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Abstract. In this study, we explore a new approach based on machine learning (ML) for deriving aerosol 

extinction coefficient profiles, single scattering albedo and asymmetry parameter at 360 nm from a single 10	
MAX-DOAS sky scan. Our method relies on a multi-output sequence-to-sequence model combining 

Convolutional Neural Networks (CNN) for feature extraction and Long Short-Term Memory networks 

(LSTM) for profile prediction. The model was trained and evaluated using data simulated by VLIDORT v2.7, 

which contains 1459200 unique mappings. 75% randomly selected simulations were used for training and 

the remaining 25% for validation. The overall error of estimated aerosol properties for (1) total AOD is -1.4 15	
± 10.1 %, (2) for single scattering albedo is 0.1 ± 3.6 %; and (3) asymmetry factor is -0.1 ± 2.1 %. The 

resulting model is capable of retrieving aerosol extinction coefficient profiles with degrading accuracy as a 

function of height. The uncertainty due to the randomness in ML training is also discussed.  

1. Introduction 

Aerosols play an important role in the Earth-atmosphere system by modifying the global energy balance, 20	
participating in cloud formation and atmospheric chemistry, and fertilizing land and ocean. Aerosols are 

widely spread in the troposphere and are emitted by anthropogenic and natural processes (primary aerosols), 

and are formed by gas-to-particle conversion mechanisms (secondary aerosols). Aerosols are removed from 

the atmosphere by dry (gravitational settling and turbulent) deposition and wet deposition, and have variable 

lifetimes ranging from a few minutes to a few weeks (Haywood and Boucher, 2000).  25	
The spatial and temporal distribution of aerosols in the lower troposphere is highly variable and greatly 

depends on the proximity to the sources, type of aerosols, meteorological conditions, and photochemical 

processes. Horizontal and vertical heterogeneity of the aerosol distribution, their properties and processes 

pose a serious challenge for modeling aerosol induced radiative forcing and is an important source of 

uncertainties in the climate modeling results (Intergovernmental Panel on Climate Change, 2014).  30	
Macroscopic aerosol optical properties required for modeling aerosol radiative forcing include single 

scattering albedo, scattering phase function, and aerosol optical thickness (AOD), (Dubovik et al., 2002).  
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This paper investigates the potential of using advances in machine learning to invert aerosol properties 

(aerosol extinction coefficient profiles, single scattering albedo and scattering phase function) from a 35	
hyperspectral remote sensing technique called multi-axis differential optical absorption. 

Machine learning (ML) is a branch of artificial intelligence that derives its roots from pattern recognition 

and statistics. The goal of ML is to build statistical (or mathematical) models of a real-world phenomenon 

by relying on training examples. For instance, in supervised ML, a model is first presented with a set of 

paired examples (termed as the training set), where every training example contains a pair of input 40	
variables and output variables, and the goal of ML algorithms is to find the statistical structure of mapping 

from the input variables to the output variables that match with the training examples and can be 

generalized to unseen examples (termed as test set). The learned mapping (or the model) can be applied to 

the inputs of test examples to make predictions on their outputs. There are several advantages of using ML. 

Firstly, it can sift through vast amounts of training data and discover patterns that are not apparent to 45	
humans. Secondly, ML algorithms can have continuous improvement in accuracy and efficiency with 

increasing amount of training data. Thirdly, ML algorithms are usually very fast to apply on test examples 

since the time-consuming training process of ML models is offline and one-time. With these advantages as 

well as the availability of faster hardware, ML has soon become the most popular data analytic technique 

since the 1990s. In recent years, it has also been applied to the field of remote sensing (Efremenko et al., 50	
2017; Hedelt et al., 2019). 

Artificial neural networks (ANN) are methods studied in the ML field, successfully applied to a number 

of commercial problems such as image detection, text translation, and speech recognition. It is inspired by 

the biological neural networks constituting animal brains. As an analogy to a biological brain, an ANN is 

based on artificial neurons. An artificial neuron is a mathematical function receiving and processing input 55	
signals and producing outputs signals or activations. Each neuron comprises of weighted inputs, an 

activation function, and an output. Weights of the neuron are parameters to be adjusted, while the activation 

function defines the relationship from the input signals to the output signals. When multiple neurons are 

composed together in a layered manner (where the output signals of neurons in a given layer are used as 

inputs for the neurons in the next layer), we call it an artificial neural network (ANN). A common 60	
algorithm for training ANNs is the backpropagation algorithm, that passes the gradients of errors on the 

training set from the output layer to inner layers to refine the weights at all layers in an incremental way. 

The backpropagation algorithm converges when there is no change in ANN weights across all layers 

beyond a certain threshold. There are several optimization methods that are used for performing 

backpropagation and are behind standalone ANN packages commonly used by the ML community. ANNs 65	
have many different types depending on the specifics of the neuron arrangement or architecture. A simple 

type of ANN is a multilayer perceptron (MLP), where all neurons at a given layer are fully connected with 
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all neurons of the next layer, also termed as dense layers. Other complex types of ANN include 

convolutional neural network (CNN) and recurrent neural network (RNN). Two important types of 

artificial neural networks used in this study are the convolutional neural networks (CNN) (Fukushima, 70	
1980; LeCun et al., 1999) and the Long short-term memory (LSTM) neural networks (Hochreiter and 

Schmidhuber, 1997), which are variants of recurrent neural networks.  

Convolutional neural network (CNN) is a class of deep neural networks that uses the convolution 

operation to define the type of connections from one layer to another. While they have shown impressive 

results in extracting complex features from images in computer vision applications (Krizhevsky et al., 75	
2012; Simonyan and Zisserman, 2015), they are relevant in many other applications involving structured 

input data, e.g., 1D-sequences. A CNN is composed of an input layer, multiple hidden layers and an output 

layer. The hidden layers usually consist of several convolutional layers, followed by pooling layers, fully 

connected layers (dense layers) and normalization layers. Figure 1 shows a simple example of CNN. The 

input vector (or sequence) is first passed through a convolutional layer where it is convolved with 3 filters 80	
(convolution kernels) of size 3 using the same padding to produce three 6x1 feature maps. Since the ReLU 

function (𝑓 𝒙 = 𝑚𝑎𝑥	(0, 𝒙)) is commonly chosen as the activation function in CNNs, the feature maps 

only contain positive values. Then the max pooling layer picks the maximum value every 3 elements for 

each feature map, generating three 2 x 1 vectors. After passing through a flatten layer, the max pooling 

output is reshaped into a 6 x 1 vector, which is followed by a dense (fully connected) layer with 2 nodes. 85	
The dense layer multiplies its input by a weight matrix and add a bias vector for generating the output of 

the model. The computer adjusts the model’s convolutional kernel values or weights through a training 

process called backpropagation, a class of algorithms utilizing the gradient of loss function to update 

weights. For the case in Figure 1, there are 26 tunable parameters. ( 3 + 1 ×3 = 12 from convolution 

kernels and 6 + 1 ×2 = 14 from the dense layer.)  90	

	
Figure 1. Schematics of a simple CNN 

 

Long short-term memory (LSTM) neural networks have many applications such as speech recognition 

(Li and Wu, 2015) and handwriting recognition (Graves et al., 2008; Graves and Schmidhuber, 2009). They 95	
are a special kind of ANNs termed as recurrent neural networks (RNNs). RNNs are designed for modeling 
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sequence dependent behavior (e.g., in time). They are called “recurrent” because they perform the same 

operation for every element of a sequence, with the output at a given element dependent on previous 

computations at earlier elements (Britz, 2015). This is different from traditional neural networks wherein 

all the input-output examples are assumed to be independent of each other.  100	

	
Figure 2. Unrolled recurrent neural network. 

Figure 2 shows a diagram of an unrolled RNN with 𝑡 input nodes, where “unrolled” means showing the 

network for the full sequence of inputs and outputs. The RNNs work as follows. At the first element of the 

sequence, the set of input signals 𝑥4 (which can be multi-dimensional) is fed into the neural network F to 105	
produce an output ℎ4. At the next element of the sequence, the same neural network F takes both the next 

input 𝑥6 and previous output ℎ4, generating the next output ℎ6.  This recurrent computation continues for t 

times to produce the output at the tth element of the sequence, ℎ8. While RNNs are powerful architectures 

for modeling sequence behavior, classical RNNs are inadequate to capture long-term memory effects where 

the inputs-outputs at a given element of the sequence can affect the outputs at another element of the 110	
sequence separated by a long interval. Long-short-term memory (LSTM) models are variants of RNNs that 

are able to overcome this challenge and are efficient at capturing long-term dependencies as well as short-

term dependencies. It does so by introducing an internal memory state that is operated by neural network 

layers termed as gates, such as the “input gate,” that adds new information from the input signals to the 

memory state, the “forgot gate,” that erases content from the memory state depending on the input signals, 115	
and the “output gate,” that transforms information contained in the input signals and the memory state to 

produce output signals.   
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Figure 3.  LSTM cell diagram (modified from Thomas, 2018). 120	

An example of an LSTM cell is illustrated in Figure 3, of which the update rules are:   

g: = tanh	(b? + x:U? + h:B4V?) 

i: = σ(bF + x:UF + h:B4VF) 

f: = σ(bH + x:UH + h:B4VH) 

s: = s:B4 ∘ f: + g: ∘ i: 125	
o: = σ(bL + x:UL + h:B4VL) 

h: = tanh	(s:) ∘ o: 

where j is the element index, σ(x) represents the sigmoid function, and tanh	(𝑥) represents the hyperbolic 

tangent function. 𝑥 ∘ 𝑦 denotes the element-wise product of 𝑥 and	𝑦.  𝑈O, 𝑈P, 𝑈Q, 𝑈R are the weights for the 

input 𝑥S, while 𝑉O, 𝑉P, 𝑉Q, 𝑉R are the weights for the other input ℎSB4, and 𝑏O, 𝑏P, 𝑏Q, 𝑏R are the scalar terms 130	
(termed as bias). The term gS is the input modulation gate, which modulates the input 𝑏O + 𝑥S𝑈O + ℎSB4𝑉O 

by a hyperbolic tangent function, squashing the input between -1 to 1. The term	𝑖S is the input gate, which 

applies a sigmoid function to its input, limiting the output values between 0 and 1. The input gate 𝑖S 

determines which inputs are switched on or off when multiplying the modulated inputs (𝑔S ∘ 𝑖S). The term 𝑠S 

is the internal cell state that provides an internal recurrence loop to learn the sequence dependence. The terms 135	
𝑓S and 𝑜S are the forgot gate and output gate, respectively. They have similar function to the input gate 	𝑖S, 

regulating the information into and out of the LSTM cell. The term ℎS is the output at step j. 

 

 

 140	

2. Multi-Axis Differential Optical Absorption (MAX-DOAS) technique 
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The MAX-DOAS technique has been widely used to derive vertical aerosol extinction coefficient profiles in 

the lower troposphere. This is typically done from ground-based measurements of oxygen collision complex 

(O2O2) absorption (for a detailed list of references see Table 1 in Wagner et al., (2018)). Since the oxygen 

volume mixing ratio (cO2 = 0.209) is considered constant, the O2O2 abundance depends only on the total 145	
number of air molecules (pressure, temperature and to a small degree humidity) and can be easily calculated. 

More than 93% of O2O2 is located below 10 km (scale height ~ 4 km). Any deviation in measured O2O2 

absorption from this molecular (Rayleigh) scattering case is only due to the change in the photon path through 

the O2O2 layer. Aerosols and clouds are the main causes of such photon path modification for ground-based 

measurements. O2O2 has several absorption bands in the ultraviolet (UV) and visible (VIS) parts of the 150	
electromagnetic spectrum (band peaks at 343, 360, 380, 477, 577, 630 nm (Thalman and Volkamer, 2013).  

 
Figure 4. Demonstration of the MAX-DOAS principle: (a) side view and (b) top view. Simplified photon paths 
through the atmosphere are shown in yellow. A single sky scan sequence for profile retrieval consists of multiple 
viewing zenith angles (VZA) in a specific direction (viewing azimuth angle, VAA) at a specific solar zenith angle 155	
(SZA) and is shown in red.  

The MAX-DOAS technique consists of measuring sky-scattered UV-VIS solar photons at multiple, primarily, 

low elevation angles (Fig. 4). MAX-DOAS shows a large sensitivity to the tropospheric gases due to 

increased photon path length through the lower troposphere (Platt and Stutz, 2008). To eliminate the 

contribution from the upper atmosphere solar spectra measured at low elevation angles are divided by the 160	
reference spectrum collected from the zenith direction. The DOAS technique has the advantage of not 

needing an absolute radiometric calibration. 

The first step of the DOAS retrieval is a spectral evaluation to calculate the differential slant column density 

(ΔSCDmeasured = SCD - SCDreference) of O2O2. This step is accomplished through the simultaneous non-linear 
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least-squares fitting of the absorption by species i, low-order polynomial function (PLO) and offset to the 165	
difference between the logarithms of the attenuated (I) and reference (Ireference) spectra (Eq. 5). PLO estimates 

combined attenuation due to molecular scattering and aerosol total extinction (scattering and absorption). 

The offset term approximates instrumental stray light and residual dark current. 

𝑙𝑛 𝐼]^Q^]^_`^ 𝜆 − 𝑙𝑛 𝐼 𝜆 − 𝑜𝑓𝑓𝑠𝑒𝑡 𝜆 = 𝜎P 𝜆 ∙ ∆𝑆𝐶𝐷Pj + 𝑃lm,                                                   (1) 

The second step of the MAX-DOAS analysis is the conversion of a single sky scan (multiple viewing angles) 170	
ΔSCD(O2O2) into a vertical aerosol extinction coefficient profile. The physical relationship between the 

measured ΔSCD and the desired aerosol extinction coefficient profile and aerosol properties is complex, and, 

in general, can be expressed mathematically by Eq. (6) (Rodgers, 2004): 

𝒚 = 𝑓 𝒙, 𝒃 + 𝜺,                                                                                                    (2) 

Where, the measured quantities (measurement vector y) are described by a forward model f(x, b) and the 175	
measurement error vector (ε). The forward model, f(x, b), is a model that estimates physical processes that 

relate the measured parameter (y), the unknown quantity to be retrieved (state vector (x)), and forward model 

parameters (b) that are considered approximately known (e.g., temperature and pressure profiles from 

atmospheric soundings or models). Under most conditions, there are more unknowns than measurements, 

and as a result equation (6) does not have a unique solution.  180	
The inversion of Eq. (6) is often done in the framework of Bayes’ theorem, which allows for the assignment 

of probability density functions to all possible states given measurements and prior knowledge of the state. 

However, in reality, we are not interested in all possible solutions, but rather a single, the most “probable” 

solution with its error estimation. Equation (7) shows a Transfer Function that defines an estimated solution 

(𝒙) as a function of the measurement system and retrieval method (Rodgers, 2004): 185	

𝒙 = 𝑅 𝑓 𝒙, 𝒃 + 𝜺, 𝒃, 𝒙𝒂, 𝒄 ,                                                           (3) 

where R is a retrieval method, f(x, b) is a forward function with the true state (x) and true parameters (b),  𝒃 

is the estimated forward model parameter vector, xa is the a priori estimate of state vector (x), and c is a 

retrieval method parameter vector (e.g. convergence criteria). For nonlinear problems the solution to equation 

(7) cannot be found explicitly, and iterative numerical methods are required. A maximum a posteriori (MAP) 190	
approach has been widely applied to moderately nonlinear problems with Gaussian distribution of both 

measurement errors and a priori state errors. A priori information about the state vector distribution before 

the measurements are made is used to constrain the solution of the ill-posed problems (Rodgers, 2004). It is 

essential to use the best estimate of the state available since in the MAP approach the retrieved state is 

proportional to the weighted mean of the actual state and the a priori state. In addition, an appropriate 195	
covariance matrix for the a priori state vector has to be constructed. This a priori information for aerosol 

vertical extinction coefficient profiles, however, is rarely available.  

In addition to the optimal estimation method (OEM), briefly described above, parameterized (Beirle et al., 

2019; Vlemmix et al., 2015) and analytic (Spinei et al 2019, in preparation) inversion algorithms were 
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developed. Frieß et al., (2019) provide a detailed intercomparison of currently available state-of-the-art 200	
inversion algorithms for the MAX-DOAS measurements. Most of the current algorithms take between 3 to 

216 seconds to process a single MAX-DOAS sky scan (Frieß et al., 2019) mainly due to the iterative inversion 

step. Aerosol extinction coefficient profiles are inverted while aerosol single scattering albedo and 

asymmetry factor are typically assumed based on the co-located AERONET measurements. They also require 

external information about the atmosphere (e.g. temperature and pressure profiles) that might not be readily 205	
available at the measurement time scales, and a priori information that does not typically exist. With an 

increasing number of MAX-DOAS 2-D instruments worldwide capable of sunrise to sunset measurements 

(e.g. Pandonia Global Network) fast methods are needed that can harvest full information from the MAX-

DOAS hyperspectral measurements.    

This study describes and evaluates a fast novel machine learning (ML) approach for retrieving aerosol 210	
extinction coefficient profiles, asymmetry factor and single scattering albedo at 360 nm from ΔSCD(O2O2) 

observations within a single MAX-DOAS sky scan. The basic idea of our approach is: (1) develop an “inverse 

model” by one-time offline training of a supervised ML algorithm on simulated MAX-DOAS data and 

corresponding atmospheric aerosol conditions, and (2) use the relationships derived in the first step to 

estimate the aerosol extinction profile, asymmetry factor, and single scattering albedo from the MAX-DOAS 215	
ΔSCD(O2O2) measurements. We specifically leverage recent advances in ML, e.g., deep learning methods, 

to automatically extract the inverse mapping from the observations (y) to the state vectors (x), using a 

collection of (x, y) pairs available for training. Different machine learning algorithms were successfully used 

in remote sensing applications (Schulz et al., 2018, Schilling et al., 2018, Efremenko et al., 2017; Hedelt et 

al., 2019). 220	
The rest of the paper is organized in the following sections. Section 3 provides an overview of the new 

retrieval algorithm. Section 4 focuses on training data generation using the radiative transfer model 

(VLIDORT). Section 5 details ML implementation. Section 6 provides an extensive comparison of ML 

predicted versus “true” macroscopic aerosol properties outside the training dataset. Section 7 summarizes the 

findings. 225	

3. Overview of the Methodology 

Our approach consists of three stages: (1) training set generation; (2) a one-time training that results in an 

inverse ML model 𝑅(Θ) with appropriate architecture and parameters Θ ; and (3) an inversion stage, where 

the trained ML model 𝑅(Θ	) is applied to MAX-DOAS measurements to retrieve aerosol properties. Figure 

5 provides a schematic overview of the three stages. 230	
First, a training set containing simulated measurements 𝒚P|𝑖 = 1,2, … ,𝑀  is generated by a forward model 

(VLIDORTv2.7) given atmospheric states 𝒙P|𝑖 = 1,2, … , 𝑁 . The model describes atmospheric radiative 

transfer processes connecting the atmospheric states and the measurements. Second, both the atmospheric 

states and the simulated measurements are fed into the ML model for learning the inverse mapping from the 



	 9	

measurement space to the state space. This is based on solving an optimization problem that minimizes the 235	
mean squared error (MSE) between the retrieved values ( 𝒙P|𝑖 = 1,2, … , 𝑁 ) and the true values 

( 𝒙P|𝑖 = 1,2, … , 𝑁 ). We specifically chose artificial neural network (ANN) models to learn the inverse 

mapping from y to x. By iteratively adjusting the parameters of the ANN model using gradient descent 

(backpropagation) algorithms (Johansson et al., 1991), we are able to arrive at ANN model parameters Θ that 

provide a local optimum performance in terms of MSE on the training data. The result of the training stage 240	
is an inverse model 𝑅(Θ	) whose architecture and parameters are saved in an HDF5 file (1.3 MB). The trained 

model 𝑅(Θ	) is an inversion operator that transforms measurements vector y into the state vector 𝒙 through 

a set of simple linear and nonlinear operations. The inverse model provides a convenient and fast way for 

retrieval of aerosol properties from ΔSCD(O2O2) measurements during the inversion stage. It takes ~0.15 ms 

for the retrieval of the studied aerosol properties from a single MAX-DOAS sky scan ΔSCD(O2O2) on a 245	
single CPU core.  

 
Figure 5. Schematics of the machine learning inversion algorithm. 

4. Training data preparation 

The success of any ML model depends on the quality of the training data. Since there is no reliable dataset 250	
that combines simultaneous MAX-DOAS measurements and observations of aerosol macrophysical 
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properties and vertical extinction coefficient profiles at 360 nm we use a radiative transfer model to simulate 

MAX-DOAS measurements. In this study, we train our ML model on air mass factors (AMF) calculated 

from the simulated solar radiances at the bottom of the atmosphere.  

AMF represents a ratio between the true average path that photons take through a gas layer before detection 255	
by a MAX-DOAS instrument and the vertical path. Since O2O2 absorption in the reference (zenith scattered) 

spectrum is not precisely known, a differential AMF at a specific wavelength λ and observations geometry µ 

(relative azimuth angle, solar zenith angle, and viewing zenith angle), is determined as: 

∆𝐴𝑀𝐹 𝑂6𝑂6, 𝜆, 𝜇 = ∆}~��������� m�m�,�,�
�~�(m�m�)����������

=
�� ���������� �,�� B�� � �,�

�~�(m�m�)����������	∙	� m�m�,�
,                                                  (4) 

Where vertical column density of O2O2 (VCD) is estimated as the squared oxygen number density integrated 260	
from the surface to the top of the atmosphere; and σ(λ) is the molecular absorption cross-section of O2O2. 

In the absence of aerosols and clouds only air molecules (mainly oxygen and nitrogen) scatter solar photons 

in the Earth's atmosphere. This molecular only (Rayleigh) scattering process is considered to be well 

understood (Bodhaine et al., 1999) and ΔAMFRayleigh can be calculated from the simulated intensities. In the 

presence of aerosols, dust and clouds not only air molecules but also particles and cloud droplets scatter solar 265	
photons. This type of scattering can be generally described by the T-matrix theory. In this study we consider 

only spherical aerosols (Lorenz-Mie theory), whose scattering phase function is approximated according to 

the Henyey-Greenstein approach using the asymmetry factor g. ΔAMFaerosol+Rayleigh are determined from 

simulated downwelling radiances for atmosphere with different aerosol types and their extinction coefficient 

profiles. The change in AMF due to aerosol presence can be described by ΔAMFaerosol: 270	

∆𝐴𝑀𝐹�^]RjR� = ∆𝐴𝑀𝐹����^PO� − ∆𝐴𝑀𝐹�^]RjR������^PO�,                                                                             (5) 

ΔAMFaerosol for O2O2 at 360 nm for different observation geometries and scattering conditions is used for ML 

training in this feasibility study. A single MAX-DOAS measurement considered here is ΔAMFaerosol set from 

the full sky scan at a single solar zenith angle, single relative azimuth angles, and nineteen viewing zenith 

angles between 0o and 89o (see Table 1). To ensure that the training dataset contains all observation 275	
geometries feasible for MAX-DOAS sky scans we have included: nineteen relative azimuth angles (0o to 180o, 

10o step), and twelve solar zenith angles (0o to 85o,  see Table 1).Solar radiances at the bottom of the 

atmosphere were simulated using VLIDORT v.2.7 (Spurr, 2008). VLIDORT is a discrete-ordinate radiative 

transfer model that has been successfully applied to simulate radiances and weighting functions for forward 

models in optimal estimation inversion (e.g., Clémer et al., 2010) and machine learning algorithms 280	
(Efremenko et al., 2017, Hedelt et al., 2019). VLIDORT code applies pseudo-spherical approximation to 

direct solar beam attenuation in a curved atmosphere. All scattering processes are estimated using the plane-

parallel approximation in a stratified atmosphere. Precise single scattering computation is performed using 

Nakajima/Tanaka ansatz and delta-M scaling. VLIDORT v.2.7 calculates analytically derived Jacobians 

(radiance weighting functions) with respect to any profile/column/surface variables. VLIDORT computes 285	
elastic scattering by molecules to all orders (Spurr, 2008). 
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Table 1. Radiative transfer model settings 

General 
Model Settings 

Physical and Observation Geometry Inputs 

 
NO Refraction 
correction; 
 
Scalar calculations; 
 
Only elastic 
scattering; 
 
Aerosol scattering 
phase function 
estimation using 
Henyey-Greenstein 
approximation 
from the 
asymmetry factor 
(g). 
 
 

Observation Geometry: 
Viewing zenith angle scan: 0, 40, 50, 60, 65, 70, 75, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89o; 
Relative azimuth angles: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 
160, 170, 180o 
Solar Zenith angles: 0, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85, 86, 87, 88, 89o 

Wavelength: 360 nm; 
 
Vertical grid (67 layers): 
100 m up to 4 km, 500 m from 4 to 8 km, 1 km from 8 to 12km, 2 km from 12 to 30km, 5 
km from 30 to 60 km 
 
Atmospheric air density: 
Pressure [hPa]: US1976 standard atmosphere 
Temperature [K]: US1976 standard atmosphere 
 
Gas volume mixing ratio profiles: 
O3 profile: climatology over Cabauw in September 
O3 molecular absorption cross-section: Daumont 
O2O2 profile: from temperature and pressure 
O2O2 molecular absorption cross-section: Thalman and Volkamer (2011) 
 
Aerosol properties: 
Single scattering albedo:  0.775, 0.825, 0.875, 0.925, 0.975 
Henyey-Greenstein asymmetry factor: 0.675, 0.725, 0.775, 0.825 
 
Aerosol extinction coefficient profiles [1/km] as a function of altitude; 
Exponential function at the surface combined with “sliding” Gaussian function above; 
Total AOD: 0, 0.15, 0.3, 0.45, 0.6, 0.75;  
Gaussian profile center height: 0.5, 1, 1.5, 2 km;  
Gaussian width: 0.1, 0.2, 0.3, 0.5 km;  
Partitioning between exponential and Gaussian attributed AOD: 0.3, 0.6, 0.9 
 
Surface reflectivity: 
Lambertian albedo at 0.04 
 

VLIDORT models radiative transfer processes at a specific wavelength in a stratified atmosphere. It requires 

geometrical and “optical” information about the atmospheric layers and the underlying ground surface. These 

include layer heights, pressure and temperature at layer boundaries for refractive geometry calculations, solar 290	
zenith, viewing zenith direction and relative azimuth angles between the viewing direction and solar position.  

Each atmospheric layer is described by total optical thickness, total single scatter albedo, and the set of Greek 

matrices specifying the total scattering law.  

VLIDORT simulations were performed for the US 1976 standard atmosphere divided into 67 layers (same 

as in Frieß et al., 2019) with 0.1 km layers from the surface to 4 km; 0.5 km layers from 4 to 8 km and varying 295	
width up to 60 km. Since surface reflectivity has a small effect on ground-based MAX-DOAS measurements 

we performed simulations only for a single Lambertian albedo of 0.04. Absorption only by two gases was 
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considered in this study: ozone and O2O2. Light polarization, direct beam refraction, and inelastic scattering 

were not included in this study. Table 1 summarizes VLIDORT inputs and general settings. 

Aerosol types in this study are described by a single scattering albedo and asymmetry factor combination 300	
with total 20 “types”: (1) Single scattering albedo: 0.775, 0.825, 0.875, 0.925, 0.975; (2) Henyey-Greenstein 

asymmetry factor: 0.675, 0.725, 0.775, 0.825. Aerosol extinction coefficient profiles were generated by 

combining an exponential function at the surface with a “sliding” Gaussian function above. The aerosol total 

optical depth was partitioned between the exponential and Gaussian functions. Total AOD cases included 

0.15, 0.3, 0.45, 0.6, and 0.75 with exponential to Gaussian partitioning fractions of 0.3, 0.6 and 0.9. The 305	
Gaussian function peak center height was varied from 0.5 km to 2 km in steps of 0.5 km. The Gaussian 

function peak width was varied too: 0.1, 0.2, 0.3, and 0.5 km. This results in 4800 aerosol cases and a total 

of 1459200 measurement simulations (sky scan). Figure	14	demonstrates	the	aerosol	profile	samples,	

where	the	near	surface	aerosol	partial	optical	depth	profiles	are	described	by	the	exponential	function	

and	the	layers	aloft	are	described	by	the	Gaussian	function	with	various	widths	and	heights	added	to	310	
the	exponential	function	profile.	While VLIDORT simulations were performed for an atmosphere divided 

into 67 layers, ML training was done by resampling onto 23 layers only. The new layer depths are: 100 m 

from the surface to 1km, 200 m from 1 km to 3 km, 500 m from 3 km to 4 km, and the last layer is 56 km 

high. The new layer partial AODs were generated by adding the neighboring layer partial aerosol optical 

depths. ML algorithm was trained on 75% randomly selected measurement simulations (1094400 samples) 315	
and model performance was tested on the remaining 25%. Note, that no validation data was held off from the 

75% training set for tuning hyper-parameters of our ML model, as all ML hyper-parameters were kept 

constant across all experimental settings in this paper.   

5. Learning inverse mapping using ML  

We employ a supervised ML formulation for our problem of aerosol profile retrieval, where the goal is to 320	
learn the mapping from input variables to output variables given a training set of paired data instances. In our 

formulation, every data instance corresponds to a single MAX-DOAS sky scan at a fixed Relative Azimuth 

Angle (RAA) and Solar Zenith Angle (SZA), where the inputs of the data instance comprise of: (a) RAA 

scalar value, (b) SZA scalar value, and (c) a sequence of ΔAMFaerosol values at 16 VZAs. The output  variables 

at a data instance correspond to the aerosol properties we are interested in predicting given the inputs, which 325	
are: (a) Single Scattering Albedo (SSA) scalar value, (b) Asymmetry factor (ASY) scalar value, and (c) a 

sequence of partial Aerosol Optical Depth (AOD) values at 23 vertical layers of the atmosphere, termed as 

the aerosol extinction profile.  

 

Note, that in our supervised ML formulation, there are sequences in both the input signals and output signals, 330	
namely ΔAMFaerosol sequence and partial AOD sequence, respectively. Further note that the input and output 

signals used in our problem setting are of very different types and thus have different dimensionalities (e.g., 

ΔAMFaerosol takes 16 values at varying VZAs while partial AOD takes 23 values at varying atmospheric 
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layers). We thus first apply a 1-dimensional CNN to extract features from the sequence part of the input 

signals. Note that our input signals are not image-based, which is one of the common types of input data for 335	
which CNNs are used. Instead, our input data is structured as a 1D sequence, and the convolution operations 

of CNN help in extracting sequence-based features from the input signals that are then fed into subsequent 

ANN components. We also use an LSTM to model the sequence part of the output signals. Note, that our 

data contains no time dimension as we are only working with single scan data, assuming the atmosphere does 

not change during the scan time. However, it is the sequence-based nature of the output signals that motivated 340	
us to use LSTM models for sequence-based output prediction. Furthermore, the dataset we use for training 

is produced by a physical model (VLIDORT), where the relationship between the inputs and outputs are 

known. 

 

Figure 6 illustrates the novel multi-output sequence-to-sequence model for learning the inverse mapping from 345	
MAX-DOAS measurements to aerosol optical properties. To extract sequence-based features from MAX-

DOAS inputs, a 1-dimensional Convolutional Neural Network (CNN, Fukushima, 1980; LeCun et al., 1999) 

is first applied on the sequence of inputs (we concatenate ΔAMFaerosol  sequence with SZA and RAA to obtain 

an 18-length input sequence), which results in a sequence of preliminary hidden features. These preliminary 

hidden features are then sent to two different branches of 1D-CNN layers that perform further compositions 350	
of convolution operators to produce non-linear hidden features for predicting two different types of outputs: 

(a) scalar outputs: SSA and ASY, and (b) sequence-based outputs: aerosol extinction profile. For the branch 

corresponding to scalar outputs, the features extracted from 1D-CNN layers are simply passed on to a fully-

connected dense layer to produce a two-dimensional output of SSA and ASY. For the branch corresponding 

to sequence-based outputs, the features extracted from 1D-CNN layers are fed to a Long Short-Term Memory 355	
network (LSTM, Hochreiter and Schmidhuber, 1997) to produce a sequence of partial AOD values at varying 

atmospheric layers.  

 
Figure 6. Schematics of the multi-output sequence-to-sequence model for deriving aerosol optical properties from 
MAX-DOAS measurements.  360	

Figure S1 shows the detailed architecture of the multi-output sequence-to-sequence model. The CNNs 

consist of eight 1D convolutional layers (c1 to c8) and four max-pooling layers (p1 to p4). For convolutional 

layers c1 to c6, the activation function is the Rectified Linear Unit (ReLU) function. For layers c7 and c8, it 

is a hyperbolic tangent function (tanh). We set the kernel size of the convolution operation to be the typical 
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value of 5 and use the same padding for all 𝑐�, ∀𝑘 ∈ 	 {1, 2, … ,8}. ReLU and Max pooling layers help to 365	
reduce overfitting through model sparsity and parameter reduction. The convolution kernel weights are 

initialized using a “Glorot uniform” method (Glorot  and Bengio, 2010).  

Extracted feature vector from the p1 layer is sent into two different branches. In the branch for profile 

prediction, we take a one-to-many LSTM (Fig. 3) with 23 layer steps and a hidden size of 128 to capture 

the correlation between the partial AODs at different layers. We simply duplicate the feature vector learned 370	
from CNNs for 23 times to generate the inputs for the LSTM model. The sequential output {y1, y2,…,y23} 

of the LSTM (after passing through a flatten layer and an ReLU layer) is interpreted as the 23-layer aerosol 

extinction profile. For the SSA/ASY branch, 1D convolutional layers and dense layers are combined for the 

prediction. The reason for taking a two-output architecture is that SSA and ASY are independent scalar 

outputs that cannot be treated as a sequence, in contrast to the aerosol extinction profile. 375	
We implemented our ML model in the Jupyter Notebook using the Keras library, which is a commonly used 

deep learning library for Python. RMSprop was chosen as the optimizer and the mean squared error was used 

as the loss function (Hinton, 2012). We trained the model on 75% of the dataset for 124 epochs with a batch 

size of 640. The following choice of hyperparameters was used: choice of optimizer = RMSprop, lr = 0.001, 

rho = 0.9, epsilon = None, and decay = 0.0. We did not perform any hyper-parameter tuning on a separately 380	
held validation set inside the training set, and the values of all hyper-parameters in our ML model were kept 

constant throughout all experiments in the paper on the test set. In order to ensure that there was no overlap 

between the training and testing steps, we did not make use of the test data either directly or indirectly during 

the training phase, either for learning parameter weights or selecting hyper-parameters. 

 385	
 

 

6. Results 

Evaluation of the accuracy of ML mapping rules derived during the training stage for MAX-DOAS data 

inversion was done by comparing the “true” atmospheric aerosol properties to the ML inverted properties. 390	
The evaluation data set consists of 364800 MAX-DOAS simulated sky scans that are outside of the training 

set. The number of simulations in the evaluation data set as a function of solar zenith angle (SZA) and relative 

azimuth angle (RAA) are shown in Figure 7. Between 1100 and 1300 aerosol scenarios are present in each 

SZA-RAA bin. 

 395	
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Figure 7. Number of simulations in the evaluation data set as a function of solar zenith (SZA) angle and relative 

azimuth angle (RAA). 

The following ML predicted aerosol properties were evaluated: (1) asymmetry factor, (2) single scattering 

albedo, (3) total aerosol optical thickness, and (4) partial aerosol optical thickness for each layer from 0 to 4 400	
km. A relative error ϵ of the retrieved by ML parameter 𝑥 relative to the “true” value x is calculated according 

to Eq. (10):  

ϵ ≡ ¥B¦
¦
∙ 100% ,                                                                        (6)  

The relative error evaluation presented in the subsequent sections was performed on the retrievals from a 

single ML training. Since ML itself introduces randomness during the training stage, we retrained the model 405	
20 times with the same hyperparameters for evaluating the uncertainty of the ML training.   

6.1. Asymmetry factor at 360 nm 

The ML-based approach shows an ability to invert aerosol asymmetry factor with a mean error of -0.14% 

and two standard deviations of 2.04% and nearly normal error distribution (Fig. 8(a)). To evaluate if any 

dependence of the asymmetry factor retrieval exists on SZA and RAA the mean error and the two standard 410	
deviations are shown in Fig. 8(b, c). These distributions suggest that dependence of the asymmetry factor 

retrieval on SZAs and RAAs is relatively small. However, systematically higher relative errors are observed 

around SZA of 65° and RAA of 30-40°.  The cause of these elevated errors is not clear at this point.  

 
Figure 8. Asymmetry factor retrieval errors: (a) error histogram; (b) mean error as a function of SZA and 415	

RAA; (c) two standard deviations as a function of SZA and RAA. 

6.2. Single scattering albedo at 360 nm 
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Similar high accuracy is achieved for ML retrieval of the single scattering albedo with a mean error of 0.19% 

and two standard deviations of 3.46% and nearly normal error distribution, somewhat positively skewed (Fig. 

9). Slightly higher errors are observed at RAA smaller than 60° and most SZA.  420	

 
Figure 9. Single scattering albedo retrieval errors: (a) error histogram (b) mean error as a function of SZA and 
RAA (c) two standard deviations as a function of SZA and RAA. 

Mean errors are also larger at small RAA and SZA > 85°. Traditional optimal estimation techniques also 

struggle with the MAX-DOAS data inversion at small RAA due to uncertainty in aerosol forward and 425	
backward scattering. 

6.3. Total aerosol optical depth at 360 nm 

Total AOD retrieval is more challenging for the ML model than the single scattering albedo or asymmetry 

factor, especially at lower total AOD levels.  Box plots of the total AOD error for different “true” total AOD 

values are given in Fig. 10.  In general, ML algorithm tends to underestimate total AOD from the mean error 430	
± 2 standard deviations of  -8.39 ± 8.81% (total AOD 0.15) to -1.52 ± 3.10%  (total AOD of 0.75). Total 

AOD retrieval error distribution over all cases is close to Gaussian distribution, but with two peaks (Fig. 11). 

The mean error (± two standard deviations) is -3.58% ± 7.68%. The bias of the model does not have much 

dependence on SZAs and RAAs (Fig. 11(b)). Still, lager errors and uncertainties can be observed at higher 

SZAs and lower RAAs (Fig. 11(c)).  435	
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Figure 10. Box plots of total AOD prediction errors for each “true” total AOD value. The box central mark 

indicates the median, and the bottom and top edges of the box indicate the 25th and 75th percentiles, 
respectively. The whiskers extend to the most extreme data points not considered outliers, and the outliers are 

plotted individually using the '+' symbol. 440	

 
Figure 11. Total AOD retrieval errors: (a) error histogram (b) mean error as a function of SZA and RAA (c) 

two standard deviation as a function of SZA and RAA. 

 

6.4. Partial aerosol optical depth profile from 0 to 4 km 445	

The contribution of partial AOD retrieval error at each atmospheric layer from 0 to 4 km to the total AOD is 

shown in Fig. 12. Layer partial AOD retrieval error relative to the total AOD depends on the absolute amount 

of aerosols and its altitude and on average is less than 1% per layer. Just like OEM methods, the ML method 

has lower accuracy of retrieving elevated aerosol layers especially corresponding to smaller total AOD. The 

larger distribution of relative errors in partial AOD at 1.5 km and 2 km is mainly due to the presence of 450	
elevated layers in the training data that peaked at those heights. If the aerosol were also present in meaningful 

amounts above those altitudes the error distribution would have been larger above 2 km.   
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Figure 12. Mean partial layer AOD error ± one standard deviation. 

A linear regression analysis of the “true” versus the retrieved partial AOD was performed using the least-455	
squares fitting for each layer from 0 to 2.2 km (Fig. 13). Intercepts of linear regression analysis for all layers 

were zero with RMS ≤ 0.01. High 𝑅6 values (0.93 – 0.99) and slopes (m) close to one suggest that the ML 

method relatively accurately estimates partial AOD at the layers between 0 and 2.2 km. As was noted earlier 

lower retrieval accuracy is observed at the higher altitudes. 
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 460	
Figure 13. Correlation between the retrieved partial AOD and the “true” partial AOD for each layer from 0-2.2 
km (𝒓𝒆𝒕𝒓𝒊𝒆𝒗𝒆𝒅	𝒑𝒂𝒓𝒕𝒊𝒂𝒍	𝑨𝑶𝑫 = 𝒎 ∙ "𝒕𝒓𝒖𝒆"	𝒑𝒂𝒓𝒕𝒊𝒂𝒍	𝑨𝑶𝑫 + 𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕). The intercept of all linear regression 

analyses is 0 with RMS < 0.01. 

Figure 14 shows some examples of the partial AOD profiles retrieved by the ML inversion model. Panels 

(a)-(h) in Fig. 14 contain randomly selected profiles out of the tested pool. While panels (i)-(l) contain some 465	
of the worst predictions. These examples show that the ML model is able to predict the elevated aerosol 

layers and even in those cases having large discrepancies, the model is still capturing the correct shape. 
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Figure 14. Examples of predicted partial layer AOD profiles: (a)-(h) randomly selected examples and (i)-(l) bad 

predictions 470	

6.5. Effect of random noise in ML training on the retrievals 

To estimate retrieval uncertainties due to random noise in ML training on the aerosol properties we reran the 

ML training stage 20 times. Mean errors and standard deviations for total AOD, single scattering albedo and 

asymmetry factor for each trained model are shown in Fig. 15.  

 475	
Figure 15. Effect of random noise in model training on the retrieved aerosol properties. 
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Table 2 summarizes the effect of random model training noise on the retrieved properties. In general, most 

ML models result in a normal distribution of errors with an additional bias in the mean. Since the individual 

model training has a very small effect on error distribution (small changes in standard deviation between the 

different training runs) we add the variation in bias with standard deviation in quadrature to estimate the total 480	
error of the ML model including the random error of the training as: 

(1) Total AOD error ± 2 standard deviations  =  -1.4 ± 10.1 %; 

(2) Single scattering albedo error ± 2 standard deviations  = 0.1 ± 3.6 %; 

(3) Asymmetry factor error ± 2 standard deviations = -0.1 ± 2.1 %. 

Table 2. Statistics of aerosol property error analysis from 20 ML models (20 different training runs) 485	

Optical property bias ± std, % Standard deviation ± std, % 

Total AOD error -1.43 ± 3.54 3.56 ± 0.64 

Single scattering albedo error 0.06 ± 0.47 1.72 ± 0.10 

Asymmetry factor error -0.08 ± 0.25 1.01 ± 0.03 

7. Conclusions and future work 

This paper presents a fast ML-based algorithm for the inversion of ΔSCD(O2O2) from a single MAX-DOAS 

sky scan into aerosol partial optical depth profile, single scattering albedo and asymmetry factor at 360 nm. 

Training and evaluation of ML algorithm are performed using VLIDORT simulations of ΔAMF(O2O2) for 

about 1.45 million scenarios with 75% randomly selected cases for training and 25% (~ 365 thousand cases) 490	
for evaluation. 

Evaluation of four retrieved aerosol properties (asymmetry factor, single scattering albedo, total AOD and 

partial AOD for each layer from 0 to 4 km) shows good performance of the ML algorithm with small biases 

and normal distribution of the errors. 95.4% of the retrieved optical properties have errors within the 

following ranges: (-1.4 ± 10.1) % for total AOD, (0.1 ± 3.6) % for single scattering albedo, and (-0.1 ± 2.1) % 495	
for asymmetry factor. Linear regression analysis using the least-squares fitting method between the “true” 

and retrieved layer partial AODs resulted in high correlation coefficients (R2 = 0.93 – 0.99), slopes near unity 

(0.95 – 1.02) and zero intercepts with RMS ≤ 0.01 for each layer from 0 to 2.2 km. The ML algorithm, in 

general, has less accuracy retrieving low total AOD scenarios and their corresponding profiles. Even in those 

scenarios with less accuracy, the ML model is still capable of capturing the correct profile shape. 500	
Application of ML-based algorithm to real data inversion has the following advantages:   

(1) Fast real-time data inversion of the aerosol optical properties;  

(2) Simple implementation by using an HDF file with the model coefficients in open source codes such as 

Python; 

(3) Ability to retrieve single scattering albedo and asymmetry factor; 505	
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(4) Use of the ML algorithm retrieved aerosol extinction coefficient profiles; single scattering albedo and 

asymmetry factor as initial guess inputs in more formal inversion algorithms (with radiative transfer 

simulations). 

To verify that the ML retrievals are representative of the physical processes we suggest simulating 

ΔSCD(O2O2) using a radiative transfer model (e.g. VLIDORT) with the ML retrieved properties as inputs 510	
(aerosol extinction coefficient profile, single scattering albedo, and asymmetry). Deviations from the 

measured and simulated ΔSCD(O2O2) should be included in error analysis. 

To make the ML model more robust the training data should include more realistic aerosol inputs and 

radiative transfer simulations including 1) Rotational Raman scattering simulations to add Ring 

measurements from MAX-DOAS; 2) different surface albedos; 3) more realistic aerosol profiles (e.g. from 515	
a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET aerosol profiles, LIVAS 

(Amiridis et al., 2015)); 4) multiple wavelengths. 
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