
Responses to the comments by Reviewer 2. 
 
We greatly appreciate constructive comments and recommendations by Reviewer 2.  A lot of 
questions raised are very important and would be addressed in future studies with more realistic 
profiles and even more important, more accurate radiative transfer modeling of aerosol 
properties and scattering. We will take into consideration the recommendations made by the 
reviewer in data design and welcome him/her contact us directly regarding potential 
collaboration. 
 
1. Not enough information about the machine learning (ML) algorithm itself are given. The 
introduction focuses on aerosols and MAX-DOAS only without introducing ML. In section 5, 
there is no explanation why the individual ML steps were chosen as they are. 
 

- We have removed some details about the aerosols and have added the following section 
to the introduction: 

“This paper investigates the potential of using advances in machine learning to invert aerosol 
properties (aerosol extinction coefficient profiles, single scattering albedo and scattering phase 
function) from a hyperspectral remote sensing technique called multi-axis differential optical 
absorption. 

Machine learning (ML) is a branch of artificial intelligence that derives its roots from pattern 
recognition and statistics. The goal of ML is to build statistical (or mathematical) models of a 
real-world phenomenon by relying on training examples. For instance, in supervised ML, a 
model is first presented with a set of paired examples (termed as the training set), where every 
training example contains a pair of input variables and output variables, and the goal of ML 
algorithms is to find the statistical structure of mapping from the input variables to the output 
variables that match with the training examples and can be generalized to unseen examples 
(termed as test set). The learned mapping (or the model) can be applied to the inputs of test 
examples to make predictions on their outputs. There are several advantages of using ML. 
Firstly, it can sift through vast amounts of training data and discover patterns that are not 
apparent to humans. Secondly, ML algorithms can have continuous improvement in accuracy 
and efficiency with increasing amount of training data. Thirdly, ML algorithms are usually very 
fast to apply on test examples since the time-consuming training process of ML models is offline 
and one-time. With these advantages as well as the availability of faster hardware, ML has soon 
become the most popular data analytic technique since the 1990s. In recent years, it has also been 
applied to the field of remote sensing (Efremenko et al., 2017; Hedelt et al., 2019). 
Artificial neural networks (ANN) is one of the many methods studied in the ML field that has 
found a lot of success in recent years over a number of commercial problems such as image 
detection, text translation, and speech recognition. It is inspired by the biological neural networks 
constituting animal brains. As an analogy to a biological brain, an ANN is based on artificial 
neurons. An artificial neuron is a mathematical function receiving and processing input signals 
and producing outputs signals or activations. Each neuron comprises of weighted inputs, an 
activation function, and an output. Weights of the neuron are parameters to be adjusted, while the 
activation function defines the relationship from the input signals to the output signals. When 
multiple neurons are composed together in a layered manner (where the output signals of 



neurons in a given layer are used as inputs for the neurons in the next layer), we call it an 
artificial neural network (ANN). A common algorithm for training ANNs is the backpropagation 
algorithm, that passes the gradients of errors on the training set from the output layer to inner 
layers to refine the weights at all layers in an incremental way. The backpropagation algorithm 
converges when there is no change in ANN weights across all layers beyond a certain threshold. 
There are several optimization methods that are used for performing backpropagation and are 
behind standalone ANN packages commonly used by the ML community. ANNs have many 
different types depending on the specifics of the neuron arrangement or architecture. A simple 
type of ANN is a multilayer perceptron (MLP), where all neurons at a given layer are fully 
connected with all neurons of the next layer, also termed as dense layers. Other complex types of 
ANN include convolutional neural network (CNN) and recurrent neural network (RNN). Two 
important types of artificial neural networks used in this study are the convolutional neural 
networks (CNN) (Fukushima, 1980; LeCun et al., 1999) and the Long short-term memory 
(LSTM) neural networks (Hochreiter and Schmidhuber, 1997), which are variants of recurrent 
neural networks.  
Convolutional neural network (CNN) is a class of deep neural networks that uses the 
convolution operation to define the type of connections from one layer to another. While they 
have shown impressive results in extracting complex features from images in computer vision 
applications (Krizhevsky et al., 2012; Simonyan and Zisserman, 2015), they are relevant in many 
other applications involving structured input data, e.g., 1D-sequences. A CNN is composed of an 
input layer, multiple hidden layers and an output layer. The hidden layers usually consist of 
several convolutional layers, followed by pooling layers, fully connected layers (dense layers) 
and normalization layers. Figure 1 shows a simple example of CNN. The input vector (or 
sequence) is first passed through a convolutional layer where it is convolved with 3 filters 
(convolution kernels) of size 3 using the same padding to produce three 6x1 feature maps. Since 
the ReLU function (𝑓 𝒙 = 𝑚𝑎𝑥	(0, 𝒙)) is commonly chosen as the activation function in 
CNNs, the feature maps only contain positive values. Then the max pooling layer picks the 
maximum value every 3 elements for each feature map, generating three 2 x 1 vectors. After 
passing through a flatten layer, the max pooling output is reshaped into a 6 x 1 vector, which is 
followed by a dense (fully connected) layer with 2 nodes. The dense layer multiplies its input by 
a weight matrix and add a bias vector for generating the output of the model. The computer 
adjusts the model’s convolutional kernel values or weights through a training process called 
backpropagation, a class of algorithms utilizing the gradient of loss function to update weights. 
For the case in Figure 1, there are 26 tunable parameters. ( 3 + 1 ×3 = 12 from convolution 
kernels and 6 + 1 ×2 = 14 from the dense layer.)  

 



Figure 1: a simple example of CNN 
 
Long short-term memory (LSTM) neural networks have many applications such as speech 
recognition (Li and Wu, 2015) and handwriting recognition (Graves et al., 2008; Graves and 
Schmidhuber, 2009). They are a special kind of ANNs termed as recurrent neural networks 
(RNNs). RNNs are designed for modeling sequence dependent behavior (e.g., in time). They are 
called “recurrent” because they perform the same operation for every element of a sequence, 
with the output at a given element dependent on previous computations at earlier elements (Britz, 
2015). This is different from traditional neural networks wherein all the input-output examples 
are assumed to be independent of each other.  

 
Figure 2: Unrolled recurrent neural network 

 
Figure 2 is a diagram of an unrolled RNN with 𝑡 input nodes, where “unrolled” means showing 
the network for the full sequence of inputs and outputs. The RNNs work as follows. At the first 
element of the sequence, the set of input signals 𝑥4 (which can be multi-dimensioinal) is fed into 
the neural network F to produce an output ℎ4. At the next element of the sequence, the same 
neural network F takes both the next input 𝑥6 and previous output ℎ4, generating the next output 
ℎ6.  This recurrent computation continues for t times to produce the output at the tth element of 
the sequence, ℎ8. While RNNs are powerful architectures for modeling sequence behavior, 
classical RNNs are inadequate to capture long-term memory effects where the inputs-outputs at a 
given element of the sequence can affect the outputs at another element of the sequence 
separated by a long interval. Long-short-term memory (LSTM) models are variants of RNNs that 
are able to overcome this challenge and are efficient at capturing long-term dependencies as well 
as short-term dependencies. It does so by introducing an internal memory state  that is operated 
by neural network layers termed as gates, such as the “input gate,” that adds new information 
from the input signals to the memory state, the “forgot gate,” that erases content from the 
memory state depending on the input signals, and the “output gate,” that transforms information 
contained in the input signals and the memory state to produce output signals.   



 
Figure 3:  LSTM cell diagram (modified from Thomas, 2018). 

The LSTM cell used in this study is illustrated in Figure 3, of which the update rules are:   
g: = tanh	(𝑏? + 𝑥:𝑈? + ℎ:A4𝑉?) 
𝑖: = σ(𝑏E + 𝑥:𝑈E + ℎ:A4𝑉E) 
𝑓: = σ(𝑏F + 𝑥:𝑈F + ℎ:A4𝑉F) 

𝑠: = 𝑠:A4 ∘ 𝑓: + 𝑔: ∘ 𝑖: 
𝑜: = σ(𝑏K + 𝑥:𝑈K + ℎ:A4𝑉K) 

ℎ: = tanh	(𝑠:) ∘ 𝑜: 
where j is the element index, σ(x) represents the sigmoid function, and tanh	(𝑥) represents the 
hyperbolic tangent function. 𝑥 ∘ 𝑦 denotes the element-wise product of 𝑥 and	𝑦.  𝑈?, 𝑈E, 𝑈F, 𝑈K 
are the weights for the input 𝑥:, while 𝑉?, 𝑉E, 𝑉F, 𝑉K are the weights for the other input ℎ:A4, and 
𝑏?, 𝑏E, 𝑏F, 𝑏K are the scalar terms (termed as bias). The term g: is the input modulation gate, 
which modulates the input 𝑏? + 𝑥:𝑈? + ℎ:A4𝑉? by a hyperbolic tangent function, squashing the 
input between -1 to 1. The term	𝑖: is the input gate, which applies a sigmoid function to its input, 
limiting the output values between 0 and 1. The input gate 𝑖: determines which inputs are 
switched on or off when multiplying the modulated inputs (𝑔: ∘ 𝑖:). The term 𝑠: is the internal 
cell state that provides an internal recurrence loop to learn the sequence dependence. The terms 
𝑓: and 𝑜: are the forgot gate and output gate, respectively. They have similar function to the input 
gate 	𝑖:, regulating the information into and out of the LSTM cell. The term ℎ: is the output at 
step j. ” 
 
 
2. The validation section appears to be insufficient to assess the performance of the algorithm: 
(a) Why not changing the testing dataset to realistic profiles which are not included in the 
training data? How can you be sure that you do not over-fit your results? 
 

-The mappings contained in the test set are different from those in the training set. And 
different combination of SSA/ASY/profile produces different values of radiance. The 
model hasn’t seen these input values and output combinations of SSA/ASY/profile 
before. We split the data into two sets, the training set and the test set, no automatic 
model selection process using validation set. The training loss converges. We use 75% of 
the entire dataset for training and then directly apply the model on the remaining 25% for 



testing. We use ReLU unit (through sparsity) and Max Pooling layer (through reducing 
parameters) to control overfitting.  

 
(b) Why not using larger aerosol loads? 
 

- Lower to medium AOD loadings are more common. We will use LIVAS data base in 
future studies with more realistic profiles and global AOD loadings 
 
(c) Why did you use 16 different elevation angles for the testing dataset even 
though this number is much too high for most measurement locations? What happens if you 
just use 8 or 10 elevation angles? Does the algorithm still perform well? 
 

- The main goal of the current work is to evaluate feasibility of ML as a retrieval method. 
We have included more angles than typical for MAX-DOAS to explore the maximum 
information content of the measurements and the inversion method. We have also tried a 
scan with10 angles and the ML methods performed well. 
 

 (d) The training dataset was created by using an US standard atmosphere. This is mostly a 
poor representation of the true atmosphere. What happens if the conditions change? 
 

We have not evaluated the effect of temperature and pressure profiles on the retrieval at 
this stage. This will be done in the future studies 

 
 (e) Why not testing the algorithm on real data? 
 

We do not have real data at 360 nm with accurate partial AOD profiles, ASY and SSA 
retrieved in the same direction as MAX-DOAS pointing. 

 
3. Are there plans to extend the training dataset by more wavelengths, SSA/asymmetry factors, 
albedo, profiles, trace gases (as suggested in Sec. 7)? 
 

- Yes  
  
4. Note that many articles are missing in the manuscript. 

 
- we have gone through the references 

 
Specific comments 
P2, L36-42: There is no need to show the equation of SSA and its detailed description. I 
suggest to change those 6 lines into one sentence only. 

- we have removed details about SSA from the manuscript 
 
P2, L43-62: This part about the aerosol phase functions is much too long, especially since 
there is no further discussion about this topic in your paper. The lines about the Legendre 
expansion could be completely removed without loosing important information for the 
understanding of the manuscript.  



- we have removed details about ASY from the manuscript 
 

P2, L58: When kept, please change the index L of PL(cosθ) P3, L65: "The" MAX-DOAS 
- we have removed details about ASY from the manuscript 

 
Figure 1: A single sky scan...  

- corrected 
 
P3, L84: "The" DOAS technique...  

- corrected 
 
P4, L91: "The" offset term...  

- corrected 
 
P4, L101: "Forward model parameters that are considered approximately". I guess you are 
referring, among other parameters, to a priori knowledge when using "approximately" here? 
Please change the wording or reformulate this sentence.  

- this is reference to such parameters as temperature and pressure profiles. Clarified in the 
text now: (e.g., temperature and pressure profiles from atmospheric soundings or 
models). 

 
P4, L114-115: "A priori information about...". I find this sentence to be rather confusing. 
What do you want to say here? 

- we added two commas to improve readability: “…distribution, before the measurements 
are made…” 

 
P5, L123-125: "None of the algorithms perform perfectly". That depends on what you 
understand as "perfect". I don’t think that it is possible at all to retrieve the true atmosphere 
in a extremely high vertical resolution. However, as far as I know, the second part of this 
sentence is correct. I would suggest to reformulate the first part.  

- We removed this sentence. 
 
Note that you also used external information about the atmosphere for creating your training 
dataset. You directly applied a priori knowledge by using exponentially decreasing profiles 
including Gaussian’s for your dataset. And I would not say that a priori knowledge does not 
exist. You look out of the window and know that it is a hazy day so you adapt the a priori. 
Sometimes you know about local sources or have ancillary measurements available. I would 
strongly suggest to change this paragraph. 
 

- a priori information, as applied in MAP, is typically a climatological distribution of the 
parameters of interest so adjusting the a priori according to the observation at the moment 
is not an appropriate use of the technique. The only technique that is available to measure 
aerosol extinction coefficient vertical profiles at 355 nm is LIDAR but even in this case 
the aerosol property information is very limited, so we do not agree that the true a priori 
for AOD, ASY and SSA at 360 nm exists for many locations. However, since there might 



be some locations where some of this information is available we have replaced the 
sentence with: 
 “They also require external information about the atmosphere (e.g. temperature and 
pressure profiles) that might not be readily available at the measurement time scales, and 
a priori information might not exist’ 

 
P7, L176: AMF represents → An AMF represents 
 - changed 
 
P7, L178: observations → observation 
 - changed 
 
P7, L181: Where "the" vertical column density 
 - changed 
 
P7, L183-191: This part could be shortened as you have already introduced aerosols before.  
 - we removed some of the introductory aerosol information. 
 
P7, L205: "The" VLIDORT code 
 - changed 
 
Table 1: Why do your Gaussian profiles don’t have center heights higher than 2km? Since the 
vertical sensitivity for higher altitudes is an issue for common algorithms, I am wondering if 
your algorithm performs better here?  

- in our opinion the limiting factor for the retrieval of elevated layers is the MAX-DOAS 
approach not the specific algorithm itself. By subtracting the zenith AMF we are 
removing some information. This information is also reduced by typically considering 
only a “single species” (O4) at a “single wavelength”. Because of this it made sense to 
limit the tests to 2 km. Further studies will include actual measurements compiled in 
LIVAS database. 

 
What is the scaling height of your exponential functions? 
 - they recalculated depending on the total loading and partitioning between the Gaussian 
and exponential AOD. 
 
P9, L235: What was the reason for changing the grid step width to a coarser resolution for 
higher altitudes? I have the feeling that your choice of Gaussian profile center heights and 
retrieval grid steps might deteriorate retrieval results for higher altitudes (as indicated in Fig. 
9 and 11). 

- Yes, this is correct. Since this is a feasibility study we first wanted to demonstrate that 
the method works before performing much more elaborate RT and retrieval modeling. 
We plan to expand the study including higher vertical resolution. 

 
Section 5: I think it would be nice to add more information to this section to explain also the 
in-between steps and parameters of your CNN and LSTM.  

- we have added more details about the ML in the text and supplement 



 
P9, L251: "RMSprop was chosen...". Please explain.  

- It is a consensus in the CS community that RMSprop works well on recurrent networks 
such as LSTM, but RMSprop is an unpublished optimization algorithm.  
 

Figure 4: It would be interesting for the reader to see a similar plot describing the profile 
shape distribution. You could show 3 more plots for different partitioning, showing Gaussian 
center heights and width on x and y axis, respectively. Furthermore, the number of profiles 
with a certain total AOD would also be interesting (especially when looking at Figure 7). I 
fear that the reader might loose the connection to the actual profile shape due to the rather 
statistical analysis in the following paragraphs. 

- while this is an interesting information we feel it does not add any additional insight 
into the results; 

 
Figure 5, 6 and 8: It is interesting to see that mean error and standard deviation show areas 
with high or low values at certain geometries. I was wondering if this is a matter of the 
scattering angle (angle between incident and outgoing photon assuming single scattering)? 
Could you please create a plot showing the scattering angle versus the respective  
error/standard deviation? Since e.g. RAA = 30◦ and a low SZA is equivalent to a large 
scattering angle (e.g. Fig 5c) it might show issues for certain scattering geometries. In 
addition, you could check if there are certain profile shapes or aerosol parameters more 
frequent for areas with a large standard deviation or high mean errors compared to other 
geometries. I was also wondering about the outliers in all three histograms. Any reason for 
that? 

- Thank you for the recommendation! Since Henyey-Greenstein approximation has a 
poor representation of the forward and backward scattering we will apply the suggested 
analysis to the future more realistic aerosol modeling.  

 
P11, L292: I agree that OEM methods also struggle with data inversion measured at small 
RAA but I was wondering why your synthetic analysis fails?  

- We believe this is due to the RT at small RAA, where the photon paths are very “direct” 
and MAX-DOAS is not “benefitting” from the low elevation angles as much. 

 
P12, L295: "The total AOD retrieval..." or "The retrieval of total..."  
 - changed 
 
P12, L297: In general, "the" ML algorithm 
 - changed 
 
P12, L299: What is the reason for the second peak in the histogram?  
 - we do not know 
 
Figure 7: Please explain all depicted quantities (mean, median, percentiles...) in the caption of 
this figure.  

- added: “The central mark indicates the median, the bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. The whiskers extend to the most 



extreme data points not considered outliers, and the outliers are plotted individually using 
the '+' symbol.” 

 
Here, it would also be interesting to see if the largest underestimations correspond to certain 
profiles or parameters.  

- figure 11 shows some of the worst cases that correspond to low AOD, RAA <= 10o and 
large SZA >= 80o. 

 
Figure 9: Why is the error larger for 1.5 km than for 2 km? Since you also included 
Gaussian’s with Peak heights around 2km, I would expected the largest error at higher 
altitudes. Especially when considering the higher sensitivity of MAX-DOAS measurements for 
aerosol loads closer to the surface (which can be seen for altitudes lower than 1.5km). 

- This is potentially an artifact of the layer depths changes at 1 and 3 km 
 
Figure 10: It appears that there is also an underestimation of the predicted AOD for all sub-
figures with true partial AOD’s larger than 0.2. For example in the upper left subfigure, but 
also in the second row (first figure), the third row (2nd and 3rd fig). Do these 
underestimations correspond to problematic scenarios/geometries/parameters?  
 - We have not explored the details. 
 
P16, L353: Training and evaluation of "the" ML 
 - changed 
 
P16-17, L365-372: Points 1 and 2 are valid but only a demand for near real-time applications. 
I doubt that there is a need for science to have profiles immediately after the measurement. 
For point 3, I was wondering if this is a major advantage. The dependence of profiling results 
on SSA is rather small and the Henyey-Greenstein approximation is in most cases a poor 
representation of the scattering distribution of aerosols. So why should the reader decide for 
your algorithm when an AERONET station nearby measures "real" phase functions and 
SSA?  

- this is a feasibility study and by no means suggests that the presented algorithm should 
be used as is. However, what this study does suggest is that more elaborate RT modeling 
with more realistic RT settings and realistic profiles can open the possibilities to fast and 
potentially more accurate algorithms using multiple wavelengths and multiple species.  

 
In point 4 you even diminish the potential of your approach by saying that it might be used as 
an initial guess for other algorithms. To me, this does not sound as if the authors are 
convinced of the capability of ML algorithms. 

- The goal of this research is not to convert the entire community to use ML-based 
approach but rather to explore its feasibility and possibilities 

 
If this is true, why not? If not, why are there no strong arguments in favor of your approach? 
 

- We personally believe that physics based ML methods can be very effective in accurate 
inversions, especially of MAX-DOAS data. However, the quality of training data is very 
important. Ideally, 3D models should be used with complete physics and exhaustive 



atmospheric conditions. Availability of such dataset is the part that we are mostly 
skeptical about. Another issue is the validation of the actual retrievals. There are no other 
profilers that “sample” in a similar way. 

 


