Response to reviewers

Referee #2

This manuscript reports trends in equivalent black carbon (EBC) at several sites in Switzerland. Using aethalometer data, the authors apply a model to apportion EBC to traffic and wood burning sources that requires using Angstrom exponents and the assumed spectral dependence of wood smoke and traffic emissions. The data were interpreted in the context of these sources, including seasonality and diurnal patterns. The authors also report analysis of long-term trends in both the traffic and wood burning fractions. Results corresponding to periods when the aethalometer model failed provided additional feedback for when it is unable to successfully apportion sources, in this case in situations with freshly emitted wood smoke. The paper is clearly written and organized and the methods are well described and sound. The results are helpful in understanding the role of emission mitigation strategies for traffic and biomass burning sources. I recommend publication after addressing comments below.

Thank you. We have addressed all of the referee’s comments below.

1. P1, Line 7: Given the issues the model had with what appeared to be fresh smoke, would it be fair to refer to this fraction as aged?

 This point is addressed below in point 2.

2. P1, Line 12: This goes back to the previous comment. To clarify, calling the smoke fraction “aged woodburning” would help distinguish these sources.

 These two above points can be addressed together. The woodburning fraction which the aethalometer model apportions is considered a mixture of fresh and somewhat aged woodburning sourced BC. In a typical urban area, such as Zürich, the woodburning sourced BC
encountered will be a combination of aged particles as well as freshly emitted emissions. We believe the model failure shown in San Vittore was caused by a much greater proportion of fresh woodburning emissions which has different spectral characteristics than the more commonly encountered mixed woodburning BC. Therefore, calling the woodburning fraction ‘aged’ does not seem to be truly correct here.

3. P1, Line 15: Change “deceases” to “decreases”
 Done.

4. P1, Line 16: What does “This” refer to at the beginning of the sentence?
 The sentence now begins with “This lack of reduction in EBC\textsubscript{WB}...”

5. P1, Line 17: If the site is a likely representative location and EBC\textsubscript{WB} has not decreased, but the other sites have, how is it representative of ineffective controls on wood burning? Are the same management controls applied everywhere?
 This site (Magadino-Cadenazzo) represents the environment south of the Alps and is distinct when compared to the monitoring sites on the Swiss plateau. We believe Magadino-Cadenazzo is a very good representative site for such environments.

6. P2, Line 6: Change “fuelled” to “fueled”
 Fuelled is the preferred British English spelling which this manuscript has been prepared in so this has not been changed.

7. P7, Line 2: Change “consistently” to “consistent”
 Done.

8. P7, Line 8: What period was considered a daily sample? Midnight-midnight?
 The daily averages were indeed midnight to midnight. The text now reads: ‘...to daily resolution (midnight to midnight)...’

9. P7, Line 10: How were EC data applied with this frequency since BC and EC would overlap only on certain days? Was the EC sampling schedule the same at all sites?
 Extra text has been added to clarify this point: “When using aethalometer and EC data together, the aethalometer observations were aggregated (as arithmetic means) to daily resolution (midnight to midnight) to ensure the observations spanned the same time period and
duration. Only days with both EC and absorption observations were used for these comparisons because interpolation of the less frequent EC data was not attempted.”

The EC sampling was very similar among the sites with minor variations to sampling frequencies over the analysis period.

10. P7, Line 11: How was PM2.5 measured at all of the sites? What sampling frequency?

This sentence has been changed to make the type of PM\textsubscript{2.5} observations clear: “Only daily validated data were kept for analysis with most of the observations being sourced from high volume samplers.”

11. Page 7, Line 16: Change “measures” to “data”

Done.

12. Page 8, Line 4: Were any trend analyses performed on the EC data to test whether EC trends generally followed the overall BC trends?

Trend analysis of EC has not been conducted as part of this work. However, this is a worthy idea for future work but may be challenging due to less frequent observations before about 2010.

13. Page 8, Line 16: Where was this seasonal pattern observed? At all sites? A range of 3 m2/g is very large, can the authors comment on the physical reasons why the MAC would vary this much on a seasonal basis? They also vary considerably from site to site. Were EC data examined on a site by site and seasonal basis? Do they show this much variability?

The MAC value discussion has been expanded and now includes a supporting figure (Fig. A2 and below) which shows the seasonal MAC values by site and instrument. The text now discusses that the seasonal cycle was observed in all locations: “The range of the seasonality was as low as 0.4m2g-1 at Zürich-Kaserne, but as high as 2.3m2g-1 at Magadino-Cadenazzo. The seasonal variation was also accompanied by intra-instrumental variation.”

The MAC value variation may be due to the woodburning emission source being ‘switched on and off’ during the year which would substantially alter the seasonal aerosol composition. However, this is not explicitly investigated here and do not wish to speculate on the causes. We point to Zotter et al. 2007 (https://www.atmos-chem-phys.net/17/4229/2017/) where changes in MAC values are discussed.

The EC observations were checked for seasonality and their range was not as great as 3
units, but showed substantial variation with winter being the most polluted season due to a combination of emission strength and meteorological controls.

Figure 1: Mean seasonal and instrumental mass absorption cross section/mass absorption coefficients (MAC) for 950 nm for six equivalent black carbon (EBC) monitoring sites in Switzerland between 2008 and 2018.

14. Page 9, Line 6: Can the authors provide a brief explanation on how Angstrom exponents were calculated? Are they ratio of two wavelengths or a fit of all wavelengths?

A sentence has been added explaining the calculation process: “Here, α was calculated by curve fitting all absorption wavelengths (370, 470, 520, 590, 660, 880, and 950 nm) with exponential regression models.”

15. Page 10, Line 2, Figure 4 caption. Can the authors add the wavelength range for the Angstrom exponents?

The caption of the figure now reads: “Counts of binned Ångström exponents (α) for three equivalent black carbon (EBC) monitoring sites’ hourly absorption observations in Switzerland between 2014 and 2018. α has been calculated by seven wavelengths between 370 and 950 nm.”

16. Page 12, Line 4: What about wood burning as local emissions?
This monitoring site would be influenced by local woodburning and other emissions, but based on the data, this influence is very small. The sentence states this clearly: “This monitoring site is located at an elevation of 1031 metres, is isolated from significant local emissions, and is intermittently in the boundary layer and therefore, at times is not influenced by surface source activities.”

17. Page 12, Line 9: Why would this feature be stronger for traffic than wood burning sources?

Although this feature is discussed later in the manuscript, this sentence has been expanded: “This feature was clearer for EBC\textsubscript{TR} than EBC\textsubscript{WB} suggesting traffic, rather than woodburning emissions are more influential at Rigi-Seebodenalp.”

18. Page 14: Line 23: It appears from the figures that a couple of sites do not have data before 2013. Trend analyses performed over this short of period can be misleading when compared to sites with longer periods.

The EBC monitoring sites do have different start dates which creates a situation where the trend analysis is potentially weakened, these are the data which exist and little can be done to address this.

19. Page 14: Line 26: The Payerne site appears to have a break around 2014, after which the data are relatively flat. A similar pattern may occur at Magadin-Cadenazzo and Zurich sites. Is this an instrument artefact?

We have investigated these potential breakpoints thoroughly. We have added a supplementary figure (Fig. A4 and below) and a paragraph in the trends section explaining these instrument artefacts. The paragraph reads:

“EBC\textsubscript{TR} trends at Payerne, Magadino-Cadenazzo, and potentially Zürich-Kaserne suggest that breakpoints in the observations are present at the middle of 2013 (Fig. 9). Curiously, these changes were not observable in the absorption observations themselves, but could be detected in the calculated α with adaptive Kolmogorov-Zurbenko filters (KZA filters) (Fig.A4). The times of these small breakpoints could not be robustly traced to operational activities, but they might have been caused by different batches of aethalometer filter-tape which were continuously introduced across the monitoring network at this time. Therefore, these data suggest that these breakpoints are instrument artefacts. The identification of these features reinforces that the use of the aethalometer model is very useful, it is a pragmatic
technique which requires careful evaluation.”

<table>
<thead>
<tr>
<th>Variable</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>KZA filtered</td>
<td>2008-2018</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>Date</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magadino–Cadenazzo Rural</td>
<td>2008-2018</td>
<td></td>
</tr>
<tr>
<td>Zürich–Kaserne Urban</td>
<td>2008-2018</td>
<td></td>
</tr>
<tr>
<td>Payerne Rural</td>
<td>2008-2018</td>
<td></td>
</tr>
<tr>
<td>San Vittore Rural</td>
<td>2008-2018</td>
<td></td>
</tr>
<tr>
<td>Rigi–Seebedenalp Rural mountain</td>
<td>2008-2018</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Time series of daily and adaptive Kolmogorov-Zurbenko filtered (KZA) Ångström exponents (α) for six equivalent black carbon (EBC) monitoring sites' absorption observations in Switzerland between 2008 and 2018. α has been calculated by wavelengths between 370 and 950 nm.

20. Page 15: Line 12-13: But the time period is much shorter and during this period, other sites had flat trends (Payerme and Magadino), so it may not be fully reflective of what is happening over the longer time period.

We have conducted the trend analysis on the observations which are available. We accept that the non-uniform data spans is a limitation of the study, but this cannot be changed due to the variations of the observational record and believe the trends are representative of the site types discussed.

21. Page 16, Line 5: Over the same years?

The EBC/PM$_{2.5}$ ratio analysis is conducted across the same period. The sentence has been modified to make this clear: “The seasonal EBC/PM$_{2.5}$ ratios for the five Swiss EBC monitoring sites between 2014 and 2018 are shown...”
Response to reviewers

Referee #3

Grange et al. present an evaluation of source apportionment via the aethalometer model from six Swiss sites. They compare their obtained fossil and wood burning fractions from the model to expected diurnal patterns and ambient temperature. They also compare the aerosol Ångstroem exponents (AAE) they use in the model to the binned AAEs of the full (non-apportioned) time series. Finally, they also show and discuss the trends in fossil/wood burning fractions. This article is informative the figures are well designed and illustrative. However, there are some important issues regarding the data processing, at least as it is outlined in the text. I also note that the technical aspects of the paper are not as in depth as work by e.g. (Fuller et al., 2014) or (Zotter et al., 2017) who compare their data to external tracers, such that an experienced user of aethalometer data might learn more from the reported trends and source apportionment than the technical aspects presented. Nevertheless I recommend publication after the following issues are addressed.

Thank you. We have addressed all of the referee’s comments below.

Major issues

• Most data in the paper are from the Swiss National Air Pollution Monitoring Network (NABEL). I tried to access this site using the link in the references, but found that the link was no longer active, whereas the authors state that data are available as described in the text. Furthermore there is no description of data quality control/assurance. Are all data aggregated to hourly resolution or are some data points removed due to instrumental issues etc.? If points are removed, what is the threshold at which an hourly data point is still reported (i.e. what number of missing points are allowed?). The authors should update the information they
provide on data availability and describe the quality control measures. Payerne and Rigi are
EMEP sites and aethalometer data are publicly available at ebas.nilu.no.

We thank the referee for reporting these data accessibility issues. In response to this, we have
deposited the absorption observations, site metadata, and instrument locations data used in
the data analysis in a persistent and publicly accessible data repository (https://doi.org/
10.5281/zenodo.3626658). The data section now contains more information on data quality
control and assurance procedures with a new citation which outlines these operations in
detail.

• The authors do not seem to have access to time series at the original time resolution of the
instruments since they write 'Generally, the observations were stored as hourly means, but
for the data which was at higher resolution (10 and 30 minute means)', implying that raw
instrument output was not available? Checking these time series is important for several rea-
sons, e.g. to ensure correct application of the automatic loading compensation in the AE33
instruments (i.e. there should be no structure in the absorption or EBC time series related
to tape advances), or that no short term spikes are present in the data which could bias the
averaging. Plotting the AAE over time is also useful. This lack of information weakens the
arguments the authors make regarding the failure of the aethalometer model apparent at
the San Vittore site. In the text they assert that this failure is due to the presence of a third
source (fresh wood smoke). Here it is important to rule out other causes of failure, which
might arise due to errors in the data processing (e.g. incorrect loading compensation). If pos-
sible, time series should be shown in the annex. If not, this weakness should be mentioned
in the text.

We have conducted our data analysis on observations which have been subjected to quality
control and assurance procedures (see the response above) and therefore these data are not
“raw” data off the instruments. We would argue that the use of such data is more relevant to
the research community because such data are generally what is accessible to the public. We
do however accept that using the raw instrument outputs may offer some additional value
for testing and checking, it does not weaken our conclusions or results.

We have added a paragraph further detailing the data processing and quality control and
assurance procedures. The paragraph reads: “The standard procedure for absorption moni-
toring data was for 10 and 30 minute means to be calculated from one minute observations
which were logged on-site directly from the instrument. All aggregations required a data capture threshold of 60% for a valid summary to be produced. Additional quality control and assurance procedures were undertaken quarterly including: cleaning of the inlet, leak testing, and cleaning of the analytical zone of the instruments. The responses of the AE33 instruments were also checked with optical reference filters regularly. The data were ratified on a monthly basis and compared across the different measurement sites along with other air pollutants and suspicious measurements were invalidated. The raw instrument outputs are archived, but are not routinely used in the data processing within the NABEL monitoring network. However, the raw data can be consulted in case of questions concerning data quality.”

A time series of α has also been included (Fig. A4 and below) to address this, and other comments.

Figure 1: Time series of daily and adaptive Kolmogorov-Zurbenko filtered (KZA) Ångström exponents (α) for six equivalent black carbon (EBC) monitoring sites’ absorption observations in Switzerland between 2008 and 2018. α has been calculated by wavelengths between 370 and 950 nm.
Minor comments

• Change ‘appointment’ in the title to ‘apportionment’.
 Done.

• Pg 1, ln 16: change ‘has be’ to ‘has been’
 Done.

• Pg 1, ln 17: PM2.5 is undefined
 PM$_{2.5}$ is now defined in the abstract and the first occurrence in text.

• Pg 2, ln 19: Suggest using ‘direct legal limits’ since in the unlikely event that BC is itself above the limit values for PM2.5 then BC would be above the legal limit. Non-binding provisions for BC limits are also included in the Gothenburg protocol, see also (Shapovalova, 2016).
 The text now reads “...direct legal limits...”.

• Pg 5, ln 12: Data from AE31 instruments are included and the authors write ‘All absorption observations had been compensated for the filter loading and shadowing effects with the instrument model’s respective algorithms before this analysis was undertaken’. However, the output from the AE31 is slightly different to that of the AE33 in that a correction factor for loading is not automatically applied by the instrument and must be done in post processing. Please clarify.
 This text has been altered to clarify the differences between the two instrument models: “The differences between the AE31 and AE33 technologies mean that the algorithms which compensate or correct for filter shadowing effects and filter loading effects are different. Notably, data from AE31 must be compensated for such effects with a post-processing procedure while the AE33’s algorithms are conducted on-board as part of the measurement cycle. For the full description of the compensation procedures, see...”.

• Pg 7, ln 9: The authors write ‘When using aethalometer and EC data together, the aethalometer observations were aggregated (as arithmetic means) to daily 10 resolution’. I assume the data were averaged to the start and end times of the filters? In which case it would be better to write something like ‘data were window averaged to the start and end times of the filter sampling’.

4
This point was also brought up by Referee #2 and has been addressed. The sentence is now much clearer and describes the data handling step in detail: “When using aethalometer and EC data together, the aethalometer observations were aggregated (as arithmetic means) to daily resolution (midnight to midnight) to ensure the observations spanned the same time period and duration. Only days with both EC and absorption observations were used for these comparisons because interpolation of the less frequent EC data was not attempted.”.

- Pg 7, ln 23: Use ‘recommended by’ instead of ‘reported by’.
 Done.

- Pg 8, ln 12: What was the least squares algorithm used? Given that there is uncertainty in both x and y, orthogonal distance regression should be used.
 We used simple least squares regression models. Although we accept that uncertainty in the EC observations (x) could be argued, the EN16909 thermal method used to determine EC is a reference method and can also be considered “truth”. The very high degree of correlation between EBC and absorption would also result in the different estimators producing very similar results. We believe the use of total least squares/orthogonal distance regression is a preference and consider our approach valid for our analysis.

- Pg 8, ln 14: Here it would be better to use ‘an average of’, rather than a ‘range of’ since the range is later given as 3 m²/g. i.e. write an average of 10 ± 3 m²/g
 The sentence has been altered and now reads: “The sites’ MAC values at 950 nm had an average of 11.3 ± 2.9 m²/g⁻¹ during the analysis period...” Please note that the discussion on the MAC values has been expanded due to the comments of Referee #2, point 13.

- Pg 8, ln 18. The report by Anonymous Referee #2 discusses the issue of the large variability in MAC. How much of the variation in MAC is actually due to instrument differences? It is natural to expect some variability due to this. The effect of this will have been somewhat obscured by using the rolling average presented in the paper, so that Fig. A1 likely does not show the full magnitude of the effect. It would be informative to include e.g. seasonal MAC values on an instrument by instrument basis e.g. for each line of Table 2. A version of Fig. 3 highlighting instrument shifts would also be informative.
 A table containing mean MAC values by site, season, and instrument was produced but it is not practical to include in the manuscript due to the length of the table (154 rows).
Therefore, a supplementary figure (Fig. A2 and below) has been added showing these data. Fig. 3 (also below) has also been enhanced to show the times when instruments were changed as requested. Please note that the discussion on the MAC values has been expanded due to the comments of Referee #2, point 13.

Figure 2: Mean seasonal and instrumental mass absorption cross section/mass absorption coefficients (MAC) for 950 nm for six equivalent black carbon (EBC) monitoring sites in Switzerland between 2008 and 2018.

- Pg 8, ln 27: change ‘is’ to ‘are’.

 Done.

- Pg 14, ln 12: change ‘negative’ to ‘negatively’

 Done.

- Pg 22, Figure A2 caption: Please change the caption to reflect that these are the steps used in the paper and not a general requirement, e.g. to ‘A flow chart of the data processing steps used to apply the aethalometer model’. Some of the steps could have been done in a different order, and apportionment of absorption coefficients is also possible without conversion to EBC.
Figure 3: Mass absorption cross section (MAC) coefficients for 950 nm for different monitoring sites as calculated by rolling simple linear regression models with windows of 180 days (alignment of the window was the centre of the period).
References

Evaluation of equivalent black carbon (EBC) source apportionment using observations from Switzerland between 2008 and 2018

Stuart K. Grange1,2, Hanspeter Lötscher3, Andrea Fischer1, Lukas Emmenegger1, and Christoph Hueglin1
1Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
2Wolfson Atmospheric Chemistry Laboratories, University of York, York, YO10 5DD, United Kingdom
3Amt für Natur und Umwelt Graubünden, Gürtelstrasse 89, 7001 Chur, Switzerland

Correspondence to: Stuart K. Grange (stuart.grange@empa.ch)

Abstract.

Black carbon (BC) or soot is a constituent of particulate matter (PM) which is relevant for negative human health and climate effects, and despite the lack of direct legal limits, it is recognised as an important atmospheric pollutant to monitor, understand, and control. Aethalometers are instruments which continuously monitor BC by measuring absorption at a number of distinct wavelengths. If collocated elemental carbon (EC) observations are used to transform these values into BC mass, by convention, the result is named equivalent black carbon (EBC). BC emitted by different combustion processes have different optical absorption characteristics and this can be used to apportion EBC mass into traffic (EBC\textsubscript{TR}) and woodburning (EBC\textsubscript{WB}) components with a data processing technique known as the aethalometer model. The aethalometer model was applied to six EBC monitoring sites across Switzerland (using data between 2008 and 2018) and was evaluated by investigating diurnal cycles, model coefficients, and ambient temperature dependence of the two EBC components. For one monitoring site, San Vittore, the aethalometer model failed to produce plausible outputs. The reason for this failure was likely due to a high load of freshly emitted wood smoke during the winter which should be thought of as a third distinct emission source. After model evaluation, the trend analysis indicated that EBC\textsubscript{TR} concentrations at the remaining five locations significantly decreased between 2008 and 2018 illustrating the successful widespread installation of diesel particulate filters (DPF) within the vehicle fleet. EBC\textsubscript{WB} also demonstrated significant decreases in most monitoring locations, but not at a monitoring site south of the Alps with a high PM load sourced from biomass burning. This lack of reduction in EBC\textsubscript{WB} indicated that the management of woodburning has been ineffective at reducing BC emissions and concentrations for this, likely representative location. The EBC/PM\textsubscript{2.5} ratios suggested that EBC contributes 6–13\% of the PM\textsubscript{2.5} mass in Switzerland which is important for soot and PM source management.

The aethalometer model is a useful data analysis procedure, but can fail under certain conditions, thus, careful evaluation is required to ensure the method is robust and suitable in other locations.
1 Introduction

1.1 Black carbon

Atmospheric particulate matter (PM) has a variety of components, one of which is black carbon (BC) which is commonly referred to as soot. BC is strongly light absorbing (hence the name), is generally found in the fine PM fraction ($\leq PM_{2.5}$), and is generated by the incomplete combustion of fuels (Hansen et al., 1984; Vignati et al., 2010). Biomass burning, internal combustion engines (especially those which are fuelled by diesel), and industrial processes can all be BC emission sources (Bond et al., 2004; Jacobson, 2001). There are no known BC generation or degradation processes in the atmosphere and because the only removal mechanisms for BC are wet and dry deposition, BC has a lifetime between several days to weeks in the atmosphere. These attributes make BC a reliable tracer for combustion processes.

BC is an important atmospheric pollutant to consider in its own sense however (Anenberg et al., 2012). BC is believed to have a positive (warming) climate forcing effect due to the absorption of radiation and the reduction of albedo, especially when deposited on snow and ice (Ramanathan and Carmichael, 2008; Weinhold, 2012; Bond et al., 2013). BC is harmful to human health and there is evidence that BC is a particularly potent PM component when considering deleterious health effects due to the aerosol’s large surface area to mass ratio, tendency to be enriched with harmful organic compounds, and ability to penetrate deep into the lungs (Janssen et al., 2011; De Prins et al., 2014; Laeremans et al., 2018). The International Agency for Research on Cancer (IARC) has also classed soot as a Group 1 carcinogen indicating there is clear evidence that soot causes cancer in humans (International Agency for Research on Cancer, 2019). It is however, difficult to tease apart the health effects of BC alone from PM as a whole (Jacobson, 2001; European Environment Agency, 2013). These features have made BC an important pollutant to monitor, understand, manage, and control despite not currently having direct legal limits imposed in Europe and elsewhere (Reche et al., 2011; European Environment Agency, 2016).

1.2 Aethalometers and the aethalometer model

BC is measured, sampled, or monitored in a variety of ways but the most widespread is done by aethalometers (Hansen et al., 1984). Aethalometers are described in depth elsewhere, however, briefly they are optical instruments which sample air continuously and deposit the PM onto filter material. The loaded filter is illuminated, the light attenuation is measured as an optical absorption, and the increase in attenuation over time is logged and used to calculate BC concentrations with empirical coefficients. The quartz filter material used by aethalometers can reach saturation, so the instruments employ a filter-tape system where the filter material is advanced if saturation occurs, or when a threshold of elapsed time has passed. Continuously depositing aerosol onto a filter causes artefacts known as filter-scattering and filter-shadowing effects, but there are standard algorithms to compensate for these effects, some of which are applied on-board by the instrument as part of the measurement cycle (Magee Scientific, 2016).

Modern aethalometers used in ambient air quality monitoring networks are multi-wavelength models measuring absorption between the near-ultraviolet (UV) to the near-infrared (IR) range, but at distinct wavelengths within this range. If the wavelength
range is wide enough, analysis of the spectral dependence can be explored. BC sourced from different families of combustion processes demonstrate different absorption dependence at different wavelengths. Most notably, woodburning particles, i.e. wood smoke, generally contains a rich organic component which is very effective at absorbing light in the UV range while diesel soot shows a weaker spectral dependence (Kirchstetter et al., 2004) (Fig. 1). The different spectral dependences between these sources can be leveraged with a data processing technique called the aethalometer model, first reported by Sandradewi et al. (2008) but used many times since in many locations; for examples, see Sandradewi et al. (2008); Favez et al. (2009); Herich et al. (2011); Fuller et al. (2014). In routine aethalometer use, only the 880 nm absorption wavelength is used with a fixed coefficient (called a mass absorption coefficient) which is the strict definition of BC. Therefore, the aethalometer model simply uses information which is generally discarded in most monitoring applications and the barrier for entry to the method is low.

![Graph](image)

Figure 1. Demonstration of different aethalometer absorption dependence on wavelengths for two monitoring sites in Switzerland with distinct aerosol characteristics. Data have been filtered to a single observation (hourly) to show the dependence on the dominating sources.

1.3 **Black carbon nomenclature note**

The nomenclature and vocabulary used for BC is diverse and can lead to confusion (Andreae and Gelencsér, 2006; Petzold et al., 2013). Here, we refer to BC determined by optical measurement techniques, i.e. by aethalometers and transformed with the use of collocated elemental carbon (EC) observations, as equivalent black carbon (EBC). This definition has been recommended by the Global Atmospheric Watch (Tarasova, 2012). When EBC is apportioned into its traffic and woodburning components, the TR and WB subscript notation is used respectively, i.e., EBC_{TR} and EBC_{WB}. If total EBC needs to be used
for clarity against the EBC components, EBC_{TOT} is used. This notation is consistent with Zotter et al. (2017) which this work somewhat extends. When discussing emissions of soot, BC is still used however, because EBC is only a measurement definition and does not refer to the pollutant.

1.4 Objectives

The primary objective of this work is to apply the aethalometer model data transformation technique to apportion long-term (up to ten years) EBC time series from six Swiss monitoring sites into two components: a traffic and a woodburning component (EBC_{TR} and EBC_{WB}) and evaluate the method’s performance. The suitability and limitations of the aethalometer model as a technique to employ before trend analysis will be discussed. A data set is presented where the aethalometer model fails to apportion the two EBC components correctly. This is done to demonstrate the features which will be present if the aethalometer model is inadequate for a particular application, and it outlines that although the aethalometer model is a useful technique, but is not a panacea. The second objective is to expose the EBC_{TR} and EBC_{WB} components to a trend analysis and give explanations for the features observed in the Swiss time series.

2 Methods

2.1 Data

Absorption observations measured by aethalometers for six monitoring sites in Switzerland were analysed (Table 1; Fig. 2). The monitoring sites were either part of the federal monitoring network (National Air Pollution Monitoring Network; NABEL) or networks run by the Swiss Cantonal authorities (states) (Federal Office for the Environment, 2014). Sites were classified as either urban traffic, urban background, rural, or rural mountain according to their surrounds. Four of the sites were located on the Swiss plateau (where the majority of the human population is located) but Rigi-Seeboedenalp, despite being located on the plateau is at altitude (1031 metres; Figure 2). Two monitoring sites, Magadino-Cadenazzo and San Vittore are located south of the Alps in valleys where residential woodburning is much more common than on the Swiss plateau due to its rural nature (Alfarra et al., 2007; Szidat et al., 2007).

Table 1. Information about the six equivalent black carbon (EBC) monitoring sites in Switzerland which were used in this study.

<table>
<thead>
<tr>
<th>Site</th>
<th>Site name</th>
<th>Local ID</th>
<th>Site type</th>
<th>Start date</th>
<th>End date</th>
<th>Days online</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Elevation (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>Urban traffic</td>
<td>2013-12-11</td>
<td>2018-12-31</td>
<td>1846</td>
<td>46.951</td>
<td>7.441</td>
<td>536</td>
</tr>
<tr>
<td>ch0010a</td>
<td>Zürich-Kaserne</td>
<td>ZUE</td>
<td>Urban background</td>
<td>2009-04-02</td>
<td>2018-12-31</td>
<td>3560</td>
<td>47.378</td>
<td>8.530</td>
<td>409</td>
</tr>
<tr>
<td>ch0002r</td>
<td>Payerne</td>
<td>PAY</td>
<td>Rural</td>
<td>2008-03-04</td>
<td>2018-12-31</td>
<td>3954</td>
<td>46.813</td>
<td>6.944</td>
<td>489</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>Rural</td>
<td>2008-03-13</td>
<td>2018-12-31</td>
<td>3945</td>
<td>46.160</td>
<td>8.934</td>
<td>203</td>
</tr>
<tr>
<td>ch2001e</td>
<td>San Vittore</td>
<td>SVI</td>
<td>Rural</td>
<td>2013-10-04</td>
<td>2018-12-31</td>
<td>1914</td>
<td>46.239</td>
<td>9.105</td>
<td>298</td>
</tr>
<tr>
<td>ch0005r</td>
<td>Rigi-Seeboedenalp</td>
<td>RIG</td>
<td>Rural mountain</td>
<td>2013-01-25</td>
<td>2018-12-31</td>
<td>2166</td>
<td>47.067</td>
<td>8.463</td>
<td>1031</td>
</tr>
</tbody>
</table>
Figure 2. Switzerland’s six equivalent black carbon (EBC) monitoring sites and their site classifications. Solid black areas are significant water bodies and shading represents the terrain and elevation. The boundaries of Switzerland and the lakes were extracted from OpenStreetMap (OpenStreetMap contributors, 2019) and the heights were derived from Switzerland’s digital height model (Swiss Federal Office of Topography (swisstopo), 2010).

The absorption observations were measured by two models of multi-wavelength aethalometers manufactured by Magee Scientific. The two models were the AE31 and AE33 which measure adsorption at seven wavelengths: 370, 470, 520, 590, 660, 880, and 950 nm. The AE31 is an earlier generation instrument discontinued in 2016 (Magee Scientific, 2017) while the AE33 aethalometer replaced the AE31 and is currently manufactured (Magee Scientific, 2019). These two aethalometer models share the same measurement principle, however the newer AE33 uses a “dual-spot” approach to allow for a superior method to compensate for filter loading effects (Drinovec et al., 2015). The differences between the AE31 and AE33 technologies mean that the algorithms which compensate or correct for filter shadowing effects and filter loading effects are different. Notably, data from AE31 must be compensated for such effects with a post-processing procedure while the AE33’s algorithms are conducted on-board as part of the measurement cycle. For the full description of the compensation procedures, see Weingartner et al. (2003); Drinovec et al. (2015). Quartz filters were used by the aethalometers and therefore, a multiple light scattering factor (denoted as C) of 2.14 was used (Weingartner et al., 2003). There were thirteen distinct aethalometers used in the monitoring network which were irregularly cycled among the monitoring sites as part of the networks’ maintenance procedures (Table 2). All aethalometers were operated with PM$_{2.5}$ sample inlets.
Table 2. Aethalometer instruments’ locations between 2007 and 2018. Dates have been rounded to the nearest hour and those end dates which are missing shows the instrument was on site to the end of the analysis period (the end of 2018).

<table>
<thead>
<tr>
<th>Site</th>
<th>Site name</th>
<th>Local ID</th>
<th>Start date</th>
<th>End date</th>
<th>Instrument ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>2013-12-10 16:00:00</td>
<td>2014-03-13 10:00:00</td>
<td>AE33-S02-00136</td>
</tr>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>2014-03-13 09:00:00</td>
<td>2014-03-14 16:00:00</td>
<td>AE33-S01-00092</td>
</tr>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>2014-03-14 15:00:00</td>
<td>2016-07-27 11:00:00</td>
<td>AE31-768:0701</td>
</tr>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>2016-07-27 15:00:00</td>
<td>2016-10-26 10:00:00</td>
<td>AE31-718:0605</td>
</tr>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>2016-10-26 10:00:00</td>
<td>2017-07-06 11:00:00</td>
<td>AE31-768:0701</td>
</tr>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>2017-07-06 10:00:00</td>
<td>2018-03-22 12:00:00</td>
<td>AE31-719:0605</td>
</tr>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>2018-03-22 11:00:00</td>
<td>2018-11-29 12:00:00</td>
<td>AE31-768:0701</td>
</tr>
<tr>
<td>ch0031a</td>
<td>Bern-Bollwerk</td>
<td>BER</td>
<td>2018-11-29 10:00:00</td>
<td></td>
<td>AE33-S07-00736</td>
</tr>
<tr>
<td>ch0010a</td>
<td>Zürich-Kaserne</td>
<td>ZUE</td>
<td>2009-04-02 10:00:00</td>
<td>2009-10-08 11:00:00</td>
<td>AE31-769:0701</td>
</tr>
<tr>
<td>ch0010a</td>
<td>Zürich-Kaserne</td>
<td>ZUE</td>
<td>2009-10-08 10:00:00</td>
<td>2011-07-25 14:00:00</td>
<td>AE31-768:0701</td>
</tr>
<tr>
<td>ch0010a</td>
<td>Zürich-Kaserne</td>
<td>ZUE</td>
<td>2011-07-25 13:00:00</td>
<td>2012-08-31 14:00:00</td>
<td>AE31-719:0605</td>
</tr>
<tr>
<td>ch0010a</td>
<td>Zürich-Kaserne</td>
<td>ZUE</td>
<td>2012-08-31 10:00:00</td>
<td>2013-06-05 13:00:00</td>
<td>AE31-768:0701</td>
</tr>
<tr>
<td>ch0010a</td>
<td>Zürich-Kaserne</td>
<td>ZUE</td>
<td>2013-06-05 12:00:00</td>
<td>2014-04-10 11:00:00</td>
<td>AE31-718:0605</td>
</tr>
<tr>
<td>ch0010a</td>
<td>Zürich-Kaserne</td>
<td>ZUE</td>
<td>2014-04-10 10:00:00</td>
<td></td>
<td>AE33-S01-00092</td>
</tr>
<tr>
<td>ch0002r</td>
<td>Payerne</td>
<td>PAY</td>
<td>2008-03-04 15:00:00</td>
<td>2008-05-14 09:00:00</td>
<td>AE31-768:0701</td>
</tr>
<tr>
<td>ch0002r</td>
<td>Payerne</td>
<td>PAY</td>
<td>2008-05-21 09:00:00</td>
<td>2008-10-02 16:00:00</td>
<td>AE31-768:0701</td>
</tr>
<tr>
<td>ch0002r</td>
<td>Payerne</td>
<td>PAY</td>
<td>2008-10-02 15:00:00</td>
<td>2013-04-04 12:00:00</td>
<td>AE31-718:0605</td>
</tr>
<tr>
<td>ch0002r</td>
<td>Payerne</td>
<td>PAY</td>
<td>2013-04-04 11:00:00</td>
<td>2013-06-27 13:00:00</td>
<td>AE31-719:0605</td>
</tr>
<tr>
<td>ch0002r</td>
<td>Payerne</td>
<td>PAY</td>
<td>2013-06-27 12:00:00</td>
<td>2015-09-16 12:00:00</td>
<td>AE31-769:0701</td>
</tr>
<tr>
<td>ch0002r</td>
<td>Payerne</td>
<td>PAY</td>
<td>2015-09-16 12:00:00</td>
<td>2016-06-08 16:00:00</td>
<td>AE31-719:0605</td>
</tr>
<tr>
<td>ch0002r</td>
<td>Payerne</td>
<td>PAY</td>
<td>2016-06-08 10:00:00</td>
<td></td>
<td>AE33-S04-00430</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2008-03-13 12:00:00</td>
<td>2008-06-17 12:00:00</td>
<td>AE31-769:0701</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2008-07-03 13:00:00</td>
<td>2008-08-28 10:00:00</td>
<td>AE31-769:0701</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2008-08-28 11:00:00</td>
<td>2008-12-05 11:00:00</td>
<td>AE31-719:0605</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2008-12-18 11:00:00</td>
<td>2010-03-25 12:00:00</td>
<td>AE31-719:0605</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2010-03-25 11:00:00</td>
<td>2013-06-12 13:00:00</td>
<td>AE31-769:0701</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2013-06-12 13:00:00</td>
<td>2013-12-18 13:00:00</td>
<td>AE31-768:0701</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2013-12-18 14:00:00</td>
<td>2014-06-12 09:00:00</td>
<td>AE31-719:0605</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2014-06-12 09:00:00</td>
<td>2016-01-21 11:00:00</td>
<td>AE31-718:0605</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2016-01-21 10:00:00</td>
<td>2016-12-21 10:00:00</td>
<td>AE31-769:0701</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2016-12-21 10:00:00</td>
<td>2017-05-24 11:00:00</td>
<td>AE33-S00-00060</td>
</tr>
<tr>
<td>ch0033a</td>
<td>Magadino-Cadenazzo</td>
<td>MAG</td>
<td>2017-05-24 10:00:00</td>
<td></td>
<td>AE33-S04-00429</td>
</tr>
<tr>
<td>ch2001e</td>
<td>San Vittore</td>
<td>SVI</td>
<td>2013-10-04 00:00:00</td>
<td></td>
<td>AE33-S02-00133</td>
</tr>
<tr>
<td>ch0005r</td>
<td>Rigi-Seebodenalp</td>
<td>RIG</td>
<td>2013-01-22 14:00:00</td>
<td>2013-05-30 13:00:00</td>
<td>AE33-S00-00049</td>
</tr>
<tr>
<td>ch0005r</td>
<td>Rigi-Seebodenalp</td>
<td>RIG</td>
<td>2013-05-30 10:00:00</td>
<td>2015-11-12 12:00:00</td>
<td>AE33-S00-00060</td>
</tr>
<tr>
<td>ch0005r</td>
<td>Rigi-Seebodenalp</td>
<td>RIG</td>
<td>2015-11-12 11:00:00</td>
<td></td>
<td>AE33-S02-00136</td>
</tr>
</tbody>
</table>
Data from the aethalometers for five of the six Swiss EBC monitoring sites were queried from the NABEL monitoring network’s database while the remaining site’s observations, San Vittore, were provided directly by the Graubünden canton’s environmental department (Amt für Natur und Umwelt). All absorption observations had been compensated for the filter loading and shadowing effects with the instrument model’s respective algorithms before this analysis was undertaken as part of the monitoring networks’ operations (Weingartner et al., 2003; Drinovec et al., 2015). Generally, the observations were stored as hourly means, but for the data which was at higher resolution (10 and 30 minute means), observations were aggregated to create a consistently consistent hourly time series which was used for analysis. Overall, the analysis covered a period between March 2008 to the end of 2018, but the start date of aethalometer operation varied among the different monitoring sites (Table 1; Table 2).

The standard procedure for absorption monitoring data was for 10 and 30 minute means to be calculated from one minute observations which were logged on-site directly from the instruments. All aggregations required data capture thresholds of 60 % for a valid summary to be calculated. Additional quality control and assurance procedures were undertaken quarterly including: cleaning of the inlet, leak testing, and cleaning of the analytical zone of the instruments. The responses of the AE33 instruments were also checked with optical reference filters regularly. The data were ratified on a monthly basis and compared across the different measurement sites along with other air pollutants and suspicious measurements were invalidated. The raw instrument outputs are archived, but are not routinely used in the data processing within the NABEL monitoring network. However, the raw data can be consulted in case of questions concerning data quality.

The method employed to transform absorption observations to EBC requires elemental carbon (EC) concentrations. EC was determined by the standard EN16909 thermal optical transmission (TOT) method using the EUSAAR2 temperature protocol (European Committee for Standardization (CEN), 2017). Unlike the continuous observations which the aethalometers provided, EC concentrations were available as daily samples and ranged from being sampled between every fourth to twelfth day. When using aethalometer and EC data together, the aethalometer observations were aggregated (as arithmetic means) to daily resolution (midnight to midnight) to ensure the observations spanned the same time period and duration. Only days with both EC and absorption observations were used for these comparisons because interpolation of the less frequent EC data was not attempted. The EC samples were also collected with PM$_{2.5}$ inlets. PM$_{2.5}$ observations for the monitoring sites were required to calculate the EBC/PM$_{2.5}$ ratios. These data were accessed with the saqgetr R package which gives access to the European Commission’s AirBase and Air Quality e-Reporting (AQER) repositories in a convenient way (European Environment Agency, 2014, 2019; Grange, 2019b). Only daily validated data were kept for analysis with most of the observations being sourced from high volume samplers.

The analysis presented covered a period between March 2008 to the end of 2018, but the start date of aethalometer operation varied among the different monitoring sites (Table 1; Table 2). All absorption observations, site metadata, and instrument locations data are publicly accessible via a persistent data repository (Grange, 2020).
2.2 Source apportionment

The absorption measures from the aethalometers were apportioned into two components: the traffic fraction (EBC_{TR}) and the woodburning fraction (EBC_{WB}) with the aethalometer model (Sandradewi et al., 2008). The aethalometer model is based on the principle that EBC emitted from woodburning activities has an enhanced absorption in the UV range relative to EBC sourced from the combustion of fossil fuels. A critical component of applying the aethalometer model to produce valid outputs is the selection of the Ångström exponents (which are the slopes of exponential regression models), usually denoted by α (Harrison et al., 2013). Fortunately, in Switzerland, the Ångström exponents for woodburning and traffic sources have been determined robustly using 14C observations of the EC fraction across Switzerland between 2005 and 2012 (Zotter et al., 2017). Here we use 0.9 and 1.68 for α_{TR} and α_{WB} respectively, as recommended by Zotter et al. (2017).

Mass absorption cross section (MAC) coefficients are required to transform optical absorption observations to EBC mass (Magee Scientific, 2016). The instrument manufacturers use fixed MAC values on-board to calculate BC mass (for example the A33’s factory MAC values are displayed in Table A1), but any given MAC value is a function PM size and morphology which will change depending on the PM source (Zotter et al., 2017). For the trend analysis reported here, the MAC values for absorption at the 950 nm wavelength (used for the IR input to the aethalometer model) were calculated with rolling simple least squares linear regression models between absorption and the mass of EC in the PM$_{2.5}$ fraction. A least squares estimator was used because EC was determined with a reference method, and is accepted without uncertainty. The window was 180 days (with centre alignment), and this logic was implemented with the zoo R package (Zeileis and Grothendieck, 2005).

Once the Ångström exponents were chosen and the MAC values calculated, the aethalometer model was applied to the absorption observations at hourly resolution and the R function used for this transformation is available (Grange, 2019a). Based on the absorption at 470 and 950 nm (UV and IR spectra respectively), this resulted in three EBC mass variables for each valid absorption observation: EBC_{WB}, EBC_{TR}, and EBC_{TOT}. A flow diagram which represents the data processing steps can be found in Figure A1.

2.3 Trend tests

Formal trend tests were performed on the EBC components with the Theil-Sen slope estimator, a robust, non-parametric estimator provided by the openair R package (Carslaw and Ropkins, 2012). Before the trend was tested, the observations were aggregated to monthly resolution and deseasonalised with loess models to extract the trend component (R Core Team, 2019). Autocorrelation was taken into account resulting in conservative slope estimations and all trend tests were conducted at the 0.05 significance level.
3 Results and discussion

3.1 Model coefficients evaluation

3.1.1 Mass absorption cross section (MAC) coefficients

The MAC values which were empirically derived using least squares regression models (using EC and absorption at 950 nm) with a 180-day rolling window showed substantial variability (Fig. 3). This suggests that the use of fixed or static MAC values are questionable for trend analysis applications. The sites’ MAC values at 950 nm generally had a range of \(10 \text{ m}^2 \text{ g}^{-1}\) had an average of \(11.3 \pm 2.9 \text{ m}^2 \text{ g}^{-1}\) during the analysis period despite the irregular cycling of different instruments among the sites (Table 2). For perspective, compare this range with the factory MAC values displayed in Table A1. A seasonal pattern was present in the MAC values where summertime absorption measures were higher than those in wintertime which represent a change of average aerosol characteristics during the year which is to be expected. The range of the seasonality was generally less than \(3\) as low as \(0.4 \text{ m}^2 \text{ g}^{-1}\) at Zürich-Kaserne, but as high as \(2.3 \text{ m}^2 \text{ g}^{-1}\) at Magadino-Cadenazzo (Fig. A2). The seasonal variation was also accompanied by intra-instrumental variation.

The MAC values for Rigi-Seebodenalp were atypical and showed a substantial decrease between 2013 and 2016 (Fig. 3). During this period, the same aethalometer was operating at the monitoring location (Table 2; Fig. A3). The MAC value is an empirical coefficient which represents aerosol composition and it is very unlikely that Rigi-Seebodenalp’s aerosol characteristics altered dramatically between 2013 and 2016, therefore the observed decrease in the MAC value was almost certainly an instrument artefact, perhaps a slow degradation in sensitivity. Indeed, the decrease in the MAC value stopped when the instrument was replaced in late-2015 and remained low for the rest of the monitoring period (Fig. A3). This instrument-derived feature was only uncovered due to the presence of collocated EC observations, but due to a lack of additional data, we do not wish to speculate further on what was the cause for this decline in the MAC coefficient.

The rolling least squares regression procedure presented here ensures that the changes in MAC over time are compensated for before EBC mass is calculated with the aethalometer model. The changes or drift in the MAC values, especially for Rigi-Seebodenalp, are not propagated into the EBC masses using this method. Therefore, this approach is recommended over using fixed MAC values if EC time series are available and trend analysis is to be undertaken with several years of aethalometer observations.

3.1.2 Ångström exponents (\(\alpha\))

A critical input for the aethalometer model is the \(\alpha\) values used for the traffic and woodburning sourced EBC (Harrison et al., 2013). The \(\alpha\) values used here were previously derived from comparing \(^{14}\text{C}\) and EC observations (Section 2.2; Zotter et al. (2017)), but to validate if the values were sensible for the sites analysed, \(\alpha\) was calculated for each hourly absorption observation and their distributions investigated. Here, \(\alpha\) was calculated by curve fitting all absorption wavelengths (370, 470, 520, 590, 660, 880, and 950 nm) with exponential regression models.
Errors are 95 % CIs
Vertical lines show when new instruments were installed
Magadino−Cadenazzo
Rural
San Vittore
Rural
Rigi−Seebodenalp
Rural mountain
Bern−Bollwerk
Urban traffic
Zürich−Kaserne
Urban background
Payerne
Rural

Figure 3. Mass absorption cross section (MAC) coefficients for 950 nm for different monitoring sites as calculated by rolling simple linear regression models with windows of 180 days (alignment of the window was the centre of the period).

The distributions of the calculated α values were consistent with those reported by Zotter et al. (2017) which were 0.9 and 1.68 for α_{TR} and α_{WB} respectively. Figure 4 shows the α distributions for three of the monitoring sites along a continuum of increasing woodburning activity (from left to right). The distributions for α at each of the monitoring sites peaked at 1.2, the value used for α_{TR} in the aethalometer model. However, as the monitoring sites’ were exposed to a progressively higher woodburning PM load, the distribution become positively skewed. Magadino-Cadenazzo for example, a site which is exposed to wood smoke, has a tail which extends beyond 1.68 while the urban traffic Bern-Bollwerk site’s α distribution contains only a small component at, and beyond, the α_{WB} value of 1.68. Therefore, the features of the α distributions can be rather informative for diagnostic purposes.

San Vittore’s calculated α were unique because they displayed a bimodal distribution which was not present at the other monitoring sites (Fig. 4). The presence of the bimodal distribution indicates that San Vittore is exposed to an additional source.
3.2 Diurnal cycles

Diurnal plots were used to validate if the two components’ behaviour were consistent with what is expected of their emission source behaviour after the EBC fractions were calculated with the aethalometer model and the model’s coefficients evaluated (Fig. 5). With the exception of Rigi-Seebodenalp, an elevated rural mountain site, both the traffic and woodburning components’ diurnal cycles could be readily understood in terms of source activity influencing the monitoring sites. This gives support to the plausibility of the aethalometer model’s source apportionment ability.

Bern-Bollwerk, an urban traffic site displayed a clear morning rush hour peak for EBC_{TR} with a decline in concentrations in the late morning, followed by a smaller increase in the afternoon/evening rush hour (Fig. 5). This traffic-forced pattern was also present at Payerne and Zürich-Kaserne, rural and urban background sites, respectively, but at lower concentrations. Magadino-Cadenazzo also displayed a clear twin-peak EBC_{TR} diurnal cycle. Here however, the evening peak had approximately the same concentration as the morning peak which was not observed at the other monitoring locations. The strong evening peak was only observed at winter at Magadino-Cadenazzo, This feature was most likely driven by very stable and stagnant atmospheric
Figure 5. Mean hourly equivalent black carbon (EBC) components for the six monitoring sites. Note the different scales on the y-axes.

For most monitoring sites, the EBC\textsubscript{WB} components displayed elevated concentrations in the late evening with a decline in the early morning, consistent with domestic heating demands (Grange et al., 2013). In most cases, this evening peak was followed by decrease and a lesser morning increase in EBC\textsubscript{WB}, likely due to the reignition of woodburning appliances in the morning. However, at the Bern-Bollwerk urban traffic site, the morning EBC\textsubscript{WB} peak was reminiscent of the EBC\textsubscript{TR} peak, indicating a slight contamination of EBC\textsubscript{WB} by EBC\textsubscript{TR} which the aethalometer model was unable to separate. Magadino-Cadenazzo, the rural monitoring location which is exposed to a high load of woodburning PM, the diurnal cycle was very clear and strong.
Figure 6. Mean polar plots of equivalent black carbon (EBC) components for Magadino-Cadenazzo between 2011 and 2018.

Rigi-Seebodenalp’s EBC diurnal cycles were different than the other monitoring locations (Fig. 5). This monitoring site is located at an elevation of 1031 metres, is isolated from any significant local emissions, and is intermittently in the boundary layer and therefore, at times is not influenced by surface source activities (Grange et al., 2018). These site attributes resulted in EBC diurnal cycles being driven primarily by boundary layer evolution rather than local source strength and activities. When the convective boundary layer grew in vertical extent and exceeded the site’s elevation, EBC was mixed to the site, but when the stratified nocturnal boundary layer decoupled the site from surface-based emissions, concentrations remained low (Fig. 5). This feature was clearer for EBC\textsubscript{TR} than EBC\textsubscript{WB} suggesting traffic, rather than woodburning emissions are more influential at Rigi-Seebodenalp.

3.3 Aethalometer model failure

San Vittore is a small, rather rural settlement located in the Mesolcina Valley in the south of Switzerland (Fig. 2), an area which experiences high concentrations of PM and BC from residential woodburning. The diurnal plots for San Vittore demonstrate, on average, negative mass contributions for EBC\textsubscript{TR} when EBC\textsubscript{WB} concentrations were high in the evening (averages shown in Fig. 5). This is an implausible situation and indicates the failure of the aethalometer model to correctly apportion the traffic and woodburning EBC sources. When the time series of the EBC\textsubscript{TR} and EBC\textsubscript{WB} are plotted, the negative contributions are very clear during the colder months, November to December (Fig. 7).

These negative contributions can be managed to some extent by altering the woodburning Ångström exponent (α_{WB}), but only with justification. In the case of San Vittore, the α_{WB} was increased to ≈ 2.0 (a very high value) in an attempt to eradicate the negative EBC\textsubscript{TR} mass contributions (Fig. 7). This solution only partially resolves the negative EBC\textsubscript{TR} concentrations, but
Figure 7. EBC\(_{TR}\) and EBC\(_{WB}\) hourly time series between 2014 and 2018 at San Vittore using two values for \(\alpha_{WB}\). The \(\alpha_{WB}\) of 1.68 was used for the analysis but showed negative contributions of EBC\(_{TR}\) when EBC\(_{WB}\) concentrations were high and using an \(\alpha_{WB}\) of 2.0 showed implausible EBC\(_{TR}\) concentrations at this site.

...also results in the EBC\(_{TR}\) being estimated at implausibly high concentrations for this location. This is most evident during the cooler periods where EBC\(_{WB}\) concentrations are high due to a heavy burden of wood smoke, but EBC\(_{TR}\) concentrations are also high and based on San Vittore’s characteristics, we concluded that the aethalometer model is unable to separate the two EBC components in this time series.

5 The San Vittore example represents a very clear example of when the aethalometer model fails and the results cannot be used further for data analysis. The aethalometer model fails in this example because the monitoring site is exposed to freshly emitted wood smoke from the near-by residential properties. Woodburning aerosol which has not been exposed to any or very little atmospheric ageing has different special properties than those exposed to atmospheric processing (Jimenez et al., 2009) (which was indicated in Fig. 4) and is the explanation for the aethalometer model failure. The aethalometer model’s two-source approach is most likely insufficient for the freshly emitted wood smoke which may need to be treated as a third distinct source. A receptor modelling approach (such as PMF) may be a technique which could resolve these three sources, but an investigation of this was outside of the scope of this study. Observations from the San Vittore site were excluded from any further analysis.
but have been presented to demonstrate that although the aethalometer model can be a useful technique, it is pragmatic and is not appropriate in all cases.

3.4 EBC dependence on air temperature

BC emissions from traffic and woodburning sources are not only different in respect to their timing as discussed in Section 3.2, but also by their dependence on ambient air temperature. Although vehicle emissions of PM are known to be temperature dependent (Jamriska et al., 2008; Weilenmann et al., 2009), this effect can be expected to be less pronounced when compared to residential heating emissions which have a quite distinct “heating threshold temperature” where emissions will increase as the air temperature decreases further to meet an increasing space heating energy demand. Additionally, in warmer periods, there is very little or no emissions of BC from residential heating.

These different source patterns were clearly demonstrated for the Swiss EBC monitoring sites with Magadino-Cadenazzo EBC\textsubscript{WB} concentrations being negatively correlated with air temperature, and with increases in mean EBC\textsubscript{WB} concentrations once air temperatures were below 12°C (Fig. 8). Temperatures of 17°C and above resulted in EBC\textsubscript{WB} being less than 0.15 µg m-3 at the same location. Payerne’s EBC components showed similar patterns to Magadino-Cadenazzo while the sites which were influenced more by traffic emissions, Bern-Bollwerk and Zürich-Kaserne still demonstrated a greater ambient temperature dependence for EBC\textsubscript{WB} than EBC\textsubscript{TR} despite EBC\textsubscript{TR} concentrations being higher for most temperatures.

Due to Rigi-Seeodenalp’s elevated location, the patterns observed are different than at the other monitoring sites, in particular as temperature increased so did EBC\textsubscript{TR} concentrations (Fig. 8). This was a result of mixing of traffic sourced pollutants to the monitoring location and shows that Rigi-Seeodenalp is influenced more by traffic emissions than those originating from woodburning activities which was also suggested by Fig. 5.

3.5 Trend analysis

After the aethalometer model split EBC into the two components, EBC\textsubscript{TR} was found to be significantly decreasing across all monitoring sites in Switzerland between 2008 and 2018, with the exception of the rural mountain monitoring site, Rigi-Seeodenalp (Fig. 9). Bern-Bollwerk, an urban traffic site was the most polluted EBC monitoring site (Table A2) and saw the greatest reduction in EBC\textsubscript{TR} with a decrease of -0.13 µg m-3 year-1. Magadino-Cadenazzo, Payerne, and Zürich-Kaserne demonstrated modest significantly decreasing EBC\textsubscript{TR} trends ranging from -0.028 to -0.059 µg m-3 year-1 (Fig. 9).

These EBC\textsubscript{TR} trends can be interpreted as successful management of BC emissions from vehicular internal combustion engines. There were no obvious breakpoints in the trend components, but the widespread installation of diesel particle filters (DPF) for the (late) Euro 4 and 5 emission standards (beginning in 2000) and the elimination of older diesel-fuelled vehicles are most likely the main drivers for the reductions in concentrations of EBC\textsubscript{TR} (Gill et al., 2011; Reşitoğlu et al., 2015). The efficacy of DPFs for trapping soot post-combustion chamber has offset the high proportion of diesel passenger vehicles in the European fleet which peaked in 2010 at over 50 % (Schiermeier, 2015; International Council on Clean Transportation Europe, 2015; Zachariadis, 2016; ACEA, 2018). However, the diesel market share for passenger vehicles sharply declined in the wake
Errors are 95 % CIs

Figure 8. EBC_{TR} and EBC_{WB} dependence on air temperature for five equivalent black carbon (EBC) monitoring sites in Switzerland.

of the Volkswagen emission scandal (“dieselgate”) after 2015, and this market change may also be a contributory factor in the EBC_{TR} trends observed after about 2016.

EBC_{WB} trends were different than those observed for EBC_{TR}, even when comparing the same monitoring sites (Fig. 9). The urban monitoring locations, Bern-Bollwerk and Zürich-Kaserne demonstrated significantly decreasing EBC_{WB} trends but at a smaller magnitude when compared to the EBC_{TR} components at the same sites. Payerne’s EBC_{WB} concentrations were also found to be decreasing significantly, but at a minute rate (-0.005 µg m⁻³ year⁻¹). Critically, the monitoring site which experiences the greatest woodburning PM load, Magadino-Cadenazzo south of the Alps (Fig. 2), showed no significant trend in the EBC_{WB} component (Fig. 9). This is in contrast to the traffic-sourced BC and indicated that efforts to reduce PM emissions from woodburning activities have not been successful in communities south of the Alps. The same conclusion was found when PM₁₀ observations were previously analysed at the same monitoring site (Grange et al., 2018).

Figure 5 and 8 suggest that Rigi-Seebodenalp’s isolation from localised BC sources made the site distinct from the other EBC monitoring sites in Switzerland. The trends for Rigi-Seebodenalp were also distinct and showed no significant trend in both the EBC_{TR} and EBC_{WB} components (Fig. 9).
Figure 9. Deseasonalised trends of EBC_{TR} and EBC_{WB} at five EBC monitoring sites in Switzerland between 2008 and 2018. Asterisks (*) in the panels indicate if the trend was statistically significant and dashed lines show the trend tests’ 95 % confidence interval.

EBC_{TR} trends at Payerne, Magadino–Cadenazzo, and potentially Zürich–Kaserne suggest that breakpoints in the observations are present at the middle of 2013 (Fig. 9). Curiously, these changes were not observable in the absorption observations themselves, but could be detected in the calculated α with adaptive Kolmogorov-Zurbenko filters (KZA filters) (Zurbenko et al., 1996) (Fig. A4). The times of these small breakpoints could not be robustly traced to operational activities, but they might have been caused by different batches of aethalometer filter-tape which were continuously introduced across the monitoring network at this time. Therefore, these data suggest that these breakpoints are instrument artefacts. The identification of these features reinforces that the use of the aethalometer model is very useful, it is a pragmatic technique which requires careful evaluation.

3.6 EBC/PM$_{2.5}$ ratios

BC is almost exclusively an anthropogenic pollutant with generally minor and intermittent contributions from “naturally” caused combustion processes. It is therefore useful to explore what effect a complete eradication of the BC emission sources would have on air quality. The seasonal EBC/PM$_{2.5}$ ratios for the five Swiss EBC monitoring sites between 2014 and 2018 are shown in Fig. 10 and shows that the ratios were variable among the monitoring sites and seasons. Bern-Bollwerk, the urban traffic site had the highest EBC/PM$_{2.5}$ ratio while Payerne and Rigi-Seebodenalp had the lowest. Again, Fig. 10 gave plausibility to the aethalometer model’s source apportionment abilities because features such as EBC$_{WB}$ having very low
contributions in the summer for most sites, even for the biomass burning dominated Magadino-Cadenazzo location. However, as suggested by Fig. 5, Bern-Bollwerk’s EBC\textsubscript{WB} contribution to PM\textsubscript{2.5} were most likely too high, indicating that the aethalometer model was been unable to fully separate the two EBC\textsubscript{TR} and EBC\textsubscript{WB} fractions completely for this particular monitoring site.

![Figure 10](image.png)

Figure 10. Seasonal equivalent black carbon (EBC)/PM\textsubscript{2.5} ratios for five monitoring sites in Switzerland between 2014 and 2018.

On first inspection, the EBC\textsubscript{TOT} contribution to PM\textsubscript{2.5} mass seems modest, ranging from 6–13 % depending on site and season. Compare these values to the largest European urban areas, Paris and London, where their BC/PM\textsubscript{2.5} ratios have been reported (at single heavily trafficked locations) as 43 ± 20 % and ≈ 50 % respectively (Ruellan and Cachier, 2001; Grange et al., 2016). If BC was perfectly controlled at the source of emission, Switzerland could achieve a 6–13 % reduction of PM\textsubscript{2.5} concentrations to aid with the compliance with the annual and daily limits set for PM\textsubscript{2.5}, most notably Switzerland’s tight annual 10 \(\mu\text{g m}^{-3}\) year\(^{-1}\) limit introduced in 2018.
The discussion above is focused on the contribution of EBC to PM. In addition, BC should be reduced to the lowest possible level because of its classification as a Group 1 carcinogen by the International Agency for Research on Cancer (IARC; entered as soot) (International Agency for Research on Cancer, 2019). The reduction of soot emissions also has co-benefits for reducing climate warming effects and this can also be used for motivation for the implementation of soot control at the source.

4 Conclusions

Using aethalometers for EBC monitoring allows for the application of the aethalometer model to split EBC into EBC\textsubscript{TR} and EBC\textsubscript{WB} components. The aethalometer model is a useful and pragmatic data processing technique, but it requires evaluation before using the model’s outputs for further data analysis activities. Based on the results presented using Swiss aethalometer observations from six sites between 2008 and 2018, these recommendations can be offered to other data users:

- Values used for the mass absorption cross section (MAC) coefficients and the Ångström exponents (α) should be checked with the observational record which is being analysed to ensure they are plausible for use with the particular data set. EC observations are however required for the calculation of MACs and therefore, the expansion of monitoring networks to include regular EC samples is recommended for better exploitation of aethalometer absorption data.

- Evaluate the calculated EBC\textsubscript{TR} and EBC\textsubscript{WB} by investigating the presence of negative mass contributions, their diurnal cycles, and ambient temperature dependence to ensure these features are consistent with what is known about the sites’ PM load and relevant physical and chemical atmospheric processes.

- If available, put the EBC\textsubscript{TR} and EBC\textsubscript{WB} in context by using PM mass concentrations.

These recommendations will help those who are interesting in applying the aethalometer model which has a rather low barrier to entry.

Despite the failure of the aethalometer model to produce value outputs for one of the six monitoring sites analysed, EBC\textsubscript{TR} and EBC\textsubscript{WB} were successfully analysed separately at five locations, and different trends were observed for the two EBC components. EBC\textsubscript{TR} concentrations significantly decreased across all monitoring sites between 2008 and 2018 with the exception of an isolated rural mountain monitoring location at a maximum rate of $-0.13 \mu g m^{-3} year^{-1}$. It is likely that the EBC\textsubscript{TR} trends were primarily driven by the widespread installation of effective DPF throughout the in-service heavy- and light-duty vehicle fleet. Trends of EBC\textsubscript{WB} were more variable and despite some significantly deceasing trends of some monitoring sites, a site known to be heavily burdened by wood smoke showed no significant trend over the 2008 and 2018 monitoring period. This is evidence of ineffective management of reducing BC and PM emissions from domestic wood burning which has been noted in the past. The EBC/PM\textsubscript{2.5} ratios for the five monitoring sites showed location and seasonal variability, and the EBC contribution to PM\textsubscript{2.5} was between 6 and 14%. This EBC/PM\textsubscript{2.5} ratio is low when compared to other heavily trafficked sites in Paris and London, but is important to know for an air quality management perspective. The aethalometer model is a pragmatic and useful data processing technique, but full evaluation is needed to ensure the results are suitable for further data analysis.
Code and data availability. The data sources used in this work are described and are publicly accessible via a persistent data repository (Grange, 2020). Additional information about these data are available from the authors on reasonable request.

Author contributions. SKG and CH developed the research questions and conducted the data analysis. HP and AF collected and supplied additional data. SKG and CH prepared the manuscript with input from LE.

Competing interests. The authors declare no competing interest.

Acknowledgements. This work was financially supported by the Swiss Federal Office for the Environment (FOEN). SKG is also supported by the Natural Environment Research Council (NERC) while holding associate status at the University of York. The authors thank the COST Action CA16109 COLOSSAL (Chemical On-Line cOmpoSition and Source Apportionment of fine aerosoL) for motivating this research.
Table A1. Factory mass absorption cross section (MAC) coefficients for the AE33 aethalometer (Magee Scientific, 2016).

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>MAC value ($m^2 g^{-1}$)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>370</td>
<td>18.47</td>
<td></td>
</tr>
<tr>
<td>470</td>
<td>14.54</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>13.14</td>
<td></td>
</tr>
<tr>
<td>590</td>
<td>11.58</td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>10.35</td>
<td></td>
</tr>
<tr>
<td>880</td>
<td>7.77</td>
<td>The definition of black carbon (BC)</td>
</tr>
<tr>
<td>950</td>
<td>7.19</td>
<td></td>
</tr>
</tbody>
</table>

Table A2. Summary statistics for daily equivalent black carbon (EBC) at five monitoring sites in Switzerland between 2008 and 2018.

<table>
<thead>
<tr>
<th>Site name</th>
<th>Site type</th>
<th>EBC_{TOT} ($\mu g m^{-3}$)</th>
<th>EBC_{TR} ($\mu g m^{-3}$)</th>
<th>EBC_{WB} ($\mu g m^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bern-Bollwerk</td>
<td>Urban traffic</td>
<td>1.37 (95% CI [1.34, 1.39])</td>
<td>0.83 (95% CI [0.82, 0.85])</td>
<td>0.53 (95% CI [0.52, 0.55])</td>
</tr>
<tr>
<td>Zürich-Kaserne</td>
<td>Urban background</td>
<td>0.77 (95% CI [0.76, 0.79])</td>
<td>0.54 (95% CI [0.53, 0.55])</td>
<td>0.23 (95% CI [0.23, 0.24])</td>
</tr>
<tr>
<td>Payerne</td>
<td>Rural</td>
<td>0.49 (95% CI [0.48, 0.50])</td>
<td>0.29 (95% CI [0.28, 0.29])</td>
<td>0.20 (95% CI [0.20, 0.21])</td>
</tr>
<tr>
<td>Magadino-Cadenazzo</td>
<td>Rural</td>
<td>0.90 (95% CI [0.87, 0.93])</td>
<td>0.39 (95% CI [0.38, 0.41])</td>
<td>0.50 (95% CI [0.48, 0.52])</td>
</tr>
<tr>
<td>Rigi-Seebodenalp</td>
<td>Rural mountain</td>
<td>0.24 (95% CI [0.23, 0.25])</td>
<td>0.15 (95% CI [0.15, 0.16])</td>
<td>0.09 (95% CI [0.09, 0.10])</td>
</tr>
</tbody>
</table>
Acquire PM$_{2.5}$ absorption observations from an aethalometer

Collect PM$_{2.5}$ samples and analyze for elemental carbon (EC)

Determine attenuation coefficient for the aethalometer

Correct for multiple scattering and filter loading effects

Calculate mass absorption cross section (MAC) coefficients by using rolling regression

Choose Ångström exponents

Apportion traffic and woodburning sources with the aethalometer model

Use apportioned equivalent black carbon (EBC) for data analysis

Figure A1. A flow chart of the data processing steps used to apply the aethalometer model.
Figure A2. Mean seasonal and instrumental mass absorption cross section/mass absorption coefficients (MAC) for 950 nm for six equivalent black carbon (EBC) monitoring sites in Switzerland between 2008 and 2018.
Figure A3. Mass absorption cross section/mass absorption coefficients (MAC) values for 950 nm at Rigi-Seebodenalp and coded by the aethalometers which were operating at the monitoring site.
Figure A4. A flow chart: Time series of the data processing steps required to apply the aethalometer model: daily and adaptive Kolmogorov-Zurbenko filtered (KZA) Ångström exponents (α) for six equivalent black carbon (EBC) monitoring sites’ absorption observations in Switzerland between 2008 and 2018. α has been calculated by wavelengths between 370 and 950 nm.
References

