in the data assimilation community there have been papers
devoted to unified naming and notation. Could the work of Rodgers
not serve as starting point, since much of the retrieval formalism was
discussed in a systematic way by him? I think there is a need for
recommendations on which word means what.

Reply: Our first recommendation reads “The language and notation used to
describe the error budget must be clearly defined. This can be accomplished
either by explicit definitions of all terms and symbols used or by reference to
any available document that lays down a self-consistent terminology. We hope
that this paper serves that purpose and that the terminology and
notation introduced here will be found useful.” This is a recommenda-
tion as required, however in modest and polite words. However, who are we to
dictate anybody which language to use? We consider quibbling about words as
futile.

Action: We have added a footnote “In the scientific community, it is often de-
sirable to have a citable source regarding notation and terminology so as to be
consistent. The authors do not want to dictate what language to use and thus
do not provide such a recommendation about the notation and terminology in
this paper. That decision is left to the reader.”

Review: “Machine learning approaches are getting more and more
popular and deserve some special attention. Several machine learn-
ing implementations for retrievals are limited on the error information
they provide. It would be useful to have some targeted recommen-
dations for these approaches as well.”

A discussion on machine learning is added in the final discussion sec-
tion. The bulk of the paper addresses more traditional optimal esti-
mation type profile retrievals based on full radiative transfer models.
It is not clear to me (and likely to the reader) to what extent the
recommendations are general and apply to important classes of al-
ternative approaches as well, such as the various forms of machine
learning which will become much more prominent in the future, or
popular approaches such as DOAS.”

Reply: Since our first revision we have distinguished two variants of ML/AI
approaches: Their application to the forward problem, in combination with a
conventional retrieval, or their direct application to the inverse problem. We
make a clear statement (p.42 l.8-10 in the first revision) that in the first case
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everything said on error estimation still applies. We then make suggestions how
to deal with error estimation in the second case. And finally we state “In either
case it seems important to us that the data user is provided with the same full
data characterization as required for the conventional retrieval schemes.” We
suspect that the reviewer has missed this, because otherwise it would have been
clear that the recommendations are general.

Action: None.

Summary Reply: The general content and ouline of our paper and its submis-
sion as a review paper have been approved by the Executive Editors of AMT.
The reviewer’s comments appear to be entirely based on personal preference and
programmatic considerations rather than recommendations on technical or sci-
entific content. The paper presents the debated, agreed, and consolidated views
of many authors covering a wide part of the community that we still believe
better represent the programmatic presentation of this work.
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Abstract. Remote sensing of atmospheric state variables typically relies on the inverse solution of the radiative transfer equa-

tion. An adequately characterized retrieval provides information on the uncertainties of the estimated state variables as well as

on how any constraint or a priori assumption affects the estimate. Reported characterization data should be intercomparable

between different instruments, empirically validatable, grid-independent, usable without detailed knowledge of the instrument

or retrieval technique, traceable, and still have reasonable data volume. The latter condition of adequacy may force one to work5

with representative rather than individual characterization data.
::::
Many

::::::
errors

:::::
derive

:::::
from

:::::::::::::
approximations

:::
and

:::::::::::::
simplifications

::::
used

::
in

:::::::::
real-world

:::::::
retrieval

:::::::
schemes,

::::::
which

:::
are

::::::::
reviewed

::
in

:::
this

:::::
paper,

:::::
along

:::::
with

:::::
related

:::::
error

:::::::::
estimation

::::::::
schemes. The main

sources of uncertainty are measurement noise, calibration errors, simplifications and idealizations in the radiative transfer

model and retrieval scheme, auxiliary data errors, and uncertainties in atmospheric or instrumental parameters. Some of these
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errors affect the result in a random way, while others chiefly cause a bias or are of mixed character. Beyond this, it is of ut-

most importance to know the influence of any constraint and prior information on the solution. While different instruments or

retrieval schemes may require different error estimation schemes, we provide a list of recommendations which shall help to

unify retrieval error reporting.

1 Introduction5

Observations from remote sensing instruments are central to many studies in atmospheric science. The robustness of the con-

clusions drawn in these studies is critically dependent on the characteristics of the reported data, including their uncertainty,

resolution, and dependence on any a priori information. Adequate communication of these data characteristics is therefore

essential. Further, when, as is increasingly the case, observations from multiple sensors are considered, it is important that

these characteristics be described in a manner that allows for appropriate intercomparison of those characteristics and the ob-10

servations they describe. In the satellite community, however, the definition of what constitutes “adequate communication” is

far from uniform. Currently, multiple retrieval methods are used by different remote sounding instrument groups, and various

approaches to error or uncertainty estimation are applied. Furthermore, reported uncertainties are not always readily intercom-

parable. For example, the metrics used as uncertainty values for a data set might not be properly defined (as, say, 1� or 2�

values, or as an appropriate confidence interval), uncertainty values might not be adequately described as “random” or “sys-15

tematic” in nature (let alone any more nuanced description of inter-error correlations), spatial resolution information or the

influence of a priori content might not be given, etc.
::::
The

:::::::
mischief

::
of

::::::::::
inconsistent

::::
data

::::::::::::::
characterization

::
in

:::
the

::::::::::
quantitative

:::
use

::
of

:::
data

:::::
from

:::::::
multiple

::::::::::
instruments

::
is

:::::::
obvious.

::::
Two

:::::::::
prominent

::::::::
examples

::::
from

:::
this

::::::::
plethora

::
of

:::::::
problem

::::
areas

:::
are

:::::::::::::
error-weighted

:::::::::::::
multi-instrument

:::::
time

:::::
series

:::
and

:::::
trend

::::::::::
calculations,

::
or

::::
data

::::::::
merging.

This paper discusses these issues and proposes a common framework for the appropriate communication of uncertainty and20

other measurement characteristics.

This review has been undertaken under the aegis of the ‘Towards Unified Error Reporting’ (TUNER) project and was carried

out by retrieval experts from the atmospheric remote sensing community (including active participation from eight different

instrument science teams) who have come together to tackle the (arguably daunting) goal of establishing a consensus approach

for reporting errors, hopefully enabling more robust scientific studies using the retrieved geophysical data products. This review25

paper, the first ‘foundational’ paper from the TUNER team, is mainly addressed to the providers of remotely sensed data. A

paper addressed to the data users, guiding them through the correct use of the uncertainty information, is currently being written

(Livesey et al., in preparation).

Most concepts presented in this paper rely on the assumption that providing the user with the result of the retrieval, a measure

of estimated error or uncertainty along with correlation information, and sensitivity to possible a priori information used is30

sufficient for most scientific uses. In other words, there is no need for more detailed discussion of the expected distribution

of the retrieved values around a true value (or around the expectation value of the retrievals) to be provided. That said, we

recognize that they might be useful for some specialized quantitative applications.
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The well-informed reader will already be acquainted with most of the material in this paper, although those less familiar

with retrieval algorithms may find it a useful introduction. Firstly we list conditions of adequacy of the reporting of error and

uncertainty (desiderata), which summarize the information that should be provided to the data user (Section 2). Next, before

diving headlong into the technical details, Section 3 attempts to offer some necessary clarification of various terminological

issues. In Section 4 we lay down the formal background. In particular, we discuss the retrieval equation and try to provide5

unambiguous interpretations of all involved terms, enabling the informed reader to map their own notation and terminology to

that discussed herein. In our discussions of retrieval theory we will not reinvent the wheel but build heavily on the framework

laid out by Rodgers (1976, 1990, 2000). Importantly, however, our characterization is applicable beyond the retrieval schemes

endorsed therein, including many in every day use among remote sounding teams. Section 5 discusses how the theory translates

into real world problems, centering on how the full retrieval problem is decomposed into sub-problems. Following this, we10

turn towards error estimation and uncertainty assessment. We then systemize and discuss the various sources of retrieval error

(Section 6) and, if applicable, their dependence on the retreval
::::::
retrieval

:
scheme chosen. We identify data characterization

methods currently in use and relate them to the theoretical concepts presented. Recommendations on unified error reporting

for space-borne atmospheric temperature and composition measurements are given in Section 7. In these recommendations

we refrain from stipulating conventions and confine ourselves to recommendations that can directly be inferred from the15

conditions of adequacy. Finally, we identify unsolved problems and applications which might not be fully covered by our

framework (Section 8).

2 Conditions of adequacy for diagnostic metadata

With the ultimate goal of presenting a list of recommendations to the community of data providers, we first discuss a list of

desired properties of diagnostic metadata from the point-of-view of a data user. We refer to diagnostic metadata as error or20

uncertainty estimates and all information on the content of a priori data, spatial resolution, and the like. The list of possible

metadata to characterize retrievals of atmospheric state variables is huge, but some of them are more useful than others. Here

we define conditions of adequacy (CoA) for error and uncertainty reporting. These conditions will be used as criteria which

metadata are indeed essential and should thus find their way into the recommendations.

CoA 1. The error estimates should be intercomparable among different instruments, retrieval schemes, and/or error estimation25

schemes.

CoA 2. The estimated errors should be independent of the vertical grid such that correct propagation of the errors to a different

grid yields the same errorestimates
::::
error

::::::::
estimates

:
as the direct evaluation for a retrieval on the new grid would do.

CoA 3. The error budget shall be useable without detailed technical knowledge of the instrument or retrieval technique. This

enables the data user to correctly apply error propagation laws and calculate uncertainty in higher level data products.30

CoA 4. The error analysis shall be traceable in a sense that all relevant underlying assumptions are documented.
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CoA 5. In principle the error estimates should be empirically validatable. Empirical validation is achieved via comparison be-

tween independent measurements because the true values of the atmospheric state are unknowable. We consider error estimates

as empirically adequate if differences between independent measurements can be fully explained by the combination of their

error bars, natural variability in the case of less than perfect collocations, different resolution in time and space, and different

amounts of possibly different prior information.5

CoA 6. The data volumes associated with this reporting should be reasonable. This is particularly important because involved

matrices (e.g., covariances and averaging kernels) exceed the data volume of the data themselves by orders of magnitude.

These conditions of adequacy comply in part with the principles issued by the QA4EO task team (2010). That document

requests traceability and fitness for purpose. We endorse traceability of the uncertainty estimates but we consider it unrealistic

to assign quality indicators for ‘fitness for purpose’ for all conceivable applications.
:::
With

:::::::
generic

::::
error

::::::::::::::
characterization

::::
data10

::::::::
available,

:::
the

:::::
fitness

:::
for

:
a
:::::::
specific

:::::::
purpose

:::
can

:::::
easily

:::::::::
evaluated.

3 Terminological issues

Unification of error reporting is only achievable if at least a minimum agreement on terminology and the underlying concepts is

achieved. Most of the terms used are largely self-explanatory and are introduced in the following sections. There are, however,

two troublesome terminological issues. One consists of the dispute as to whether ‘estimated error’ and ‘uncertainty’ relate to15

the same concept and, if not, which concept is appropriate. The other is related to the exact connotation of these terms with

respect to the underlying methodology. In the following, both issues will be briefly discussed.

3.1 Error versus uncertainty

A particularly troublesome terminological issue is the use of the term ‘error’ and the concept behind it. Given that the Joint

Committee for Guides in Metrology (JCGM) and the Bureau International des Poids et Mesures (BIPM) aim to replace the20

concept of error analysis by the concept of uncertainty analysis (Guide to the expression of uncertainty in measurement (GUM),

2008a), some conceptual and terminological remarks are in order. While on the face of it, this is quibbling about words, it is

actually claimed in these documents that there are conceptual differences between error analysis and uncertainty estimation. A

deeper discussion of this issue is beyond the scope of this paper. The interested reader is referred to, e.g., Thomas von Clarmann

(paper in preparation), who challenges the principal difference between the error concept and the uncertainty concept; Bich25

(2012), who, although a Working Group leader of the JCGM, claims inconsistencies between the GUM document and its

supplements; Grégis (2015), who challenges the position that one can dispense with the notion of ‘true value’ in metrology as

suggested in GUM; or Elster et al. (2013) and European Centre for Mathematics and Statistics in Metrology (2019), where the

applicability of the GUM concept to inverse problems is critically discussed. Conversely, QA4EO task team (2010), Merchant

et al. (2017), and Povey and Grainger (2015), e.g., largely endorse the GUM-based uncertainty concept. The latter authors,30

however, state that the GUM conventions “[...] apply equally to satellite remote sensing data but represent an impractical ideal
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that does not help an analyst fully represent their understanding of the uncertainty in their data. This is due to the simplistic

treatment of systematic errors.”
:::::
Those

::
of

:::
the

:::::::
QA4EO

:::::::::
documents

:::::
listed

:::
on

:::::::::::::::::::::::::::
https://qa4eo.org/documentation/

::::
(last

::::::
visited

::
on

::
2

::::
April

::::::
2020)

:::::
which

::::::
discuss

::::::
issues

::::::::
spanning

:::::::
multiple

:::::::::
instrument

:::::
types

:::
are

:::::::
targeted

::
at

::::
data

:::::::::::
management

:::::
issues

::::
and

:::::::::
workflows

:::::
rather

::::
than

:::::::
scientific

:::
and

::::::::
technical

::::::
details.

:::::::
Among

::::
these

:::::::
QA4EO

::::::::::
documents,

:::
only

::::::::::::::
Fox (2010) deals

::::
with

:::::
error

:::::::::
estimation,

:::
but

::
in

:
a
::::
very

::::::
general

::::
way

:::::::
without

:::::::
covering

:::
the

:::::
issues

:::::::
specific

::
to

::::::
remote

::::::::::::
measurements

::
of

::::::::::
atmospheric

:::::::::::
composition

:::
and

:::::::::::
temperature.5

The application of GUM to remote sensing of the atmosphere are hampered by the fact that GUM does not explicitly take

indirect measurements into account, that GUM assumes a well defined measurand while the atmosphere is characterized by

statistical variables which do not relate to a canonical ensemble, and that the problem of a priori information is not considered.

For our purposes it is sufficient to say that the claim of the conceptual difference is still under debate, and that we have not fully

adopted the terminology stipulated by the JCGM. Instead, we invoke the statement in Joint Committee for Guides in Metrology10

(JCGM) (2008a) that the error concept and the uncertainty concept are ‘not inconsistent’; we understand this in a sense that

the underlying methodology and mathematical tools are the same, and that the differences are restricted to the interpretation of

the terms under dispute.

The GUM-stipulated framework, however, does present a dilemma when seeking to unify terminology in the TUNER arena.

On the one hand, we are not in favour of brushing away the common interpretation whereby the term ‘estimated error’ is used15

for a statistical quantity that reflects the difference between the true value and the value inferred from the measurement. It

remains to be seen whether the new terminology stipulated by the JCGM (JCGM, 2008a and 2008b) will be widely accepted.

Accordingly, given the significant heritage within the atmospheric remote sensing community, renaming long-established con-

cepts would not promote our goal of ‘unification’. In recent scientific literature, terms like ‘estimated measurement error’,

‘error analysis’, ‘error covariance matrix’ or ‘standard error of the mean’ are still widely in use, and replacement terms like20

‘standard uncertainty of the mean’ etc., are rarely invoked. On the other hand, we recognize that explicitly breaking with the

official stipulations of the JCGM does not advance the overall goal of ‘unification’ either.

For the purposes of the following discussion we define ‘error’ to be the difference between an unknown truth and a value

inferred from measurements. ‘Uncertainty’ describes the distribution of an error. This can be summarized with metrics such

as the total squared error, which can be decomposed into systematic and random components that are reflected by bias and25

variance. We will often use the word ‘error’ as a part of composite terms, (e.g., ‘parameter error’, ‘noise error’, ‘retrieval

error’, ‘estimated error’, etc.). When we use a composite containing the term ‘error’, this does not imply that the uncertainty

interpretation is excluded, and conversely, when we use a composite term containing the term ‘uncertainty’, this does not imply

that the error interpretation is excluded. The use of the term ‘error’ as a generic term in the sense of ‘measurement noise causes

an error in the inferred quantity’ is probably uncontroversial and can be accepted both by adherents of the error concept and30

adherents of the uncertainty concept.

We think that no terminology is per se better than another one, as long as it is clearly defined. Instead of further fueling the

terminological conflict, we try to concentrate on the content and to lay down an error reporting framework custom-tailored to

remote measurements of atmospheric temperature and constituents that is more detailed and specific than most of the previous

literature.35
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3.2 Ex ante versus ex post error estimates

Regardless of whether one prefers to call the estimated retrieval error ‘uncertainty’ or the uncertainty of the measurement ‘es-

timated error’, there are still two different ways to evaluate this quantity. One relies on generalized Gaussian error propagation

or, particularly in grossly nonlinear problems, on sensitivity studies, either as case studies or in a Monte Carlo sense. Uncer-

tainties of input quantities are propagated through the data analysis system to yield the uncertainties of the target quantities.5

The other way relies on a statistical analysis of the results, e.g., by comparison to other observations. Many different terms

are commonly used to distinguish between these different approaches. In Joint Committee for Guides in Metrology (JCGM)

(2008a), the first fall into their ‘category B’, while the second are ‘category A’. Von Clarmann (2006) distinguishes between ex

ante and ex post error estimates, reflecting the fact that error propagation can be calculated even before the measurement has

been made, while the statistical analysis of the measurements requires the availability of actual measurements. Along the same10

line of thought, one could also talk about error prediction versus evidence of errors. Since error estimation is deterministic

with respect to the estimated variances (but certainly not with respect to the actual realizations of the measurement error), and

since statistical analysis of any evidence follows the laws of inductive logic (Carnap and Stegmüller, 1959), one could also

distinguish between deductive and inductive error estimation. Others prefer to use the terms ‘bottom up’ and ‘top down’ for

this dichotomy. This study focuses chiefly on ex ante error estimation. To validate these estimates, ex post error estimation is15

relevant, as expounded, e.g., by Keppens et al. (2019).

4 Retrieval theory and notation

Measurements – also most so-called direct measurements – invoke inverse methods. The only exception is a direct comparison

where the measurand is directly accessible via human sensation, like length measurement by comparison with a yardstick or

determination of colour by comparison with a colour table. The inverse nature of most measurements is due to the fact that20

the measurand x is the cause and the measured signal y is the effect. These are connected via a natural regularity which is

formalized via a function

f : Rn ! Rm : x 7! y = f(x), (1)

which maps the discretized measurand onto the respective observable signal, and where m and n designate the number of

measured data points and the number of state values, respectively.25

In the macroscopic world, exempt from quantum processes, the measured effect is thus, for given conditions, a determin-

istic unambiguous function of the measurand. While microscopic processes can admittedly be indeterministic, their statistical

treatment for ensembles of sufficient size leads to deterministic laws. Irreducibly non-deterministic components contribute to

the measurement noise. In contrast, the conclusion from the measured signal y to the measurand x is not always unambiguous

because in many cases the inverse function30

g : Rm ! Rn : y 7! x= f�1(y) (2)
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can only be approximated due to the over- or underdetermined or otherwise ill-posed nature of the problem and the large rank

of the matrix to be inverted.

In some cases, the inverse process can be quite trivial, e.g., in the case of a temperature measurement with a mercury

thermometer. The causal process is the thermal expansion of mercury, and the inverse conclusion goes from the volume of the

mercury to the ambient temperature. The scale of the mercury thermometer is simply a pretabulated solution of the inverse5

process for various temperatures. In other applications, such as remote sensing of the atmosphere from space, the inverse

process is slightly more complicated because f�1(y) does not usually exist. Related workarounds to solve this problem are

discussed below.

Remote sensing of the atmospheric state from space relies in one form or another on the radiative transfer equation (Chan-

drasekhar, 1960). This equation is deterministic in a sense that its formulation f simulates the measured signal via causal10

processes. The deterministic characteristic of f in the macroscopic world is achieved via a statistical treatment of the under-

lying microscopic processes. While its forward solution allows the calculation of the radiance received by the instrument, its

inverse solution allows for the determination of the state of the atmosphere from a known radiance signal.

Roughly following the notation of Rodgers (2000), we define F to be the radiative transfer model which approximates f .

F is a vector-valued non-linear function and deviates from f in that it is discrete in space and frequency, involves numerical15

approximations and may not include the full physics of radiative transfer. x 2 Rn is the vector representing the atmospheric

state, and y 2 Rm the vector containing the measured radiance signal. The elements of x contain both the ‘target variables’

and ‘joint-fit’ variables. Target variables are those variables we are actually interested in. Conversely, the joint-fit variables are

variables needed by F that, while not the focus of our interest, have to be sought in the inversion because they may not be

accurately known and their uncertainties would otherwise make an unacceptably large contribution to the total error budget.20

Typically m 6= n, i.e., the dimension of x does not equal the dimension of y. For the overdetermined case (m> n), Gauss

(1809)1 suggested an approximate inversion obtained by minimizing the sum of squares of the residual F (x)�y. If we assume,

for now, that F is linear and that Gaussian distributions of are adequate to characterize the measurement (see Section 5.5 for

related problems) the unconstrained 2 solution of the inverse problem is

x̂ML = x0 +
h
KTS�1

y,totalK
i�1

KTS�1
y,total [y�F (x0)] . (3)25

K is the Jacobian matrix with the elements Kij =
@yi

@xj
, x0 represents an initial guess of the atmospheric state, and Sy,total is

the covariance matrix characterizing the total measurement error. Here the ˆ symbol indicates that, due to measurement noise

mentioned above, and other uncertainties and ambiguities which will be discussed below, the result of the inversion is only

an estimate of the measurand x. In most real-world applications, only measurement noise is considered here, while other
1The first publication of a least squares method was actually by Legendre (1805), but Gauss is said to have had this idea about ten years before. Obviously

unaware of Legendre’s work, also Robert Adrain (1808) proposed the least squares method as the most advantageous solution in this context. See Merriman

(1877), Sprott (1978), or Stahl (2006) for a deeper discussion of the priority regarding this method.
2See below for a deeper discussion of this term.
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measurement uncertainties like calibration errors are neglected at this stage. Since the solution provided by Eq. 3 does not

consider any prior information, it is a “maximum likelihood” solution in the sense of Fisher (1922, 1925)3.

One major difference between our notation and Rodgers’ notation refers to the error covariance matrices S. We use two

subscripts. The first indicates if the uncertainties refer to the retrieved quantities x or to the ingoing quantities. The second

subscript specifies the source of the uncertainty. For example, Sy,noise is noise in the measurement data, while Sx,noise is the5

measurement noise mapped into the retrieved atmospheric state. In other words, Sx,noise is the error component in x due to

the error source Sy,noise. In some cases, e.g., if any ambiguity can be excluded or if the sources of the error are not known, the

second subscript can be missing.

By explicitly assuming equally distributed, i.e., uniform prior, state values Gauss (1809, p. 211) gave this solution a proba-

bilistic interpretation without clashing with the Bayes (1763) theorem. In a linear context and for measurement errors following10

a normal4 distribution around the true value, the Gaussian least squares solution corresponds formally — but certainly not in

terms of its interpretation — to a maximum likelihood solution in the terminology of Fisher (1922, 1925) (thus the index

ML in x̂ML). An interesting overview on the history of maximum likelihood estimates is given by Hald (1999), while the

justification of this method is critically discussed in Aldrich (1997). For instructive discussions of the relevance of the Bayes

theorem in inductive statistics, see, e.g., Bar-Hillel (1980) and Thompson and Shuman (1987). The original Gaussian least15

squares method was valid for independent measurement errors only. The introduction of the correlation coefficient by Galton

(1888) and Pearson (1896) paved the way towards a wider range of applications. The matrix formulation as used today, where

correlated measurement errors are represented in the measurement error covariance matrix Sy, owes much to Yule (1907),

Fisher (1925), and Aitken (1935). A reconstruction of the historical development of this technique was performed by Aldrich

(1998).20

If the inverse problem is underdetermined (m< n) or ill-posed in a sense that the
h
KTS�1

y,totalK
i

matrix is singular or has a

high condition number, then a constraint has to be used. Even in formally well-conditioned problems but large measurement

noise, the use of a constraint can be helpful. With a prior assumption on the atmospheric state xa and a regularization matrix

R we can modify Eq. (3) in a way that the matrix inversion can be accomplished. This so-called regularized solution is (von

Clarmann et al. 2003, building upon Rodgers 2000; Phillips 1962; Tikhonov 1963; Twomey 1963; Steck and von Clarmann25

2001)

x̂reg = xa +
h
KTS�1

y,totalK+R
i�1

KTS�1
y,total [y�F (xa)] . (4)

Many choices of the regularization matrix R are possible. With the (n�1)⇥n first order differences matrix L1 and � a scaling

parameter to control the strength of the regularization and balancing the units, the choice of

R= �L1L
T
1 , (5)30

3See below for a deeper discussion of this term.
4Normal distribution and Gaussian distribution are the same. The term ‘normal distribution’ was probably coined by Karl E. Pearson in 1893. While this

term evades the question of priority in its discovery, it “has the disadvantage of leading people to believe that all other distributions of frequency are in one

sense or another abnormal”, as Pearson (1920) self-critically states.
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renders fields of profiles of atmospheric state variables that are smoothed in the sense of reduced altitude-to-altitude differences

of the x̂reg �xa profile, thus avoiding unphysical oscillations that typically result from instabilities associated with ill-posed

inverse problems.

If we represent the best known a priori statistics about the targeted atmospheric state as xa, its covariance matrix as Sa,

the inverse of this matrix as R, and continue to assume Gaussian error distributions, then we get a Bayesian solution that5

is usually referred to as ‘optimal estimate’ (Rodgers, 1976) or ‘maximum a posteriori (MAP) solution’ (Rodgers, 2000) and

is fully compatible with the Bayes (1763) theorem and information theory by Shannon (1948), and thus gives the solution a

probabilistic interpretation in the sense of the maximum a posteriori probability:

x̂MAP = xa +
h
KTS�1

y,totalK+Sa
�1

i�1
KTS�1

y,total [y�F (xa)] . (6)

The formalism of Eq. 6 can also be used without committing oneself to a probabilistic interpretation of Sa. For example, Sa10

can be rescaled to give less weight to the priori information.

This equation, however, holds only if the variability of the atmospheric state is fairly well covered by a Gaussian probability

density function. To characterize the variability of highly variable trace gases, a log-normal probability density function can be

more adequate. It avoids, e.g., that non-zero a priori probability densities are assigned to negative mixing ratios. Technically,

this is achieved by using Eq. (6) but re-interpreting x as the logarithm of the concentrations and Sa as the covariance matrix15

of these logarithms. This is, for instance, important for tropospheric water vapour (e.g., Hase et al., 2004 or Schneider et al.,

2006). However, there is a price to be paid, in that this then casts the measurement error in terms of a log-normal distribution

also. The positive bias caused by the retrieval of logarithms of concentrations in the case of measurement noise oscillating

arount zero signal has been investigated by Funke and von Clarmann (2012).

For brevity, we define the gain matrix (Rodgers, 2000)20

G=
@x̂

@y
=
⇣
KTS�1

y,totalK+R
⌘�1

KTS�1
y,total , (7)

which will play an essential role in error estimation. The remainder of this paper broadly identifies all relevant sources of

uncertainties including measurement noise, approximations, idealizations, and assumptions.

Tables 1 and 2 summarize the retrieval schemes used by a number of satellite data processors.

5 Retrieval in the real world25

Application of Eqs. (3–6) usually involves many approximations and idealizations including discretization, decomposition of

the argument of the radiative transfer function into variables and parameters, spatial decomposition, and non-linearity issues,

just to name a few. Since all these approximations give rise to retrieval errors, a full understanding of them is of utmost

importance when quantifying the error budget of a measurement.
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5.1 Discretization

At least on macroscopic scales, atmospheric state variables are construed as continuously varying in space and time. In the re-

trieval equations they are, however, represented by vectors with a finite number of elements, each representing the atmospheric

state at a gridpoint. If the discretization is too fine, a stronger regularization is needed to fight ill-posedness of the inversion,

while a too coarse discretization can cause errors in the radiative transfer modelling and limits the spatial resolution of the5

solution. In a maximum likelihood retrieval, the grid-width is identical to the spatial resolution of the retrieval.

In this context we note that the atmospheric state does not necessarily need to be represented as vertical profiles where each

element of x is a state variable at a certain altitude or location, or represents an atmospheric layer. Alternative representations

include, e.g., principal components/empirical orthogonal functions (see, e.g., Boukabara et al. 2011; Munchak et al. 2016;

Duncan and Kummerow 2016). These can be inferred from an ensemble of spatially highly resolved prior measurements.10

The unknowns in the retrieval are the weights of the principal components. Complete or partial neglect of higher principal

components will regularize the retrieval. Such an approach is under consideration for the Atmospheric Limb Tracker for

Investigation of the Upcoming Stratosphere (ALTIUS) mission (Fussen et al., 2016). A similar approach was tried for the

Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) (Doicu et al., 2007), for the multi-

channel infrared radiometer on the Geostationary Operational Environmental Satellite (GOES-13) and infrared sounder on the15

Indian National Satellite (INSAT-3D) by Jindal et al. (2016). The retrieval of vertical column amounts by simply scaling the

initial guess profile reduces the profile retrieval to a single degree of freedom. Alternatively, the altitude axis of the profile

can be stretched or compressed using the so-called ‘downwelling factor’ as suggested by Toon et al. (1992). These approaches

are often used for analysis of measurements which do not provide direct information on the vertical distribution of the target

species. Particularly in the greenhouse gas monitoring community, retrieved column amounts of target species are divided20

by the molecular oxygen column amount retrieved with the same instrument. Rescaling of the quotient by the 0.20946 gives

the column-averaged dry-air mole fraction XCO2 or XCH4. The benefit of this approach is a cancellation of multiplicative

systematic error components (see, e.g., Wallace and Livingston, 1990; Yang et al., 2002; Wunch et al., 2010; Reuter et al.,

2011). Similar arguments hold for isotopic ratios (e.g., Piccolo et al., 2009; Schneider et al., 2016) or ratios between trace gas

profiles (e.g. García et al., 2018).
:::
For

:::::::::::
measurement

:::::::::
techniques

::
in
:::

the
::::::

visible
::::
and

:::
UV,

:::::::::
scattering

::
is

:::::::::
particularly

:::::::::
important

::
as

::
it25

::::::
governs

::::
how

::::
long

:::
the

::::::
actual

:::::::
lightpath

::
is
::
in
:::::

each
:::::
layer;

::::::::::
accordingly,

::
a
::::::
certain

::::::
amount

:::
of

:::
the

:::::
target

:::
gas

::::
will

::::
have

:
a
:::::::
stronger

:::
or

::::::
weaker

:::::
effect

::
on

:::
the

::::::::
measured

::::::
signal,

:::::::::
depending

::
in

::::::
which

::::
layer

::
it

::
is.

::::
This

:::::::::::::::::
altitude-dependence

::
is

::::::::
accounted

:::
for

:::
by

::
an

:::::::
airmass

:::::
factor

:::::
which

:::::::
governs

:::
the

::::::
weight

::
of

::::
each

:::::
layer

::
in

:::
the

::::
total

:::::::
column.

::::
The

::::
total

::::::
column

::::
thus

:::
can

:::
be

::::::::
conceived

:::
as

:
a
::::::::
weighted

::::
sum

:::
over

:::
the

::::::
layers,

::::::
where

:::
the

:::::
weight

:::
of

::::
each

::::
layer

::
is
::::::::::
propotional

::
to

:::
the

:::::::::
sensitivity

:::
(see

:::::::
Section

::::
5.4.7

:::
for

::::::
further

:::::::
details).

5.2 The measurement error covariance matrix30

Typically in real-world applications, the measurement error Sy in Eqs. (3–6) contains only measurement noise, while other

sources of measurement error are often ignored during the retrieval (see Section 6.1 for details) and typically analyzed after

performing the retrieval. Since this treatment deprives any solution from its claimed optimality (Cressie, 2018), in some cases
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the measurement noise is artificially “inflated” to account for potential calibration uncertainties. A method to include multiple

types of uncertainties in the measurement error covariance matrix is discussed in Marks and Rodgers (1993), Tarantola and

Valette (1982), Eriksson (2000), and von Clarmann et al. (2001). These authors discuss the possibility of mapping all relevant

error contributions into the measurement space and include them in the Sy matrix5. Rodgers (2000, Section 4.1.2) views this

problem from a different perspective but the suggested solution is mathematically equivalent to the approach suggested above.5

5.3 Variables and parameters

While the measurement typically depends on a large number of atmospheric
:::::::::
geophysical

:
state variables, only a few of them

are actually dealt with as unknowns. The other variables are assumed to be known and are dealt with as constant parameters.

For example, in an ozone profile retrieval the atmospheric temperature profile may be assumed to be known and thus not be

included in the retrieval vector x. With this, the forward problem can be formalized as10

y = F (x;b), (8)

where b is the vector of parameters, which are separated in the argument of function f by the semicolon. The respective inverse

solution reads in its general form

x̂reg =xa +
⇣
KTS�1

y,totalK+R
⌘�1

KTS�1
y,total [y�F (xa;b)] . (9)

The uncertainties of parameters b affect the estimate x̂ and thus a parameter error term has to be included in the error budget.15

5.4 Decomposition of the inverse problem

Practical reasons typically force one to decompose the inverse problem, e.g., to reduce the size of the problem in order to

achieve numerical efficiency. Often a part of the measurement is virtually insensitive to some of the atmospheric state variables.

The general idea of decomposition is to isolate subsets of the entire set of measurements that are mainly sensitive to only a

subset of the unknown variables. This decomposition can be made according to spectral or geometrical criteria (see below).20

Decomposition of the inverse problem can be done either in an “optimal” or in a “non-optimal” way. The optimal decom-

position solves the inverse problem sequentially, where at each step the retrieval is made for the full x-vector but based only

on a subset of the measurements, whereby each measurement is used only once during the entire process (see, e.g., Rodgers,

2000, Ch. 5.8.1.3; his requirement of a diagonal measurement covariance matrix can be replaced by the weaker requirement

of a block-diagonal covariance matrix if the algebra is adjusted accordingly). Initially, the retrieval, which typically is patently25

under-determined because of the temporarily ignored measurements, is constrained by an initial Sa matrix. For each subsequent

step, the Sa matrix is replaced by the so-called ‘retrieval covariance matrix’

Sx =
⇣
KTS�1

y,totalK+S�1
a

⌘�1
(10)

5This issue seems to be of particular importance when observation error covariance matrices are built in contexts where a data assimilation scheme uses

radiance measurements instead of retrieved state variables, as suggested by Andersson et al. (1994).

11



of the preceding step. Within linear theory, the solution of such sequential methods is equivalent to the direct solution of the

full inverse problem.

More frequently used is non-optimal decomposition. Here the relevance of some components of the state vector for the

measurements is temporarily ignored, and the retrieval solves the inverse problem only for a part of the state values, using only

a subset of the measurements. This approach lends itself to problems where it is adequate to assume that the Jacobian matrix5

K has an almost block diagonal structure, that is, that there are state variables which have no significant influence on some of

the measurements under analysis and vice versa. In the following we discuss spectral and spatial decomposition.

5.4.1 Spectral decomposition

Not all spectral gridpoints or channels of a spectrometer or a multi-channel radiometer are equally sensitive to all unknown

variables. For example, the subset of the measurements used to retrieve the ozone concentration may be insensitive to the10

concentration of water vapour (Flittner et al., 2000). In such cases, the abundances of various species can be retrieved in

sequence, using dedicated “microwindows” in infrared spectroscopy (see, e.g. von Clarmann and Echle, 1998; Echle et al.,

2000; Dudhia et al., 2002), different spectral regions in microwave radiometry (Livesey et al., 2003, 2006) or measurements

in the ultraviolet and visible (UV-VIS) spectral range (e.g., Bovensmann and M. Gottwald, 2011). In these cases, a subset of

spectral points is selected for analysis. Those unknowns which have sizeable impact on the signal at these spectral points are15

retrieved. When in later steps other spectral points are analyzed, the results of the first steps can be used and either be treated

as known parameters, or as a priori information in an optimal sequential scheme. Uncertainties entailed by this procedure are

associated with the following problems: (1) In the first step some of the disregarded variables may still introduce some error;

(2) retrieval errors of all kinds resulting from a prior step of the sequential scheme propagate onto the results of later steps; and

(3) inconsistencies in spectroscopic parameters between different spectral points can cause a spurious residual signal when,20

e.g., the concentration of a gas retrieved in one part of the spectrum is used as a known parameter in the analysis of another

part of the spectrum.

Spectral decomposition is also often used for the retrieval of a single species. For example, Kramarova et al. (2018) retrieve

ozone sequentially in different spectral bands. An alternative to spectral decomposition is the simultaneous analysis of the full

spectrum (e.g., Serio et al., 2016). In cases when spectroscopic data are consistent over the entire spectral range it will best25

exploit the observational information.

5.4.2 Geometric decomposition

In the case of nadir sounding, lines of sight referring to different ground-pixels cross different parts of the atmosphere and can

thus be analyzed independently without sizeable loss of information. In limb sounding, first suggested around the same time

by Gille (1968), Blamont and Luton (1972), Hays et al. (1973) and Donehue et al. (1974) for different scientific contexts, the30

situation is more complicated because the retrieval of a state value at a given altitude depends on the knowledge of the same

state value at other altitudes passed by the line of sight.
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If the same air parcel is seen under multiple geometries, the measurements have a tomographic nature. Since the simultaneous

retrieval of all these intertwined measurements easily exceeds available computational resources, often only a subset of the

measurement geometries are analyzed in one step.

More specifically, the algorithm can be constructed such that only a subset of the measurements are needed to retrieve the

atmospheric state corresponding to a given subset of the state vector elements that affect signals along the raypath of the5

considered measurement. The two most prominent examples are single profile retrievals and onion peeling. Typical approaches

to decompose the entity of measurements geometrically are listed in Table 1.

In some cases, the geometric profile reconstruction is decoupled from the spectral inversion. In order to gain numerical

efficiency, the inversion can be performed in sequential steps. Such an approach is realized for GOMOS two-step inversion,

which decompose the retrievals into the spectral inversion followed by the vertical inversion using the concept of effective10

cross-sections (Kyrölä et al., 1993).

5.4.3 Optimal decomposition techniques

Optimal decomposition techniques formally retrieve all relevant variables x in each step but measurement information y of

only a subset of the measurement geometries is used. Since, in a maximum likelihood setting, such a retrieval would be

hopelessly underdetermined, sequential estimation as described above lends itself to this class of problem. Every state variable15

can be updated as soon as new information becomes available. In contrast, non-optimal techniques will not update any quantity

once retrieved.

5.4.4 Single profile retrieval vs. 2D/3D-retrievals

The vast majority of limb sounding retrievals assume local spherical homogeneity of the atmosphere, i.e. considering only

vertical variations in the atmospheric state around the line of sight, and neglecting horizontal variability (e.g. Gille, 1968;20

McKee et al., 1969a, b; House and Ohring, 1969; Carlotti, 1988). Russell III and Drayson (1972) explicitly state the assumption,

and only a small number of retrieval schemes relinquish it. In solar occultation observations, where the measurement geometry

is determined by the position of the sun and the instrument and where at most one sunset and one sunrise can be observed per

orbit, there is not much choice; tomographic multi-limb-scan retrievals are out of reach and the single profile retrieval is the

way to go.25

For limb measurements, von Clarmann (1993) suggested a non-optimal decomposition similar to “onion peeling” (see below)

but in the horizontal domain. This approach, however, was never put into action. Carlotti et al. (2001) proposed to solve the

inverse problem for a full satellite orbit instead of for single limb-scans. This tomographic method was published under the

name ‘geofit’. Steck et al. (2005) tested an implementation of sequential estimation in the horizontal domain, while the vertical

domain was treated in one leap. Livesey and Read (2000); Livesey et al. (2008); Christensen et al. (2015) employ a tomographic30

approaches, whereby a 2-dimensional along-track curtain of profiles is simultaneously retrieved from multiple sets of limb

scans. A similar approach is used for SCIAMACHY retrievals of metals (Scharringhausen et al., 2008; Langowski et al., 2014)

and NO (Bender et al., 2013, 2017) and for OMPS-LP ozone (Zawada et al., 2018).
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Dudhia and Livesey (1996) and von Clarmann et al. (2009) use prior information on the horizontal variation of state variables

in a single limb-scan retrieval. The latter scheme lends itself particularly to reprocessing of data when the initial processing

information on the horizontal variability is already available. This approach has been critically analyzed by Castelli et al.

(2016). Tomographic approaches and the effect of horizontal gradients were investigated for SCIAMACHY limb measurements

by Pukite et al. (2008) and Pukite et al. (2010). A series of OSIRIS orbits allowed the tomographic analysis of polar mesospheric5

clouds (Hultgren et al., 2013). This application was preceded by theoretical studies on OSIRIS infrared channels tailored for

tomography.

Most other limb sounding retrieval schemes use the spherical homogeneity approximation, although this approach can be

challenged for limb sounders. For example, Kiefer et al. (2010) provided evidence of biases in trace gas retrievals from MIPAS

limb emission spectra due to horizontal temperature gradients. Thus, neglect of the horizontal variation of the atmospheric state10

needs either to be corrected or to be considered in the error budget.

In the case of nadir sounding
:
at

:::::::::::
mid-infrared

:::
and

::::::
longer

::::::::::
wavelengths, single profile

::
or

::::::
column

:::::::
density retrievals seem to be

the natural thing to do, since a raypath associated with one geolocation intersects each altitude level only once. However, in

the UV-VIS spectral range
:
,
:::::
where

:::::::::::
backscattered

:::::
solar

::::
light

::
is

:::
the

::::::
source

::
of

:::
the

::::::::
radiation, multiple scattering along with strong

inhomogeneities in the surface reflection or cloud coverage might cause some interplay between the neighbouring pixels.15

:::
One

:::::::
specific

::::::::::
geometrical

::::::::::::
decomposition

::::::
applied

::
to

:::::
nadir

::::::::::
observations

::
is

:::
the

:::::::
retrieval

::
of

::::::::::
tropospheric

:::::::
column

::::::::
densities.

:::::
Since

::
the

:::::::
raypath

:::
also

::::::
travels

:::::::
through

:::
the

::::::::::
stratosphere,

:::::::::
knowledge

:::
on

::
the

:::::::::::
stratospheric

:::::::
column

:
is
::::::
needed

::
to

::::::
model

::
the

:::::::::
measured

:::::
signal

:::::::
correctly.

::::::::::::::::::::::::::::
Boersma et al. (2004) summarizes

:::::
three

:::::::::
techniques

::
to

:::::
obtain

::::
this

::::::::::
information.

:::::::::::::::::::
Leue et al. (2001) uses

::::::::::::
measurements

::::
from

::::::
cloudy

::::::
pixels

::
to
:::::

infer
:::

the
::::::::::::

stratospheric
:::::::
amount;

:::::::::::::::::::::::::::
Richter and Burrows (2002) and

::::::::::::::::::::
Martin et al. (2002) use

::::
data

:::::
from

::::::
remote

::::::
Pacific

:::::::
regions

::::::
where

:::
the

:::::
total

:::::::
column

::
of

:::::
their

:::::
target

::::
gas

:::::
NO2::

is
:::::::::::::

approximately
::::::::
identical

::
to

::::
the

:::::::::::
stratospheric20

:::::::
column,

::::
and

:::::::::::::::::::::
Richter et al. (2002) use

:::::::::::
stratospheric

:::::::
column

::::::::::
information

:::::
from

::
a

::::::::
chemistry

:::::::::
transport

::::::
model.

::::::::::::
Alternatively,

::::::::
collocated

:::::
limb

::::::::::::
measurements

::::
can

::
be

:::::
used

::
to

::::::::
constrain

::::
the

:::::::::::
stratospheric

:::::::
column

:::::
using

::
a

:::::::::
limb-nadir

::::::::
matching

:::::::::
technique

:::::::::::::::::::::::::::::::::::::::::::::::::
(Ziemke et al., 2006; Hilboll et al., 2013; Ebojie et al., 2014).

:

5.4.5 Onion peeling

In the “onion peeling” approach, (Gille, 1968; McKee et al., 1969a, b; House and Ohring, 1969; Russell III and Drayson,25

1972; Goldman and Saunders, 1979) the collection of limb measurements in a vertical scan is decomposed into a sequence of

retrievals, each dealing with one tangent altitude, starting at the top and working down. This method builds upon the fact that the

bulk of the information obtained along the horizontal line of sight originates from the vicinity of the tangent point, with limited

information from above and essentially none from below. In the first step, the measurement associated with the uppermost

tangent altitude is analyzed and the profile above is scaled. Then the second tangent altitude from the top is used and the profile30

between this tangent altitude and the tangent altitude above is scaled; this is repeated until the lowermost tangent altitude is

reached. Often the discretization of the atmospheric state corresponds to the tangent altitude pattern, i.e., there is one profile

point per tangent altitude, and the profile shape between the points is determined by interpolation. Gaussian elimination is
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already provided by the measurement geometry, and the Jacobian K has a quasi-triangular structure6. This approach, however,

is prone to instabilities (von Clarmann et al., 1991). The alternative would be that layer values are retrieved instead of level

values.

In the early era of limb sounding and solar occultation measurements, onion peeling was the work-horse data analysis

algorithm and was used, among others, in the following missions: LIMS (Bailey and Gille, 1986), ATMOS (Norton and5

Rinsland, 1991), HALOE (Russell III et al., 1993), CRISTA (Offermann et al., 1999). More recently, onion-peeling related

algorithms have been used, e.g., for, TIMED-SABER (Russell III et al., 1994), AIM-SOFIE (Gordley et al., 2009a), and

SCIAMACHY (Noël et al., 2018). When more computer power along with quasi-analytical algorithms to calculate larger

Jacobians became available, onion peeling was often superseded by global-fit-like algorithms (Carlotti, 1988) which solve the

inverse problem for the entire limb sequence in one leap.10

Approaches related to onion peeling are the Mill-Drayson method (1978) and the ‘interleave method’ (Thompson and Gord-

ley, 2009). The Mill-Drayson method starts with the lowermost tangent altitudes and scales the entire profile of the atmospheric

state variables above to minimize the residual between measurement and modeled signal. Next, the second tangent altitude from

bottom is used to scale the related upper segment of the profile above the related tangent altitude. Several iterations over the

limb scan are made. The goal is to avoid the typical onion-peeling error propagation which tends to trigger oscillations in15

the profiles. This method became somewhat obsolete with the advent of numerical regularization. Without knowledge of the

original method by Mill and Drayson this method has been applied to the SOFIE instrument by Marshall et al. (2011).

The interleave method decomposes the limb scan in multiple disjoint subsets of measurements, e.g., such that one set

contains the tangent altitudes with even numbers and the other those with the odd numbers. For each subset of measurements

an independent onion peeling retrieval is performed. Finally both the resulting profiles are merged to give one profile. The20

goal of this method is to get rid of the onion-peeling oscillations, which is achieved by having thicker layers and thus better

sensitivity – at the cost of degraded vertical resolution – in each retrieval step. The interleave method has been used, e.g., for

HALOE and SABER.

As will be seen below, rigorous error propagation for onion peeling retrievals and its variants is tedious and thus rarely per-

formed. Instead, Monte-Carlo-type sensitivity studies can be performed on the basis of simulated measurements superimposed25

with artificial noise, which are analyzed using the onion-peeling scheme. The error estimate is then provided by the variance

of the ensemble results around the reference value at each altitude.

5.4.6 Chahine’s relaxation method

The Chahine relaxation method (Chahine, 1968, 1970) was originally suggested to retrieve vertical profiles of the temperature

from measurements of the emerging specific intensity at several frequencies in the infrared spectral range. Later this method30

has been adapted by employing the geometrical decomposition to the retrieval of vertical distributions of atmospheric trace

gases from the measurements of the scattered solar light in limb viewing geometry (e.g., Sioris et al., 2003, 2004).
6We are saying ‘quasi-traingular’ here because, due to over-determination at each tangent altitude, K can have more rows than columns.
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Essentially, the measurement and state vectors have to be constructed in a way that for each of its components the following

linear relationship can be considered as an acceptable approximation:

[x̂]j
[xa]j

=
[y]j

[F (xa)]j
, (11)

where [. . . ]j denotes the j-th component of the corresponding vector. To obtain the solution, Eq. 11 needs to be solved for each

component [xj ] of the state vector independently. In the original approach the number of measurements and the number of5

the retrieved values need to be the same. However, Sioris et al. (2004) suggested an extension of the method which solved a

slightly underestimated problem with larger number of state vector components and a combination of the components of the

measurement vector in the right hand side.

In the original approach of Chahine, the measurement vector y comprised measured radiances, F (xa) the related modeled

radiances, the state vector x comprised Planck functions at certain pressure levels, and spectral decomposition was applied,10

i.e., Eq. 11 was solved for each frequency independently. In the approach of Sioris, the measurement vector contained trace gas

slant columns at each line-of-sight, the state vector contained trace gas number densities at altitude levels and Eq. 11 needed

to be solved for each line-of-sight independently, i.e., the geometrical decomposition was employed.

The Chahine relaxation method is a nested iteration of the type

[x̂i+1]j = [xi]j
[y]j

[F (xi)]j
. (12)15

The inner loop runs over the altitude indices j and is usually started at the top of the atmosphere and procedes downwards,

similarly to the onion peeling method. However, in this inner loop, the information retrieved at higher levels is not directly

used when Eq. 11 is solved for lower layers. Instead, the same current guess profile xi is used to evaluate x̂i+1 for all altitudes

j. Only after finishing the inner iteration over the altitudes j, the state vector xi is updated with xi+1. The outer iteration over

i is repeated until convergence is reached.20

Similarly to the onion peeling, rigorous error propagation for the Chahine relaxation method is challenging and the same

approach as suggested for the onion peeling method can be used instead.

5.4.7
::::::::
Two-step

::::::
DOAS

:::::::
methods

:::
The

::::::::::::
characteristic

::::::
feature

:::
of

::::::::::
Differential

::::::
Optical

::::::::::
Absorption

::::::::::::
Spectroscopy

::::::::
(DOAS)

::
is

::::
that

:::
the

::::::::::
information

:::
on

:::
the

::::::
target

:::::::
quantity

::
x

::
is

:::
not

:::::::
obtained

:::::
from

:::
the

::::
total

::::::::
measured

::::::
signal

:::
but

:::::
from

::
its

::::::::::
component

::::::
varying

:::::::
rapidly

::::
with

:::::::::
frequency

:::::
while

:::
the25

:::::::
smoothly

:::::::
varying

:::::::::
component

::
is
::::::::::::
approximated

::
by

::
a

::::::::::
polynomial,

:::::
whose

::::::::::
coefficients

:::
are

:::::::::
determined

::
in
:::
the

:::::::
spectral

::
fit

:::::::::
procedure

::::::::::::::::::::::::::::::::::::::::::::
(e.g., Platt and Stutz, 2008; Eskes and Boersma, 2003).

::::
This

::::::::::
polynomial

::::::::
describes

:::
the

::::::::
smoothly

:::::::
varying

:::::::::
component

:::
in

:::::
terms

::
of

::::::
optical

::::::::
thickness,

::::
i.e.,

::
as

::
an

:::::::
additive

::::
term

::
in

:::
the

::::::::
exponent

::
in

::::::
Beer’s

:::
law.

::::
The

::
fit

::
of

:::
the

::::::::::
differential

:::::::
spectrum

::
is
:::::
often

:::::::
realized

::
by

:::::
fitting

:::
the

::::
full

::::::::
measured

:::::
signal

::::::::
whereby

:::
the

:::::::::
coefficients

:::
of

:::
the

:::::::::
polynomial

:::
are

::::::
jointly

:::::
fitted,

::::
and

:::
the

:::::::
retrieved

::::
total

:::::::
column

::::::
amount

::::
has

::
to

:::::::
account

::::
only

:::
for

:::
the

:::::::::
differential

::::::
signal.30

:::::
When

:::
the

::::::
DOAS

:::::::
principle

::
is
:::::::
applied

::
to

::::
limb

::::::::::::
measurements,

::::
data

:::::::
analysis

:::
can

:::
be

:::::::::
performed

:::::
using

:
a
:::::::::
formalism

::::
such

::
as

::::
that

::::::::
presented

::
in

::::
Eqs.

:
3
:::

or
:
4
:::::::
directly.

:::
In

:::
this

::::
case

::
x

::::::::::
corresponds

::
to

:::
the

:::::::
vertical

:::::::
absorber

:::::::
number

::::::
density

:::::::
profile,

:::
and

::
y

:::::::::
represents
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::
the

:::::::::
measured

::::
limb

:::::::
radiance

:::::::
spectra

:::::
whose

::::::::
smoothly

:::::::
varying

::::::::::
components

:::
are

::::::::::::
parametrized

::
as

::::::::
described

::::::
above.

::::::::
Examples

:::
of

:::
this

::::::::
approach

::::
have

::::
been

:::::::::
presented,

::::
e.g.,

::
by

:::::::::::::::::::
Rozanov et al. (2005).

::::
Total

:::::::
column

::::::::
retrievals

::::
from

:::::
nadir

::::::::::::
measurements

:::
can

::::
also

::
be

::::::
carried

::::
out

::
in

:::
one

::::
step.

:::
In

::::
these

::::::::::
approaches

:::
the

::::
total

:::::::
column

:
is
:::::::
directly

::::::::
retrieved

::
by

::::::
fitting

:
a
:::::::::::::::
forward-modelled

::::::::::
differential

::::::::
spectrum

::
to

::
an

::::::::
observed

::::::::::
differential

::::::::
spectrum.

:::
An

:::::::
example

:::
of

::::
these

::::::::::
approaches

:
is
:::
the

:::::::::
Weighting

::::::::
Function

::::::
DOAS

::::::::::
(WFDOAS,

:::
e.g.,

::::::::::::::::::::::::::
Coldewey-Egbers et al., 2005).

::
In

:::
this

::::
case

:::
the

:::::::::
formalism5

::::
such

::
as

:::
that

::::::::
presented

:::
in

:::
Eq.

:
3
::
is

::::
fully

:::::::::
applicable

::
to

:::::::
column

:::::::
amounts

::
in

::::::
exactly

:::
the

:::::
same

:::
way

:::
as

:
is
:::::
done

:::
for

:::
the

::::::
vertical

::::::
profile

::::::::
retrievals.

::::
More

:::::
often,

::::::::
however,

:::
the

:::::::
retrieval

:
is
:::::::::::
decomposed

:::
into

:
a
::::::::
two-step

:::::::
retrieval

::::::::::::::::::::::::::::::::::::::::::::
(e.g., Platt and Stutz, 2008; Eskes and Boersma, 2003).

::
In

:
a
::::
first

::::
step,

:::::
slant

::::
path

:::::::
column

:::::::
densities

:::::::
(SCDs)

:::
are

:::::
fitted

::
to

::::::
explain

:::
the

:::::::
rapidly

::::::
varying

::::::::::
component

::
of

:::
the

:::::::
spectral

::::::
signal

:::::
(again

:::
the

::::::::
smoothly

:::::::
varying

:::::::::
component

::
is

:::::::::::
approximated

:::
by

:
a
:::::::::::
polynomial,

:::::
whose

::::::::::
coefficients

:::
are

:::::::
typically

::::::
jointly

::::::
fitted).

::::
The10

:::::::
resulting

:::::
SCDs

::::
are

:::
the

::::::::
integrated

::::::::
absorber

:::::::
number

::::::::
densities

:::::
along

:::
the

::::::::
effective

::::
light

:::::
paths.

:::
In

:::::
nadir

::::::::
sounding,

::::
this

::::::
results

::
in

:::
one

:::::
SCD

:::
per

:::::::
species,

:::::
while

::
in

:::::
limb

::::::::
sounding,

::::
one

::::
SCD

::::
per

::::::
tangent

:::::::
altitude

:::
and

::::::
target

::::::
species

::
is

::::::::
obtained.

::::::::
Referring

:::
to

::::::::
Equations

::
3

::
or

::
4,

::
in

::::
this

:::
first

:::::
step,

:
y
::::::::
contains

:::
the

::::::::::::
measurements

:::
and

::
x

:::
the

::::
slant

::::::
SCDs.

::
In

:::::
limb

::::::::
sounding,

::::
this

::::
SCD

::::::
profile

::
is

:::
then

::::::::
inverted

::
in

:::
the

::::::
second

::::
step

::
to

:::::
yield

:
a
:::::::

vertical
::::::::
absorber

::::::
number

:::::::
density

::::::
profile.

:::::::::
Referring

:::::
again

::
to

:::::::::
Equations

:
3
:::
or

::
4,

::
x

::::::::::
corresponds

::
to

:::
the

:::::::
vertical

:::::::
absorber

:::::::
number

::::::
density

::::::
profile

::::
and

:
y
:::

to
:::
the

::::
SCD

:::::::
profile.

::::::::
Examples

:::
for

:::
the

::::::::::
application

::
of

:::::
these15

:::::::
two-step

::::::::
retrievals

:::
are

:::::::::::::::::::
Sioris et al. (2003) and

::::::::::::::::
Haley et al. (2004).

:::
In

:::::
nadir

::::::::
sounding,

::
x
::
is
:::

the
:::::

total
::::::
vertical

:::::::
column

:::::::
density

:::
and

:::
the

::::::
second

::::
step

::
of

:::
the

::::::::
inversion

:::::::
requires

::::::::::
knowledge

::
of

:::
the

:::::::
airmass

:::::
factor,

::::::
which

::
is

::::::
closely

::::::
related

::
to

:::
the

::::::::
Jacobian

:::
K.

::
It

:
is
:::::::::

important
::
to

::::
note

::::
that,

:::::
even

::
if

:::
the

::
fit

:::
of

:::
the

::::
slant

::::
path

:::::::
column

:::::::
amounts

:::::
does

:::
not

:::
use

::::
any

::::
prior

:::::::::::
information,

:::
the

:::
air

:::::
mass

:::::
factor,

:::::
which

::::::
relates

:::
the

::::
slant

:::::::
column

::
to

:::
the

:::::::
vertical

:::::::
column,

::::
does

::::::
depend

:::
on

::::::::::::::
altitude-resolved

::::
prior

::::::::::
information,

:::::
even

::::::
though

:
a
::::::
column

:::::::
retrieval

::::
has

::::
only

:::
one

::::::
degree

::
of

:::::::
freedom

:::::::::::::::::::::::
(Eskes and Boersma, 2003).

:
20

5.5 Nonlinearity issues

The radiative transfer equation is nonlinear. This problem can be remedied by putting the retrieval equation used in an iterative

context, e.g.,

x̂ML;i+1 = xi +
⇣
KT

i S
�1
y,totalKi

⌘�1
⇥ (13)

⇣
KT

i S
�1
y,total (y�F (xi;b))

⌘
25

or

x̂reg;i+1 = xi +
⇣
KT

i S
�1
y,totalKi +R

⌘�1
⇥ (14)

⇣
KT

i S
�1
y,total (y�F (xi;b))�R(xi �xa)

⌘

for maximum likelihood or regularized problems, respectively, where i is the iteration index. The last term in the latter equation

assures that the prior information will not be ‘forgotten’ during the iteration (see, Rodgers 2000, p. 88).30

To avoid seeking an x̂ that is beyond the range of validity of the linear approximation y(xi+1)⇡ F (xi)+K(xi+1 �
xi),Levenberg (1948); Marquardt (1963) suggested a method that limits the stepwidth xi+1 �xi and turns it towards the
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direction of the steepest descent of the object function:

x̂ML;i+1 = xi +
⇣
KT

i S
�1
y,totalKi +�I

⌘�1
⇥ (15)

⇣
KT

i S
�1
y,total (y�F (xi;b))

⌘

or

x̂reg;i+1 = xi +
⇣
KT

i S
�1
y,totalKi +R+�I

⌘�1
⇥ (16)5

⇣
KT

i S
�1
y,total (y�F (xi;b))�R(xi �xa)

⌘
,

where � is a scalar that is adjusted during the iteration according to the local non-linearity of F and I is unity. Marks and

Rodgers (1993) and Rodgers (2000) suggest the following variant:

x̂reg;i+1 = xi +
⇣
KT

i S
�1
y,totalKi +�R

⌘�1
⇥ (17)

⇣
KT

i S
�1
y,total (y�F (xi;b))�R(xi �xa)

⌘
.10

Butz et al. (2012) have found that in some cases a reduced step-size Gauss-Newton algorithm works much better than the

Levenberg-Marquardt algorithm (Eq. 15).

Many inverse radiative transfer problems are only “moderately non-linear” (in the sense of Rodgers, 2000) in that the

retrieval equations are solved iteratively, to cope with non-linearity, but linear error estimation around the best estimate is

considered adequate. If error bars are so large that they exceed the range around the best estimate where the true function15

y = F (x) is sufficiently well approximated by the tangent y ⇡ F (x0)+K�x, then Monte Carlo or ensemble type sensitivity

studies are the only remaining options. A further benefit of Monte Carlo methods, and in particular Markov Chain Monte

Carlo methods, is that the posterior distributions, which can significantly deviate from the Gaussian ones, can be explored and

characterized in detail, as demonstrated by Tamminen and Kyrölä (2001), Tamminen (2004), and Brynjarsdottir et al. (2018).

Also neural network based concepts have been developed and investigated in this context (see, e.g. Pfreundschuh et al., 2018).20

Monte Carlo error estimates exceed the computational resources needed for the retrieval by far. Thus, they are often not apt for

routine applications but their range of application remains limited to representative test cases.

:::
The

::::::
issues

:::::::::
discussed

:::::
above

::::
still

:::::::
assume

::
a
::::::::
nonlinear

::::::::
forward

::::::
model,

::::
and

:::::
only

::
in

::::
the

:::::::
iterative

::::::::
inversion

:::::::
scheme

::::
the

::::::
forward

::::::
model

::
is
::::::::::::

approximated
:::

by
:::

its
:::::::
tangent.

:::
If,

::::::::
however,

:::
the

:::::::::::
atmosphere

::
is

:::::
fairly

::::::::::
transparent

::
in

::::
the

::::::::
frequency

::::::
range

::::::
chosen,

::::::
linear

:::::::
radiative

:::::::
transfer

:::
is

:::::::
justified,

::::
and

::::
the

:::::::::::
contributions

::
of
::::::::

different
:::::::::::

atmospheric
::::::::::
constituents

:::::::
become

::::::::
additive25

::::::::::::::::::::::
(Eskes and Boersma, 2003).

:

6 Sources of Errors

There are multiple categories of errors and uncertainties in atmospheric state variables retrieved from satellite measurements.

These are:

1. errors caused by less than perfect measurements, which include measurement noise and calibration errors,
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2. errors caused by inaccuracies of the radiative transfer model used in the data analysis, which include numerical ap-

proximations, missing physical processes, or uncertainties in the values used as constants by the model, particularly

spectroscopic parameters,

3. errors caused by decomposing the inverse problem, giving rise to parameter errors,5

4. errors caused by the constraint applied to the retrieval, which does not allow the retrieval to produce the solution that is

best compatible with the measurements.

Another factor that can cause discrepancies between two sets of measurements is that the measurements might not refer to

exactly the same air mass or the same time. This, along with natural variability, often explains the differences encountered (see,

e.g., Sofieva et al., 2008; Verhoelst et al., 2015; Laeng et al., 2019). In the following sections, these categories of errors and10

uncertainties are discussed in more detail.

6.1 Measurement Errors

In remote sensing a number of processing steps are necessary to obtain a calibrated signal in physical units from the raw data.

The latter are usually referred to as the Level-0 data. Their units depend on the instrument type and the related quantities can

be detector voltages, photon counts or similar. Level-1 processing transforms the Level-0 data into calibrated measurement15

data, which no longer depend on the particular measurement device used, such as radiance units or transmission. These are

conventionally referred to as Level-1 data. If multiple processing steps are required, distinctions can be made between Level-

1a, Level-1b, etc. data, but this distinction is of no relevance here. These Level-1 data come with auxiliary data describing

the geolocation and time of the measurement, the measurement geometry, and so forth. The Level-1 data are the input to the

retrieval of the atmospheric state. Estimates of the atmospheric state variables are referred to as the Level-2 data product.20

We use a convention that all uncertainties in the Level-1 data – including metadata – fall into the category “measurement

uncertainties”. The main sources of measurement uncertainties include but are not limited to measurement noise, including

discretization noise; zero calibration error (i.e., that the measurement signal is non-zero even though the true radiance signal

is zero, which can be understood as an additive calibration error); gain calibration (this is a multiplicative calibration error);

higher order errors (e.g., nonlinear detector response); uncertainties in auxiliary data, such as measurement geometry in terms25

of tangent altitude, the exact time of the measurement, etc.; and straylight. Further, all these errors can be subject to a drift, i.e.,

there can be some time-dependence.

:::::
Unless

:::::::::
explicitly

::::::::
mentioned

:::::::::
otherwise,

:::
we

:::::
apply

:::::
linear

::::::
theory

::
to

::::
error

::::::::::
estimation.

::::
This

:::::
leads

::
to

:::::::::
generalized

::::::::
Gaussian

:::::
error

::::::::::
propagation

::
of

:::
the

::::
type

Sr = JSqJ
T

::::::::::
(18)
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:::::
where

:::
Sq::

is
:::
the

:::::
error

:::::::::
covariance

::::::
matrix

:::
of

:::
the

:::::::::::
independent

::::::
(input)

:::::::
variable

::
q
::
of

::::
the

:::::::
function

:::::::
through

::::::
which

:::
the

:::::
error

:
is
::::::::::

propagated,
:::
Sr::

is
:::
the

:::::
error

:::::::::
covariance

::::::
matrix

:::
of

:::
the

:::::::::
dependent

:::::::
(output)

:::::::
variable

::
r,

::::
and

::
J

::
is

:::
the

::::::::
Jacobian

::::
with

::::::::
elements

:::::::
@ri/@qj .

:

6.1.1 Measurement Noise5

Measurement noise is usually conceived as a statistical uncertainty which is described by the error variance of each single

spectral data point. Usually, the uncertainties are considered as uncorrelated between the single components of the measurement

vector, which implies a diagonal noise covariance matrix. In some cases, however, the measurement noise covariance matrix

Sy has off-diagonal elements, e.g., in Fourier transform spectrometry if apodization (see, e.g., Norton and Beer 1976) and/or

zero-filling is applied.10

According to generalized Gaussian error analysis, the mapping of measurement noise ✏ onto the result x̂reg is

Sx,noise =GSy,noiseG
T , (19)

with G as defined in Eq. 7. This method is used by the MIPAS-IMK, TES, GOMOS, OMPS-LP (NASA, IUP Bremen, and

Saskatchewan), OSIRIS, SBUV or SCIAMACHY-Greifswald (Lednyts’kyy et al., 2015) and SCIAMACHY-IUP data proces-

sors. Equation (19) is applicable also to maximum likelihood retrievals just by setting the R term in the gain function G to15

zero. After excessive and cheerful cancellation this finally gives

Sx,noise,ML =
h
KTS�1

y,noiseK
i�1

. (20)

Error correlations between the elements of x are implicitly considered. It is important to note that such correlations will

typically be present even if the measurement errors are uncorrelated and if no regularization is applied. For some retrievals,

the so-called retrieval covariance matrix Sx is evaluated using Eq. (10). These error estimates, however, represent not only the20

mapping of the measurement noise onto the retrieved quantity but also the error introduced by the application of the constraint,

i.e., the ‘smoothing error’ in the terminology by Rodgers (2000). Related problems are discussed in Section 6.5. The retrieval

error evaluated by this method will represent a meaningful quantity only if the a priori covariance matrix Sa represents the

actual variability of the atmospheric state rather than any ad hoc assumptions.

For some instruments the error estimate is based on the analysis of the residuals between the measurements and the best25

fitting modeled spectrum. Gauss (1821) has proven that the “residual sum of squares divided by the number of degrees of

freedom is an unbiased estimator of �2” (translation into modern terminology by Aldrich 1998). This Gaussian � contains not

only measurement noise but also other error components. Application of Eq. (19) to a residual-based noise characterization

may be deemed more realistic than the application of this equation to pure measurement noise. However, not all uncertainties

will show up in the residual. For example, spectroscopic band intensity errors of the target species will be fully compensated by30

erroneous retrieved concentrations and will thus create no additional spectral residual. Thus the residual-based error analysis

will not provide the total uncertainty of the retrieved state variable, nor does it allow for decomposition of the error budget into

its components. It is suitable to estimate the retrieval noise error Sx,noise only if it can be assumed that the residual is dominated

by the measurement noise. Residual based uncertainty estimation is used for, e.g., SCIAMACHY (U. Bremen) or ACE-FTS.
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Non-optimal decomposition of the inverse problem, such as single profile retrieval, single species retrieval, etc. (Sec-

tion 5.4.2), however, causes the following problem: Sx,noise contains only the noise-induced uncertainties associated with

the current step of the inversion process. Propagated noise from preceding retrieval steps is formally dealt with as parameter

error (see Section 6.4).5

The mapping of measurement noise into the retrieval domain depends on the retrieval approach chosen. Naturally, noise has

a larger effect when regularization is kept small in order to get the best possible spatial resolution, because noise and resolution

are competing quantities. However, there are also other choices in the retrieval scheme which have bearing on the measurement

noise as evaluated above. In the ideal case, when the retrieval vector represents the entire atmospheric state with all its relevant

variables, Sx,noise covers all uncertainties associated with everything other than the target variable. For example, if one is10

interested in the error of ozone abundances, any uncertainty in the ozone mixing ratio caused by water vapour uncertainties

is implicitly included in Sx,noise, as suggested by Marks and Rodgers (1993), Tarantola and Valette (1982), Eriksson (2000),

or von Clarmann et al. (2001); for a different perspective on this issue, see Section 4.1.2 in Rodgers (2000). The situation

is different in a decomposed retrieval (Section 5.4). In the case of species-wise decomposition, the uncertainty entailed by

the uncertainty of an interfering species is evaluated as parameter error. The same holds for onion peeling error propagation15

(Section 5.4.5). Here retrieval noise, i.e., the mapping of the measurement noise on the retrieval, accounts only for the noise

of the analysis of a single tangent altitude, while the noise propagated downwards from higher altitudes is formally considered

to be a parameter error. As a consequence, retrieval noise estimates from two datasets are not necessarily intercomparable. A

sensible comparison is only possible between the total random errors, because the partitioning between noise and parameter

errors depends on the retrieval system chosen and in particular how the inverse problem is decomposed into sub-problems.20

In the context of error propagation in the the Levenberg-Marquardt algorithm (Section 5.5), it is important to distinguish two

different applications.

(a) If the Levenberg-Marquardt algorithm is used only to dampen each iteration step and the iteration is only truncated after

full convergence has been reached, then the �I term has no sizeable impact on the solution, even if � 6= 0 at the final iteration.

Thus, �I must not be included in the gain matrix G used for error estimation.25

(b) Sometimes the Levenberg-Marquardt iteration is intentionally stopped before full convergence is reached. The rationale

is to use the regularizing characteristics of the �I term which would be lost after too many iterations. The discussion of this

approach of regularization is beyond the scope of this paper, and it must suffice to mention that in this case the retrieval error

has to be evaluated as suggested by Ceccherini and Ridolfi (2010).

6.1.2 Calibration Uncertainties30

Besides measurement noise, calibration uncertainties also contribute to the measurement error (see, e.g., Kleinert et al., 2018).

Often the transformation from the raw data yraw (such as detector voltage) to the data in physical units y (such as spectral

radiance) uses a linear scheme such as

y = yraw/b� a, (21)

21



where a is a zero level offset correction and b is a gain calibration coefficient (e.g., Revercomb et al., 1988, their Eq. 2). In

the case of spectral measurements, both a and b are usually a function of frequency. Even after careful radiometric calibration,

there will always be a residual zero level and gain calibration uncertainty.

Among the satellite missions considered here, the following schemes to assess the zero level calibration error are in use, or5

at least possible:

– Propagation of the assumed zero level calibration error in the retrieved target quantity �x,zero from the zero level cali-

bration uncertainty in the measurement domain �y,zero, using linear mapping of the type

�x,zero =G�y,zero. (22)

– A zero level correction is jointly fitted along with the target variables. In this case, this error component does not need10

to be assessed separately but is automatically included in the noise-induced error, at least if no constraint is applied to

the zero offset correction. Since this additional fit variable tends to destabilize the retrieval, noise-induced errors will

become larger. This approach has been chosen for MIPAS-IMK, Odin/SMR, and for some of the MLS data products.

– The zero level uncertainty is added as a fully correlated component to the measurement error covariance matrix Sx,noise

and thus needs no extra treatment. It is then accounted for by the error evaluated using Eq. 19. We are not aware of any15

processor using this method.

– The zero level uncertainty is deemed negligibly small and thus not evaluated. This approach has been chosen by SAGE

I, SAGE II, SAGE III, SCIAMACHY, ACE-FTS, and OMPS LP.

Similar arguments hold for the gain calibration uncertainty, and in theory the same methods can be applied. In emission

spectroscopy, however, gain calibration uncertainty is much harder to distinguish from concentration changes of the target20

species or temperature changes than offset calibration. For MIPAS-IMK the linear mapping method is used. On the contrary,

for many limb-scatter retrievals a normalization with respect to a higher tangent height is done. As a result, the gain correction,

b, mostly cancels out (von Savigny et al., 2003, e.g.,).

Occasionally, application of Eq. (21) is inadequate, e.g., if the detector response function is nonlinear (see, e.g., Kleinert

et al., 2018). We are not aware of any data product where uncertainties of the coefficients of the nonlinear detector response25

function are routinely considered in the error budget of the Level-2 products. Arguably all calibration constants can be time-

dependent and thus cause a drift. This issue is discussed in Section 6.8.

Another issue is frequency calibration. A spectral shift translates into a radiometric error that is highly correlated across the

spectral line. The impact of such an error on the retrieval result is highly dependent on the retrieval setup and the selection of

microwindows. A spectral shift correction can be jointly fitted with the target variables as it can be done in the framework of30

the the zero level correction. Residual frequency calibration errors after correction are still an issue of the Level-2 error budget.

Since the radiometric error induced by a spectral calibration error is antisymmetric to the line center, its effect on the retrieval

results will be different when the microwindow contains only part of the line.
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For Odin/SMR and MIPAS a frequency offset is fitted as a scalar value characterizing a complete limb scan. Where necessary,

for SCIAMACHY and OMPS (IUP Bremen), in addition to the Level-1 correction from ESA or NASA, respectively, a spectral

shift/squeeze correction is determined during the pre-processing step by performing spectral fits for each line of sight and

spectral window individually. IUP-DOAS and BIRA retrievals also use a shift/squeeze correction. For TES, the frequency5

calibration is performed as part of the Level-1B processing and is not included in the error covariances supplied with the Level

2 product. OMPS LP depends on the well-characterized Fraunhofer structure in the solar spectrum to establish and maintain its

spectral registration (Jaross et al., 2014), and this work is done as a part of the Level-1 processing. For SAGE II, the filter used

for the water vapor retrieval changed after launch but appeared to stabilize and a static correction for the filter spectral location

and bandpass is applied in the retrieval (Thomason et al., 2004). For SAGE III/ISS, spectral calibration is performed for each10

observation by analyzing the apparent unobstructed solar spectrum.

6.1.3 Instrument characterization errors

Under instrument characterization errors we subsume instrument line shape errors (uncertainties in the spectral response func-

tion of the instrument), uncertainties in the field of view characterization, and so forth. Which of the error sources in this

category are relevant depends on the particular instrument under assessment.15

The preflight characterization of the spectral response function of the instrument typically relies on a monochromatic signal.

Once in space, narrow spectral lines can be used to determine possible drifts in the instrument spectral line shape.

Depending on the field-of-view width and a shape of the response function, the field-of-view characterization can be of

crucial importance for limb-scatter sensors, because the limb-scatter radiance varies by more than 5 orders of magnitude

between tangent altitudes of 0 km and 100 km. In this case, small errors in the field-of-view characterization may lead to20

large errors in the measured limb radiances at higher tangent altitudes. Also limb scanning emission and solar occultation

measurements show a sizeable sensitivity to field-of-view uncertainties.

Instrument characterization errors
::
A

::::::
number

:::
of

::::::::::::::::
instrument-specific

::::::
level-1

:::::
issues

:::
for

:::::
nadir

::::::
looking

:::::::
UV/vis

::::::::::
instruments

:::
are

::::::::
discussed

::
in

::::::::::::::::::
Boersma et al. (2018).

::::::
These

::::::
include

::::::
issues

::::
with

:::
the

:::::::
diffuser

::::
plate

::::
used

::
to
::::::

reflect
:::::
solar

::::::::
irradiance

::
in

:::
the

::::
case

:::
of

::
the

:::::::
GOME,

::::
and

::
to

:
a
:::::
lesser

:::::::
degree,

::::::::::::
SCIAMACHY;

::
in
:::
the

::::
case

::
of

:::::
OMI,

::
a
::::
CCD

:::::::
detector

::::
row

:::::::
anomaly

::
is

::::::::
reported.25

::::
Less

::::
than

::::::
perfect

:::::::::
correction

::
of

:::::
such

:::::::::::
instrumental

:::::
issues

:::::
leads

::
to

::::::::::
instrument

:::::::::::::
characterization

::::::
errors.

::::::
These are, if at all,

typically evaluated using linear mapping.

6.1.4 Auxiliary data errors

We understand auxiliary data errors to refer to quantities that come along with the measurement data but are not part of

the y vector. Typical examples are time registration errors, uncertainties in the measurement geometry such as tangent altitude30

pointing, and so forth. Due to the variable nature of the errors under this category, it is impossible to suggest a common scheme.

Some of these errors can be assessed by sensitivity studies or linear mapping, using the same formalism as discussed under

parameter errors. Alternatively, the uncertain auxiliary data can be jointly retrieved with the target variables. In the following,

the most prominent auxiliary data uncertainties are listed, and their treatment by the instrument groups is documented.
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In limb sounding, pointing errors propagate to the result for various reasons. Depending on the design of the retrieval

scheme, different mechanisms may play a role. For example, the amount of air seen along the line of sight and the atmospheric

state variables depend crucially on the tangent altitude. In the case of vertical gradients of atmospheric state variables, the

assignment of a value which is per se correct to an erroneous altitude causes an error. Occultation measurements using the sun5

as background radiation source can depend on which part of the solar disk is seen by the instrument. The residual pointing

error to be considered in the error estimation depends on the pointing correction schemes applied. For MIPAS-IMK limb

emission measurements, the first step of the retrieval chain is the simultaneous retrieval of temperature and tangent altitudes

(von Clarmann et al., 2003). Results are used as known parameters in subsequent retrieval steps where trace gas abundances

are retrieved. Residual errors of temperature and tangent altitudes are treated as parameter error in subsequent steps. For10

OMPS-LP measurements, the pointing correction is derived from radiance measurements using the absolute radiance residual

method (ARRM) and the Rayleigh scattering attitude sensor (RSAS) methods (Scott et al., 1996; Moy et al., 2017). Also

OSIRIS uses the RSAS method (Bourassa et al., 2018). For SCIAMACHY a correction to the pointing information is derived

by analyzing measurements in the occultation geometry (Bramstedt et al., 2017) and is implemented to Level 0 to 1 data

processing. The effect of residual pointing errors is assessed via Monte-Carlo-type studies for representative profiles (Rahpoe15

et al., 2013). Earlier SCIAMACHY analysis relied on a pointing retrieval using limb radiances below 300 nm. This so-called

“knee-method” uses the known altitude of the maximum of the limb radiances originating from Rayleigh-scattering (Kaiser

et al., 2004; von Savigny et al., 2005). For ODIN/SMR a scalar pointing correction is fitted for the entire limb scan.

6.2 Model errors

The radiative transfer model used in the retrieval solves the radiative transfer equation and makes the signal comparable to what20

the instrument would see by integration over the finite field of view and by convolution with the spectral instrument response

function. A lot can go wrong here as our knowledge on radiative transfer can be erroneous or inaccurate. Some known physics,

such as non-local thermodynamic equilibrium, line coupling, or more sophisticated than usual line-shape functions, may be

disregarded for reasons of computational efficiency. Time constraints can also lead to numerical integration being performed

with limited precision or weak spectral transitions being ignored. The goal in formulating the radiative transfer model is to25

keep model errors from known sources much smaller than the measurement error while maintaining computational efficiency.

Naturally, any unknown sources of model error are hardest to quantify. In the following, the most relevant types of known

model errors are discussed.

6.2.1 Incomplete models

Some relevant physical processes included in f may be left unaccounted for by the radiative transfer model F in use (Section 4).30

Typical examples are non-local thermodynamic equilibrium (Non-LTE) emission, line coupling, or line shape issues. Non-LTE

emissions occur when air density is so low that the excited molecule after absorption of a photon or in its nascent state will

re-emit radiation before quenching redistributes the energy towards a Boltzmann distribution (e.g., López-Puertas and Taylor,

2001). Line mixing is a high pressure phenomenon where collisions transfer angular momentum, entailing energy transfer
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between energetically adjacent transitions (e.g., Armstrong, 1982; Bulanin et al., 1984; Strow and Gentry, 1986; Hartmann and

Boulet, 1991; Hartmann et al., 2009; Thompson et al., 2012; Alvarado et al., 2013). The usual line-shape models, such as the

Voigt lineshape (Voigt, 1912), may not adequately represent the true line shape (e.g., Galatry, 1961; Berman, 1972; Pickett,

1980; Thompson et al., 2012; Long and Hodges, 2012; Mendonca et al., 2019). Issues related to Zeeman coefficients, most5

relevant in microwave spectroscopy of mesospheric oxygen, are discussed in Larsson et al. (2019). The impacts of Zeeman

splitting on microwave and submillimeter lines are often (but not universally) ignored, although proper accounting is essential

for adequate representation of mesospheric signals.

Critical issues in ultraviolet or visible remote sensing are scattering and polarization. Different levels of sophistication of

models refer to the treatment of sphericity of the atmosphere and orders of scattering accounted for.10

If a complete model is available but not used for the operational retrieval for reasons of computational efficiency, the effect of

the missing processes can be assessed via sensitivity analyses based on the complete model and considered in the error budget.

If the error is of a systematic nature, the related bias can even be corrected for, and only the residual scatter begs consideration

in the error analysis.

In stellar occultation, the forward model for retrievals of traces gases from UV-VIS measurements does not include the15

deterministic description of stellar spectra perturbations due to scintillations. This omission is not only due to complicated

description of wave propagation in random media, but also by a stochastic nature of small-scale air density irregularities

generated by small-vertical-scale gravity waves and turbulence. These perturbations can be, however, characterized and added

as an additional, correlated in wavelength component to the measurement noise, as shown in Sofieva et al. (2009).

If no complete model is available, then it can only be hoped that the related error is sufficiently small compared to the other20

error sources that it has no bearing on the total error budget.

6.3
:::::::::
Parametric

:::::::
models

:::
Not

:::
all

:::::
effects

:::
of

:::::::
radiative

:::::::
transfer

:::
are

::::::
always

::::::::
modelled

:::::
along

::::
their

::::::::
physical

::::::
causes.

:::::
Often

::
it

::
is

::::
more

::::::::
efficient

::
to

::::::::::
parametrize

::::
some

::::::
effects

::::
and

::
to

::::
add

::::::
related

::::::::::
parameters

::
to

:::
the

::::
list

::
of

:::
fit

::::::::
variables,

::::
i.e.,

::
to

:::::::
include

:::::
them

::
in

:::
the

::
x
::::::

vector.
:::

A
:::::::::
prominent

:::::::
example

::
is

:::
the

::::::::::
background

::::::
signal

::
of

::::::::::::
spectroscopic

::::::::::::
measurements

::::::
where

:::
the

::::::
useful

::::::::::
information

::
is
::::::::

included
::::::
chiefly

::
in
::::

the25

:::::
highly

:::::::::
structured

::::::::::
components

:::
of

:::
the

::::::::
measured

::::::
signal,

:::::
while

:::
the

:::::::
smooth

::::::::::
components

:::
of

:::
the

:::::
signal

:::
do

:::
not

:::::
carry

:::
the

:::::::
desired

::::::::::
information.

::::
The

:::::::
smooth

::::::::::
background

:::::
signal

:::
is

:::::
often

::::
hard

::
to

::::::
model

:::
on

::
a

:::::::
physical

:::::
basis

:::::::
because

::
it
:::::::
depends

:::
on

:::
too

::::::
many

:::::::::
unknowns,

:::
but

::
is

:::::::
essential

:::
for

::
a
::::
good

:::::::
spectral

:::
fit.

:::
To

::::
solve

::::
this

::::::::
problem,

::
in

:::::::
different

:::::
parts

::
of

:::
the

::::::
remote

:::::::
sensing

::::::::::
community

:::::
almost

:::::::::
equivalent

::::::::
solutions

::::
have

::::
been

:::::::::
identified.

::
In

:::::::
infrared

:::::::
emission

:::::::::::
spectroscopy,

::
it
::
is

:::::::
common

:::::::
practice

::
to

::
fit

:::
an

:::::
either

:::
flat

::
or

::::
tilted

::::::::::
background

:::::::::
continuum

::::::
optical

::::::::
thickness

:::::
which

::::::::
accounts

::
for

:::::::
aerosol

:::
and

::::::
particle

::::::::
emission

:::
and

:::
the

:::::::::::::::::::
far-wing-contributions30

::
of

::::::
remote

:::::::
spectral

::::
lines

:::::
which

:::
are

::::
not

:::::::::
considered

::::::::
explicitly

::
in

:::
the

::::::::::
line-by-line

::::::::::
calculation.

::::
This

::::::::
approach

:::
has

::::
been

:::::::::
discussed

:::
and

:::::::
justified

:::
by

::::::::::::::::::::::::::
von Clarmann et al. (2003) but

:::
has

:::::
long

::::
been

:::::
used

::
in

::::
the

::::::
context

:::
of

::::::::::
occultation

::::::::::::
measurements

::::
with

::::
the

::::::::::
Atmospheric

:::::
Trace

::::::::
Molecule

::::::::::
Experiment

:::::::::
(ATMOS;

::
C.

::
P.

::::::::
Rinsland,

:::::::
personal

::::::::::::::
communication,

:::::
1987).

::::
The

:::::::::
equivalent

::
in

::::::
DOAS

:::::::
retrievals

::
is
::::

the
:::::::::
polynomial

::::::
which

::
is

:::::
added

:::
to

:::
the

::::::
optical

::::::::
thickness

::::::::
governed

:::
by

:::
the

:::::::::::
transmission

::
of

:::
the

:::::
trace

::::::
species

:::::
(see,

:::
e.g.,

::::::::::::::::::::::
Eskes and Boersma, 2003,

:::::
their

:::
Eq.

::::
(6)).

::
If
::::

the
:::::::::::::
parametrization

::::::
chosen

::::::
offers

:::
too

::::
few

::::::
degrees

:::
of

::::::::
freedom,

::
it

:::
will

::::
not
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:::::::
describe

:::
the

::::::
smooth

::::
part

::
of

:::
the

:::::
signal

:::::::
properly

::::
and

:::
thus

:::::
cause

:::
an

::::
error

::
in

:::
the

::::::::
retrieved

::::
value

:::
of

::
the

:::::
target

::::::::
quantity.

::::::::::
Conversely,

:
a
:::::::::
polynomial

:::::
with

:::
too

:::::
many

::::::
degrees

::
of

:::::::
freedom

::::
may

:::::::
remove

:
a
::::
part

::
of

:::
the

:::::::::
differential

::::::
signal

::
of

:::
the

:::::
target

:::
gas.

:

6.3.1 Numerical issues5

The numerical solution of the radiative transfer equation requires a lot of integration, e.g., to integrate the spectral radiances

over the field of view based on a finite number of so-called pencil beams; the spectral grid on which the radiative transfer is

calculated has a finite width; radiative transfer through the atmosphere is in most models based on a finite number of layers

or levels, just to name a few. Any improvement of computational accuracy goes along with increased computational effort.

For most satellite data processors, the setting is chosen in a way that these issues produce a retrieval error which is so small10

compared to the leading error sources that it can be ignored in the error budget.

6.3.2 Model constants

The main constants of relevance here include spectroscopic data, quenching rates, refractive indices, etc. The values of other

constants (radius of Earth, gas constant, molecular weights, etc.) are known at an accuracy which renders analysis of related

retrieval errors unnecessary. Estimation of the impact of spectroscopic errors poses some serious problems.15

A major problem in the propagation of spectroscopic data errors is that, in some cases, no uncertainties of cross-sections are

available. Also, when they are available, information on error correlations is not provided. If a retrieval uses, say, a large number

of ozone lines, it would be of utmost importance to know whether errors in the intensity of these lines are correlated (e.g.,

because the uncertainties are attributed to uncertainties in the gas amount in the cell used in the lab where the spectroscopic

parameters were measured) or uncorrelated (because errors are dominated by noise in the lab measurement or because the20

spectroscopic information stems from different lab measurements). In the uncorrelated case the errors would randomize while

in the correlated case they would fully survive the error propagation for a retrieval using multiple spectral lines.

To exemplify another issue, consider a gas-wise sequential retrieval where H2O is retrieved first, and this H2O profile is then

used as a known parameter in a retrieval of ozone in another spectral region. It is possible for the spectroscopic errors of H2O to

cancel out in the ozone retrieval if these errors are consistent over the entire spectrum. For example, if H2O line intensities are25

too high, too little H2O will be retrieved. Subsequently, during the ozone retrieval, the combination of the too little H2O with

the too large line intensities produce the correct impact of H2O on the modeled spectra. This results in the H2O line intensity

errors not propagating into the retrieved ozone concentrations.

The usual way to estimate the propagation of spectroscopic data errors is to conduct sensitivity studies with perturbed

spectroscopic data. Since, as stated above, the correlations between spectroscopic data errors are unknown and not reported in30

commonly used spectroscopic databases, these sensitivity studies render only a crude estimate of the related retrieval error.

In the case of retrievals of trace gas abundances, one might argue that uncertainties of the line intensity can be mapped

directly onto the target concentration retrieval. Because both the line intensity and abundance appear reciprocally in the expo-

nent of Beer’s law, the non-linearity of the radiative transfer equation has no bearing on the line intensity error propagation. It

has, however, been shown that it is not sufficient to restrict related error analysis to the line intensities. For example, pressure
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broadening has a sizeable effect in the infrared and microwave regions (e.g. Urban et al., 2005; Glatthor et al., 2018). In this

case no direct mapping is possible and full sensitivity studies are needed. Connor et al. (2016) had found, in their linear error

analysis for OCO-2 retrievals, that a constant perturbation even to CO2 line intensities did not in fact map to a constant impact5

on the XCO2 retrievals within the NASA OCO-2 algorithm. Within that algorithm, the impact of line intensity perturbation on

the retrieved XCO2 varies spatially and appears to depend on the surface brightness. Inclusion of surface albedo terms in the

state vector for the OCO-2 algorithm gives rise to this information cross-talk.

The propagation of uncertainties of model constants follows the same formalisms as proposed for uncertainties in atmo-

spheric parameters (Section 6.4).10

In the NASA ACOS/OCO-2 and OCO-3 CO2 retrieval algorithm spectral residuals caused by imperfect spectroscopy, solar

model and instrument characterization are dealt with by fitting scaling factors to fixed spectral residual patterns. These patterns

are the Empirical Orthogonal Functions (EOFs) that result from a singular value decomposition of spectral residuals from

training retrievals (O’Dell et al., 2018). A similar approach was adopted independently by Lange and Landgraf (2018) for

retrievals of methane from GOSAT thermal infrared spectra.15

6.4 Parameter errors

We define parameter errors as those errors originating from the decomposition of the full retrieval problem such that a part

of the atmospheric state is assumed to be already known and thus not included in the retrieval vector x (see, Section 5.4).

::::::::
Parameter

:::::
errors

:::
can

:::
be

::::::
caused

:::
by,

:::
e.g.,

:::::::::::
temperature

::::::::::
uncertainties

::
in

::
a

::::
trace

:::
gas

::::::::
retrieval,

:::
not

::::::::
accurately

::::::
known

:::::::::::
abundancies

::
of

::::::::
interfering

:::::::
species

::
or

::::::
aerosol

::::::::::
parameters,

::
or

::::::
surface

::::::
albedo

::
in

:::
the

::::
case

::
of

:::::
nadir

:::::::
sounding

:::
or

::::
limb

::::::::
scattering

::::::::::::
measurements,

::::
just20

::
to

::::
name

::
a
::::
few. The assumed values can derive from either a preceding retrieval step or from climatologies or any other source

of prior information. The ideal sequence of operations has the first atmospheric state variables retrieved being those whose

signal is only weakly dependent on or interfered by other state variables. Once known, these values can be used for subsequent

retrieval steps as “fixed” parameters. Error propagation has to be considered.

The impact �x of errors in parameters can be estimated via sensitivity studies, where a measurement is simulated with25

parameter b that is perturbed by a certain amount �b, e.g., one standard deviation of its uncertainty.

�x=G(F (x̂;b+�b)�F (x̂;b)) (23)

This scheme is used, e.g., for MIPAS IMK, SCIAMACHY-Greifswald, SCIAMACHY IUP Bremen (see, Rahpoe et al. 2013

or E. Malinina et al. 2018 and SMILES-NICT (see, e.g., Sato et al. 2012 or Sato et al. 2014).

If the parameter b is a vector, whose elements’ error correlations are known and relevant, generalized Gaussian error propa-30

gation can be applied

Sx,b =GKbSbK
T
bG

T , (24)

where Kb is the Jacobian matrix representing the sensitivities @ym

@bj
of the measurements with respect to a changing parameter

bj .
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Depending on the source of the information on the parameter vector – climatology, preceding retrieval step, independent

measurements, or whatsoever, the parameter errors can be correlated or uncorrelated in space and time.

Occasionally errors are of a mixed nature, e.g., if a quantity is jointly retrieved along with the target quantity but strongly5

constrained. In this case, the parameter actually is part of the retrieval vector x̂ but its value still depends largely on the a priori

information. Uncertainties that derive for this situation are discussed in Section 6.5.

6.4.1 Error propagation in onion peeling

In onion peeling (Section 5.4.5) the ray path with the highest tangent altitude is analyzed first. In the second step, the results

of the first step are used as known parameters. Thus the retrieval error of the first step has to be considered as a source of10

parameter error in the second step, and so forth. Explicit error propagation through an onion peeling retrieval has been studied,

e.g., by Noël et al. (2016).

Alternatively, the onion peeling retrieval error can be estimated using a Monte Carlo method. For the solution profile x a

limb sequence of measurements is calculated. Artificial noise with the same characteristics as the real measurement noise is

superimposed upon the measurements. A sample of limb sequences is generated, based on the same forward radiative transfer15

calculations but different in the actual realization of the random noise. For each of these simulated limb sequences a retrieval

is performed and, from the scatter of these results, the retrieval error covariance matrix Sx,noise is calculated.

6.5 A priori information

In order to avoid wording that is too abstract, we assume that the retrieval vector represents vertical profiles of atmospheric

state variables. However, with some adjustments the mathematical concept is applicable to 2-D or 3-D fields of atmospheric20

state variables as well. The framework is also applicable to column retrievals. In this case, the retrieval vector has only one

element.

By performing regularized retrievals invoking Eq. (4) or variants of it, the retrieved atmospheric state will deviate from the

one which is most consistent with the pure measurement information. As a consequence, this can introduce additional bias and

distortion, and the resolution can be degraded with respect to the true state of the atmosphere beyond the degradation caused25

by the finite retrieval grid. The resulting profile is a mixture of the measurement information and the a priori information used.

For the interpretation of constrained retrievals it is of utmost importance to have tools available to diagnose the content of a

priori information in the retrievals. As in Rodgers (1976, 1990, 2000), one can calculate the derivative of the retrieved state

with respect to the true state, and call the resulting matrix the “averaging kernel matrix”

A =
@x̂i

@xj
=GK= (25)30

=
�
KTSy,total

�1K+R
��1

KTSy,total
�1K.

The rows of the averaging kernel represent the weighting functions, which determine to what degree the result at altitude

level i depends on the true atmospheric state at altitude level j. Its columns represent the response of the retrieval to a delta

perturbation at a single altitude level. If a joint retrieval of profiles of multiple different quantities is made, the above refers to the
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diagonal blocks of the averaging kernel matrix which refer to the quantity under consideration. The presence of non-negligible

off-diagonal blocks indicates a significant interference between the species introduced by the regularization scheme.

The averaging kernel of a fully converged Levenberg-Marquardt retrieval equals that of the respective retrieval without the5

�I term because after convergence this term has no impact on the solution. If the iteration is ended prematurely in order to use

the Levenberg-Marquardt method to regularize ill-posed inverse problems, then the averaging kernel has to be calculated as

suggested by Ceccherini and Ridolfi (2010).

When Sy,total is approximated by Sy,noise in the retrieval, the same approximation must be used for the evaluation of the

averaging kernel. That is to say, in this case the averaging kernel should be calculated involving Sy,noise instead of Sy,total.10

Conversely, the derivative of the retrieved state with respect to the a priori information is I�A. With this, the retrieval can

be rewritten as

x̂=Ax+(I�A)xa. (26)

For the retrieval of column amounts, the sensitivity of the column to the true state values at different altitudes can be represented

by the column averaging kernel Acol, which is, as opposed to the averaging kernel described above, not a square matrix but a15

row vector (Wunch et al., 2010, see, e.g.,)

Acol = hTA, (27)

where hT is the column operator whose multiplication with the vertical profile yields the vertical column density and where

A is the regular profile averaging kernel as described above.
:
,
:::
but

::::::::
referring

::
to

:::::
partial

::::::::
columns

::::::
instead

::
of

:::::::::::::
concentrations.

::::
The

::::::::
formalism

::
is
:::
not

:::::
quite

:::
the

:::::
same

::
as

:::
that

:::::::::
described

::
by

::::::::::::::::::::::::::::::::::::::
Eskes and Boersma (2003, their Section 2) for

::::::
DOAS

::::::
column

:::::::::
retrievals.20

::::
Both

::::::::::
conceptions

:::
are

::::::
similar

::
in

::::
that

:::
the

:::::::
number

::
of

:::::::
elements

:::
of

:::
the

:::::
vector

:::::::::::
representing

:::
the

:::::::
retrieved

::::
state

::::
can

::
be

:::::::
smaller

::::
than

:::
that

::
of

:::
the

::
a
:::::
priori

::::::::::
information.

::::
The

:::::::::::
interpretation

:::
of

::::
both

::::::::::
conceptions

::
of

:::
the

:::::::
column

::::::::
averaging

::::::
kernel,

::::::::
however,

::
is

::::::::
different.

:::
The

::::::
former

:::::::::::::::::::::::::
(Wunch et al., 2010) describes

:::
the

::::::::::
dependence

::
of

:::
the

::::::::
retrieved

::::::
column

:::
on

:::
the

::::
true

::::::
profile,

:::::
while

::::
any

:::::::
deviation

:::
of

::
its

:::
row

::::
sum

:::::
from

::::
unity

:::::
hints

:
at
:::::
some

::::::::
influence

::
of

:::
the

:
a
:::::
priori

::::::
profile

:::
xa :::::

which
::::
may

::
be

::::
used

::
to

:::::::::
regularize

:::
the

:::::::
ill-posed

::::::::
retrieval.

:::
The

:::::
latter

::::::::::::::::::::::::::::::
(Eskes and Boersma, 2003) accounts

::::
only

:::
for

::::
the

:::::::
different

:::::::
weights

::
of
::::

the
:::::::
involved

::::::
layers

:::
due

:::
to

::::
their

:::::::::
respective25

::::::
airmass

::::::
factors7.

::
In

:::
the

::::::::::
comparison

::
of

::::::
DOAS

::::::
vertical

::::::::
columns

::::
with

:::::::
columns

:::::::
obtained

:::::
from

:::::::::
integration

::::
over

::::::::
vertically

:::::::
resolved

::::::
profiles,

::::::::::::
multiplication

:::
of

:::
the

::::::::::
comparison

::::::
profile

::::
with

:::
this

:::::::::
averaging

:::::
kernel

:::::::
instead

::
of

::::::::::
unweighted

::::::::::
summation

::
of

:::
the

::::::
partial

::::::
column

::::::::
amounts

::
of

:::
the

::::::
layers

:::
will

:::::::
remove

::::::::::::::::::
air-mass-factor-related

::::::::::
components

:::::
from

:::
the

:::::::::
difference.

Usually regularization will entail that the retrieved state x̂ is a smoothed and possibly biased representation of the true state

x. Rodgers (2000, p. 48) offers two possible interpretations of the retrieved state x̂. It can either be conceived as a smoothed30

estimate of the true state, or it can be construed as an estimate of the smoothed true state. The choice of the interpretation has

major impacts on the error budget, which are discussed below. All this is not to say that the effect of the prior information
7
:::
Here

:
a
:::::::::::
notation-related

::::
caveat

:
is
::
in

::::
order.

::::::::::::::::::::
Eskes and Boersma (2003) use

:::
the

:::::
symbol

::
xa:::

and
::
the

::::
term

:
‘a
::::

priori
::::::

profile’
:
to
:::::
denote

::
the

:::::::::
linearization

::::
point

:
in
:
a
:::::::

linearized
::::::
solution

::
of

::
the

::::::
radiative

::::::
transfer

:::::
model,

::::
while

:::::::::::::
Rodgers (2000) uses

:::
this

:::::
symbol

::
to

:::::
denote

:
a
::::::
Bayesian

::::
prior.

::
In

:::
this

::::
paper,

:::
we

:::::
roughly

:::::
follow

::::::
Rodgers’

::::::::
convention.
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is restricted to smoothing. The resulting profile shape can be distorted in a sense that the extrema of a profile can be shifted

upward or downward (see, e.g., the HOCl profiles in Jackman et al., 2008, their Fig. 12) or bias the result (see, e.g., Bhartia

et al., 2013). The averaging kernel matrix contains information on the dependence of the result on the true state and the a priori

assumption, the vertical resolution, and the information displacement.5

6.5.1 The retrieved state as a smoothed estimate of the truth

As stated above, a retrieval can be understood as a smoothed estimate of the truth or an estimate of the smoothed truth. In

the first case, any deviation between the estimate and the truth which is caused by the regularization of the retrieval has to

be included in the error budget. Rodgers (2000) calls this error component ‘smoothing error’ and has suggested the following

formalism to estimate it (Rodgers, 1990):10

Sx,smoothing = (I�A)Sa(I�A)T . (28)

While in principle this formulation complies with generalized Gaussian error propagation, this concept has been criticized

(von Clarmann, 2014). The main criticism refers to the fact that this estimate does not refer to the difference between the

retrieved and the true state but only to the difference between the estimate and the true state as represented on the grid on which

Sa has been evaluated. This leads to the undesirable effect that a smoothing error evaluated on a coarse grid will be smaller15

than a smoothing error evaluated on a fine grid. Further, a smoothing error evaluated on a coarse grid and then propagated onto

a fine grid, will be smaller than the smoothing error evaluated directly on the fine grid, although the interpolation between the

grids is a linear operation, which is another undesirable outcome.

Another criticism that may be applied to the concept of the smoothing error is that it forces one to meander around between

a subjective (personalist) and an objective concept of probability. In the retrieval (Eq. 6), Sa represents parameters of a person-20

alist’s probability distribution. That is to say, the underlying concept of probability is a subjective one, describing the agent’s

(lack of) knowledge or information about a value which is determined in the true world. Conversely, Sa in Eq. (28) is required

to represent parameters of an objective probability distribution, equivalent to a frequency distribution.

Since interpolation of profiles to other grids is a standard operation, it is not advisable to include the smoothing error in the

error budget without a caveat. Instead, the averaging kernels should be communicated to the user, allowing them to evaluate25

the smoothing error on the final working grid.

In this context it should be mentioned that error estimates according to Eq. (10) include a smoothing error component and

should not be used to calculate the error budget because the data user might not be aware of related problems and might, when

interpolating profiles on a finer grid, propagate these error estimates to the finer grid.

Further, Rodgers (2000) points out that Eq. (28) will only yield a meaningful smoothing error if Sa is not just a constraint30

matrix chosen ad hoc to regularize the inversion but a real statistical description of the variability of the actual states around

the mean state used as xa. This criterion should even be more rigorous: The maxim of the most specific reference class has to

be applied (Hempel, 1965). For example, to calculate the smoothing error of a midlatitude ozone profile retrieval we cannot

use a global ozone climatology. To calculate the smoothing error of a polar winter ozone retrieval, we must not use an ozone
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climatology built from a whole year of polar ozone data. The most specific reference class will be a homogeneous reference

class whose internal variability is, as far as known, purely random.

Not all applications of a retrieval scheme of the type Eq. (6) use a climatological mean profile as a priori. For example, for

the upcoming TEMPO mission, actual ozone measurements have been tested to be used as a priori (see, e.g., Johnson et al.,5

2018). In such applications, the Sa matrix contains the estimated uncertainties of the individual ozone measurements used

instead of the climatological variability. The standard approach of maximum a posteriori retrievals with climatological prior is

based on the assumption that a climatology based on data collected in the past will also be true for the actual case. Hume (1748)

was the first to show that this assumption cannot conclusively be inferred from anything. The use of actual measurement data

from independent sources as prior information dispenses with this assumption and reduces the maximum a posteriori retrieval10

to a sort of optimal average of two independent measurements. The smoothing error evaluated for this kind of retrieval scheme

represents the propagated uncertainties of the measurement(s) used as prior information.

A particular problem is the evaluation of the smoothing error difference (occasionally, perhaps more adequately, called

‘smoothing difference error’) of a pair of measurements. For this purpose, Rodgers and Connor (2003) suggest that the retrieved

profiles should first be transformed to the same a priori profile xc, using the general transformation scheme Eq. (10.48) of15

Rodgers (2000)

x̂new =
⇣
Ŝ�1

x �S�1
a,old +S�1

a,new

⌘�1
(29)

h
Ŝ�1

x x̂old �S�1
a,oldxa,old +S�1

a,newxa,new

i
,

where profile and covariance matrix xa,old and Sa,old represent the initially used prior information to be removed, and where

xa,new and Sa,new represent the new prior information be included instead. In the given application, the old prior information20

is that used for the retrieval, and the new one, xa,new, is the prior information xc, valid for the comparison profile. This

transformation is possible within linear theory and adequate if and only if one result is in the linear domain of the other. If

the profiles are provided on different grids, a transformation of the profiles, covariance matrices, and averaging kernels to a

common grid must precede the above transformation (see, e.g., Stiller et al. 2012 or Eckert et al. 2014 for sample applications,

or Keppens et al. 2019 for a summary of methods.) Then the smoothing error difference is evaluated, where A1 and A2 are the25

averaging kernels of the retrieved profiles x1 and x2, all after application of the transformations outlined before.

Sx1�x2;smoothing = (A1 �A2)Sc(A1 �A2)
T (30)

Here Sc is the a priori covariance matrix describing the variability of the atmospheric state around a priori profile xc valid for

the comparison profile. Rodgers and Connor (2003), however, do not specify what type of xc profile is adequate. The common

a priori profile xc can by no means be freely chosen. Here the maxim of the most specific reference class Hempel (1965)30

becomes important again. When large samples of collocated measurements are compared, the appropriate reference class for

instrument 1 is not necessarily the appropriate reference class for instrument 2, and vice versa, because both instruments might
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typically sample different parts of the atmosphere. The adequate sample with which to build the statistics needed to evaluate

the smoothing error of the difference is that which is representative for the actual collocations of both measurements.

The criticism of the smoothing error as formulated above (After Eq. 28) does not apply to the smoothing error difference.

6.5.2 The retrieved state as an estimate of the smoothed truth5

With the interpretation of the retrieved state as an estimate of the smoothed truth, we accept that measurements can only

provide a finite-resolution representation of the truth and do not consider this as an error component of the measurement (not

to mention the philosophical problems associated with what an infinitely resolved atmospheric state shall be; see von Clarmann

2014 for a critical discussion). The only important thing to consider is to avoid comparison of apples and oranges: Differences

of atmospheric state variables are only meaningful if the data contain the same amount of the same a priori information and10

have the same vertical resolution. This is not typically given when two measurements are compared, and a part of the observed

differences is thus due to related artefacts.

If the contrast in resolution is large enough to consider the better resolved measurement as both practically ideal compared

to the other one and practically free of a priori information, then it is common practice to apply the averaging kernel of the

coarser resolved measurement to the better resolved measurement (see Section 6.5.3 for concepts of altitude resolution).15

x̂1,smoothed =A2x̂1,original +(I�A2)xa,2 (31)

Here index 1 refers to the better resolved measurement and index 2 to the coarser resolved one. The other indices are self-

explanatory. To our best knowledge, this approach was first suggested by Connor et al. (1994). This approach is also commonly

applied when measurements are compared to model data. In this case the averaging kernel of the measurement is applied to

the modeled atmospheric state. In data assimilation the averaging kernel has to be included in the observation operator. Within20

linear theory and the assumption in force that the better resolved data set contains no sizeable amount of a priori information,

the Connor et al. approach indeed solves the problem that the original datasets are not directly comparable due to different

vertical resolutions. The problem of interpolability of averaging kernels is discussed in Arosio et al. (2018).

Problems occur when linear theory is no longer adequate to describe the problem. For example, B. Funke has , during the

preparation of Funke et al. (2017), encountered the following difficulty: When the MIPAS averaging kernels were applied to25

modeled Nitric Oxide (NO) distributions, the discrepancies between the modeled and the measured NO distributions were

found to be larger than in the comparison without application of MIPAS averaging kernels. The following reason has been

identified. The measured and the modeled NO distributions were so different that the application of the MIPAS averaging

kernel to the modeled NO distributions was no longer justified. That is to say, the Connor et al. method is only valid if the data

sets to be compared are similar enough to justify the assumption of linear theory. What would have been needed were MIPAS30

averaging kernels calculated for the modeled NO distribution. The latter approach, i.e., to calculate dedicated averaging kernels

for model atmospheres, has been chosen, e.g., by Schneider et al. (2017) and references therein.

In this context another caveat is in order: Averaging kernels usually depend on the units in which the atmospheric state is

expressed. For example, averaging kernels evaluated for volume mixing ratios must not be applied to number density profiles.
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Some authors prefer to use so-called ‘fractional averaging kernels’ instead, which refer to the relative instead of the absolute

change of the state variable and are thus unit-independent (Keppens et al., 2015). However, again the caveat applies that these

can be calculated only within linear theory, with the assumption in force that the retrieved profile is sufficiently close to the

true profile.5

6.5.3 Altitude resolution

Often the full information contained in the averaging kernel is summarized in simpler terms. The most important simple

diagnostics that partially describe the content of the averaging kernel are vertical resolution, information displacement, and

measurement response. We first discuss the concept of vertical resolution.

Vertical resolution of the retrieval, not to be confused with the vertical resolution of the instrument itself, describes the10

ability to distinguish separate features in a vertical profile. It is limited by both the vertical retrieval grid on which the results

are presented and by correlations of the data at adjacent grid points caused by the regularization term of the retrieval. Contrary

to common belief, a wide field of view or an observation geometry other than limb or with coarse vertical sampling do not per

se degrade the vertical resolution of the measurements. The altitude resolution of the retrieval is determined only by the vertical

grid and the regularization. It goes without saying, however, that a wide field of view or any sub-optimal observation geometry15

often forces the retrieval scientist to use a stronger regularization to get useful results, which, in turn, will degrade the altitude

resolution. Thus, the field of view geometry or sampling have an indirect influence on the vertical resolution of the retrieval,

which is fully accounted for by the averaging kernel matrix and does not need extra treatment. Vertical oversampling in limb

sounding, i.e. the use of a tangent altitude spacing finer than the width of the instantaneous field of view of the instrument

still allows a useful vertical resolution finer than the field of view (Roscoe and Hill, 2002). A measurement mode of this type20

has been employed, e.g., for MIPAS for the measurements recorded after 2004 (Fischer et al., 2008), and is standard for sub-

millimeter and microwave measurements such as MLS (Barath et al., 1993; Waters et al., 2006) or ODIN/SMR(Urban et al.,

2005).

Rodgers (2000) reports four measures of the vertical resolution, all based on the averaging kernel matrix. Two of these

measures are commonly used. The first is the full width at half maximum of the respective row of the averaging kernel matrix,25

or, in the case of a retrieval of multiple quantities, the part of the row associated with diagonal block associated with the

quantity of interest. The second is the reciprocal data density, which is the local grid width divided by the respective diagonal

value of the averaging kernel matrix (Purser and Huang, 1993). In less than well-behaved retrievals or at the extreme ends of

the profiles, where the maximum of the averaging kernel does not coincide with its nominal altitude, the latter provides better

intelligible results.30

The Backus and Gilbert (1970) spread (shown here in a generalized variant introduced by Rodgers 2000)

s(z) = 12

Z
(z� z0)2A2(z,z0)dz0/(

Z
A(z,z0)dz0)2, (32)

where z is altitude and A the respective element of the averaging kernel matrix A, was found by Keppens et al. (2015) to be

most informative under certain circumstances. Obviously in the case of the retrieval of different state variables the summation
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here and all similar applications should only be performed inside the diagonal sub-blocks, corresponding to each retrieval

quantity. Among other reasons discussed towards the end of the section, going outside the sub-blocks could mean that even

different units would be mixed.

A drawback of the Backus-Gilbert spread is that it depends largely on the grid on which the retrieval is performed. The5

averaging kernel of a retrieval performed on a finer vertical grid will have more pronounced side-lobes which are simply not

resolved by an averaging kernel evaluated on a coarser grid. The Backus-Gilbert spread is very sensitive to such side-lobes

and will thus inadequately ‘punish’ the fine-grid retrieval by giving large weight to these side-lobes and thus assigning a large

‘spread’ to them. It thus does not seem suitable for a largely grid-independent measure of the vertical resolution.

Obviously, the altitude resolution can be altitude dependent. Usually, the averaging kernel matrix is evaluated on the grid10

on which the retrieval is performed, because the Jacobians needed are often a by-product of the retrieval. The disadvantage

of this approach, however, is that the averaging kernel does not represent any subgrid smoothing effects. Averaging kernels

evaluated on a finer grid, which, by the way, are no longer square, can in principle be provided if the related Jacobians are

made available, but this is hardly ever done. The ideal averaging kernel is the identity matrix. This averaging kernel matrix

corresponds to a maximum likelihood retrieval, where the weight of prior information is zero. Here the altitude resolution is15

equal to the gridwidth of the retrieval. In agreement with our intuition, the altitude resolution cannot be better than the width

of the grid on which the retrieval is performed.

It is a common misconception that the averaging kernel characterizes the vertical resolution of the estimated profiles x̂.

The retrieval as represented by Eqs (3), (4), (6), or (26) is a correction of an initially guessed or a priori assumed profile. The

altitude resolution obtained from the averaging kernel characterizes only the correction term but not the a priori component. If20

the a priori profile is highly structured and thus resolves fine scales, these structures are propagated onto the result x̂.

As is often the case, precision and resolution share a trade space in remote sounding retrievals. We see from Eq. (19) (with

Eq. 7 inserted) that weaker regularization will increase the impact of measurement noise. Conversely, weaker regularization

will, according to Eq. (25), push the averaging kernel towards the identity matrix, which is associated with the optimally

obtainable resolution of a profile at a given discretization.25

In the context of altitude resolution, a cautionary note is in order. The altitude resolution is neither identical to the grid

width nor with the information smearing. In a regularized retrieval the vertical resolution is coarser than the retrieval grid. Only

in an unconstrained maximum likelihood retrieval is the vertical resolution equal with the gridwidth. Conversely, the vertical

resolution of measurements that are sensitive to a very small air parcel is only limited by the vertical grid, and the sampling

theorem (Shannon, 1948) applies. That is to say, in situ measurements from a cruising aicraft have no altitude resolution in30

the sense as defined here although the measurements may be practically point measurements due to the small vertical extent

of the air parcel probed. In remote sensing the radiative transfer equation, which is integrated over all altitudes relevant to the

retrieved profile, acts as an anti-aliasing filter, and the sampling theorem is of no concern.
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Another concept closely related to the concept of altitude resolution is that of the degrees of freedom of the retrieval. This

number is calculated as the trace of the averaging kernel matrix (Rodgers, 2000)8.

6.5.4 Information displacement

Ideally the maximum, the mean, and the median of the averaging kernel coincide with the nominal altitude but “it ain’t nec-5

essarily so” (George and Ira Gershwin, 1935). Any displacement reflects the fact that the interpretation of the retrieved profile

without consideration of the averaging kernel is, mildly speaking, misleading. This problem can often be remedied by compar-

ing the retrieved profile not with any reference profile, but with a reference profile to which the averaging kernel matrix of the

remotely sensed profile has been applied according to Eq. (31). Again, the caveat that this method is valid only within linear

theory applies. A measure of the information displacement is the centroid offset of the averaging kernel (see, e.g., Keppens10

et al. 2015 and references therein).

An example of the importance of this issue is found in Jackman et al. (2008) who compared modeled HOCl distributions

to those measured by MIPAS (von Clarmann et al., 2006). Maximum concentrations are displaced by more than 5 km before

consideration of the averaging kernels.

6.5.5 Regularization bias and measurement response15

As mentioned above, regularization may not only smooth the retrieval but may bias or distort it. The related component of the

bias, hx̂�xiregul. is

hx̂�xiregul. = h(I�A)(xa �x)i (33)

We have to distinguish two cases: Firstly, smoothing can cause biases, because, e.g., a sharp maximum of the true profile will

always be reproduced too low, and the wings of the maximum will be reproduced too high. This type of bias, however, is only20

relevant if the retrieval is conceived as a smoothed representation of the truth as discussed in Section 6.5.1. If the retrieval is

conceived as an estimate of the smoothed truth as discussed in Section 6.5.2, this type of bias is of no concern.

Secondly, regularization can cause a bias by pushing the result systematically towards higher or lower values. Any such

effect besides mere smoothing is characterized by the measurement response function q (occasionally also called ‘vertical

sensitivity’), a concept which goes back to an idea of Eriksson (2000) and Baron et al. (2002). It is defined as the sum over the25

row of the averaging kernel matrix.

qi =
nX

j=1

ai,j (34)

In the case of a multi-species profile retrieval, the sum is calculated over the subblock or the averaging kernel matrix

referring to the profile under assessment. If the regularization of a retrieval provides a smoothed version of the truth, without
8(Rodgers, 2000) uses the term ‘degrees of freedom of the signal’ but this term is defined for Bayesian maximum a posteriori retrievals only. To avoid

clashing with Rodgers’ terminology, we use the term ‘degrees of freedom of the retrieval’, which is applicable in a wider context.
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systematically pushing results towards greater or smaller values, the sum of the elements over each row of the averaging kernel

should be unity. Any deviation of the row-sums from unity thus hints at an influence of the constraint that is beyond pure

smoothing. The measurement response function is retrieval-unit-dependent.

Even if the averaging kernel matrix is far from unity, a measurement response function close to unity indicates that the5

retrieval is, putting measurement errors aside for a moment, a smoothed but unbiased representation of the true profile. Con-

versely, values of the measurement response function deviating by an appreciable amount from unity indicate a large influence

of the prior information not only on the profile shape but also on the integrated values. Interpretation of the measurement

response, however, requires some caution. Any non-zero hxa �xi will cause a bias in this case.

The row sum of the averaging kernel, which makes up the measurement response, consists of summands which refer to a10

perturbation by the same amount in each layer, where, again, the ‘sameness’ is unit-dependent. Such a perturbation can be fully

realistic in one layer and fully unrealistic in other layers, depending on the retrieval-units. The evaluation of the measurement

response is particularly problematic in cases where the profile values cover a wide dynamic range. This is the case, e.g., for

the H2O mixing ratios or when the retrieval units are number density. For example, a certain perturbation in terms of number

density of a certain trace gas at lower altitudes can correspond to merely moderate changes in the mixing ratio, while the same15

perturbation in terms of number density at high altitudes where air density is low will correspond to fully unrealistic mixing

ratios. Thus, averaging kernels evaluated in units of number density can fake a large dependence of the result on values at

higher altitudes which does not exist in the real world. These large contributions from higher layers can lead to unrealistic large

values of the measurement response.

6.5.6 Regularization crosstalk20

The discussion of the averaging kernel matrix and smoothing error was focused on the retrieval of single quantities so far, e.g.,

vertical profiles of a single state variable. Often, however, multiple different state variables are jointly retrieved in one leap. In

this case the regularization constraining one state variable can affect the result of the other and vice versa. More specifically, the

smoothing error of one variable can propagate onto the result of the other variable and thus give rise to regularization crosstalk.

If the full (multi-variable) averaging kernel matrices are stored, the resulting parameter errors can be evaluated using Eq. 28.25

The case under discussion lies between the extremes of treating the other variable as a known parameter during the retrieval

and the unconstrained joint-fit of both quantities.

6.5.7
:::::::
Implicit

:::::::::::::
Regularization

:::
via

::::::
Coarse

:::::::::::::
Discretization

::
In

::::::
order

:::
to

::::::
avoid

:::::::::
problems

:::::
due

:::
to

::::::::::::::
regularization,

::::::
often

::
a
:::::::

coarse
:::::::::::::

discretization
:::

of
::::

the
:::::::

profile
:::

is
::::::::

chosen

::::::::::::::::::::::::::
(e.g., von Clarmann et al., 2015).

::::
The

::::::::
retrieval

::
of

:::::::
vertical

:::::::
column

:::::::
densities

:::
in

:::::
cases

:::::
when

::
no

:::::::::
sufficient

::::::::::
information

:::
on

:::
the30

::::::
vertical

::::::::::
distribution

::
of

:::
the

::::
state

:::::::
variable

::
is

::::::::
available

::::::
pushes

:::
this

::::::::
rationale

::
to

::::::::
extremes

::::
(see

::::::
Section

::::
5.1).

::::
The

:::::::
column

:::::::
amount,

:::::::
however,

:::
can

:::::::
depend

::
on

:::
the

::::::::
assumed

:::::
shape

::
of

:::
the

:::::::
vertical

:::::
profile

::
of
:::

the
::::::::::
constituent

::::
used

:::
for

:::
the

:::::::
radiative

:::::::
transfer

::::::::::
calculation,

::::::
because

::
a

:::::
certain

:::::::
amount

::
of

:
a
:::
gas

::
at

:::
one

:::::::
altitude

:::
can

:::::
affect

:::::::
radiative

:::::::
transfer

::::::::
differently

::::
than

:::
the

:::::
same

::::::
amount

::
of

:
a
:::
gas

::
at
:::::::
another

::::::
altitude.

::::
The

::::::
causes

:::
can

:::
be,

:::::::::
depending

::
on

:::
the

:::::::::::
measurement

::::::::
principle,

:::::::
pressure

::::::::::
broadening

::
of

:::::
lines,

::::::::::
temperature

::::::::::
dependence

::
of
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::
the

:::::::::
absorption

::::::::::
coefficients

:::
and

:::
the

::::::
source

:::::::
function,

:::
and

::::::
others.

::::
This

:::::
issue

:::
has

::::
been

::::::::
discussed

:::
for

::::::
infrared

::::::::
emission

:::::::::::
spectroscopy

::
by

::::::::::::::::
Blom et al. (1994).

:::
For

::::::
DOAS

::::::::::::
measurements,

::::
see,

:::
e.g.,

::::::::::::::::::::::::::
Eskes and Boersma (2003) and

::::::::
references

:::::::
therein.

::
To

::::::
assess

::::::
related

::::::
effects,

:::
the

::::::
column

:::::::::
averaging

:::::
kernel

::::
(Eq.

:::
27)

::
is

::
an

::::::::
adequate

::::
tool.

:

6.5.8 Related issues5

In the context of averaging kernels and vertical resolution a few further remarks are in order.

– Time series of state values at a given altitude are particularly problematic when the averaging kernel is time-dependent

in itself. Here it may help to remove the prior information from the data along with resampling in order to achieve A= I

as suggested by von Clarmann et al. (2015).

– While averaging kernels of maximum likelihood retrievals are unity on the native grid on which the retrieval has been10

performed, any interpolation to finer grids will entail non-unity averaging kernels.

– Averaging optimal estimates will not usually create optimal averages. This is particularly true when the prior information

is the same for each retrieval, e.g., a climatological data set. This is because the weight of the prior information will be

too large in the average (see, e.g., Ceccherini et al., 2014).

– Even if optimal estimation is conceived in an objectivist sense, where the prior information can be conceived as the15

frequency distribution of true states, any deviation of the assumed frequency distribution from the true one is an additional

error source which is not typically considered in estimated error budgets.

6.6 Unknown error components

Error estimation will never be perfect, not only because the input variables of error estimation are uncertain in themselves,

but also because there always are error sources that those responsible for the error estimation may not be aware of. Povey and20

Grainger (2015) propose “to present multiple self-consistent realisations of a data set as a means of depicting unquantified

uncertainties.” It is obvious that such ensemble techniques are well suited to investigate the non-linear interaction of multiple

known error sources, to obtain sensitivity information if the data processors contributing to the ensemble consider different

types of known uncertainties, or to identify the spread of results which may result from different numerical implementations.

These authors, however, fall short of telling us how such ensemble techniques should provide information on the effect of25

unknown error sources. The problem is that none of the data processors contributing to the ensemble has the unknown mech-

anism implemented, and the unknown uncertainty will cause an unknown bias of the ensemble mean rather than scatter of the

ensemble.

The only way known to us to gain confidence that all relevant error sources have been considered is to compare multiple

independent measurements based on different measurement systems where we can fairly safely exclude that they all are affected30

by the same type of systematic effect. If the discrepancies between the results of different instruments can be explained by the

combined error budgets, we have reason to believe that the error budgets of the instruments under comparison are fairly
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complete (e.g., Rodgers and Connor, 2003; von Clarmann, 2006). For at least three independent measurements the random

components of the error can be pinpointed quite safely (Laeng and von Clarmann, 2019, and references therein) (Loew et al.,

2017, and references therein), and for a large number of independent instruments one can assume that even the bias of the mean

will approach zero.5

6.7 Natural variability

It goes without saying that natural variability in a sense that the atmospheric state at place s1 and time t1 differs from the one

at s2 and t2 is not a genuine retrieval error. However, when in a validation context two independent measurements of the same

state variable are compared and the measurements do not refer to exactly the same airmass, the spatial or temporal mismatch

of the measurements along with natural variability will contribute to the difference. Often, natural variability is invoked as a10

universal excuse if validation studies hint at unexplained discrepancies. To allow a more quantitative assessment of the role of

natural variability in validation, tools to assess the impact of less-than-perfect collocations is provided by, e.g., Sofieva et al.

(2008), Verhoelst et al. (2015) or Laeng et al. (2019). The latter tool estimates the difference between two measurements that is

explained by natural variability and is based on a parametrization of high-resolution model data. It saves the validation scientist

from the need of dedicated model studies for each comparison. Also dense and precise high-resolution measurements can be15

used as so-called ‘fiducial reference measurements’. The latter approach allows simultaneous evaluation of natural variability

and validation of error estimates, as discussed in Staten and Reichler (2009) and Sofieva et al. (2014).

6.8 Drifts

Instrument drift we understand is a false trend in the derived state variables which is caused by an unstable instrument. At first

order, a drift can be avoided if regular and frequent calibration are performed or if the self-calibrating measurement procedures20

are employed. However, higher order effects, e.g., related to the non-linearity of the calibration curve, can lead to noticeable

drifts. Eckert et al. (2014), e.g., found drifts in MIPAS ozone even though regular calibration was performed. This was for

the reason that, due to detector aging, the non-linearity of the detector sensitivity changed with time. Also the notorious aging

problem of spacebased UV-measurements, degradation in the sense of a reduction in throughput due to intense solar radiation

can cause drifts. Most often the cause are the coatings of optical elements.25

Whenever ex ante drift estimates are available, they should of course be communicated to the data user. Since, however,

drifts usually can be determined only reliably towards the end of a mission, it does not make sense to require drift estimates in

data characterization papers, which are typically written in the early phase of a mission. A deeper discussion of drifts is found,

e.g., in Hubert et al. (2016).

Spaceborne UV measurements are typically affected by particularly severe instrumental degradation, i.e., loss of throughput.30

This is usually caused by optical coatings degrading when exposed to UV radiation. If a tangent altitude normalization approach

or another self-calibration approach is used, this degradation is not necessarily a big problem, but the signal to noise ratio will

decrease over time.
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The SBUV/2 instruments use an on-board calibration system to track relative spectral and temporal changes in diffuser

reflectivity using a mercury lamp (e.g., DeLand et al., 2012). Since the solar diffuser is the only additional optical element be-

tween radiance and irradiance measurements, this system enables an accurate throughput change correction to be derived from

SBUV/2 solar measurements. This correction is applied in the Level 1 processing and is not included in the error covariances.5

Intrinsically self-calibrating measurement geometries such as solar and stellar occultation or regular calibration measure-

ments using internal sources at first order remove this error. This does, however, not apply to drifts of the shape of the nonlinear

detector response function as discussed above. To date, these drifts are not evaluated as part of the routine error analysis of

the Level-2 product but they are assessed by careful comparison with other instruments. While it is not easily possible to get

absolute drift estimates from this, at least the relative drifts between instruments can be estimated (e.g., Eckert et al., 2014;10

Laeng et al., 2017; Hubert et al., 2012; Rahpoe et al., 2015; DeLand et al., 2012). It is important to note that relative drifts

between instruments may have causes beyond time-dependent calibration changes (e.g., a drift in tangent height registration as

shown in Livesey et al. 2018, Bourassa et al. 2018, or Kramarova et al. 2018.).

6.9 Combination of error components

Within linear theory, errors of different sources combine additively and follow Gaussian error propagation. We have k covari-15

ance matrices of the dimension n⇥n representing the errors of k different sources Sx,1, Sx,2, ... Sx,k and get

Sx,total =
⇣

In In . . . In

⌘
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where In is an n⇥n identity matrix and where the C matrices represent covariances among the error sources. For independent

error sources, these covariances are zero and combination of errors comes down to summing up the error covariance matrices.20

Beyond linear theory, the interaction of various error sources is best studied by means of ensemble sensitivity studies (see, e.g.,

Kulawik et al., 2019)

Some data providers publish total error estimates. This practice is also endorsed by Joint Committee for Guides in Metrol-

ogy (JCGM) (2008a). There are, however, compelling arguments in favour of publishing the individual error components.

Specifically, depending on the application of the data, the same type of error can act as random or systematic error. For ex-25

ample, in trend estimation constant biases of the target gas will fully cancel out. Conversely, if, e.g., the total chlorine budget

is calculated, the systematic (i.e., time-independent) error components of the parent chlorine species can be fully uncorrelated

among the species and thus have to be treated like fully uncorrelated random errors when the error of the total chlorine budget

is estimated. In other words, the extent to which error components are ‘systematic’ is domain-dependent. An error which is

systematic in time can be random in the altitude, species, or some other domain. Thus, the data user may be better helped by30

being given access to the individual error components and some advice on systematicity in the various domains.
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7 Recommendations

The goal of the TUNER effort has always been to bring the atmospheric remote sensing community together to enable better

science. While a great deal of work has been performed over many decades, certain questions about the intercomparability of

different data sets continue to linger and can only be answered if the data provided satisfy the conditions of adequacy described5

in this paper. While TUNER is not the first attempt at achieving this lofty goal (and may not be the last), we believe that the

TUNER group is well-suited to this task. With the aim of establishing a consensus on error reporting, the TUNER group is

comprised of remote sensing retrieval experts representing instruments with well over a century of combined operational time

and experience. Comprising both data providers and data users, the TUNER consortium aims to “practice what they preach” in

the hopes that data from past, present, and future instruments may finally be used in a consistent and intercomparable fashion.10

Based on the framework and consensus terminology outlined above, and in response to the conditions of adequacy formu-

lated in Section 2, recommendations have been developed on how uncertainties shall be assessed and data characterization shall

be reported. These recommendations may seem less specific than the reader might expect, but one-size-fits-all recommenda-

tions were found to be inadequate for the variety of instruments under consideration. In the following, we state the general

principles that we consider to be useful. Further, we formulate recommendations with respect to the evaluation and reporting of15

random errors, systematic errors, and further diagnostic data. The respective conditions of adequacy which led to a particular

recommendation are listed in brackets (see Section 2). When appropriate, the recommendation is followed by an example or a

short discussion in order to elucidate the rationale behind the recommendation.

R 1. The language and notation used to describe the error budget must be clearly defined.

This can be accomplished either by explicit definitions of all terms and symbols used or by reference to any available20

document that lays down a self-consistent terminology. We hope that this paper serves that purpose and that the terminology

and notation introduced here will be found useful9 [CoA 1, CoA 3
:
, CoA 4].

R 2.
::::
Every

:::::
effort

::::::
should

:::
be

:::::
made

::
to

:::::
make

:::
the

:::::
error

::::::
budget

::
as

::::::::
complete

::
as

:::::::
possible

::
in
::::

the
::::
sense

::::
that

:::
all

:::::::
sizeable

::::::
sources

:::
of

:::::::::
uncertainty

:::
are

::::::::
included,

:::::
either

:::
via

:::::
linear

::::::::
mapping,

:::::::::
sensitivity

::::::
studies,

::
or

::::::::
whatever

::
is

::::::::::
appropriate

:::
for

:::
the

::::::::
particular

::::
case

:::::
under

:::::::::
assessment.25

The choice of which error estimation scheme is adequate depends on the instrument and the specific retrieval scheme.

Thus, no ‘one-size-fits-all’ error estimation scheme is recommended here. The responsibility for judging which treatment of

uncertainties is adequate lies with the retrieval scientist, because only they can judge which error sources and error propagation

mechanisms are relevant for a particular instrument or data product. Every effort should be made to make the error budget as

complete as possible in the sense that all sizeable sources of uncertainty are included, either via linear mapping, sensitivity30

studies, or whatever is appropriate for the particular case under assessment CoA 1, CoA 5, CoA 3. An overview of the most
9
:
In
:::
the

::::::
scientific

::::::::
community,

:
it
::
is

::::
often

::::::
desirable

:
to
::::

have
:
a
:::::
citeable

:::::
source

:::::::
regarding

:::::
notation

:::
and

::::::::
terminology

::
so
::
as

::
to

::
be

:::::::
consistent.

:::
The

:::::
authors

::
do

:::
not

:::
want

::
to

::::
dictate

::::
what

::::::
language

::
to

::
use

:::
and

:::
thus

::
do

:::
not

:::::
provide

:::
such

:
a
::::::::::::

recommendation
::::
about

::
the

::::::
notation

::
and

:::::::::
terminology

:
in
:::
this

::::
paper.

:::
The

::::::
decision

::
is

::
left

::
to

::
the

:::::
reader.
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commonly used retrieval schemes is given is Sections 4 and 5. Error sources are discussed in Section 6 . [
::::
CoA

::
1,

:::::
CoA

::
5,

::::
CoA

:
3].

:

R 3. The ideal approach is to report the substantive contributions from each relevant error component separatelyCoA 5, CoA 4

. The reason for this recommendation is that an estimated error component due to one particular error source can be of5

random characteristic in one application and of systematic characteristic in another application. For example, errors due to

uncertain strengths of spectral lines are random if, say, the chlorine budget is calculated from multiple chlorine-containing

constituents, each having its own uncertainty due to spectroscopic data. Conversely, in the analysis of a time series of one

species the estimated errors due to erroneous line intensities act as a systematic error. The data user is able to consider the

relevant error components only if the error contributions are reported separately. If, in addition, the total error is reported, it10

should include the systematic and the random components.
:::::
Some

:::::
error

::::::
sources

::::
can

::::::::
contribute

:::::
both

::
to

:::
the

:::::::
random

::::
and

:::
the

::::::::
systematic

:::::
error

::::::::::
components [

::::
CoA

::
5,

::::
CoA

::
4]

:
.

R 4. For each error source, it is often necessary to know if the resulting error components are independent between two subsets

of data within a certain domain (time, space, species, etc.).

For example, the error component due to tangent altitude uncertainties can be correlated between different species retrieved15

from the same measurement. The error component due to spectroscopic data may be correlated in the altitude domain but

uncorrelated between different species, etc. We recommend that data providers describe the correlation within each relevant

domain either qualitatively or quantitatively, wherever possible. CoA 5; CoA 3. The need of this is illustrated by the example

already described under Recommendation R 3. Another example are quasi-systematic errors which are random in the long run

only but can be highly correlated on shorter time scales .[
::::
CoA

::
5;

::::
CoA

::
3]

:
.20

R 5. When instrument groups make the error components available, they should also indicate which of them contribute pri-

marily to the random error and which contribute primarily to the systematic error.

Classification and combination of errors is most helpful to the data user if it is made by their systematic vs. random nature

rather than by origin [CoA 5; CoA 3]. This is important, e.g., in the context of validation. If estimated errors are reported as

aggregated parameter errors, and some of them are of systematic nature while the others are of random nature, the data user will25

not be able to judge which fraction of the bias or the standard deviation of the differences between two measurement systems

is explained by the systematic or random error, respectively. On the face of it, this recommendation looks redundant with

Recommendation R 4 applied to the time domain but it is not. Components of the error budget may be strongly autocorrelated

in the time domain but still lead to zero bias and thus contribute to the random error only.
:::::
Again

:
it
::::::
should

:::
be

::::
kept

::
in

::::
mind

::::
that

::::
some

:::::
error

::::::
sources

:::
can

:::::::::
contribute

::::
both

::
to

:::
the

:::::::
random

:::
and

:::
the

:::::::::
systematic

::::
error

:::::::::::
components.30

R 6. The meaning of the reported uncertainties shall be clarified.

Do they refer to ±1�, ±2�, etc. or to a specified confidence limit, such as 95% or 99%? Note that generalized Gaussian

error propagation will usually produce error estimates in terms of variances, while Monte-Carlo-type sensitivity studies enable
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the confidence limits to be directly estimated. If the one is transformed to the other, the assumed underlying distribution shall

be reported [CoA 1; CoA 4].

R 7. For all error components, the assumed ingoing uncertainties shall be reported in the relevant documentation, otherwise

error propagation would not be traceable. It should also be reported which correlation characteristics were assumed (e.g., scalar5

perturbation of a profile, individual perturbation of its elements, or consideration of its full covariance matrix)CoA 4

::::::
Without

::::::::
reporting

:::::::::::
assumptions

::
on

:::::::
ingoing

::::::
errors,

::::
error

::::::::::
propagation

::::::
would

:::
not

:::
be

:::::::
traceable. With this information

::
at

:::::
hand,

a data user can re-scale error estimates if there is some doubt about the assumption on ingoing uncertainties (e.g., the �b in

Eq. 23 or Sb in Eq. 24) or if in a comparison study the error estimates of one instrument are more optimistic or pessimistic

than those of the other.[
::::
CoA

:
4].

:
10

R 8. If the retrieval uses prior information in the sense of Eq. 4 or Eq. 6, the a priori profiles must be reportedto allow .

::::
This

:::::
allows

:
the data user to apply Eq. (31) or variants of itCoA 5, CoA 4. Also for column retrievals where an a priori profile

is scaled to obtain the best fit and then integrated over altitude to render the column, the a priori profile should be reported,

because the column can depend on the assumed profile shape.[
::::
CoA

::
5,

::::
CoA

::
4]

:
.

R 9. In addition to the error budget, averaging kernels (Eq. 25) should be reported.
:::
For

:::::::
retrieval

::
of

::::::
vertical

:::::::
columns

:::
the

:::::::
column15

::::::::
averaging

::::::
kernels

::::
(Eq.

:::
27)

:::
are

:::
the

:::::::::
respective

:::::::::
diagnostic.

If a certain retrieval scheme does not give direct access to averaging kernels (e.g., onion peeling) then averaging kernels

shall be determined by sensitivity studies based on delta perturbations of the profile. For retrieval approaches using truncated

singular value decomposition or related approaches, the final altitude resolution shall be expressed as averaging kernels. For

global fit maximum likelihood retrievals (no regularization) the averaging kernels are by definition unity, but only in the native20

retrieval grid. In such cases, regridding of data will give rise to non-unity averaging kernels. At the very least, the original

grid and the interpolation scheme shall be reported. Ideally the data provider calculates the averaging kernels on the final

grid on which the data are provided to the user. For retrieval of vertical columns the column averaging kernels (Eq. 27) are

the respective diagnostic.
::
To

:::::
avoid

::::
any

::::::::::::::
misinterpretation

::
of

:::
the

:::::::::
averaging

::::::
kernel

:::
and

::::::
taking

:::
the

::::::::
averaging

::::::
kernel

::::::
matrix

:::
for

::
its

:::::::::
transpose,

:
it
::::::
should

:::
be

::::::::
indicated

:::::
which

:::::
index

:::::
refers

::
to
::::

the
:::::::
columns

:::
and

::::::
which

::
to

:::
the

:::::
rows

::
of

:::
the

::::::::
averaging

::::::
kernel

::::::
matrix25

[CoA 1, CoA 5, CoA 2, CoA 3].

R 10. The space to which the averaging kernel applies (e.g., linear/logarithmic, mixing ratio/density, absolute/relative, etc.)

shall be reported.

This is particularly important when data are reported in a form that differs from that of the retrieval state vectorCoA 1,

CoA 5, CoA 3, CoA 4. E.g., the averaging kernels resulting from a retrieval of the logarithms of mixing ratios must not be30

applied to the mixing ratios themselves. It is thus of utmost importance to communicate to the data user to which quantities the

averaging kernels refer.
:
If
:::
the

:::::::::
averaging

:::::
kernel

:::::
made

:::::::
available

::
to
:::
the

::::
data

::::
user

:::::::::
underwent

:::::
some

::::::::::::
transformation,

:::
the

::::
user

::::::
should

:::
also

:::
be

:::::::
informed

::
in
::::::
which

:::::
space

:::
the

::::::::
averaging

::::::
kernel

:::
was

:::::::
initially

::::::::
calculated

:
[
:::
CoA

::
1,
:::::
CoA

::
5,

::::
CoA

::
3,

::::
CoA

::
4]

:
.
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R 11. Publishing combined error estimates that include the smoothing error is insufficient.
::::::
Instead,

::
if

:::::::::
smoothing

:::::
error

::
is

:::::::::
considered,

::
it

::::::
should

::
be

:::::::
reported

:::::::::
separately.

Error propagation of the smoothing error in the context of interpolation to finer grids will usually fail to produce the

full smoothing error on the fine grid (von Clarmann, 2014). Instead, if smoothing error is considered, it should be reported5

separately, allowing
:::::::
Separate

::::::::
reporting

::
of

:::
the

:::::::::
smoothing

::::
error

::::::
allows the data user to propagate all errors except the smoothing

error through the interpolation and to evaluate the smoothing error directly on the fine grid, if desired. A caveat on the peculiar-

ities related to the interpolation of the smoothing error is adequate if the smoothing error is reported. If the data are understood

to be a representation of the smoothed state of the atmosphere (Section 6.5.2), the smoothing error is not needed and averaging

kernels along with the prior information are sufficientCoA 2. For example, in data assimilation, where the averaging kernel10

is part of the observation operator, inclusion of the smoothing error into the observation error covariance matrix would be

redundant and lead to incorrect double counting of the smoothing effect.[
:::
CoA

::
2]
:
.

R 12. If an altitude-resolved retrieval is performed in any other space than state value over altitude, pressure, or likewise (e.g.,

if eigenvectors or similar are used, see Section 5.1), then the final result should in addition be presented as vertical profiles

and also all diagnostic data (error estimates, averaging kernels) should be transformed to the respective representationCoA 5,15

CoA 2, CoA 3.

While these alternative representations certainly have their advantages, the data producer is in a better position than the data

user to provide the diagnostic data for a profile representation .[
::::
CoA

::
5,

::::
CoA

::
2,

::::
CoA

::
3]

:
.

R 13. Communication of a complete error budget for each profile, broken down to all components with all correlation

information, along with averaging kernels and a priori information used, is not always technically feasible and often creates20

unnecessary data traffic. Retrieval scientists should judge whether evaluation of error budgets and averaging kernels for a lim-

ited number of representative cases is adequate. If averaging kernels are only provided for a few representative cases, one might

still consider to show at least the vertical resolution profiles for each profile

:::::::::::::
Communication

::
of

:
a
::::::::
complete

::::
error

::::::
budget

:::
for

::::
each

::::::
profile,

::::::
broken

:::::
down

::
to

:::
all

::::::::::
components

::::
with

::
all

:::::::::
correlation

:::::::::::
information,

::::
along

:::::
with

::::::::
averaging

::::::
kernels

::::
and

:
a
::::::

priori
::::::::::
information

::::
used,

::
is
::::
not

::::::
always

:::::::::
technically

:::::::
feasible

:::
and

:::::
often

::::::
creates

:::::::::::
unnecessary25

:::
data

::::::
traffic.

:
[CoA 6].

The following recommendations R 14–17 are applicable to the case when only representative diagnostic data are available.

In this context we would like to mention that there exist methods to convey the information content of a measurement

at drastically reduced data volume (Migliorini et al., 2008). Such methods are particularly convenient in the context of data30

assimilation.

R 14. If representative error estimates are reported instead of error estimates for each single profile or data point, it is of utmost

importance to tell the data user if the nature of each error component is chiefly additive (i.e., independent of the actual state

value reported) or is chiefly relative (i.e., a scaling factor). For the first type, the estimated errors shall be reported in the same
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units as the state variable (e.g., Kelvin, ppmv, molec./cm3); for the second type, estimated errors shall be reported as percentage

errors.

With this information, the data user can adjust the error estimates to the particular scientific studyCoA 3, CoA 6. For

example, measurement noise often leads to an additive error component, i.e., the estimated error is approximately of the same5

size, regardless how large the mixing ratio of the target gas is. Conversely, errors representing spectroscopic uncertainties are

often multiplicative. That is to say, larger profile values have larger errors .[
::::
CoA

::
3,

::::
CoA

::
6].

:

R 15. If certain estimated errors or other characterization data are known or suspected to depend systematically on time,

latitude, or other parameters, this dependence should be reported, particularly if only representative errors are reportedCoA 3.
:
.

For example, in infrared emission spectroscopy the precision of concentration retrievals is usually worse for a colder atmo-10

sphere. With this information a data user who is using a retrieval of a particular cold day which is not well represented by the

sample error estimates is warned that the actual precision may be worse than the reported one.[
::::
CoA

:
3].

:

R 16. If, for application to mean profiles, mean averaging kernels are provided in conjunction with mean profiles in-

stead of individual ones, then the correlation profiles between the averaging kernels and the retrieved profiles shall be pro-

vided(von Clarmann and Glatthor, 2019)15

:::
The

::::::
reason

::
is

:::
that

::::
the

::::
mean

:::::::::
averaging

:::::
kernel

:::::::
applied

::
to

:::
the

:::::
mean

::::::
profile

::::
does

:::
not

:::::
equal

:::
the

:::::
mean

:::
of

::::::::
individual

:::::::::
averaging

::::::
kernels

::::::
applied

::
to

:::::::::
individual

::::::
profiles

:::::::::::::::::::::::::::::
(von Clarmann and Glatthor, 2019).

::::
With

:::
the

:::::::::
correlation

:::::::
profiles

::::::::
available,

:::
this

:::::::::
difference

:::
can

::
be

::::::::
corrected

:
[CoA 6].

R 17. If, in order to reduce the data volume of profile data characterization, only standard deviations are reported for the

individual profiles instead of the full covariance matrices, then a representative random error correlation pattern in the altitude20

domain (correlation matrix) shall be made available.

With this, the user can approximate individual covariance matrices [CoA 5, CoA 5, CoA 3, CoA 6].

R 18. The final criterion of adequacy of error reporting is whether discrepancies between measurements of the same atmo-

spheric state variable by independent measurement systems can be explained by the error estimates.

This practical and empirical criterion of completeness of the error budget does not require knowledge of the unknowable25

true value of the measurand [CoA 1, CoA 5,]. In this context we distinguish between random and systematic errors.

1. We consider random error estimation schemes as adequate if a combination of the deduced error and the less-than-perfect

spatial or temporal coincidences between two data sets and natural variability together explain the observed standard

deviation of the differences between two data sets. If predicted random errors fail to explain observed differences, they

should be reassessed. Methods to find out which of the compared data sets has an inadequate random error estimate have30

been described in, e.g., Fioletov et al. (2006); Sofieva et al. (2014); Laeng and von Clarmann (2019) [CoA 5].
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2. We consider estimates of the systematic errors to be adequate if they, along with sampling biases and after accounting

for different vertical/horizontal/temporal resolutions and content of a priori information, explain the observed biases

between independent instruments [CoA 5].

We consider it undesirable and a source of confusion to still report over-optimistic or pessimistic ex-ante error budgets without5

a related caveat if validation studies show that there is strong indication that the actual errors are significantly larger or smaller.

On the face of it, the list of recommendations appears quite weak, leaving a lot of freedom to the data provider. This is, how-

ever, not the case. Recommendation R 2, that the error budget should be as complete as possible, along with Recommendation

R 18, which gives a criterion for the completeness of the error budget quickly make the apparent freedom disappear.

Admittedly, these recommendations will not guarantee perfect compliance with the conditions of adequacy, but due to the10

competing needs of rigor versus practicability the problem seems overconstrained. In other words, you ‘can’t always get what

you want’ (Jagger and Richards, 1969). However, we are still confident that they help to unify uncertainty reporting in the

community of remote sensing of atmospheric composition and temperature. These recommendations have been developed

from the perspective of mainly satellite-borne limb sounding and occultation observations but some of these concepts are

equally applicable to other types of remote sensing missions.15

8 Discussion and Outlook

In this paper we have discussed conventional (as opposed to machine learning and artificial-intelligence based approaches)

error estimation methods for Bayesian and non-Bayesian retrieval methods. The choice of the retrieval method is a dilemma. If

likelihood-based methods are chosen, the retrieval lacks a probabilistic interpretation and ad hoc constraints will imply a bias,

at least if the retrieval is conceived as a smoothed estimate of the true state. This horn of the dilemma is avoided by Bayesian20

methods, which use probabilistic constraints. Adherents of likelihood-based methods, however, will point out the second horn

of the dilemma, which is, that it is never warranted that the a priori statistics chosen indeed represents the true background

state. Further, they will raise the concern that Bayesian methods, even if based on the true background statistics, may render

bias-free estimates in the long run, but may be off the true atmospheric state in a single case. The decision for the acceptance

of the one or the other horn of the dilemma is a philosophical one and in most cases it cannot be based on scientific grounds.25

The only recommendation we can offer in this respect is a plea for mutual tolerance. Regardless which approach is chosen, the

data characterization has to be consistent with the retrieval method chosen. This paper tries to provide the scientific basis for

this.

This paper is mainly addressed to providers of Level-2 data, i.e., data on atmospheric state variables. Some data users,

however, prefer to work directly with Level-1 data, i.e., with measured radiances or transmissions. For example, the direct30

data assimilation of measured signals is sometimes preferred over the assimilation of retrieved state variables (e.g., Andersson

et al., 1994). The radiative transfer forward model is in this case included in the assimilation scheme. The advantage of this

method is that it avoids all problems related to a priori knowledge and regularization. We have touched this approach only upon

passing in this paper and do not want do delve deeper into this. The only caveat we wish to add is that the observation error
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covariance matrix should not include measurement noise only but also contributions by uncertain parameters not assimilated

(Section 5.2). This will typically lead to non-sparse observation error covariance matrices which may be the source of some

further headache.

In some fields of remote sensing of the atmosphere, retrieval methods based on artificial intelligence, neural networks and5

machine learning are explored (Lary et al., 2016). A precondition for unification of error reporting of classical and artificial-

intelligence based retrieval schemes seems to be semantic connectibility. The glossary by Stanford University (2020) is consid-

ered as an important first step. With respect to the data characterization of retrieval products generated with such algorithms,

two cases have to be distinguished. The first case is that a neural network is used as a surrogate radiative transfer forward model,

while the retrieval still follows the concepts presented in this paper. In this case, the error estimation and data characterization10

strategies discussed in Section 6 are still applicable, and the approximative nature of the neural-network based radiative transfer

calculation can simply be conceived as a further source of forward modelling error. The second case is that machine learning

algorithms are directly used for the retrieval. In this case, complete data characterization appears to be more challenging to us.

Sensitivity studies or supervised learning of uncertainty prediction may be two possible pathways towards data characterization

of artificial-intelligence based retrievals. In either case it seems important to us that the data user is provided with the same full15

data characterization as required for the conventional retrieval schemes.

But even with the conventional retrieval and error estimation schemes there is a lot of homework to do. We hope that

this review paper has identified the most relevant problems in this field and provides a conceptual framework to adequately

characterize remotely sensed atmospheric temperature and composition data.
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Table 1: Satellite Data Processors, Limb Geometry (Emission, Occultation and Scattering):

Instrument Processor Geometric Regularization1 Reference

Decomposition R

ACE-FTS Version 3.6/3.6 global fit 0 Boone et al. (2005)

Boone et al. (2013)

ATMOS Version1-2 onion peeling 0 Norton and Rinsland (1991)

Version 3 global fit 0 Irion et al. (2002)

CLAES Chahine Chahine’s Kumer and Mergenthaler (1991)

relaxation

Onion Peeling onion peeling S�1
a Gordley and Marshall (1992)

CRISTA UWuppertal onion peeling 0 Offermann et al. (1999)

GOMOS ALGOM2s (FMI) other LT
2 �L2 Kyrölä et al. (2010)

Sofieva et al. (2010)

Sofieva et al. (2017)

HALOE NASA onion peeling 0 Thompson and Gordley (2009)

HIRDLS HIRDLS global fit S�1
a Gille et al. (2008)

ILAS Version 1 onion-peeling 0 Yokota et al. (2002)

ILAS-2 Version 1.4 onion-peeling 0 Nakajima (2006)

ISAMS onion-peeling S�1
a Marks and Rodgers (1993)

sequential estimation2 S�1
a Dudhia and Livesey (1996)

LIMS NASA onion peeling Twomey (1977) Gille and Russell III (1984)

Bailey et al. (1996)

MIPAS UBologna geofit S�1
a Dinelli et al. (2010)

ESA global fit S�1
a Raspollini et al. (2013)

IMK/IAA global fit3 LT
1 �L1 von Clarmann et al. (2003, 2009)

UOxford global fit4 S�1
a Dudhia (2019)

MLS-AURA NASA geofit5 LT
1 �L1 Livesey et al. (2003)

MLS-UARS NASA global fit S�1
a Livesey et al. (2003)

Odin-SMR Chalmers global fit S�1
a Urban et al. (2005)

OMPS-LP IUP Bremen global fit LT
0 �1L0 + Arosio et al. (2018)

LT
1 �2L1

NASA global fit S�1
a Rault et al. (2013)

USask geofit LT
2 �L2 Zawada et al. (2018)

OSIRIS Version 5 global fit 0 Degenstein et al. (2009)
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Table 1: Satellite Data Processors, Limb Geometry (continued:

Instrument Processor Geometric Regularization1 Reference

Decomposition R

Bourassa et al. (2012)

SABER NASA onion peeling 0 Russell III et al. (1999)

interleave Rong et al. (2009)

SAGE I NASA Chahine6 0 Chu and McCormick (1979)

SAGE II NASA global fit7 0 Damadeo et al. (2013)

SAGE III NASA global fit 0 Wofsy et al. (2002)

SAMS sequential S�1
a Rodgers et al. (1984)

estimation

SCIAMACHY IMK global fit S�1
a + Bender et al. (2013)

LT
1 �L1 Bender et al. (2017)

IUP Bremen global fit LT
0 �1L0 + Rozanov et al. (2011b)

(limb scatter) LT
1 �2L1 Rozanov et al. (2011a)

IUP Bremen onion peeling 0 Noël et al. (2016)

(occultation) Noël et al. (2018)

global fit LT
0 �1L0+ Azam et al. (2012)

LT
1 �2L1

SMILES JAXA global fit S�1
a Takahashi et al. (2010)

NICT global fit S�1
a Baron et al. (2011)

SOFIE GATS onion peeling 0 Gordley et al. (2009b)

interleave

(1) For processors with multiple data products, the actual regularization may vary depending on the retrieved atmospheric

parameter.

(2) sequential estimation using a Kalman filter

(3) under consideration of horizontal gradients5

(4) sequential estimation in the spectral domain

(5) subsets of orbits are used.

(6) SAGE team’s best guess as original documentation was lost.

(7) onion peeling for H2O.
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Table 2: Satellite Data Processors: Nadir sounders

Instrument Processor Column or Regularization1 Reference

Profile Retrieval R

AIRS NASA v6 profiles PCA Susskind et al. (2014)

NUCAPS profiles PCA Susskind et al. (2003)

CLIMCAPS profiles S�1
a Smith and Barnet (2019)

MUSES profiles LT
1 �1L1/ Fu et al. (2018)

LT
0 �2L0 or

S�1
a

CrIS NUCAPS profiles PCA Susskind et al. (2003)

CLIMCAPS profiles S�1
a Smith and Barnet (2019)

CFPR profiles S�1
a Shephard and Cady-Pereira (2015)

MUSES profiles LT
1 �1L1/ Fu et al. (2016)

LT
0 �2L0 or

S�1
a

GOME AMC-DOAS columns 0 Noël et al. (1999)

GODFIT(BIRA) columns 0 Lerot et al. (2010)

DOAS columns 0 Richter et al. (1998)

OPERA (KNMI) profiles S�1
a van Peet et al. (2014)

RAL profiles S�1
a Siddans (2003)

WFDOAS columns 0 Weber et al. (2018)

GOME-2 AMC-DOAS columns 0 Noël et al. (2008)

GODFIT(BIRA) columns 0 Lerot et al. (2010)

DOAS columns 0 Vrekoussis et al. (2009)

Boersma et al. (2018)

OPERA (KNMI) profiles S�1
a van Peet et al. (2014)

RAL profiles S�1
a Siddans (2003)

GOSAT ACOS XCO2 S�1
a O’Dell et al. (2012)

BESD XCO2 S�1
a Heymann et al. (2015)

NIES columns/profiles S�1
a Yoshida et al. (2013)

RemoTeC profiles LT
1 �1L1/ Butz et al. (2011)

LT
0 �2L0

UOL XCO2 S�1
a Cogan et al. (2012)

IASI ASIMUT-ALVL (BIRA) profiles S�1
a De Wachter et al. (2017)
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Table 2: Satellite Data Processors: Nadir sounders (continued)

Instrument Processor Column or Regularization1 Reference

Profile Retrieval R

EUMETSAT profiles S�1
a August et al. (2012)

FORLI(ULB/LATMOS) profiles S�1
a Hurtmans et al. (2012)

MUSICA (IMK) profiles S�1
a Borger et al. (2018)

RAL profiles S�1
a Siddans et al. (2017)

�-IASI profiles S�1
a Liuzzi et al. (2016)

MOPITT V8 profiles S�1
a Deeter et al. (2019)

OCO-2 FOCAL CO2 profiles S�1
a Reuter et al. (2017b, a)

NASA/V9 XCO2 S�1
a O’Dell et al. (2018)

UOL XCO2 S�1
a Boesch et al. (2011)

RemTeC profiles LT
1 �L1 Wu et al. (2018)

OMI DOAS columns 0 Theys et al. (2015)

Boersma et al. (2018)

GODFIT (BIRA) columns 0 Lerot et al. (2010)

Harvard-SAO V3 columns 0 González Abad et al. (2015)

MUSES profiles LT
1 �1L1/ Fu et al. (2018)

LT
0 �2L0 or

S�1
a

NASA-GSFC columns 0 Bhartia and Wellemeyer (2002)

OPERA (KNMI) profiles S�1
a van Peet et al. (2014)

RAL profiles S�1
a Siddans (2003)

OMPS-NM NASA-GSFC columns 0 Bhartia and Wellemeyer (2002)

OMPS-NP NASA-GSFC profiles S�1
a Bhartia et al. (2013)

SBUV NASA profiles S�1
a Bhartia et al. (2013)

SCIAMACHY AMC-DOAS columns 0 Noël et al. (2004)

BESD profiles S�1
a Reuter et al. (2010)

Reuter et al. (2011)

DOAS columns 0 Afe et al. (2004)

Boersma et al. (2018)

OPERA (KNMI) profiles S�1
a van Peet et al. (2014)

RAL O3 profiles S�1
a Siddans (2003)

WMF-DOAS columns 0 Schneising et al. (2012)
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Table 2: Satellite Data Processors: Nadir sounders (continued)

Instrument Processor Column or Regularization1 Reference

Profile Retrieval R

TES v7 profiles LT
1 �1L1/ Bowman et al. (2006)

LT
2 �2L2 or

S�1
a

TROPOMI DOAS columns 0 Theys et al. (2017)

GODFIT (BIRA) columns 0 Lerot et al. (2010)

RemoTeC profiles LT
1 �1L1/ Hu et al. (2018)

LT
0 �2L0

SICOR columns 0 Borsdorff et al. (2018)

WMF-DOAS columns 0 Schneising et al. (2019)

Weber et al. (2018)

(1) For processors with multiple data products, the actual regularization may vary depending on the retrieved atmospheric

parameter, and whether it is a column or profile.
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