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Dr. Omar Torres 
Associated Editor 
Atmospheric Measurement Techniques 
 

Re: “Machine learning as an inversion algorithm for aerosol profile and property retrieval 5	
from multi-axis differential absorption spectroscopy measurements: a feasibility study.” 
Amt-2019-368 

Dear Dr. Torres, 

Please see attached a revised version of Amt-2019-368, with the changes tracked by the 
Microsoft Word. We have responded to the comments from the two reviewers. 10	
Reviewers’ comments are in bold italics; our responses are in regular Times font. 

Thank you for your consideration. 

Best Regards, 
Yun Dong, Elena Spinei and Anuj Karpatne 
 15	

Responses to the comments by Reviewer 1. 
Changes recommended: 
(I)  The weight of the manuscript needs to be on the ML approach, this is currently not 
the case.  

We have removed some details about the aerosols and have added introduction to 20	
machine learning to section 1. (lines 37 to 137 in the new version)  

(II) Normally, for ML, the data is split into three sets: (1) a training dataset (2) an 
evaluation dataset used during training to identify when the training results in 
overfitting (3) a completely new set of data for testing. ... The authors seem to have only 
used a validation data set (25% of the total data set) for the testing but no proper 25	
testing with parameters outside the training range (so not only "not this specific 
combination") was performed. 

We thank the reviewer for bringing this point on the correctness of our evaluation 
setup and we would like to clarify that no part of the test data was used in any 
way during training, thus ensuring the validity of our test results in representing 30	
the performance of our ML model on samples outside the training set. Note that in 
any supervised ML experiment, it is very important to ensure that there is no 
overlap between the training and test sets, so that the performance on the test set 
is a true indicator of generalization performance, i.e., the performance on 
“unseen” instances never seen before during training (also known as out-of-35	
sample instances). This is generally done by holding off a fraction of the overall 
data during training, thus partitioning the overall data into two sets: a “training 
set” used only for model building, and a “test set” used only for model evaluation 
(for further details on evaluating supervised ML models, see Tan et al., 2018 and 
Fiedman et al., 2001). A common approach for partitioning the overall data into 40	
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training and test sets is to consider random sampling, also known as the random 
holdout method [ak1]. In our experiments, we randomly partitioned the overall 
data into a training set (comprising of 75% instances) and a test set (comprising of 
25% instances). Further, an optional procedure that is sometimes followed is to 
hold a certain fraction of the training set as the “validation set” and monitor the 45	
performance on the validation set during training to either avoid overfitting or to 
tune the hyper-parameters of the ML model. Since the validation set is used 
during model building (although indirectly) it is no longer considered as a 
representation of “unseen” instances, and hence, the validation performance is not 
a true indicator of generalization performance. Note that in our work, we did not 50	
make use of any validation set, as the values of all hyper-parameters in our ML 
model were kept constant across all experiments. Instead, we only report our 
results on the test set that was not used during training, either directly or 
indirectly. 
We have added the following text to the revised paper to address this comment:  55	
Section 4 (lines 315 to 318 in the new version): “ML algorithm was trained on 75% 
randomly selected measurement simulations (1094400 samples) and model 
performance was tested on the remaining 25%. Note, that no validation data was 
held off from the 75% training set for tuning hyper-parameters of our ML model, 
as all ML hyper-parameters were kept constant across all experimental settings in 60	
this paper.” 
  Section 5 (lines 378 to 385 in the new version): “We trained the model on 75% 
of the dataset for 124 epochs with a batch size of 640. The following choice of 
hyperparameters was used: choice of optimizer=RMSprop, lr=0.001, rho=0.9, 
epsilon=None, and decay=0.0. We did not perform any hyper-parameter tuning on 65	
a separately held validation set inside the training set, and the values of all hyper-
parameters in our ML model were kept constant throughout all experiments in the 
paper on the test set. In order to ensure that there was no overlap between the 
training and testing steps, we did not make use of the test data either directly or 
indirectly during the training phase, either for learning parameter weights or 70	
selecting hyper-parameters.”  

General comments: 
(1) There is a lengthy (and maybe not super accurate, see below) description on the 
aerosol phase function and the asymmetry parameter, both in the introduction and in 
Sect.4. However, there is no information on ML in the intro. This does not at all reflect 75	
the title. After all, this manuscript claims to be about the ML as inversion algorithm. 
Suggestion: Bundle the aerosol information from here and from Sect. 4 in the section 
about training/validation/test data creation (which is currently Sect. 4) and include 
some paragraph or two on ML use in inverse modelling and general ML. 

We’ve shorten the aerosol part and added general description of ML and detailed 80	
description of the ML model.  See reply to general comments (1)        

 (2) I suggest a different ordering: (1) general introduction including advances in ML, 
aerosol importance in general, current retrieval techniques and why ML should be 
applied to aerosol retrieval (2) MAXODAS method description (3) Aerosol properties 
and modelling and forward modelling with VLIDORT (4) Overview of the methodology 85	
of the 3 necessary steps (instead of selling it as two steps as done in Sect. 3, where the 
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first of the two has itself two steps) and a detailed description of the specific ML setup 
and choice of hyperparameters. (5...) as before 

See reply to general comments (1) 
(3) While what is written about OEM and parametrized methods is true, most of it is 90	
true for ML as well (i.e regarding e.g. the T/P profile). This section paints an overly 
dark image of OEM and parametrized codes. I think that the main problem with 
"traditional" methods is indeed the time they take, and this should be clearly (even 
more clearly) stated, since this is the one huge advantage of using ML. Also, especially 
around line 136, it gives the impression of full profile retrieval of asy and ssa, while in 95	
fact, it is "only" the aod profile and single scalar values asy and ssa valid for all layers. 

We have reworded this part (lines 203-206): 
“Aerosol extinction coefficient profiles are inverted while aerosol single 
scattering albedo and asymmetry factor are typically assumed based on the co-
located AERONET measurements. They also require external information about 100	
the atmosphere (e.g. temperature and pressure profiles) that might not be readily 
available at the measurement time scales, and a priori information that does not 
typically exist.” 

(4) 
(a) Which backend was used? Tensorflow, Theano? Some other? Why the mentioning 105	
of the yupiler notebook? Why was it used at all? Certainly no web-based interactivity is 
needed? Why wasn’t it simply put in a plain python script? 

 TensorFlow backend was used. We mention Jupyter Notebook just because the 
code is implemented in Jupyter Notebook. Yes, web-based interactivity is not 
needed and of course we can use plain python script. We used Jupyter notebooks 110	
just for easy sharing of code, analysis of results, and reproducibility of 
experiments. 

(b) CNN is normally used in ML for image recognition, why is it used here? Why is 
LSTM used? Maybe some intro on recurrent neural networks in general is needed. 
This seems to indicate … that scans are not considered separately, but as a function of 115	
time.... (so a scan from now and then from 10 minutes, not one from here and now and 
the next one from tomorrow and somewhere else). However, this seems not to fit your 
introduction and abstract where you very specifically write about a single scan. This is 
very confusing and needs explanation. Also maybe, you can start with explaining what 
a SimpleRNN layer is and why this was not chosen? 120	

Different from image recognition in which 2D CNN is usually used, what we use 
in our model is 1D CNN which is good for capturing features from 1D-sequences. 
We’ve also added general introduction of LSTM. As mentioned above, we 
consider the profile as a sequence, that’s the reason we use the LSTM. We do not 
use the LSTM in a typical way where the input or output sequence is a time 125	
series. In our case, it is nothing related to time but a series of partial AOD values 
at sequential heights. Simple RNN is inadequate to capture long-term memory 
effects where the inputs-outputs at a given element of the sequence can affect the 
outputs at another element of the sequence separated by a long interval. Actually 
we’ve tried simple RNN and it does not work as well as LSTMs. 130	
We have added the following text to the paper in Section 5 (lines 330 to 340) to 
address this comment: 
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“Note, that in our supervised ML formulation, there are sequences in both the 
input signals and output signals, namely ΔAMFaerosol sequence and partial AOD 
sequence, respectively. Further note that the input and output signals used in our 135	
problem setting are of very different types and thus have different 
dimensionalities (e.g., ΔAMFaerosol takes 16 values at varying VZAs while partial 
AOD takes 23 values at varying atmospheric layer depths). We thus first apply a 
1-dimensional CNN to extract features from the sequence part of the input 
signals. Note that our input signals are not image-based, which is one of the 140	
common types of input data for which CNNs are used. Instead, our input data is 
structured as a 1D sequence, and the convolution operations of CNN help in 
extracting sequence-based features from the input signals that are then fed into 
subsequent ANN components. We also use an LSTM to model the sequence part 
of the output signals. Note that our data contains no time dimension as we are 145	
only working with single scan data. However, it is the sequence-based nature of 
the output signals that motivated us to use LSTM models for sequence-based 
output prediction. Furthermore, the dataset we use for training is produced by a 
physical model (VLIDORT), where the relationship between the inputs and 
outputs are known.” 150	

 
(b) Why was it decided to split for profile and ssa/asy retrieval? 

We split profile and SSA/ASY retrieval because we consider the profile as a 
sequence (the partial AODs at adjacent layers are related) that needs to be 
modeled using an LSTM, but the SSA/ASY are scalars that can be modeled using 155	
Dense layers. We’ve tried a lot of architectures and find that combining profile 
and SSA/ASY as a single output sequence results in inferior performance. 
We have added the following text in the paper in Section 5 (lines 346 to 357) to 
address this comment:  
“To extract sequence-based features from MAX-DOAS inputs, a 1-dimensional 160	
Convolutional Neural Network (CNN, Fukushima, 1980; LeCun et al., 1999) is first 
applied on the sequence of inputs (we concatenate ΔAMFaerosol  sequence with SZA 
and RAA to obtain an 18-length input sequence), which results in a sequence of 
preliminary hidden features. These preliminary hidden features are then sent to two 
different branches of 1D-CNN layers that perform further compositions of 165	
convolution operators to produce non-linear hidden features for predicting two 
different types of outputs: (a) scalar outputs: SSA and ASY, and (b) sequence-based 
outputs: aerosol extinction profile. For the branch corresponding to scalar outputs, 
the features extracted from 1D-CNN layers are simply passed on to a fully-
connected dense layer to produce a two-dimensional output of SSA and ASY. For 170	
the branch corresponding to sequence-based outputs, the features extracted from 
1D-CNN layers are fed to a Long Short-Term Memory network (LSTM, Hochreiter 
and Schmidhuber, 1997) to produce a sequence of partial AOD values at varying 
atmospheric layers.” 

(c) What were the choices of the hyperparameters? Which batch size was used? Which 175	
lr was used for the RMSprop? Where there any drop out layers? Which activation 
function was used? There is no information on any of the parameters. How many 
nodes do the layers have? 
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We’ve added a plot of the detailed architecture of the ML model in the 
supplement with all the information. 180	
We have also added the following text in the paper in Section 5 (lines 375 to 380) 
to provide more details about the hyper-parameters of our model: 
“RMSprop was chosen as the optimizer and the mean squared error was used as the 
loss function (Hinton, 2012). We trained the model on 75% of the dataset for 124 
epochs with a batch size of 640. The following choice of hyperparameters was used: 185	
choice of optimizer=RMSprop, lr=0.001, rho=0.9, epsilon=None, and decay=0.0.”   

(5) what happens if the network gets data that is by no means covered by the training 
data (i.e. completely outside the range in one or more parameters?) What is the effect 
of measurement noise (also including "noise" from situations that are not 1 
dimensional)? 190	

Though the outputs of the test set are not outside the range of the training data, 
however, the mappings contained in the test set are different. And different 
combination of SSA/ASY/profile produces different values of radiance. The 
model hasn’t seen these input values and output combinations of 
SSA/ASY/profile before. As for the point you mentioned here, there are next 195	
steps of our work. ML itself is a technique learning from the statistics of the data. 
If applying on the dataset which is too different from the training set, of course 
with high probability it cannot provide reliable predictions. The more the ML 
model ‘see’, the better it works. Thus, we need to include more realistic aerosol 
inputs and radiative transfer simulations as mentioned in the ‘Conclusion and 200	
Future Work’ section. We will also consider noise in future work. For this work, 
our key point is the ‘feasibility’, which aiming at demonstrating that it is feasible 
to use ML technique into MAX-DOAS aerosol retrieval.  

Specific comments: 
(1) page 1, line 23 "... and have relative short lifetimes..." –> relative to what? Also, 205	
few minutes to few weeks spans about 5 order of magnitude in time, while one end of 
this span can be considered as short, the other cannot really. Please specify "relative".  

- we replaced “relatively short” with “variable”. 
(2) page 1, line 26: apart from all the properties already listed, what else do you mean 
with "physical properties" as opposed to optical? This is very unclear. 210	

 - we removed this sentence since it did not add any new information: “The aerosol 
classification depends on the aerosol source, composition, size and number distribution, 
aging processes, and optical and physical properties.”   
(3) page 1, line 28 "The spatial and temporal distribution of aerosols ... is greatly 
affected by ... the type of aerosols". I think this is incorrect, the correct verb here is 215	
"depends on".  

- we replaced “is greatly affected by” for “greatly depends on” 
(4) page 2, line 39–40: If you put this statement, then you need to explain more. I also 
cannot see any connection of this statement to the rest of the paper. The minimum that 
should be added is how it depends on the surface albedo.  220	

- to shorten the aerosol discussion in introduction we removed line 37 – 63 on p.2. 
(5) page 2, line 41–42: "escpecially of anthropogenic origin" "of"? or "for"? This 
sentence does not make too much sense like it is, reformulation needed.  

- to shorten the aerosol discussion in introduction we removed line 37 – 63 on p.2. 
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 (6) page 2, eq2 and eq3: I would think that the range of the asymmetry parameter as 225	
such depends on the normalization of the phase function, so you need to have 
integral(phase function) over 3D angle = 1. If so, then the first moment <cos theta> is 
the asymmetry btw. forward and backward scattering. So with this, would you not have 
a factor of 1/4pi missing in the HG phase function? Maybe you could check the 
normalization factors for consistence btw. g and P.  230	

- to shorten the aerosol discussion in introduction we removed line 37 – 63 on p.2. 
 (7) page 2, eq. 4: You seem to use tensor notation to make a difference btw. covariant 
and contravariant tensors and apply Einstein summation convention. However, you 
still put the summation sign, but without indicating what you are actually summing 
over. 235	

- to shorten the aerosol discussion in introduction we removed line 37 – 63 on p.2. 
 (8) page 4, line 101: "approximately known"? Please clarify.  

- we added (e.g., temperature and pressure profiles from atmospheric sounding or 
models) 
(9) page 5, around line 136: Since it was highlighted before that  240	

- not sure how to interpret this comment 
 (10) page 5, line 153..154: both input and output states run to N, one of them should 
have a different limit, maybe... M? Otherwise it is confusing, especially because it is 
written that x has 67 layers, but y has "only" 16 angles.  

- we replaced y number of elements with M 245	
(11) page 7, line 196: Although VLIDORT has as direct input the viewing zenith angle, 
most people in the MAXDOAS community are more familiar with the elevation angle. 
Maybe it is an idea to change this to make it easier to connect to.  

- we agree that “elevation angle” is a more familiar term but the MAX-DOAS 
community is well aware of the zenith angle definition. 250	
(12) page 8, line 199, 201, and other listings in the text of parameters that are 
summarized in the Table 1: I do not think that they need to be repeated, I think it is 
enough if they are in the table.  

- we replaced the exact listing with the following: “… and nineteen viewing zenith 
angles between 0 and 89o (see Table 1). To ensure that the training dataset contains all 255	
observation geometries feasible for MAX-DOAS sky scans we have included: nineteen 
relative azimuth angles (0 to 180o, 10o step), and twelve solar zenith angles (0 to 85o, 89o 

see Table 1).” 
 

(13) page 8, table1: Can you comment on how the direct sun cases for raa=0, sza=vza 260	
are handled?  

- it is not handled in any special way. We do recognize that no meaningful profile 
information is available from such geometries and the forward scattering has large 
uncertainties.  
(14) page 9, line 223: why do you need ozone absorption?  265	

- strictly speaking we do not need ozone absorption, but since there is no harm in 
its presence we left it in. 
(15) page 9, line 230: maybe a small sketch to explain the aerosol profile parameters 
(with the two components of the profile) would be helpful  
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- we added: “Figure 11 demonstrates the aerosol profile samples, where the near 270	
surface aerosol partial optical depth profiles are described by the exponential function 
and the layers aloft are described by the Gaussian function with various widths and 
heights added to the exponential function profile.” 
(16) page 9, line 237: The 25% were fixed between the 20 realizations, or not? It would 
be really good to see some plots here of the evaluation loss as a function of epoch. Also, 275	
please comment on how over-fitting was mitigated.  
 - we did not perform the hyper-parameter optimization in a formal way, so no 
cross evaluation was done. However, we did monitor training loss and it converged. To 
eliminate the confusion, we have replaced “evaluated” with “performance tested”. 
 (17) page 9, line 236: this height is the middle height or the height of the upper 280	
boundary? This is not clear.  

- we replaced layer “heights” with “depths” 
(18) page 9, line 247ff: I would certainly describe the architecture of the network here, 
not only the Fig. 3. Also, dense layers are not explained. Also, how many nodes in the 
layers? Do you use maxpooling layers btw. your conv1d layers? What is the size of 285	
your convolution window? And again, how was the architecure chosen? Why does it 
make sense to separate the SSA and the ASY the way you do? Do you extract the SZA 
and RAA as well? They should certainly be == the input? Is there a test on this?  

 - We’ve added a plot of model architecture in the supplement. 
(19) page 9, line 259: While you do use 25% for test (or do you actually use this for 290	
evaluation? Not really, because you use it to test the network. What was used for the 
evaluation then?) 

- Hyper-parameter selection was done offline. We have not seen a significant 
difference between the hyper-parameter choices for the selected architecture and did not 
include the cross-evaluation at all during the training so 25% of the data that the model 295	
NEVER saw are used for testing the performance of the model.  
Because you use the same type of parametrization, this is not a good test. A different, 
unseen set of data should be used.  

- The model never saw the test data so the test is valid 
How do features that were not included in the training dataset at all (by all means 300	
outside the parameter range) affect the result?  
 - Ideally, the final MAX-DOAS inversion algorithm based on ML would “see” 
most of the possible ranges, for example, profiles from the LIVAS database, but optical 
properties varied across all aerosol types for the same profile so the solution is more 
reliable.   305	
What about thin cloud layers above 4 km, do they affect the result?  

- Friess et al 2018 used NASA real-time aerosol retrieval algorithm that is the 
basis for the dAMF (-dAMF= AMF – AMFRayleigh) analysis in this study. It was 
shown that the method is not sensitive to the aerosol/cloud layers above 4 km. We 
assume the same applies to the ML-based algorithm.  310	

The tests included here are not very useful. 
- We disagree with this statement. Most studies evaluating the performance of 

MAX-DOAS algorithms (e.g. Fiess et al, 2018) have significantly simpler and smaller 
data sets from both profile variability, observation geometry and optical properties that 
were tested in this study.  315	
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(20) page 10, line 275 & 285: given the range of parameters, using eq. 270, the 
maximum error is about 20%, not 100%. This puts these low numbers in context.  

- This is assuming that the ML-based algorithm always retrieves the ranges of the 
training data set. The fact that the ranges were within the realistic roam of aerosol 
profiles and properties is not a weakness, but a goal for a robust inversion ML 320	
algorithm. 

(21) page 11, Fig. 5: When you wrote earlier that the mean error is "-0.14", you really 
just took the mean over all angles? What is the significance of this? If it were in have 
the parameter space +50% and in the other -50%, its mean is still 0... and the model 
really not good, so what is the significance of the mean error here?  325	

- We agree, that as a stand-alone mean error over all observation geometries and 
all aerosol scenarios is somewhat meaningless unless the goal is to detect any 
systematic biases. That is why we also show 2 standard deviation results and 
dependency on observation geometry.  

 (22) page 12, Fig. 7: please explain the box whisker plot. Is the line mean or median? 330	
The box is how much percentage? The whisker? There are different conventions...  

- we added the following text to the Figure 5 caption: “The central mark indicates 
the median, and the bottom and top edges of the box indicate the 25th and 75th 
percentiles, respectively. The whiskers extend to the most extreme data points not 
considered outliers, and the outliers are plotted individually using the '+' symbol.” 335	

(23) page16, line351: This paper does not present the ML-based algorithm. It presents 
some of the results and that’s it. There is not enough information on the ML model. 
This sentence is not summarizing the paper.  

- we have made modifications to expend the discussion of the ML-based 
algorithm 340	

(24) page 16, line 363: maybe this is because of the choice of training parameters as a 
linear distributed AOD? 

- while the AOD itself is linearly distributed the dAMF used in training is not. 
The more realistic reason for the lower accuracy for low AOD is probably a 
smaller signal in dAMF. 345	

Technical corrections and suggestions:  
(1) Many times, there are definite articles missing (e.g. page 3 line 65 "The 

MAXDOAS..", page 3 line 84: "The DOAS technique", page 4 line 91 "The offset 
term...")  

- thank you for pointing this out 350	
(2) Eq. 5 on page 4 is not referred to in the text.  

- we added a reference to (Eq. 5) on line 90. 
(3) page7, line204: I highly doubt that Clemer et al 2010 is the only code here. I would 
add a "e.g.".  

- added 355	
(4) page 9, line 229: I think you miss the AOD=0 case in this list 

- we assumed that the algorithm will retrieve the properties perfectly in the 
absence of noise and AOD = 0 (dAMF = 0) and did not want to skew the data. 
However, we will include very small AOD in the next version of the model with 
the real data. 360	
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(5) page 10ff: I suggest to use an equi-distant grid for the raa-sza plots, as they are 
now, it gives a biased impression to the eye.  

- we replaced Fig 4. 
(6) page 12, line 311 f: I cannot quite understand the sentence "This error 
contribution..." maybe you can reformulate 365	

- the phrase was replaced with “Layer partial AOD retrieval error relative to the 
total AOD” 
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Responses to the comments by Reviewer 2. 

 
1. Not enough information about the machine learning (ML) algorithm itself are 380	
given. The introduction focuses on aerosols and MAX-DOAS only without introducing 
ML. In section 5, there is no explanation why the individual ML steps were chosen as 
they are. 

- We have removed some details about the aerosols and have added the following 
section to the introduction: See response to comment 1 by Reviewer 1. 385	

2. The validation section appears to be insufficient to assess the performance of the 
algorithm: 
(a) Why not changing the testing dataset to realistic profiles which are not included in 
the training data? How can you be sure that you do not over-fit your results? 
 390	

-The mappings contained in the test set are different from those in the training set. 
And different combination of SSA/ASY/profile produces different values of 
radiance. The model hasn’t seen these input values and output combinations of 
SSA/ASY/profile before. We split the data into two sets, the training set and the 
test set, no automatic model selection process using validation set. The training 395	
loss converges. We use 75% of the entire dataset for training and then directly 
apply the model on the remaining 25% for testing. We use ReLU unit (through 
sparsity) and Max Pooling layer (through reducing parameters) to control 
overfitting.  

 400	
(b) Why not using larger aerosol loads? 
 

- Lower to medium AOD loadings are more common. We will use LIVAS data 
base in future studies with more realistic profiles and global AOD loadings 
 405	
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(c) Why did you use 16 different elevation angles for the testing dataset even 
though this number is much too high for most measurement locations? What happens 
if you just use 8 or 10 elevation angles? Does the algorithm still perform well? 
 

- The main goal of the current work is to evaluate feasibility of ML as a retrieval 410	
method. We have included more angles than typical for MAX-DOAS to explore 
the maximum information content of the measurements and the inversion method. 
We have also tried a scan with10 angles and the ML methods performed well. 
 

 (d) The training dataset was created by using an US standard atmosphere. This is 415	
mostly a poor representation of the true atmosphere. What happens if the conditions 
change? 
 

We have not evaluated the effect of temperature and pressure profiles on the 
retrieval at this stage. This will be done in the future studies 420	

 
 (e) Why not testing the algorithm on real data? 

We do not have real data at 360 nm with accurate partial AOD profiles, ASY and 
SSA retrieved in the same direction as MAX-DOAS pointing. 

 425	
3. Are there plans to extend the training dataset by more wavelengths, SSA/asymmetry 
factors, albedo, profiles, trace gases (as suggested in Sec. 7)? 

- Yes  
  
4. Note that many articles are missing in the manuscript. 430	

- we have gone through the references 
Specific comments 
P2, L36-42: There is no need to show the equation of SSA and its detailed description. 
I suggest to change those 6 lines into one sentence only. 

- we have removed details about SSA from the manuscript 435	
 
P2, L43-62: This part about the aerosol phase functions is much too long, especially 
since there is no further discussion about this topic in your paper. The lines about the 
Legendre expansion could be completely removed without loosing important 
information for the understanding of the manuscript.  440	

- we have removed details about ASY from the manuscript 
 

P2, L58: When kept, please change the index L of PL(cosθ) P3, L65: "The" MAX-
DOAS 

- we have removed details about ASY from the manuscript 445	
 
Figure 1: A single sky scan...  

- corrected 
 
P3, L84: "The" DOAS technique...  450	

- corrected 
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P4, L91: "The" offset term...  

- corrected 
 455	
P4, L101: "Forward model parameters that are considered approximately". I guess 
you are referring, among other parameters, to a priori knowledge when using 
"approximately" here? Please change the wording or reformulate this sentence.  

- this is reference to such parameters as temperature and pressure profiles. 
Clarified in the text now: (e.g., temperature and pressure profiles from 460	
atmospheric soundings or models). 

 
P4, L114-115: "A priori information about...". I find this sentence to be rather 
confusing. What do you want to say here? 

- we added two commas to improve readability: “…distribution, before the 465	
measurements are made…” 

 
P5, L123-125: "None of the algorithms perform perfectly". That depends on what you 
understand as "perfect". I don’t think that it is possible at all to retrieve the true 
atmosphere in a extremely high vertical resolution. However, as far as I know, the 470	
second part of this sentence is correct. I would suggest to reformulate the first part.  

- We removed this sentence. 
Note that you also used external information about the atmosphere for creating your 
training dataset. You directly applied a priori knowledge by using exponentially 
decreasing profiles including Gaussian’s for your dataset. And I would not say that a 475	
priori knowledge does not exist. You look out of the window and know that it is a hazy 
day so you adapt the a priori. Sometimes you know about local sources or have 
ancillary measurements available. I would strongly suggest to change this paragraph. 

- a priori information, as applied in MAP, is typically a climatological distribution 
of the parameters of interest so adjusting the a priori according to the observation 480	
at the moment is not an appropriate use of the technique. The only technique that 
is available to measure aerosol extinction coefficient vertical profiles at 355 nm is 
LIDAR but even in this case the aerosol property information is very limited, so 
we do not agree that the true a priori for AOD, ASY and SSA at 360 nm exists for 
many locations. However, since there might be some locations where some of this 485	
information is available we have replaced the sentence with: 
 “They also require external information about the atmosphere (e.g. temperature 
and pressure profiles) that might not be readily available at the measurement time 
scales, and a priori information might not exist’ 

 490	
P7, L176: AMF represents → An AMF represents 
 - changed 
 
P7, L178: observations → observation 
 - changed 495	
 
P7, L181: Where "the" vertical column density 



	 12	

 - changed 
 
P7, L183-191: This part could be shortened as you have already introduced aerosols 500	
before.  
 - we removed some of the introductory aerosol information. 
 
P7, L205: "The" VLIDORT code 
 - changed 505	
 
Table 1: Why do your Gaussian profiles don’t have center heights higher than 2km? 
Since the vertical sensitivity for higher altitudes is an issue for common algorithms, I 
am wondering if your algorithm performs better here?  

- in our opinion the limiting factor for the retrieval of elevated layers is the MAX-510	
DOAS approach not the specific algorithm itself. By subtracting the zenith AMF 
we are removing some information. This information is also reduced by typically 
considering only a “single species” (O4) at a “single wavelength”. Because of this 
it made sense to limit the tests to 2 km. Further studies will include actual 
measurements compiled in LIVAS database. 515	

 
What is the scaling height of your exponential functions? 
 - they recalculated depending on the total loading and partitioning between the 
Gaussian and exponential AOD. 
 520	
P9, L235: What was the reason for changing the grid step width to a coarser resolution 
for higher altitudes? I have the feeling that your choice of Gaussian profile center 
heights and retrieval grid steps might deteriorate retrieval results for higher altitudes 
(as indicated in Fig. 9 and 11). 

- Yes, this is correct. Since this is a feasibility study we first wanted to 525	
demonstrate that the method works before performing much more elaborate RT 
and retrieval modeling. We plan to expand the study including higher vertical 
resolution. 

 
Section 5: I think it would be nice to add more information to this section to explain 530	
also the in-between steps and parameters of your CNN and LSTM.  

- we have added more details about the ML in the text and supplement 
 
P9, L251: "RMSprop was chosen...". Please explain.  

- It is a consensus in the CS community that RMSprop works well on recurrent 535	
networks such as LSTM, but RMSprop is an unpublished optimization algorithm.  
 

Figure 4: It would be interesting for the reader to see a similar plot describing the 
profile shape distribution. You could show 3 more plots for different partitioning, 
showing Gaussian center heights and width on x and y axis, respectively. Furthermore, 540	
the number of profiles with a certain total AOD would also be interesting (especially 
when looking at Figure 7). I fear that the reader might loose the connection to the 
actual profile shape due to the rather statistical analysis in the following paragraphs. 
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- while this is an interesting information we feel it does not add any additional 
insight into the results; 545	

 
Figure 5, 6 and 8: It is interesting to see that mean error and standard deviation show 
areas with high or low values at certain geometries. I was wondering if this is a matter 
of the scattering angle (angle between incident and outgoing photon assuming single 
scattering)? Could you please create a plot showing the scattering angle versus the 550	
respective  
error/standard deviation? Since e.g. RAA = 30◦ and a low SZA is equivalent to a large 
scattering angle (e.g. Fig 5c) it might show issues for certain scattering geometries. In 
addition, you could check if there are certain profile shapes or aerosol parameters 
more frequent for areas with a large standard deviation or high mean errors compared 555	
to other geometries. I was also wondering about the outliers in all three histograms. 
Any reason for that? 

- Thank you for the recommendation! Since Henyey-Greenstein approximation 
has a poor representation of the forward and backward scattering we will apply 
the suggested analysis to the future more realistic aerosol modeling.  560	

 
P11, L292: I agree that OEM methods also struggle with data inversion measured at 
small RAA but I was wondering why your synthetic analysis fails?  

- We believe this is due to the RT at small RAA, where the photon paths are very 
“direct” and MAX-DOAS is not “benefitting” from the low elevation angles as 565	
much. 

 
P12, L295: "The total AOD retrieval..." or "The retrieval of total..."  
 - changed 
 570	
P12, L297: In general, "the" ML algorithm 
 - changed 
 
P12, L299: What is the reason for the second peak in the histogram?  
 - we do not know 575	
 
Figure 7: Please explain all depicted quantities (mean, median, percentiles...) in the 
caption of this figure.  

- added: “The central mark indicates the median, the bottom and top edges of the 
box indicate the 25th and 75th percentiles, respectively. The whiskers extend to 580	
the most extreme data points not considered outliers, and the outliers are plotted 
individually using the '+' symbol.” 

 
Here, it would also be interesting to see if the largest underestimations correspond to 
certain profiles or parameters.  585	

- figure 11 shows some of the worst cases that correspond to low AOD, RAA <= 
10o and large SZA >= 80o. 
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Figure 9: Why is the error larger for 1.5 km than for 2 km? Since you also included 
Gaussian’s with Peak heights around 2km, I would expected the largest error at higher 590	
altitudes. Especially when considering the higher sensitivity of MAX-DOAS 
measurements for aerosol loads closer to the surface (which can be seen for altitudes 
lower than 1.5km). 

- This is potentially an artifact of the layer depths changes at 1 and 3 km 
 595	
Figure 10: It appears that there is also an underestimation of the predicted AOD for all 
sub-figures with true partial AOD’s larger than 0.2. For example in the upper left 
subfigure, but also in the second row (first figure), the third row (2nd and 3rd fig). Do 
these underestimations correspond to problematic scenarios/geometries/parameters?  
 - We have not explored the details. 600	
 
P16, L353: Training and evaluation of "the" ML 
 - changed 
 
P16-17, L365-372: Points 1 and 2 are valid but only a demand for near real-time 605	
applications. I doubt that there is a need for science to have profiles immediately after 
the measurement. For point 3, I was wondering if this is a major advantage. The 
dependence of profiling results on SSA is rather small and the Henyey-Greenstein 
approximation is in most cases a poor representation of the scattering distribution of 
aerosols. So why should the reader decide for your algorithm when an AERONET 610	
station nearby measures "real" phase functions and SSA?  

- this is a feasibility study and by no means suggests that the presented algorithm 
should be used as is. However, what this study does suggest is that more elaborate 
RT modeling with more realistic RT settings and realistic profiles can open the 
possibilities to fast and potentially more accurate algorithms using multiple 615	
wavelengths and multiple species.  

 
In point 4 you even diminish the potential of your approach by saying that it might be 
used as an initial guess for other algorithms. To me, this does not sound as if the 
authors are convinced of the capability of ML algorithms. 620	

- The goal of this research is not to convert the entire community to use ML-based 
approach but rather to explore its feasibility and possibilities 

 
If this is true, why not? If not, why are there no strong arguments in favor of your 
approach? 625	

- We personally believe that physics based ML methods can be very effective in 
accurate inversions, especially of MAX-DOAS data. However, the quality of 
training data is very important. Ideally, 3D models should be used with complete 
physics and exhaustive atmospheric conditions. Availability of such dataset is the 
part that we are mostly skeptical about. Another issue is the validation of the 630	
actual retrievals. There are no other profilers that “sample” in a similar way. 
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Abstract. In this study, we explore a new approach based on machine learning (ML) for deriving aerosol 

extinction coefficient profiles, single scattering albedo and asymmetry parameter at 360 nm from a single 645	

MAX-DOAS sky scan. Our method relies on a multi-output sequence-to-sequence model combining 

Convolutional Neural Networks (CNN) for feature extraction and Long Short-Term Memory networks 

(LSTM) for profile prediction. The model was trained and evaluated using data simulated by VLIDORT v2.7, 

which contains 1459200 unique mappings. 75% randomly selected simulations were used for training and 

the remaining 25% for validation. The overall error of estimated aerosol properties for (1) total AOD is -1.4 650	

± 10.1 %, (2) for single scattering albedo is 0.1 ± 3.6 %; and (3) asymmetry factor is -0.1 ± 2.1 %. The 

resulting model is capable of retrieving aerosol extinction coefficient profiles with degrading accuracy as a 

function of height. The uncertainty due to the randomness in ML training is also discussed.  

1. Introduction 

Aerosols play an important role in the Earth-atmosphere system by modifying the global energy balance, 655	

participating in cloud formation and atmospheric chemistry, and fertilizing land and ocean. Aerosols are 

widely spread in the troposphere and are emitted by anthropogenic and natural processes (primary aerosols), 

and are formed by gas-to-particle conversion mechanisms (secondary aerosols). Aerosols are removed from 

the atmosphere by dry (gravitational settling and turbulent) deposition and wet deposition, and have variable 

lifetimes ranging from a few minutes to a few weeks (Haywood and Boucher, 2000).  660	

The spatial and temporal distribution of aerosols in the lower troposphere is highly variable and greatly 

depends on the proximity to the sources, type of aerosols, meteorological conditions, and photochemical 

processes. Horizontal and vertical heterogeneity of the aerosol distribution, their properties and processes 

pose a serious challenge for modeling aerosol induced radiative forcing and is an important source of 

uncertainties in the climate modeling results (Intergovernmental Panel on Climate Change, 2014).  665	
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Macroscopic aerosol optical properties required for modeling aerosol radiative forcing include single 

scattering albedo, scattering phase function, and aerosol optical thickness (AOD), (Dubovik et al., 2002).  

                                                         

This paper investigates the potential of using advances in machine learning to invert aerosol properties 675	

(aerosol extinction coefficient profiles, single scattering albedo and scattering phase function) from a 

hyperspectral remote sensing technique called multi-axis differential optical absorption. 

Machine learning (ML) is a branch of artificial intelligence that derives its roots from pattern recognition 

and statistics. The goal of ML is to build statistical (or mathematical) models of a real-world phenomenon 

by relying on training examples. For instance, in supervised ML, a model is first presented with a set of 680	

paired examples (termed as the training set), where every training example contains a pair of input 

variables and output variables, and the goal of ML algorithms is to find the statistical structure of mapping 

from the input variables to the output variables that match with the training examples and can be 

generalized to unseen examples (termed as test set). The learned mapping (or the model) can be applied to 

the inputs of test examples to make predictions on their outputs. There are several advantages of using ML. 685	

Firstly, it can sift through vast amounts of training data and discover patterns that are not apparent to 

humans. Secondly, ML algorithms can have continuous improvement in accuracy and efficiency with 

increasing amount of training data. Thirdly, ML algorithms are usually very fast to apply on test examples 

since the time-consuming training process of ML models is offline and one-time. With these advantages as 

well as the availability of faster hardware, ML has soon become the most popular data analytic technique 690	

since the 1990s. In recent years, it has also been applied to the field of remote sensing (Efremenko et al., 

2017; Hedelt et al., 2019). 

Artificial neural networks (ANN) are methods studied in the ML field, successfully applied to a number 

of commercial problems such as image detection, text translation, and speech recognition. It is inspired by 

the biological neural networks constituting animal brains. As an analogy to a biological brain, an ANN is 695	

based on artificial neurons. An artificial neuron is a mathematical function receiving and processing input 

signals and producing outputs signals or activations. Each neuron comprises of weighted inputs, an 

activation function, and an output. Weights of the neuron are parameters to be adjusted, while the activation 

function defines the relationship from the input signals to the output signals. When multiple neurons are 

composed together in a layered manner (where the output signals of neurons in a given layer are used as 700	

inputs for the neurons in the next layer), we call it an artificial neural network (ANN). A common 

algorithm for training ANNs is the backpropagation algorithm, that passes the gradients of errors on the 

training set from the output layer to inner layers to refine the weights at all layers in an incremental way. 

The backpropagation algorithm converges when there is no change in ANN weights across all layers 

beyond a certain threshold. There are several optimization methods that are used for performing 705	

backpropagation and are behind standalone ANN packages commonly used by the ML community. ANNs 
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have many different types depending on the specifics of the neuron arrangement or architecture. A simple 715	

type of ANN is a multilayer perceptron (MLP), where all neurons at a given layer are fully connected with 

all neurons of the next layer, also termed as dense layers. Other complex types of ANN include 

convolutional neural network (CNN) and recurrent neural network (RNN). Two important types of 

artificial neural networks used in this study are the convolutional neural networks (CNN) (Fukushima, 

1980; LeCun et al., 1999) and the Long short-term memory (LSTM) neural networks (Hochreiter and 720	

Schmidhuber, 1997), which are variants of recurrent neural networks.  

Convolutional neural network (CNN) is a class of deep neural networks that uses the convolution 

operation to define the type of connections from one layer to another. While they have shown impressive 

results in extracting complex features from images in computer vision applications (Krizhevsky et al., 

2012; Simonyan and Zisserman, 2015), they are relevant in many other applications involving structured 725	

input data, e.g., 1D-sequences. A CNN is composed of an input layer, multiple hidden layers and an output 

layer. The hidden layers usually consist of several convolutional layers, followed by pooling layers, fully 

connected layers (dense layers) and normalization layers. Figure 1 shows a simple example of CNN. The 

input vector (or sequence) is first passed through a convolutional layer where it is convolved with 3 filters 

(convolution kernels) of size 3 using the same padding to produce three 6x1 feature maps. Since the ReLU 730	

function (! " = $%&	(0, ")) is commonly chosen as the activation function in CNNs, the feature maps 

only contain positive values. Then the max pooling layer picks the maximum value every 3 elements for 

each feature map, generating three 2 x 1 vectors. After passing through a flatten layer, the max pooling 

output is reshaped into a 6 x 1 vector, which is followed by a dense (fully connected) layer with 2 nodes. 

The dense layer multiplies its input by a weight matrix and add a bias vector for generating the output of 735	

the model. The computer adjusts the model’s convolutional kernel values or weights through a training 

process called backpropagation, a class of algorithms utilizing the gradient of loss function to update 

weights. For the case in Figure 1, there are 26 tunable parameters. ( 3 + 1 ×3 = 12 from convolution 

kernels and 6 + 1 ×2 = 14 from the dense layer.)  

	740	
Figure 1. Schematics of a simple CNN 
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Long short-term memory (LSTM) neural networks have many applications such as speech recognition 

(Li and Wu, 2015) and handwriting recognition (Graves et al., 2008; Graves and Schmidhuber, 2009). They 

are a special kind of ANNs termed as recurrent neural networks (RNNs). RNNs are designed for modeling 745	

sequence dependent behavior (e.g., in time). They are called “recurrent” because they perform the same 

operation for every element of a sequence, with the output at a given element dependent on previous 

computations at earlier elements (Britz, 2015). This is different from traditional neural networks wherein 

all the input-output examples are assumed to be independent of each other.  

	750	
Figure 2. Unrolled recurrent neural network. 

Figure 2 shows a diagram of an unrolled RNN with 3 input nodes, where “unrolled” means showing the 

network for the full sequence of inputs and outputs. The RNNs work as follows. At the first element of the 

sequence, the set of input signals &4 (which can be multi-dimensional) is fed into the neural network F to 

produce an output ℎ4. At the next element of the sequence, the same neural network F takes both the next 755	

input &6 and previous output ℎ4, generating the next output ℎ6.  This recurrent computation continues for t 

times to produce the output at the tth element of the sequence, ℎ8. While RNNs are powerful architectures 

for modeling sequence behavior, classical RNNs are inadequate to capture long-term memory effects where 

the inputs-outputs at a given element of the sequence can affect the outputs at another element of the 

sequence separated by a long interval. Long-short-term memory (LSTM) models are variants of RNNs that 760	

are able to overcome this challenge and are efficient at capturing long-term dependencies as well as short-

term dependencies. It does so by introducing an internal memory state that is operated by neural network 

layers termed as gates, such as the “input gate,” that adds new information from the input signals to the 

memory state, the “forgot gate,” that erases content from the memory state depending on the input signals, 

and the “output gate,” that transforms information contained in the input signals and the memory state to 765	

produce output signals.   
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Figure 3.  LSTM cell diagram (modified from Thomas, 2018). 

An example of an LSTM cell is illustrated in Figure 3, of which the update rules are:   770	

g: = tanh	(>? + &:@
? + ℎ:A4B

?)	

C: = σ(>E + &:@
E + ℎ:A4B

E)	

!: = σ(>F + &:@
F + ℎ:A4B

F)	

G: = G:A4 ∘ !: + I: ∘ C: 	

J: = σ(>K + &:@
K + ℎ:A4B

K)	775	

ℎ: = tanh	(G:) ∘ J: 	

where j is the element index, σ(x) represents the sigmoid function, and tanh	(&) represents the hyperbolic 

tangent function. & ∘ M denotes the element-wise product of & and	M.  @?, @E, @F, @K are the weights for the 

input &:, while B?, BE, BF, BK are the weights for the other input ℎ:A4, and >?, >E, >F, >K are the scalar terms 

(termed as bias). The term g: is the input modulation gate, which modulates the input >? + &:@? + ℎ:A4B? 780	

by a hyperbolic tangent function, squashing the input between -1 to 1. The term	C: is the input gate, which 

applies a sigmoid function to its input, limiting the output values between 0 and 1. The input gate C: 

determines which inputs are switched on or off when multiplying the modulated inputs (I: ∘ C:). The term G: 

is the internal cell state that provides an internal recurrence loop to learn the sequence dependence. The terms 

!: and J: are the forgot gate and output gate, respectively. They have similar function to the input gate 	C:, 785	

regulating the information into and out of the LSTM cell. The term ℎ: is the output at step j. 
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2. Multi-Axis Differential Optical Absorption (MAX-DOAS) technique 

The MAX-DOAS technique has been widely used to derive vertical aerosol extinction coefficient profiles in 

the lower troposphere. This is typically done from ground-based measurements of oxygen collision complex 

(O2O2) absorption (for a detailed list of references see Table 1 in Wagner et al., (2018)). Since the oxygen 

volume mixing ratio (cO2 = 0.209) is considered constant, the O2O2 abundance depends only on the total 795	

number of air molecules (pressure, temperature and to a small degree humidity) and can be easily calculated. 

More than 93% of O2O2 is located below 10 km (scale height ~ 4 km). Any deviation in measured O2O2 

absorption from this molecular (Rayleigh) scattering case is only due to the change in the photon path through 

the O2O2 layer. Aerosols and clouds are the main causes of such photon path modification for ground-based 

measurements. O2O2 has several absorption bands in the ultraviolet (UV) and visible (VIS) parts of the 800	

electromagnetic spectrum (band peaks at 343, 360, 380, 477, 577, 630 nm (Thalman and Volkamer, 2013).  

 
Figure 4. Demonstration of the MAX-DOAS principle: (a) side view and (b) top view. Simplified photon paths 
through the atmosphere are shown in yellow. A single sky scan sequence for profile retrieval consists of multiple 
viewing zenith angles (VZA) in a specific direction (viewing azimuth angle, VAA) at a specific solar zenith angle 805	
(SZA) and is shown in red.  

The MAX-DOAS technique consists of measuring sky-scattered UV-VIS solar photons at multiple, primarily, 

low elevation angles (Fig. 4). MAX-DOAS shows a large sensitivity to the tropospheric gases due to 

increased photon path length through the lower troposphere (Platt and Stutz, 2008). To eliminate the 

contribution from the upper atmosphere solar spectra measured at low elevation angles are divided by the 810	

reference spectrum collected from the zenith direction. The DOAS technique has the advantage of not 

needing an absolute radiometric calibration. 

The first step of the DOAS retrieval is a spectral evaluation to calculate the differential slant column density 
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(ΔSCDmeasured = SCD - SCDreference) of O2O2. This step is accomplished through the simultaneous non-linear 

least-squares fitting of the absorption by species i, low-order polynomial function (PLO) and offset to the 820	

difference between the logarithms of the attenuated (I) and reference (Ireference) spectra (Eq. 5). PLO estimates 

combined attenuation due to molecular scattering and aerosol total extinction (scattering and absorption). 

The offset term approximates instrumental stray light and residual dark current. 

NO PQRFRQRSTR U − NO P U − J!!GW3 U = XE U ∙ ∆[\]E^ + _̀ a,                                                   (1) 

The second step of the MAX-DOAS analysis is the conversion of a single sky scan (multiple viewing angles) 825	

ΔSCD(O2O2) into a vertical aerosol extinction coefficient profile. The physical relationship between the 

measured ΔSCD and the desired aerosol extinction coefficient profile and aerosol properties is complex, and, 

in general, can be expressed mathematically by Eq. (6) (Rodgers, 2004): 

b = ! ", c + d,                                                                                                    (2) 

Where, the measured quantities (measurement vector y) are described by a forward model f(x, b) and the 830	

measurement error vector (ε). The forward model, f(x, b), is a model that estimates physical processes that 

relate the measured parameter (y), the unknown quantity to be retrieved (state vector (x)), and forward model 

parameters (b) that are considered approximately known (e.g., temperature and pressure profiles from 

atmospheric soundings or models). Under most conditions, there are more unknowns than measurements, 

and as a result equation (6) does not have a unique solution.  835	

The inversion of Eq. (6) is often done in the framework of Bayes’ theorem, which allows for the assignment 

of probability density functions to all possible states given measurements and prior knowledge of the state. 

However, in reality, we are not interested in all possible solutions, but rather a single, the most “probable” 

solution with its error estimation. Equation (7) shows a Transfer Function that defines an estimated solution 

(") as a function of the measurement system and retrieval method (Rodgers, 2004): 840	

" = e ! ", c + d, c, "f, g ,                                                           (3) 

where R is a retrieval method, f(x, b) is a forward function with the true state (x) and true parameters (b),  c 

is the estimated forward model parameter vector, xa is the a priori estimate of state vector (x), and c is a 

retrieval method parameter vector (e.g. convergence criteria). For nonlinear problems the solution to equation 

(7) cannot be found explicitly, and iterative numerical methods are required. A maximum a posteriori (MAP) 845	

approach has been widely applied to moderately nonlinear problems with Gaussian distribution of both 

measurement errors and a priori state errors. A priori information about the state vector distribution before 

the measurements are made is used to constrain the solution of the ill-posed problems (Rodgers, 2004). It is 

essential to use the best estimate of the state available since in the MAP approach the retrieved state is 

proportional to the weighted mean of the actual state and the a priori state. In addition, an appropriate 850	

covariance matrix for the a priori state vector has to be constructed. This a priori information for aerosol 

vertical extinction coefficient profiles, however, is rarely available.  
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In addition to the optimal estimation method (OEM), briefly described above, parameterized (Beirle et al., 

2019; Vlemmix et al., 2015) and analytic (Spinei et al 2019, in preparation) inversion algorithms were 860	

developed. Frieß et al., (2019) provide a detailed intercomparison of currently available state-of-the-art 

inversion algorithms for the MAX-DOAS measurements. Most of the current algorithms take between 3 to 

216 seconds to process a single MAX-DOAS sky scan (Frieß et al., 2019) mainly due to the iterative inversion 

step. Aerosol extinction coefficient profiles are inverted while aerosol single scattering albedo and 

asymmetry factor are typically assumed based on the co-located AERONET measurements. They also require 865	

external information about the atmosphere (e.g. temperature and pressure profiles) that might not be readily 

available at the measurement time scales, and a priori information that does not typically exist. With an 

increasing number of MAX-DOAS 2-D instruments worldwide capable of sunrise to sunset measurements 

(e.g. Pandonia Global Network) fast methods are needed that can harvest full information from the MAX-

DOAS hyperspectral measurements.    870	

This study describes and evaluates a fast novel machine learning (ML) approach for retrieving aerosol 

extinction coefficient profiles, asymmetry factor and single scattering albedo at 360 nm from ΔSCD(O2O2) 

observations within a single MAX-DOAS sky scan. The basic idea of our approach is: (1) develop an “inverse 

model” by one-time offline training of a supervised ML algorithm on simulated MAX-DOAS data and 

corresponding atmospheric aerosol conditions, and (2) use the relationships derived in the first step to 875	

estimate the aerosol extinction profile, asymmetry factor, and single scattering albedo from the MAX-DOAS 

ΔSCD(O2O2) measurements. We specifically leverage recent advances in ML, e.g., deep learning methods, 

to automatically extract the inverse mapping from the observations (y) to the state vectors (x), using a 

collection of (x, y) pairs available for training. Different machine learning algorithms were successfully used 

in remote sensing applications (Schulz et al., 2018, Schilling et al., 2018, Efremenko et al., 2017; Hedelt et 880	

al., 2019). 

The rest of the paper is organized in the following sections. Section 3 provides an overview of the new 

retrieval algorithm. Section 4 focuses on training data generation using the radiative transfer model 

(VLIDORT). Section 5 details ML implementation. Section 6 provides an extensive comparison of ML 

predicted versus “true” macroscopic aerosol properties outside the training dataset. Section 7 summarizes the 885	

findings. 

3. Overview of the Methodology 

Our approach consists of three stages: (1) training set generation; (2) a one-time training that results in an 

inverse ML model e(Θ) with appropriate architecture and parameters Θ ; and (3) an inversion stage, where 

the trained ML model e(Θ	) is applied to MAX-DOAS measurements to retrieve aerosol properties. Figure 890	

5 provides a schematic overview of the three stages. 

First, a training set containing simulated measurements bE|C = 1,2, … ,k  is generated by a forward model 

(VLIDORTv2.7) given atmospheric states "E|C = 1,2, … , l . The model describes atmospheric radiative 
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transfer processes connecting the atmospheric states and the measurements. Second, both the atmospheric 

states and the simulated measurements are fed into the ML model for learning the inverse mapping from the 910	

measurement space to the state space. This is based on solving an optimization problem that minimizes the 

mean squared error (MSE) between the retrieved values ( "E|C = 1,2, … , l ) and the true values 

( "E|C = 1,2, … , l ). We specifically chose artificial neural network (ANN) models to learn the inverse 

mapping from y to x. By iteratively adjusting the parameters of the ANN model using gradient descent 

(backpropagation) algorithms (Johansson et al., 1991), we are able to arrive at ANN model parameters Θ that 915	

provide a local optimum performance in terms of MSE on the training data. The result of the training stage 

is an inverse model e(Θ	) whose architecture and parameters are saved in an HDF5 file (1.3 MB). The trained 

model e(Θ	) is an inversion operator that transforms measurements vector y into the state vector " through 

a set of simple linear and nonlinear operations. The inverse model provides a convenient and fast way for 

retrieval of aerosol properties from ΔSCD(O2O2) measurements during the inversion stage. It takes ~0.15 ms 920	

for the retrieval of the studied aerosol properties from a single MAX-DOAS sky scan ΔSCD(O2O2) on a 

single CPU core.  

 
Figure 5. Schematics of the machine learning inversion algorithm. 

4. Training data preparation 925	
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The success of any ML model depends on the quality of the training data. Since there is no reliable dataset 

that combines simultaneous MAX-DOAS measurements and observations of aerosol macrophysical 

properties and vertical extinction coefficient profiles at 360 nm we use a radiative transfer model to simulate 

MAX-DOAS measurements. In this study, we train our ML model on air mass factors (AMF) calculated 930	

from the simulated solar radiances at the bottom of the atmosphere.  

AMF represents a ratio between the true average path that photons take through a gas layer before detection 

by a MAX-DOAS instrument and the vertical path. Since O2O2 absorption in the reference (zenith scattered) 

spectrum is not precisely known, a differential AMF at a specific wavelength λ and observations geometry µ 

(relative azimuth angle, solar zenith angle, and viewing zenith angle), is determined as: 935	

∆mkn o6o6, U, p =
∆qrstuvwxyuz a{a{,|,}

~rs(a{a{)�vÄ�xÄvÅuz
=

ÇÉ ÑyuÖuyuÜ�u |,}á AÇÉ Ñ |,}

~rs(a{a{)�vÄ�xÄvÅuz	∙	à a{a{,|
,                                                  (4) 

Where vertical column density of O2O2 (VCD) is estimated as the squared oxygen number density integrated 

from the surface to the top of the atmosphere; and σ(λ) is the molecular absorption cross-section of O2O2. 

In the absence of aerosols and clouds only air molecules (mainly oxygen and nitrogen) scatter solar photons 

in the Earth's atmosphere. This molecular only (Rayleigh) scattering process is considered to be well 940	

understood (Bodhaine et al., 1999) and ΔAMFRayleigh can be calculated from the simulated intensities. In the 

presence of aerosols, dust and clouds not only air molecules but also particles and cloud droplets scatter solar 

photons. This type of scattering can be generally described by the T-matrix theory. In this study we consider 

only spherical aerosols (Lorenz-Mie theory), whose scattering phase function is approximated according to 

the Henyey-Greenstein approach using the asymmetry factor g. ΔAMFaerosol+Rayleigh are determined from 945	

simulated downwelling radiances for atmosphere with different aerosol types and their extinction coefficient 

profiles. The change in AMF due to aerosol presence can be described by ΔAMFaerosol: 

∆mknâRQK^Kä = ∆mknãâåäRE?ç − ∆mknâRQK^KäéãâåäRE?ç,                                                                             (5) 

ΔAMFaerosol for O2O2 at 360 nm for different observation geometries and scattering conditions is used for ML 

training in this feasibility study. A single MAX-DOAS measurement considered here is ΔAMFaerosol set from 950	

the full sky scan at a single solar zenith angle, single relative azimuth angles, and nineteen viewing zenith 

angles between 0o and 89o (see Table 1). To ensure that the training dataset contains all observation 

geometries feasible for MAX-DOAS sky scans we have included: nineteen relative azimuth angles (0o to 180o, 

10o step), and twelve solar zenith angles (0o to 85o,  see Table 1).Solar radiances at the bottom of the 

atmosphere were simulated using VLIDORT v.2.7 (Spurr, 2008). VLIDORT is a discrete-ordinate radiative 955	

transfer model that has been successfully applied to simulate radiances and weighting functions for forward 

models in optimal estimation inversion (e.g., Clémer et al., 2010) and machine learning algorithms 

(Efremenko et al., 2017, Hedelt et al., 2019). VLIDORT code applies pseudo-spherical approximation to 

direct solar beam attenuation in a curved atmosphere. All scattering processes are estimated using the plane-

parallel approximation in a stratified atmosphere. Precise single scattering computation is performed using 960	

Nakajima/Tanaka ansatz and delta-M scaling. VLIDORT v.2.7 calculates analytically derived Jacobians 
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(radiance weighting functions) with respect to any profile/column/surface variables. VLIDORT computes 970	

elastic scattering by molecules to all orders (Spurr, 2008). 

Table 1. Radiative transfer model settings 

General 
Model Settings 

Physical and Observation Geometry Inputs 

 
NO Refraction 
correction; 
 
Scalar calculations; 
 
Only elastic 
scattering; 
 
Aerosol scattering 
phase function 
estimation using 
Henyey-Greenstein 
approximation 
from the 
asymmetry factor 
(g). 
 
 

Observation Geometry: 
Viewing zenith angle scan: 0, 40, 50, 60, 65, 70, 75, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89o; 
Relative azimuth angles: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 
160, 170, 180o 
Solar Zenith angles: 0, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85, 86, 87, 88, 89o 

Wavelength: 360 nm; 
 
Vertical grid (67 layers): 
100 m up to 4 km, 500 m from 4 to 8 km, 1 km from 8 to 12km, 2 km from 12 to 30km, 5 
km from 30 to 60 km 
 
Atmospheric air density: 
Pressure [hPa]: US1976 standard atmosphere 
Temperature [K]: US1976 standard atmosphere 
 
Gas volume mixing ratio profiles: 
O3 profile: climatology over Cabauw in September 
O3 molecular absorption cross-section: Daumont 
O2O2 profile: from temperature and pressure 
O2O2 molecular absorption cross-section: Thalman and Volkamer (2011) 
 
Aerosol properties: 
Single scattering albedo:  0.775, 0.825, 0.875, 0.925, 0.975 
Henyey-Greenstein asymmetry factor: 0.675, 0.725, 0.775, 0.825 
 
Aerosol extinction coefficient profiles [1/km] as a function of altitude; 
Exponential function at the surface combined with “sliding” Gaussian function above; 
Total AOD: 0, 0.15, 0.3, 0.45, 0.6, 0.75;  
Gaussian profile center height: 0.5, 1, 1.5, 2 km;  
Gaussian width: 0.1, 0.2, 0.3, 0.5 km;  
Partitioning between exponential and Gaussian attributed AOD: 0.3, 0.6, 0.9 
 
Surface reflectivity: 
Lambertian albedo at 0.04 
 

VLIDORT models radiative transfer processes at a specific wavelength in a stratified atmosphere. It requires 

geometrical and “optical” information about the atmospheric layers and the underlying ground surface. These 

include layer heights, pressure and temperature at layer boundaries for refractive geometry calculations, solar 975	

zenith, viewing zenith direction and relative azimuth angles between the viewing direction and solar position.  

Each atmospheric layer is described by total optical thickness, total single scatter albedo, and the set of Greek 

matrices specifying the total scattering law.  

VLIDORT simulations were performed for the US 1976 standard atmosphere divided into 67 layers (same 

as in Frieß et al., 2019) with 0.1 km layers from the surface to 4 km; 0.5 km layers from 4 to 8 km and varying 980	

width up to 60 km. Since surface reflectivity has a small effect on ground-based MAX-DOAS measurements 
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we performed simulations only for a single Lambertian albedo of 0.04. Absorption only by two gases was 

considered in this study: ozone and O2O2. Light polarization, direct beam refraction, and inelastic scattering 

were not included in this study. Table 1 summarizes VLIDORT inputs and general settings. 

Aerosol types in this study are described by a single scattering albedo and asymmetry factor combination 985	

with total 20 “types”: (1) Single scattering albedo: 0.775, 0.825, 0.875, 0.925, 0.975; (2) Henyey-Greenstein 

asymmetry factor: 0.675, 0.725, 0.775, 0.825. Aerosol extinction coefficient profiles were generated by 

combining an exponential function at the surface with a “sliding” Gaussian function above. The aerosol total 

optical depth was partitioned between the exponential and Gaussian functions. Total AOD cases included 

0.15, 0.3, 0.45, 0.6, and 0.75 with exponential to Gaussian partitioning fractions of 0.3, 0.6 and 0.9. The 990	

Gaussian function peak center height was varied from 0.5 km to 2 km in steps of 0.5 km. The Gaussian 

function peak width was varied too: 0.1, 0.2, 0.3, and 0.5 km. This results in 4800 aerosol cases and a total 

of 1459200 measurement simulations (sky scan). Figure	14	demonstrates	the	aerosol	profile	samples,	

where	the	near	surface	aerosol	partial	optical	depth	profiles	are	described	by	the	exponential	function	

and	the	layers	aloft	are	described	by	the	Gaussian	function	with	various	widths	and	heights	added	to	995	

the	exponential	function	profile.	While VLIDORT simulations were performed for an atmosphere divided 

into 67 layers, ML training was done by resampling onto 23 layers only. The new layer depths are: 100 m 

from the surface to 1km, 200 m from 1 km to 3 km, 500 m from 3 km to 4 km, and the last layer is 56 km 

high. The new layer partial AODs were generated by adding the neighboring layer partial aerosol optical 

depths. ML algorithm was trained on 75% randomly selected measurement simulations (1094400 samples) 1000	

and model performance was tested on the remaining 25%. Note, that no validation data was held off from the 

75% training set for tuning hyper-parameters of our ML model, as all ML hyper-parameters were kept 

constant across all experimental settings in this paper.   

5. Learning inverse mapping using ML  

We employ a supervised ML formulation for our problem of aerosol profile retrieval, where the goal is to 1005	

learn the mapping from input variables to output variables given a training set of paired data instances. In our 

formulation, every data instance corresponds to a single MAX-DOAS sky scan at a fixed Relative Azimuth 

Angle (RAA) and Solar Zenith Angle (SZA), where the inputs of the data instance comprise of: (a) RAA 

scalar value, (b) SZA scalar value, and (c) a sequence of ΔAMFaerosol values at 16 VZAs. The output  variables 

at a data instance correspond to the aerosol properties we are interested in predicting given the inputs, which 1010	

are: (a) Single Scattering Albedo (SSA) scalar value, (b) Asymmetry factor (ASY) scalar value, and (c) a 

sequence of partial Aerosol Optical Depth (AOD) values at 23 vertical layers of the atmosphere, termed as 

the aerosol extinction profile.  

 

Note, that in our supervised ML formulation, there are sequences in both the input signals and output signals, 1015	

namely ΔAMFaerosol sequence and partial AOD sequence, respectively. Further note that the input and output 

signals used in our problem setting are of very different types and thus have different dimensionalities (e.g., 
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ΔAMFaerosol takes 16 values at varying VZAs while partial AOD takes 23 values at varying atmospheric 

layers). We thus first apply a 1-dimensional CNN to extract features from the sequence part of the input 

signals. Note that our input signals are not image-based, which is one of the common types of input data for 1025	

which CNNs are used. Instead, our input data is structured as a 1D sequence, and the convolution operations 

of CNN help in extracting sequence-based features from the input signals that are then fed into subsequent 

ANN components. We also use an LSTM to model the sequence part of the output signals. Note, that our 

data contains no time dimension as we are only working with single scan data, assuming the atmosphere does 

not change during the scan time. However, it is the sequence-based nature of the output signals that motivated 1030	

us to use LSTM models for sequence-based output prediction. Furthermore, the dataset we use for training 

is produced by a physical model (VLIDORT), where the relationship between the inputs and outputs are 

known. 

 

Figure 6 illustrates the novel multi-output sequence-to-sequence model for learning the inverse mapping from 1035	

MAX-DOAS measurements to aerosol optical properties. To extract sequence-based features from MAX-

DOAS inputs, a 1-dimensional Convolutional Neural Network (CNN, Fukushima, 1980; LeCun et al., 1999) 

is first applied on the sequence of inputs (we concatenate ΔAMFaerosol  sequence with SZA and RAA to obtain 

an 18-length input sequence), which results in a sequence of preliminary hidden features. These preliminary 

hidden features are then sent to two different branches of 1D-CNN layers that perform further compositions 1040	

of convolution operators to produce non-linear hidden features for predicting two different types of outputs: 

(a) scalar outputs: SSA and ASY, and (b) sequence-based outputs: aerosol extinction profile. For the branch 

corresponding to scalar outputs, the features extracted from 1D-CNN layers are simply passed on to a fully-

connected dense layer to produce a two-dimensional output of SSA and ASY. For the branch corresponding 

to sequence-based outputs, the features extracted from 1D-CNN layers are fed to a Long Short-Term Memory 1045	

network (LSTM, Hochreiter and Schmidhuber, 1997) to produce a sequence of partial AOD values at varying 

atmospheric layers.  

 
Figure 6. Schematics of the multi-output sequence-to-sequence model for deriving aerosol optical properties from 
MAX-DOAS measurements.  1050	

Figure S1 shows the detailed architecture of the multi-output sequence-to-sequence model. The CNNs 

consist of eight 1D convolutional layers (c1 to c8) and four max-pooling layers (p1 to p4). For convolutional 

layers c1 to c6, the activation function is the Rectified Linear Unit (ReLU) function. For layers c7 and c8, it 

Deleted:  depth

Deleted:  1055	

Deleted: 3

Deleted: A 

Deleted: to learn

Deleted:  is illustrated in Figure 3

Deleted:  The inputs to the ML model comprise of a 1060	
sequence of ΔAMFaerosol at 16 VZAs, as well as two scalar 
inputs: the solar zenith angle (SZA) and the relative azimuth 
angle (RAA) of the single sky scan. 

Deleted: data

Deleted: applies a learnable convolution operator1065	
Deleted: MAX-DOAS values

Deleted:  

Deleted: t

Deleted:  produce a sequence of hidden features. These 
hidden features are then fed into the subsequent neural 1070	
network layers to predict a sequence of partial AOD values, 
along with two scalars: single scattering albedo and 
asymmetry factor. Given the sequential nature of the partial 
AOD outputs, we employ a

Deleted: that is able to capture varying scales of memory 1075	
in the

Deleted: levels

Deleted:  

Deleted: depths

Deleted: The complete ML model is implemented in the 1080	
Jupyter Notebook by using the Keras library. RMSprop was 
chosen as the optimizer and the mean squared error as the 
loss function (Hinton, 2012). 

Deleted: 3

Deleted: An example of an 1085	



	 28	

is a hyperbolic tangent function (tanh). We set the kernel size of the convolution operation to be the typical 

value of 5 and use the same padding for all èê, ∀í ∈ 	 {1, 2, … ,8}. ReLU and Max pooling layers help to 

reduce overfitting through model sparsity and parameter reduction. The convolution kernel weights are 

initialized using a “Glorot uniform” method (Glorot  and Bengio, 2010).  

Extracted feature vector from the p1 layer is sent into two different branches. In the branch for profile 1090	

prediction, we take a one-to-many LSTM (Fig. 3) with 23 layer steps and a hidden size of 128 to capture 

the correlation between the partial AODs at different layers. We simply duplicate the feature vector learned 

from CNNs for 23 times to generate the inputs for the LSTM model. The sequential output {y1, y2,…,y23} 

of the LSTM (after passing through a flatten layer and an ReLU layer) is interpreted as the 23-layer aerosol 

extinction profile. For the SSA/ASY branch, 1D convolutional layers and dense layers are combined for the 1095	

prediction. The reason for taking a two-output architecture is that SSA and ASY are independent scalar 

outputs that cannot be treated as a sequence, in contrast to the aerosol extinction profile. 

We implemented our ML model in the Jupyter Notebook using the Keras library, which is a commonly used 

deep learning library for Python. RMSprop was chosen as the optimizer and the mean squared error was used 

as the loss function (Hinton, 2012). We trained the model on 75% of the dataset for 124 epochs with a batch 1100	

size of 640. The following choice of hyperparameters was used: choice of optimizer = RMSprop, lr = 0.001, 

rho = 0.9, epsilon = None, and decay = 0.0. We did not perform any hyper-parameter tuning on a separately 

held validation set inside the training set, and the values of all hyper-parameters in our ML model were kept 

constant throughout all experiments in the paper on the test set. In order to ensure that there was no overlap 

between the training and testing steps, we did not make use of the test data either directly or indirectly during 1105	

the training phase, either for learning parameter weights or selecting hyper-parameters. 

 

 
 

6. Results 1110	

Evaluation of the accuracy of ML mapping rules derived during the training stage for MAX-DOAS data 

inversion was done by comparing the “true” atmospheric aerosol properties to the ML inverted properties. 

The evaluation data set consists of 364800 MAX-DOAS simulated sky scans that are outside of the training 

set. The number of simulations in the evaluation data set as a function of solar zenith angle (SZA) and relative 

azimuth angle (RAA) are shown in Figure 7. Between 1100 and 1300 aerosol scenarios are present in each 1115	

SZA-RAA bin. 
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Figure 7. Number of simulations in the evaluation data set as a function of solar zenith (SZA) angle and relative 1130	
azimuth angle (RAA). 

The following ML predicted aerosol properties were evaluated: (1) asymmetry factor, (2) single scattering 

albedo, (3) total aerosol optical thickness, and (4) partial aerosol optical thickness for each layer from 0 to 4 

km. A relative error ϵ of the retrieved by ML parameter & relative to the “true” value x is calculated according 

to Eq. (10):  1135	

ϵ ≡
ôAö

ö
∙ 100% ,                                                                        (6)  

The relative error evaluation presented in the subsequent sections was performed on the retrievals from a 

single ML training. Since ML itself introduces randomness during the training stage, we retrained the model 

20 times with the same hyperparameters for evaluating the uncertainty of the ML training.   

6.1. Asymmetry factor at 360 nm 1140	

The ML-based approach shows an ability to invert aerosol asymmetry factor with a mean error of -0.14% 

and two standard deviations of 2.04% and nearly normal error distribution (Fig. 8(a)). To evaluate if any 

dependence of the asymmetry factor retrieval exists on SZA and RAA the mean error and the two standard 

deviations are shown in Fig. 8(b, c). These distributions suggest that dependence of the asymmetry factor 

retrieval on SZAs and RAAs is relatively small. However, systematically higher relative errors are observed 1145	

around SZA of 65° and RAA of 30-40°.  The cause of these elevated errors is not clear at this point.  

 
Figure 8. Asymmetry factor retrieval errors: (a) error histogram; (b) mean error as a function of SZA and 

RAA; (c) two standard deviations as a function of SZA and RAA. 

6.2. Single scattering albedo at 360 nm 1150	
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Similar high accuracy is achieved for ML retrieval of the single scattering albedo with a mean error of 0.19% 

and two standard deviations of 3.46% and nearly normal error distribution, somewhat positively skewed (Fig. 

9). Slightly higher errors are observed at RAA smaller than 60° and most SZA.  

 
Figure 9. Single scattering albedo retrieval errors: (a) error histogram (b) mean error as a function of SZA and 1160	
RAA (c) two standard deviations as a function of SZA and RAA. 

Mean errors are also larger at small RAA and SZA > 85°. Traditional optimal estimation techniques also 

struggle with the MAX-DOAS data inversion at small RAA due to uncertainty in aerosol forward and 

backward scattering. 

6.3. Total aerosol optical depth at 360 nm 1165	

Total AOD retrieval is more challenging for the ML model than the single scattering albedo or asymmetry 

factor, especially at lower total AOD levels.  Box plots of the total AOD error for different “true” total AOD 

values are given in Fig. 10.  In general, ML algorithm tends to underestimate total AOD from the mean error 

± 2 standard deviations of  -8.39 ± 8.81% (total AOD 0.15) to -1.52 ± 3.10%  (total AOD of 0.75). Total 

AOD retrieval error distribution over all cases is close to Gaussian distribution, but with two peaks (Fig. 11). 1170	

The mean error (± two standard deviations) is -3.58% ± 7.68%. The bias of the model does not have much 

dependence on SZAs and RAAs (Fig. 11(b)). Still, lager errors and uncertainties can be observed at higher 

SZAs and lower RAAs (Fig. 11(c)).  

Deleted: 6

Deleted: 61175	

Deleted: 7

Deleted: 8

Deleted: 8

Deleted: 8



	 31	

 1180	
Figure 10. Box plots of total AOD prediction errors for each “true” total AOD value. The box central mark 

indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are 

plotted individually using the '+' symbol. 

 1185	
Figure 11. Total AOD retrieval errors: (a) error histogram (b) mean error as a function of SZA and RAA (c) 

two standard deviation as a function of SZA and RAA. 

 

6.4. Partial aerosol optical depth profile from 0 to 4 km 

The contribution of partial AOD retrieval error at each atmospheric layer from 0 to 4 km to the total AOD is 1190	

shown in Fig. 12. Layer partial AOD retrieval error relative to the total AOD depends on the absolute amount 

of aerosols and its altitude and on average is less than 1% per layer. Just like OEM methods, the ML method 

has lower accuracy of retrieving elevated aerosol layers especially corresponding to smaller total AOD. The 

larger distribution of relative errors in partial AOD at 1.5 km and 2 km is mainly due to the presence of 

elevated layers in the training data that peaked at those heights. If the aerosol were also present in meaningful 1195	

amounts above those altitudes the error distribution would have been larger above 2 km.   
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Figure 12. Mean partial layer AOD error ± one standard deviation. 

A linear regression analysis of the “true” versus the retrieved partial AOD was performed using the least-

squares fitting for each layer from 0 to 2.2 km (Fig. 13). Intercepts of linear regression analysis for all layers 1205	

were zero with RMS ≤ 0.01. High e6 values (0.93 – 0.99) and slopes (m) close to one suggest that the ML 

method relatively accurately estimates partial AOD at the layers between 0 and 2.2 km. As was noted earlier 

lower retrieval accuracy is observed at the higher altitudes. 
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Figure 13. Correlation between the retrieved partial AOD and the “true” partial AOD for each layer from 0-2.2 
km (°¢£°§¢•¢¶	ßf°£§f®	©™´ = ¨ ∙ "£°Æ¢"	ßf°£§f®	©™´ + §Ø£¢°g¢ß£). The intercept of all linear regression 

analyses is 0 with RMS < 0.01. 

Figure 14 shows some examples of the partial AOD profiles retrieved by the ML inversion model. Panels 1215	

(a)-(h) in Fig. 14 contain randomly selected profiles out of the tested pool. While panels (i)-(l) contain some 

of the worst predictions. These examples show that the ML model is able to predict the elevated aerosol 

layers and even in those cases having large discrepancies, the model is still capturing the correct shape. 
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Figure 14. Examples of predicted partial layer AOD profiles: (a)-(h) randomly selected examples and (i)-(l) bad 

predictions 

6.5. Effect of random noise in ML training on the retrievals 1225	

To estimate retrieval uncertainties due to random noise in ML training on the aerosol properties we reran the 

ML training stage 20 times. Mean errors and standard deviations for total AOD, single scattering albedo and 

asymmetry factor for each trained model are shown in Fig. 15.  

 
Figure 15. Effect of random noise in model training on the retrieved aerosol properties. 1230	
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Table 2 summarizes the effect of random model training noise on the retrieved properties. In general, most 

ML models result in a normal distribution of errors with an additional bias in the mean. Since the individual 1235	

model training has a very small effect on error distribution (small changes in standard deviation between the 

different training runs) we add the variation in bias with standard deviation in quadrature to estimate the total 

error of the ML model including the random error of the training as: 

(1) Total AOD error ± 2 standard deviations  =  -1.4 ± 10.1 %; 

(2) Single scattering albedo error ± 2 standard deviations  = 0.1 ± 3.6 %; 1240	

(3) Asymmetry factor error ± 2 standard deviations = -0.1 ± 2.1 %. 

Table 2. Statistics of aerosol property error analysis from 20 ML models (20 different training runs) 

Optical property bias ± std, % Standard deviation ± std, % 

Total AOD error -1.43 ± 3.54 3.56 ± 0.64 

Single scattering albedo error 0.06 ± 0.47 1.72 ± 0.10 

Asymmetry factor error -0.08 ± 0.25 1.01 ± 0.03 

7. Conclusions and future work 

This paper presents a fast ML-based algorithm for the inversion of ΔSCD(O2O2) from a single MAX-DOAS 

sky scan into aerosol partial optical depth profile, single scattering albedo and asymmetry factor at 360 nm. 1245	

Training and evaluation of ML algorithm are performed using VLIDORT simulations of ΔAMF(O2O2) for 

about 1.45 million scenarios with 75% randomly selected cases for training and 25% (~ 365 thousand cases) 

for evaluation. 

Evaluation of four retrieved aerosol properties (asymmetry factor, single scattering albedo, total AOD and 

partial AOD for each layer from 0 to 4 km) shows good performance of the ML algorithm with small biases 1250	

and normal distribution of the errors. 95.4% of the retrieved optical properties have errors within the 

following ranges: (-1.4 ± 10.1) % for total AOD, (0.1 ± 3.6) % for single scattering albedo, and (-0.1 ± 2.1) % 

for asymmetry factor. Linear regression analysis using the least-squares fitting method between the “true” 

and retrieved layer partial AODs resulted in high correlation coefficients (R2 = 0.93 – 0.99), slopes near unity 

(0.95 – 1.02) and zero intercepts with RMS ≤ 0.01 for each layer from 0 to 2.2 km. The ML algorithm, in 1255	

general, has less accuracy retrieving low total AOD scenarios and their corresponding profiles. Even in those 

scenarios with less accuracy, the ML model is still capable of capturing the correct profile shape. 

Application of ML-based algorithm to real data inversion has the following advantages:   

(1) Fast real-time data inversion of the aerosol optical properties;  

(2) Simple implementation by using an HDF file with the model coefficients in open source codes such as 1260	

Python; 

(3) Ability to retrieve single scattering albedo and asymmetry factor; 
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(4) Use of the ML algorithm retrieved aerosol extinction coefficient profiles; single scattering albedo and 

asymmetry factor as initial guess inputs in more formal inversion algorithms (with radiative transfer 

simulations). 1265	

To verify that the ML retrievals are representative of the physical processes we suggest simulating 

ΔSCD(O2O2) using a radiative transfer model (e.g. VLIDORT) with the ML retrieved properties as inputs 

(aerosol extinction coefficient profile, single scattering albedo, and asymmetry). Deviations from the 

measured and simulated ΔSCD(O2O2) should be included in error analysis. 

To make the ML model more robust the training data should include more realistic aerosol inputs and 1270	

radiative transfer simulations including 1) Rotational Raman scattering simulations to add Ring 

measurements from MAX-DOAS; 2) different surface albedos; 3) more realistic aerosol profiles (e.g. from 

a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET aerosol profiles, LIVAS 

(Amiridis et al., 2015)); 4) multiple wavelengths. 

Code/Data availability 1275	
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Single scattering albedo, ω(λ), is defined as the ratio of scattering optical depth (τscattering) to the total optical depth 

(τscattering+ τabsorption) at wavelength λ (Eq. (1)): 

! " =
$%&'(()*+,-

$%&'(()*+,-.$'/%0*1(+0,
	 ,                                                                                                                        (1) 

The magnitude of ω(λ) determines whether the aerosols have a cooling or warming effect depending on the underlying 

surface albedo. Since ω(λ) mainly depends on the aerosol composition (complex part of the refractive index) and size, 

it is difficult to characterize for aerosol mixtures, especially of the anthropogenic origin. 

Scattering phase function describes the angular intensity distribution of electromagnetic radiation scattered by the 

aerosol. It depends on the aerosol size compared to the incident electromagnetic radiation wavelength (λ), aerosol 

particle shape, and composition (relative refractive index m at λ). In the Lorenz-Mie formalism, applied in this study, 

wavelength-aerosol size dependence is expressed by the size parameter (α) as the ratio of the spherical particle 

circumference to the wavelength (Seinfeld and Pandis, 2016).  

The scattering phase function, P(θ,α,m), at a scattering angle θ for spheres is calculated by normalizing the scattered 

intensity into angle θ by the intensity integrated over all scattering directions. The dominating scattering direction is 

described by the asymmetry factor (g), which is defined as the phase function weighted cosine of the scattering angles 

integrated from 0° (forward direction) to 180° (backward direction):  

2 3,5 = 6
7

89:	(=) ∙ @(=, 3,5) ∙ :AB	(=)C=D
E  ,                                                                      (2) 

The asymmetry factor ranges from -1 (backscattering) to +1 (forward scattering). Henyey and Greenstein (1941) 

proposed a simplified “fitting” technique to calculate P(θ) using solely the asymmetry factor:  

PGH(cos θ) =
6MNO

6.NOM7∙N∙PQR S
T
O
  ,                                                                                                   (3) 

Several methods used to solve the radiative transfer equation in the atmosphere (e.g. δ-M, discrete ordinate, and Monte 

Carlo) require scattering phase function expansion into a finite series of Legendre polynomials (PL(cosθ)) to account 

for the dependence of the radiation field on azimuth (Spurr, 2008). Lorenz-Mie type codes output the Legendre 

expansion coefficients. The expansion of the Henyey-Greenstein phase function into Legendre polynomials (PL) is 

given by a simple relationship shown in Eq. (4), where (2L+1)gL is its Legendre moments (expansion coefficients). 

@UV(cos =) = (2X + 1) ∙ 2[ ∙ @[(89:=),   
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the following viewing zenith angles: 0, 40, 50, 60, 65, 70, 75, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89o. To ensure that 

the training dataset contains all observation geometries feasible for MAX-DOAS sky scans we have included the 

following: 

Relative azimuth angles: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180o, and  

Solar zenith angles: 0, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85o. 
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