
Responses to the comments by Reviewer 1. 

 

We greatly appreciate constructive comments and recommendations by Reviewer 1.   

Changes recommended: 

(I)  The weight of the manuscript needs to be on the ML approach, this is currently not the 
case.  

We have removed some details about the aerosols and have added the following section 
to the introduction: 

 “This paper investigates the potential of using advances in machine learning to invert aerosol 
properties (aerosol extinction coefficient profiles, single scattering albedo and scattering phase 
function) from a hyperspectral remote sensing technique called multi-axis differential optical 
absorption. 

Machine learning (ML) is a branch of artificial intelligence that derives its roots from pattern 
recognition and statistics. The goal of ML is to build statistical (or mathematical) models of a 
real-world phenomenon by relying on training examples. For instance, in supervised ML, a 
model is first presented with a set of paired examples (termed as the training set), where every 
training example contains a pair of input variables and output variables, and the goal of ML 
algorithms is to find the statistical structure of mapping from the input variables to the output 
variables that match with the training examples and can be generalized to unseen examples 
(termed as test set). The learned mapping (or the model) can be applied to the inputs of test 
examples to make predictions on their outputs. There are several advantages of using ML. 
Firstly, it can sift through vast amounts of training data and discover patterns that are not 
apparent to humans. Secondly, ML algorithms can have continuous improvement in accuracy 
and efficiency with increasing amount of training data. Thirdly, ML algorithms are usually very 
fast to apply on test examples since the time-consuming training process of ML models is offline 
and one-time. With these advantages as well as the availability of faster hardware, ML has soon 
become the most popular data analytic technique since the 1990s. In recent years, it has also been 
applied to the field of remote sensing (Efremenko et al., 2017; Hedelt et al., 2019). 

Artificial neural networks (ANN) is one of the many methods studied in the ML field that has 
found a lot of success in recent years over a number of commercial problems such as image 
detection, text translation, and speech recognition. It is inspired by the biological neural networks 
constituting animal brains. As an analogy to a biological brain, an ANN is based on artificial 
neurons. An artificial neuron is a mathematical function receiving and processing input signals 
and producing outputs signals or activations. Each neuron comprises of weighted inputs, an 
activation function, and an output. Weights of the neuron are parameters to be adjusted, while the 
activation function defines the relationship from the input signals to the output signals. When 
multiple neurons are composed together in a layered manner (where the output signals of 
neurons in a given layer are used as inputs for the neurons in the next layer), we call it an 
artificial neural network (ANN). A common algorithm for training ANNs is the backpropagation 
algorithm, that passes the gradients of errors on the training set from the output layer to inner 



layers to refine the weights at all layers in an incremental way. The backpropagation algorithm 
converges when there is no change in ANN weights across all layers beyond a certain threshold. 
There are several optimization methods that are used for performing backpropagation and are 
behind standalone ANN packages commonly used by the ML community. ANNs have many 
different types depending on the specifics of the neuron arrangement or architecture. A simple 
type of ANN is a multilayer perceptron (MLP), where all neurons at a given layer are fully 
connected with all neurons of the next layer, also termed as dense layers. Other complex types of 
ANN include convolutional neural network (CNN) and recurrent neural network (RNN). Two 
important types of artificial neural networks used in this study are the convolutional neural 
networks (CNN) (Fukushima, 1980; LeCun et al., 1999) and the Long short-term memory 
(LSTM) neural networks (Hochreiter and Schmidhuber, 1997), which are variants of recurrent 
neural networks.  

Convolutional neural network (CNN) is a class of deep neural networks that uses the convolution 
operation to define the type of connections from one layer to another. While they have shown 
impressive results in extracting complex features from images in computer vision applications 
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2015), they are relevant in many other 
applications involving structured input data, e.g., 1D-sequences. A CNN is composed of an input 
layer, multiple hidden layers and an output layer. The hidden layers usually consist of several 
convolutional layers, followed by pooling layers, fully connected layers (dense layers) and 
normalization layers. Figure 1 shows a simple example of CNN. The input vector (or sequence) 
is first passed through a convolutional layer where it is convolved with 3 filters (convolution 
kernels) of size 3 using the same padding to produce three 6x1 feature maps. Since the ReLU 
function (f x = max	(0, x)) is commonly chosen as the activation function in CNNs, the feature 
maps only contain positive values. Then the max pooling layer picks the maximum value every 3 
elements for each feature map, generating three 2 x 1 vectors. After passing through a flatten 
layer, the max pooling output is reshaped into a 6 x 1 vector, which is followed by a dense (fully 
connected) layer with 2 nodes. The dense layer multiplies its input by a weight matrix and add a 
bias vector for generating the output of the model. The computer adjusts the model’s 
convolutional kernel values or weights through a training process called backpropagation, a class 
of algorithms utilizing the gradient of loss function to update weights. For the case in Figure 1, 
there are 26 tunable parameters. ( 3 + 1 ×3 = 12 from convolution kernels and 6 + 1 ×2 =
14 from the dense layer.)  

 
Figure 1: a simple example of CNN 



 

Long short-term memory (LSTM) neural networks have many applications such as speech 
recognition (Li and Wu, 2015) and handwriting recognition (Graves et al., 2008; Graves and 
Schmidhuber, 2009). They are a special kind of ANNs termed as recurrent neural networks 
(RNNs). RNNs are designed for modeling sequence dependent behavior (e.g., in time). They are 
called “recurrent” because they perform the same operation for every element of a sequence, 
with the output at a given element dependent on previous computations at earlier elements (Britz, 
2015). This is different from traditional neural networks wherein all the input-output examples 
are assumed to be independent of each other.  

 
Figure 2: Unrolled recurrent neural network 

Figure 2 is a diagram of an unrolled RNN with t input nodes, where “unrolled” means showing 
the network for the full sequence of inputs and outputs. The RNNs work as follows. At the first 
element of the sequence, the set of input signals x3 (which can be multi-dimensioinal) is fed into 
the neural network F to produce an output h3. At the next element of the sequence, the same 
neural network F takes both the next input x5 and previous output h3, generating the next output 
h5.  This recurrent computation continues for t times to produce the output at the tth element of 
the sequence, h6. While RNNs are powerful architectures for modeling sequence behavior, 
classical RNNs are inadequate to capture long-term memory effects where the inputs-outputs at a 
given element of the sequence can affect the outputs at another element of the sequence 
separated by a long interval. Long-short-term memory (LSTM) models are variants of RNNs that 
are able to overcome this challenge and are efficient at capturing long-term dependencies as well 
as short-term dependencies. It does so by introducing an internal memory state that is operated 
by neural network layers termed as gates, such as the “input gate,” that adds new information 
from the input signals to the memory state, the “forgot gate,” that erases content from the 
memory state depending on the input signals, and the “output gate,” that transforms information 
contained in the input signals and the memory state to produce output signals.   



 
Figure 3:  LSTM cell diagram (modified from Thomas, 2018). 

The LSTM cell used in this study is illustrated in Figure 3, of which the update rules are:   

g8 = tanh	(b; + x8U; + h8=3V;) 

i8 = σ(bA + x8UA + h8=3VA) 

f8 = σ(bB + x8UB + h8=3VB) 

s8 = s8=3 ∘ f8 + g8 ∘ i8 

o8 = σ(bF + x8UF + h8=3VF) 

h8 = tanh	(s8) ∘ o8 

where j is the element index, σ(x) represents the sigmoid function, and tanh	(x) represents the 
hyperbolic tangent function. x ∘ y denotes the element-wise product of x and	y.  U;, UA, UB, UF 
are the weights for the input x8, while V;, VA, VB, VF are the weights for the other input h8=3, and 
b;, bA, bB, bF are the scalar terms (termed as bias). The term g8 is the input modulation gate, 
which modulates the input b; + x8U; + h8=3V; by a hyperbolic tangent function, squashing the 
input between -1 to 1. The term	i8 is the input gate, which applies a sigmoid function to its input, 
limiting the output values between 0 and 1. The input gate i8 determines which inputs are 
switched on or off when multiplying the modulated inputs (g8 ∘ i8). The term s8 is the internal cell 
state that provides an internal recurrence loop to learn the sequence dependence. The terms f8 and 
o8 are the forgot gate and output gate, respectively. They have similar function to the input gate 
	i8, regulating the information into and out of the LSTM cell. The term h8 is the output at step j. ” 

 (II) Normally, for ML, the data is split into three sets: (1) a training dataset (2) an evaluation 
dataset used during training to identify when the training results in overfitting (3) a 
completely new set of data for testing. ... The authors seem to have only used a validation data 
set (25% of the total data set) for the testing but no proper testing with parameters outside the 
training range (so not only "not this specific combination") was performed. 



We thank the reviewer for bringing this point on the correctness of our evaluation setup 
and we would like to clarify that no part of the test data was used in any way during 
training, thus ensuring the validity of our test results in representing the performance of 
our ML model on samples outside the training set. Note that in any supervised ML 
experiment, it is very important to ensure that there is no overlap between the training 
and test sets, so that the performance on the test set is a true indicator of generalization 
performance, i.e., the performance on “unseen” instances never seen before during 
training (also known as out-of-sample instances). This is generally done by holding off a 
fraction of the overall data during training, thus partitioning the overall data into two sets: 
a “training set” used only for model building, and a “test set” used only for model 
evaluation (for further details on evaluating supervised ML models, see Tan et al., 2018 
and Fiedman et al., 2001). A common approach for partitioning the overall data into 
training and test sets is to consider random sampling, also known as the random holdout 
method [ak1]. In our experiments, we randomly partitioned the overall data into a 
training set (comprising of 75% instances) and a test set (comprising of 25% instances). 
Further, an optional procedure that is sometimes followed is to hold a certain fraction of 
the training set as the “validation set” and monitor the performance on the validation set 
during training to either avoid overfitting or to tune the hyper-parameters of the ML 
model. Since the validation set is used during model building (although indirectly) it is no 
longer considered as a representation of “unseen” instances, and hence, the validation 
performance is not a true indicator of generalization performance. Note that in our work, 
we did not make use of any validation set, as the values of all hyper-parameters in our 
ML model were kept constant across all experiments. Instead, we only report our results 
on the test set that was not used during training, either directly or indirectly. 

We have added the following text to the revised paper to address this comment:  

Section 4 (lines 315 to 318): “ML algorithm was trained on 75% randomly selected 
measurement simulations (1094400 samples) and model performance was tested on the 
remaining 25%. Note, that no validation data was held off from the 75% training set for 
tuning hyper-parameters of our ML model, as all ML hyper-parameters were kept constant 
across all experimental settings in this paper.” 

  Section 5 (lines 378 to 385): “We trained the model on 75% of the dataset for 124 
epochs with a batch size of 640. The following choice of hyperparameters was used: 
choice of optimizer=RMSprop, lr=0.001, rho=0.9, epsilon=None, and decay=0.0. We did 
not perform any hyper-parameter tuning on a separately held validation set inside the 
training set, and the values of all hyper-parameters in our ML model were kept constant 
throughout all experiments in the paper on the test set. In order to ensure that there was 
no overlap between the training and testing steps, we did not make use of the test data 
either directly or indirectly during the training phase, either for learning parameter 
weights or selecting hyper-parameters.”  

General comments: 

(1) There is a lengthy (and maybe not super accurate, see below) description on the aerosol 
phase function and the asymmetry parameter, both in the introduction and in Sect.4. However, 
there is no information on ML in the intro. This does not at all reflect the title. After all, this 
manuscript claims to be about the ML as inversion algorithm. Suggestion: Bundle the aerosol 



information from here and from Sect. 4 in the section about training/validation/test data 
creation (which is currently Sect. 4) and include some paragraph or two on ML use in inverse 
modelling and general ML. 

We’ve shorten the aerosol part and added general description of ML and detailed 
description of the ML model.  See reply to general comments (1)        

 (2) I suggest a different ordering: (1) general introduction including advances in ML, aerosol 
importance in general, current retrieval techniques and why ML should be applied to aerosol 
retrieval (2) MAXODAS method description (3) Aerosol properties and modelling and forward 
modelling with VLIDORT (4) Overview of the methodology of the 3 necessary steps (instead of 
selling it as two steps as done in Sect. 3, where the first of the two has itself two steps) and a 
detailed description of the specific ML setup and choice of hyperparameters. (5...) as before 

See reply to general comments (1) 

(3) While what is written about OEM and parametrized methods is true, most of it is true for 
ML as well (i.e regarding e.g. the T/P profile). This section paints an overly dark image of 
OEM and parametrized codes. I think that the main problem with "traditional" methods is 
indeed the time they take, and this should be clearly (even more clearly) stated, since this is the 
one huge advantage of using ML. Also, especially around line 136, it gives the impression of 
full profile retrieval of asy and ssa, while in fact, it is "only" the aod profile and single scalar 
values asy and ssa valid for all layers. 

We have reworded this part (lines 203-206): 

“Aerosol extinction coefficient profiles are inverted while aerosol single scattering albedo 
and asymmetry factor are typically assumed based on the co-located AERONET 
measurements. They also require external information about the atmosphere (e.g. 
temperature and pressure profiles) that might not be readily available at the measurement 
time scales, and a priori information that does not typically exist.” 

(4) 

(a) Which backend was used? Tensorflow, Theano? Some other? Why the mentioning of the 
yupiler notebook? Why was it used at all? Certainly no web-based interactivity is needed? Why 
wasn’t it simply put in a plain python script? 

 TensorFlow backend was used. We mention Jupyter Notebook just because the code is 
implemented in Jupyter Notebook. Yes, web-based interactivity is not needed and of 
course we can use plain python script. We used Jupyter notebooks just for easy sharing of 
code, analysis of results, and reproducibility of experiments. 

(b) CNN is normally used in ML for image recognition, why is it used here? Why is LSTM 
used? Maybe some intro on recurrent neural networks in general is needed. This seems to 
indicate … that scans are not considered separately, but as a function of time.... (so a scan 
from now and then from 10 minutes, not one from here and now and the next one from 
tomorrow and somewhere else). However, this seems not to fit your introduction and abstract 
where you very specifically write about a single scan. This is very confusing and needs 
explanation. Also maybe, you can start with explaining what a SimpleRNN layer is and why 
this was not chosen? 



Different from image recognition in which 2D CNN is usually used, what we use in our 
model is 1D CNN which is good for capturing features from 1D-sequences. We’ve also 
added general introduction of LSTM. As mentioned above, we consider the profile as a 
sequence, that’s the reason we use the LSTM. We do not use the LSTM in a typical way 
where the input or output sequence is a time series. In our case, it is nothing related to 
time but a series of partial AOD values at sequential heights. Simple RNN is inadequate 
to capture long-term memory effects where the inputs-outputs at a given element of the 
sequence can affect the outputs at another element of the sequence separated by a long 
interval. Actually we’ve tried simple RNN and it does not work as well as LSTMs. 

We have added the following text to the paper in Section 5 (lines 330 to 340) to address 
this comment: 

“Note, that in our supervised ML formulation, there are sequences in both the input 
signals and output signals, namely ΔAMFaerosol sequence and partial AOD sequence, 
respectively. Further note that the input and output signals used in our problem setting are 
of very different types and thus have different dimensionalities (e.g., ΔAMFaerosol takes 16 
values at varying VZAs while partial AOD takes 23 values at varying atmospheric layer 
depths). We thus first apply a 1-dimensional CNN to extract features from the sequence 
part of the input signals. Note that our input signals are not image-based, which is one of 
the common types of input data for which CNNs are used. Instead, our input data is 
structured as a 1D sequence, and the convolution operations of CNN help in extracting 
sequence-based features from the input signals that are then fed into subsequent ANN 
components. We also use an LSTM to model the sequence part of the output signals. 
Note that our data contains no time dimension as we are only working with single scan 
data. However, it is the sequence-based nature of the output signals that motivated us to 
use LSTM models for sequence-based output prediction. Furthermore, the dataset we use 
for training is produced by a physical model (VLIDORT), where the relationship between 
the inputs and outputs are known.” 

 

(b) Why was it decided to split for profile and ssa/asy retrieval? 

We split profile and SSA/ASY retrieval because we consider the profile as a sequence 
(the partial AODs at adjacent layers are related) that needs to be modeled using an 
LSTM, but the SSA/ASY are scalars that can be modeled using Dense layers. We’ve 
tried a lot of architectures and find that combining profile and SSA/ASY as a single 
output sequence results in inferior performance. 

We have added the following text in the paper in Section 5 (lines 346 to 357) to address 
this comment:  

“To extract sequence-based features from MAX-DOAS inputs, a 1-dimensional 
Convolutional Neural Network (CNN, Fukushima, 1980; LeCun et al., 1999) is first 
applied on the sequence of inputs (we concatenate ΔAMFaerosol  sequence with SZA and 
RAA to obtain an 18-length input sequence), which results in a sequence of preliminary 
hidden features. These preliminary hidden features are then sent to two different branches 
of 1D-CNN layers that perform further compositions of convolution operators to produce 



non-linear hidden features for predicting two different types of outputs: (a) scalar outputs: 
SSA and ASY, and (b) sequence-based outputs: aerosol extinction profile. For the branch 
corresponding to scalar outputs, the features extracted from 1D-CNN layers are simply 
passed on to a fully-connected dense layer to produce a two-dimensional output of SSA 
and ASY. For the branch corresponding to sequence-based outputs, the features extracted 
from 1D-CNN layers are fed to a Long Short-Term Memory network (LSTM, Hochreiter 
and Schmidhuber, 1997) to produce a sequence of partial AOD values at varying 
atmospheric layers.” 

(c) What were the choices of the hyperparameters? Which batch size was used? Which lr was 
used for the RMSprop? Where there any drop out layers? Which activation function was 
used? There is no information on any of the parameters. How many nodes do the layers have? 

We’ve added a plot of the detailed architecture of the ML model in the supplement with 
all the information. 

We have also added the following text in the paper in Section 5 (lines 375 to 380) to 
provide more details about the hyper-parameters of our model: 

“RMSprop was chosen as the optimizer and the mean squared error was used as the loss 
function (Hinton, 2012). We trained the model on 75% of the dataset for 124 epochs with 
a batch size of 640. The following choice of hyperparameters was used: choice of 
optimizer=RMSprop, lr=0.001, rho=0.9, epsilon=None, and decay=0.0.”   

(5) what happens if the network gets data that is by no means covered by the training data (i.e. 
completely outside the range in one or more parameters?) What is the effect of measurement 
noise (also including "noise" from situations that are not 1 dimensional)? 

Though the outputs of the test set are not outside the range of the training data, however, 
the mappings contained in the test set are different. And different combination of 
SSA/ASY/profile produces different values of radiance. The model hasn’t seen these 
input values and output combinations of SSA/ASY/profile before. As for the point you 
mentioned here, there are next steps of our work. ML itself is a technique learning from 
the statistics of the data. If applying on the dataset which is too different from the training 
set, of course with high probability it cannot provide reliable predictions. The more the 
ML model ‘see’, the better it works. Thus, we need to include more realistic aerosol 
inputs and radiative transfer simulations as mentioned in the ‘Conclusion and Future 
Work’ section. We will also consider noise in future work. For this work, our key point is 
the ‘feasibility’, which aiming at demonstrating that it is feasible to use ML technique 
into MAX-DOAS aerosol retrieval.  

Specific comments: 

(1) page 1, line 23 "... and have relative short lifetimes..." –> relative to what? Also, few 
minutes to few weeks spans about 5 order of magnitude in time, while one end of this span can 
be considered as short, the other cannot really. Please specify "relative".  

- we replaced “relatively short” with “variable”. 

(2) page 1, line 26: apart from all the properties already listed, what else do you mean with 
"physical properties" as opposed to optical? This is very unclear. 



 - we removed this sentence since it did not add any new information: “The aerosol 
classification depends on the aerosol source, composition, size and number distribution, aging 
processes, and optical and physical properties.”   

(3) page 1, line 28 "The spatial and temporal distribution of aerosols ... is greatly affected by ... 
the type of aerosols". I think this is incorrect, the correct verb here is "depends on".  

- we replaced “is greatly affected by” for “greatly depends on” 

(4) page 2, line 39–40: If you put this statement, then you need to explain more. I also cannot 
see any connection of this statement to the rest of the paper. The minimum that should be 
added is how it depends on the surface albedo.  

- to shorten the aerosol discussion in introduction we removed line 37 – 63 on p.2. 

(5) page 2, line 41–42: "escpecially of anthropogenic origin" "of"? or "for"? This sentence 
does not make too much sense like it is, reformulation needed.  

- to shorten the aerosol discussion in introduction we removed line 37 – 63 on p.2. 

 (6) page 2, eq2 and eq3: I would think that the range of the asymmetry parameter as such 
depends on the normalization of the phase function, so you need to have integral(phase 
function) over 3D angle = 1. If so, then the first moment <cos theta> is the asymmetry btw. 
forward and backward scattering. So with this, would you not have a factor of 1/4pi missing in 
the HG phase function? Maybe you could check the normalization factors for consistence btw. 
g and P.  

- to shorten the aerosol discussion in introduction we removed line 37 – 63 on p.2. 

 (7) page 2, eq. 4: You seem to use tensor notation to make a difference btw. covariant and 
contravariant tensors and apply Einstein summation convention. However, you still put the 
summation sign, but without indicating what you are actually summing over. 

- to shorten the aerosol discussion in introduction we removed line 37 – 63 on p.2. 

 (8) page 4, line 101: "approximately known"? Please clarify.  

- we added (e.g., temperature and pressure profiles from atmospheric sounding or 
models) 

(9) page 5, around line 136: Since it was highlighted before that  

- not sure how to interpret this comment 

 (10) page 5, line 153..154: both input and output states run to N, one of them should have a 
different limit, maybe... M? Otherwise it is confusing, especially because it is written that x has 
67 layers, but y has "only" 16 angles.  

- we replaced y number of elements with M 

(11) page 7, line 196: Although VLIDORT has as direct input the viewing zenith angle, most 
people in the MAXDOAS community are more familiar with the elevation angle. Maybe it is 
an idea to change this to make it easier to connect to.  



- we agree that “elevation angle” is a more familiar term but the MAX-DOAS community 
is well aware of the zenith angle definition. 

(12) page 8, line 199, 201, and other listings in the text of parameters that are summarized in 
the Table 1: I do not think that they need to be repeated, I think it is enough if they are in the 
table.  

- we replaced the exact listing with the following: “… and nineteen viewing zenith angles 
between 0 and 89o (see Table 1). To ensure that the training dataset contains all observation 
geometries feasible for MAX-DOAS sky scans we have included: nineteen relative azimuth angles 
(0 to 180o, 10o step), and twelve solar zenith angles (0 to 85o, 89o see Table 1).” 

 

(13) page 8, table1: Can you comment on how the direct sun cases for raa=0, sza=vza are 
handled?  

- it is not handled in any special way. We do recognize that no meaningful profile 
information is available from such geometries and the forward scattering has large uncertainties.  

(14) page 9, line 223: why do you need ozone absorption?  

- strictly speaking we do not need ozone absorption, but since there is no harm in its 
presence we left it in. 

(15) page 9, line 230: maybe a small sketch to explain the aerosol profile parameters (with the 
two components of the profile) would be helpful  

- we added: “Figure 11 demonstrates the aerosol profile samples, where the near surface 
aerosol partial optical depth profiles are described by the exponential function and the layers 
aloft are described by the Gaussian function with various widths and heights added to the 
exponential function profile.” 

(16) page 9, line 237: The 25% were fixed between the 20 realizations, or not? It would be 
really good to see some plots here of the evaluation loss as a function of epoch. Also, please 
comment on how over-fitting was mitigated.  

 - we did not perform the hyper-parameter optimization in a formal way, so no cross 
evaluation was done. However, we did monitor training loss and it converged. To eliminate the 
confusion, we have replaced “evaluated” with “performance tested”. 

 (17) page 9, line 236: this height is the middle height or the height of the upper boundary? 
This is not clear.  

- we replaced layer “heights” with “depths” 

(18) page 9, line 247ff: I would certainly describe the architecture of the network here, not 
only the Fig. 3. Also, dense layers are not explained. Also, how many nodes in the layers? Do 
you use maxpooling layers btw. your conv1d layers? What is the size of your convolution 
window? And again, how was the architecure chosen? Why does it make sense to separate the 
SSA and the ASY the way you do? Do you extract the SZA and RAA as well? They should 
certainly be == the input? Is there a test on this?  



 - We’ve added a plot of model architecture in the supplement. 

(19) page 9, line 259: While you do use 25% for test (or do you actually use this for 
evaluation? Not really, because you use it to test the network. What was used for the 
evaluation then?) 

- Hyper-parameter selection was done offline. We have not seen a significant difference 
between the hyper-parameter choices for the selected architecture and did not include the cross-
evaluation at all during the training so 25% of the data that the model NEVER saw are used for 
testing the performance of the model.  

Because you use the same type of parametrization, this is not a good test. A different, unseen 
set of data should be used.  

- The model never saw the test data so the test is valid 

How do features that were not included in the training dataset at all (by all means outside the 
parameter range) affect the result?  

 - Ideally, the final MAX-DOAS inversion algorithm based on ML would “see” most of 
the possible ranges, for example, profiles from the LIVAS database, but optical properties varied 
across all aerosol types for the same profile so the solution is more reliable.   

What about thin cloud layers above 4 km, do they affect the result?  

- Friess et al 2018 used NASA real-time aerosol retrieval algorithm that is the basis for 
the dAMF (-dAMF= AMF – AMFRayleigh) analysis in this study. It was shown that the 
method is not sensitive to the aerosol/cloud layers above 4 km. We assume the same 
applies to the ML-based algorithm.  

The tests included here are not very useful. 

- We disagree with this statement. Most studies evaluating the performance of MAX-
DOAS algorithms (e.g. Fiess et al, 2018) have significantly simpler and smaller data sets from 
both profile variability, observation geometry and optical properties that were tested in this 
study.  

(20) page 10, line 275 & 285: given the range of parameters, using eq. 270, the maximum 
error is about 20%, not 100%. This puts these low numbers in context.  

- This is assuming that the ML-based algorithm always retrieves the ranges of the training 
data set. The fact that the ranges were within the realistic roam of aerosol profiles and 
properties is not a weakness, but a goal for a robust inversion ML algorithm. 

(21) page 11, Fig. 5: When you wrote earlier that the mean error is "-0.14", you really just 
took the mean over all angles? What is the significance of this? If it were in have the 
parameter space +50% and in the other -50%, its mean is still 0... and the model really not 
good, so what is the significance of the mean error here?  

- We agree, that as a stand-alone mean error over all observation geometries and all 
aerosol scenarios is somewhat meaningless unless the goal is to detect any systematic 



biases. That is why we also show 2 standard deviation results and dependency on 
observation geometry.  

 (22) page 12, Fig. 7: please explain the box whisker plot. Is the line mean or median? The box 
is how much percentage? The whisker? There are different conventions...  

- we added the following text to the Figure 5 caption: “The central mark indicates the 
median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers extend to the most extreme data points not considered outliers, 
and the outliers are plotted individually using the '+' symbol.” 

(23) page16, line351: This paper does not present the ML-based algorithm. It presents some of 
the results and that’s it. There is not enough information on the ML model. This sentence is 
not summarizing the paper.  

- we have made modifications to expend the discussion of the ML-based algorithm 

(24) page 16, line 363: maybe this is because of the choice of training parameters as a linear 
distributed AOD? 

- while the AOD itself is linearly distributed the dAMF used in training is not. The more 
realistic reason for the lower accuracy for low AOD is probably a smaller signal in 
dAMF. 

Technical corrections and suggestions:  

(1) Many times, there are definite articles missing (e.g. page 3 line 65 "The MAXDOAS..", 
page 3 line 84: "The DOAS technique", page 4 line 91 "The offset term...")  

- thank you for pointing this out 

(2) Eq. 5 on page 4 is not referred to in the text.  

- we added a reference to (Eq. 5) on line 90. 

(3) page7, line204: I highly doubt that Clemer et al 2010 is the only code here. I would add a 
"e.g.".  

- added 

(4) page 9, line 229: I think you miss the AOD=0 case in this list 

- we assumed that the algorithm will retrieve the properties perfectly in the absence of 
noise and AOD = 0 (dAMF = 0) and did not want to skew the data. However, we will 
include very small AOD in the next version of the model with the real data. 

(5) page 10ff: I suggest to use an equi-distant grid for the raa-sza plots, as they are now, it 
gives a biased impression to the eye.  

- we replaced Fig 4. 

(6) page 12, line 311 f: I cannot quite understand the sentence "This error contribution..." 
maybe you can reformulate 



- the phrase was replaced with “Layer partial AOD retrieval error relative to the total 
AOD” 
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