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Abstract. In this study, we explore a new approach based on machine learning (ML) for deriving aerosol 

extinction coefficient profiles, single scattering albedo and asymmetry parameter at 360 nm from a single 

MAX-DOAS sky scan. Our method relies on a multi-output sequence-to-sequence model combining 10 

Convolutional Neural Networks (CNN) for feature extraction and Long Short-Term Memory networks 

(LSTM) for profile prediction. The model was trained and evaluated using data simulated by VLIDORT v2.7, 

which contains 1459200 unique mappings. 75% randomly selected simulations were used for training and 

the remaining 25% for validation. The overall error of estimated aerosol properties for (1) total AOD is -1.4 

± 10.1 %, (2) for single scattering albedo is 0.1 ± 3.6 %; and (3) asymmetry factor is -0.1 ± 2.1 %. The 15 

resulting model is capable of retrieving aerosol extinction coefficient profiles with degrading accuracy as a 

function of height. The uncertainty due to the randomness in ML training is also discussed.  

1. Introduction 

Aerosols play an important role in the Earth-atmosphere system by modifying the global energy balance, 

participating in cloud formation and atmospheric chemistry, and fertilizing land and ocean. Aerosols are 20 

widely spread in the troposphere and are emitted by anthropogenic and natural processes (primary aerosols), 

and are formed by gas-to-particle conversion mechanisms (secondary aerosols). Aerosols are removed from 

the atmosphere by dry (gravitational settling and turbulent) deposition and wet deposition, and have relatively 

short lifetimes ranging from a few minutes to a few weeks (Haywood and Boucher, 2000). The aerosol 

classification depends on the aerosol source, composition, size and number distribution, aging processes, and 25 

optical and physical properties. 

The spatial and temporal distribution of aerosols in the lower troposphere is highly variable and is greatly 

affected by the proximity to the sources, type of aerosols, meteorological conditions, and photochemical 

processes. Horizontal and vertical heterogeneity of the aerosol distribution, their properties and processes 

pose a serious challenge for modeling aerosol induced radiative forcing and is an important source of 30 

uncertainties in the climate modeling results (Intergovernmental Panel on Climate Change, 2014).  

Macroscopic aerosol optical properties required for modeling aerosol radiative forcing include single 

scattering albedo, scattering phase function, and aerosol optical thickness (AOD), (Dubovik et al., 2002). 
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These parameters depend on aerosol chemical composition, aerosol mixing, particle shape and size 

distribution, and particle orientation.  35 

Single scattering albedo, ω(λ), is defined as the ratio of scattering optical depth (τscattering) to the total optical 

depth (τscattering+ τabsorption) at wavelength λ (Eq. (1)): 

𝜔(𝜆) =
𝜏𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔

𝜏𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔+𝜏𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛
  ,                                                                                                                        (1) 

The magnitude of ω(λ) determines whether the aerosols have a cooling or warming effect depending on the 

underlying surface albedo. Since ω(λ) mainly depends on the aerosol composition (complex part of the 40 

refractive index) and size, it is difficult to characterize for aerosol mixtures, especially of the anthropogenic 

origin. 

Scattering phase function describes the angular intensity distribution of electromagnetic radiation scattered 

by the aerosol. It depends on the aerosol size compared to the incident electromagnetic radiation wavelength 

(λ), aerosol particle shape, and composition (relative refractive index m at λ). In the Lorenz-Mie formalism, 45 

applied in this study, wavelength-aerosol size dependence is expressed by the size parameter (α) as the ratio 

of the spherical particle circumference to the wavelength (Seinfeld and Pandis, 2016).  

The scattering phase function, P(θ,α,m), at a scattering angle θ for spheres is calculated by normalizing the 

scattered intensity into angle θ by the intensity integrated over all scattering directions. The dominating 

scattering direction is described by the asymmetry factor (g), which is defined as the phase function weighted 50 

cosine of the scattering angles integrated from 0° (forward direction) to 180° (backward direction):  

𝑔(𝛼,𝑚) =
1

2
∫ 𝑐𝑜𝑠(𝜃) ∙ 𝑃(𝜃, 𝛼,𝑚) ∙ 𝑠𝑖𝑛(𝜃)𝑑𝜃
𝜋

0
 ,                                                                      (2) 

The asymmetry factor ranges from -1 (backscattering) to +1 (forward scattering). Henyey and Greenstein 

(1941) proposed a simplified “fitting” technique to calculate P(θ) using solely the asymmetry factor:  

PHG(cos θ) =
1−g2

(1+g2−2∙g∙cos(θ))
3
2

  ,                                                                                                   (3) 55 

Several methods used to solve the radiative transfer equation in the atmosphere (e.g. δ-M, discrete ordinate, 

and Monte Carlo) require scattering phase function expansion into a finite series of Legendre polynomials 

(PL(cosθ)) to account for the dependence of the radiation field on azimuth (Spurr, 2008). Lorenz-Mie type 

codes output the Legendre expansion coefficients. The expansion of the Henyey-Greenstein phase function 

into Legendre polynomials (PL) is given by a simple relationship shown in Eq. (4), where (2L+1)gL is its 60 

Legendre moments (expansion coefficients). 

𝑃𝐻𝐺(cos 𝜃) = ∑(2𝐿 + 1) ∙ 𝑔𝐿 ∙ 𝑃𝐿(𝑐𝑜𝑠𝜃),                                                          (4) 

 

2. Multi-Axis Differential Optical Absorption (MAX-DOAS) technique 
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MAX-DOAS technique has been widely used to derive vertical aerosol extinction coefficient profiles in the 65 

lower troposphere. This is typically done from ground-based measurements of oxygen collision complex 

(O2O2) absorption (for a detailed list of references see Table 1 in Wagner et al., (2018)). Since the oxygen 

volume mixing ratio (O2 = 0.209) is considered constant, the O2O2 abundance depends only on the total 

number of air molecules (pressure, temperature and to a small degree humidity) and can be easily calculated. 

More than 93% of O2O2 is located below 10 km (scale height ~ 4 km). Any deviation in measured O2O2 70 

absorption from this molecular (Rayleigh) scattering case is only due to the change in the photon path through 

the O2O2 layer. Aerosols and clouds are the main causes of such photon path modification for ground-based 

measurements. O2O2 has several absorption bands in the ultraviolet (UV) and visible (VIS) parts of the 

electromagnetic spectrum (band peaks at 343, 360, 380, 477, 577, 630 nm (Thalman and Volkamer, 2013).  

 75 
Figure 1. Demonstration of the MAX-DOAS principle: (a) side view and (b) top view. Simplified photon paths 

through the atmosphere are shown in yellow. A single sky scans sequence for profile retrieval consists of multiple 

viewing zenith angles (VZA) in a specific direction (viewing azimuth angle, VAA) at a specific solar zenith angle 

(SZA) and is shown in red.  

The MAX-DOAS technique consists of measuring sky-scattered UV-VIS solar spectra at multiple, primarily, 80 

low elevation angles (Fig. 1). MAX-DOAS shows a large sensitivity to the tropospheric gases due to 

increased photon path length through the lower troposphere (Platt and Stutz, 2008). To eliminate the 

contribution from the upper atmosphere solar spectra measured at low elevation angles are divided by the 

reference spectrum collected from the zenith direction. DOAS technique has the advantage of not needing an 

absolute radiometric calibration. 85 

The first step of the DOAS retrieval is a spectral evaluation to calculate the differential slant column density 

(ΔSCDmeasured = SCD - SCDreference) of O2O2. This step is accomplished through the simultaneous non-linear 
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least-squares fitting of the absorption by species i, low-order polynomial function (PLO) and offset to the 

difference between the logarithms of the attenuated (I) and reference (Ireference) spectra. PLO estimates 

combined attenuation due to molecular scattering and aerosol total extinction (scattering and absorption). 90 

Offset term approximates instrumental stray light and residual dark current. 

𝑙𝑛 (𝐼𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝜆)) − 𝑙𝑛(𝐼(𝜆) − 𝑜𝑓𝑓𝑠𝑒𝑡(𝜆)) = (∑ 𝜎𝑖(𝜆) ∙ ∆𝑆𝐶𝐷𝑖𝑠 ) + 𝑃𝐿𝑂,                                                   (5) 

The second step of the MAX-DOAS analysis is the conversion of a single sky scan (multiple viewing angles) 

ΔSCD(O2O2) into a vertical aerosol extinction coefficient profile. The physical relationship between the 

measured ΔSCD and the desired aerosol extinction coefficient profile and aerosol properties is complex, and, 95 

in general, can be expressed mathematically by equation (6) (Rodgers, 2004): 

𝒚 = 𝑓(𝒙, 𝒃) + 𝜺,                                                                                                    (6) 

Where, the measured quantities (measurement vector y) are described by a forward model f(x, b) and the 

measurement error vector (ε). The forward model, f(x, b), is a model that estimates physical processes that 

relate the measured parameter (y), the unknown quantity to be retrieved (state vector (x)), and forward model 100 

parameters (b) that are considered approximately known. Under most conditions, there are more unknowns 

than measurements, and as a result equation (6) does not have a unique solution.  

The inversion of equation (6) is often done in the framework of Bayes’ theorem, which allows for the 

assignment of probability density functions to all possible states given measurements and prior knowledge 

of the state. However, in reality, we are not interested in all possible solutions, but rather a single, the most 105 

“probable” solution with its error estimation. Equation (7) shows a Transfer Function that defines an 

estimated solution (𝒙) as a function of the measurement system and retrieval method (Rodgers, 2004): 

𝒙 = 𝑅(𝑓(𝒙, 𝒃) + 𝜺, �̂�, 𝒙𝒂, 𝒄),                                                           (7) 

where R is a retrieval method, f(x, b) is a forward function with the true state (x) and true parameters (b),  �̂� 

is the estimated forward model parameter vector, xa is the a priori estimate of state vector (x), and c is a 110 

retrieval method parameter vector (e.g. convergence criteria). For nonlinear problems the solution to equation 

(7) cannot be found explicitly, and iterative numerical methods are required. A maximum a posteriori (MAP) 

approach has been widely applied to moderately nonlinear problems with Gaussian distribution of both 

measurement errors and a priori state errors. A priori information about the state vector distribution before 

the measurements are made is used to constrain the solution of the ill-posed problems (Rodgers, 2004). It is 115 

essential to use the best estimate of the state available since in the MAP approach the retrieved state is 

proportional to the weighted mean of the actual state and the a priori state. In addition, an appropriate 

covariance matrix for the a priori state vector has to be constructed. This a priori information for aerosol 

vertical extinction coefficient profiles, however, is rarely available.  

In addition to the optimal estimation method (OEM), briefly described above, parameterized (Beirle et al., 120 

2019; Vlemmix et al., 2015) and analytic (Spinei et al 2019, in preparation) inversion algorithms were 

developed. Frieß et al., (2019) provide a detailed intercomparison of currently available state-of-the-art 
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inversion algorithms for MAX-DOAS measurements. None of the algorithms perform perfectly and none of 

them estimate asymmetry factor or single scattering albedo in addition to aerosol extinction coefficient 

profiles. Most of the current algorithms take between 3 to 216 seconds to process a single MAX-DOAS sky 125 

scan (Frieß et al., 2019) mainly due to the iterative inversion step. They also require external information 

about the atmosphere (e.g. temperature and pressure profiles, aerosol single scattering albedo and asymmetry 

factor) and a priori information that does not typically exist. With an increasing number of MAX-DOAS 2-

D instruments worldwide capable of sunrise to sunset measurements (e.g. Pandonia Global Network) fast 

methods are needed that can harvest full information from the MAX-DOAS hyperspectral measurements.    130 

This study describes and evaluates a fast novel machine learning (ML) approach for retrieving aerosol 

extinction coefficient profiles, asymmetry factor and single scattering albedo at 360 nm from ΔSCD(O2O2) 

observations within a single MAX-DOAS sky scan. The basic idea of our approach is: (1) develop an “inverse 

model” by one-time offline training of a supervised ML algorithm on simulated MAX-DOAS data and 

corresponding atmospheric aerosol conditions, and (2) use the relationships derived in the first step to 135 

estimate the aerosol extinction profile, asymmetry factor, and single scattering albedo from the MAX-DOAS 

ΔSCD(O2O2) measurements. We specifically leverage recent advances in ML, e.g., deep learning methods, 

to automatically extract the inverse mapping from the observations (y) to the state vectors (x), using a 

collection of (x, y) pairs available for training. Different machine learning algorithms were successfully used 

in remote sensing applications (Schulz et al., 2018, Schilling et al., 2018, Efremenko et al., 2017; Hedelt et 140 

al., 2019). 

The rest of the paper is organized in the following sections. Section 3 provides an overview of the new 

retrieval algorithm. Section 4 focuses on training data generation using the radiative transfer model 

(VLIDORT). Section 5 details ML implementation. Section 6 provides an extensive comparison of ML 

predicted versus “true” macroscopic aerosol properties outside the training dataset. Section 7 summarizes the 145 

findings. 

3. Overview of the Methodology 

Our approach consists of two stages: (1) a one-time training stage that results in an inverse ML model 𝑅(Θ̂) 

with appropriate architecture and parameters Θ̂ ; and (2) an inversion stage, where the trained ML model 

𝑅(Θ̂) is applied to MAX-DOAS measurements to retrieve aerosol properties. Figure 2 provides a schematic 150 

overview of both stages. 

The offline training stage comprises of two key steps. First, a training set containing simulated measurements 

{𝒚𝑖|𝑖 = 1,2, … , 𝑁}  is generated by a forward model (VLIDORTv2.7) given atmospheric states {𝒙𝑖|𝑖 =

1,2, … , 𝑁}. The model describes atmospheric radiative transfer processes connecting the atmospheric states 

and the measurements. Second, both the atmospheric states and the simulated measurements are fed into the 155 

ML model for learning the inverse mapping from the measurement space to the state space. This is based on 

solving an optimization problem that minimizes the mean squared error (MSE) between the retrieved values 
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({𝒙𝑖|𝑖 = 1,2, … , 𝑁}) and the true values ({𝒙𝑖|𝑖 = 1,2, … , 𝑁}). We specifically chose artificial neural network 

(ANN) models to learn the inverse mapping from y to x. By iteratively adjusting the parameters of the ANN 

model using gradient descent (backpropagation) algorithms (Johansson et al., 1991), we are able to arrive at 160 

ANN model parameters Θ̂ that provide a local optimum performance in terms of MSE on the training data. 

The result of the training stage is an inverse model 𝑅(Θ̂) whose architecture and parameters are saved in an 

HDF5 file (1.3 MB). The trained model 𝑅(Θ̂) is an inversion operator that transforms measurements vector 

y into the state vector 𝒙 through a set of simple linear and nonlinear operations. The inverse model provides 

a convenient and fast way for retrieval of aerosol properties from ΔSCD(O2O2) measurements during the 165 

inversion stage. It takes ~0.15 ms for the retrieval of the studied aerosol properties from a single MAX-

DOAS sky scan ΔSCD(O2O2) on a single CPU core.  

 

Figure 2. Schematics of the machine learning inversion algorithm. 

4. Training data preparation 170 

The success of any ML model depends on the quality of the training data. Since there is no reliable dataset 

that combines simultaneous MAX-DOAS measurements and observations of aerosol macrophysical 

properties and vertical extinction coefficient profiles at 360 nm we use a radiative transfer model to simulate 
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MAX-DOAS measurements. In this study, we train our ML model on air mass factors (AMF) calculated 

from the simulated solar radiances at the bottom of the atmosphere.  175 

AMF represents a ratio between the true average path that photons take through a gas layer before detection 

by a MAX-DOAS instrument and the vertical path. Since O2O2 absorption in the reference (zenith scattered) 

spectrum is not precisely known, a differential AMF at a specific wavelength λ and observations geometry μ 

(relative azimuth angle, solar zenith angle, and viewing zenith angle), is determined as: 

∆𝐴𝑀𝐹(𝑂2𝑂2, 𝜆, 𝜇) =
∆𝑆𝐶𝐷𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑(𝑂2𝑂2,𝜆,𝜇)

𝑉𝐶𝐷(𝑂2𝑂2)𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑
=

ln(𝐼𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒(𝜆,𝜇𝑜))−ln(𝐼(𝜆,𝜇))

𝑉𝐶𝐷(𝑂2𝑂2)𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑∙𝜎(𝑂2𝑂2,𝜆)
,                                                  (8) 180 

Where vertical column density of O2O2 (VCD) is estimated as the squared oxygen number density integrated 

from the surface to the top of the atmosphere; and σ(λ) is the molecular absorption cross-section of O2O2. 

In the absence of aerosols and clouds only air molecules (mainly oxygen and nitrogen) scatter solar photons 

in the Earth's atmosphere. This molecular only (Rayleigh) scattering process is considered to be well 

understood (Bodhaine et al., 1999) and ΔAMFRayleigh can be calculated from the simulated intensities. In the 185 

presence of aerosols, dust and clouds not only air molecules but also particles and cloud droplets scatter solar 

photons. This type of scattering can be generally described by the T-matrix theory. In this study we consider 

only spherical aerosols (Lorenz-Mie theory), whose scattering phase function is approximate according to 

the Henyey-Greenstein approach using the asymmetry factor g. ΔAMFaerosol+Rayleigh are determined from 

simulated downwelling radiances for atmosphere with different aerosol types and their extinction coefficient 190 

profiles. The change in AMF due to aerosol presence can be described by ΔAMFaerosol: 

∆𝐴𝑀𝐹𝑎𝑒𝑟𝑜𝑠𝑜𝑙 = ∆𝐴𝑀𝐹𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ − ∆𝐴𝑀𝐹𝑎𝑒𝑟𝑜𝑠𝑜𝑙+𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ ,                                                                             (9) 

ΔAMFaerosol for O2O2 at 360 nm for different observation geometries and scattering conditions is used for ML 

training in this feasibility study. A single MAX-DOAS measurement considered here is ΔAMFaerosol set from 

the full sky scan at a single solar zenith angle, single relative azimuth angles, and the following viewing 195 

zenith angles: 0, 40, 50, 60, 65, 70, 75, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89o. To ensure that the training 

dataset contains all observation geometries feasible for MAX-DOAS sky scans we have included the 

following: 

(1) Relative azimuth angles: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 

180o, and  200 

(2) Solar zenith angles: 0, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85o. 

Solar radiances at the bottom of the atmosphere were simulated using VLIDORT v.2.7 (Spurr, 2008). 

VLIDORT is a discrete-ordinate radiative transfer model that has been successfully applied to simulate 

radiances and weighting functions for forward models in optimal estimation inversion (Clémer et al., 2010) 

and machine learning algorithms (Efremenko et al., 2017, Hedelt et al., 2019). VLIDORT code applies 205 

pseudo-spherical approximation to direct solar beam attenuation in a curved atmosphere. All scattering 

processes are estimated using the plane-parallel approximation in a stratified atmosphere. Precise single 

scattering computation is performed using Nakajima/Tanaka ansatz and delta‐M scaling. VLIDORT v.2.7 
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calculates analytically derived Jacobians (radiance weighting functions) with respect to any 

profile/column/surface variables. VLIDORT computes elastic scattering by molecules to all orders (Spurr, 210 

2008). 

Table 1. Radiative transfer model settings 

General 

Model Settings 

Physical and Observation Geometry Inputs 

 

NO Refraction 

correction; 

 

Scalar calculations; 

 

Only elastic 

scattering; 

 

Aerosol scattering 

phase function 

estimation using 

Henyey-Greenstein 

approximation 

from the 

asymmetry factor 

(g). 

 

 

Observation Geometry: 

Viewing zenith angle scan: 0, 40, 50, 60, 65, 70, 75, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89o; 

Relative azimuth angles: 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 

160, 170, 180o 

Solar Zenith angles: 0, 10, 20, 30, 40, 50, 60, 65, 70, 75, 80, 85, 86, 87, 88, 89o 

Wavelength: 360 nm; 

 

Vertical grid (67 layers): 

100 m up to 4 km, 500 m from 4 to 8 km, 1 km from 8 to 12km, 2 km from 12 to 30km, 5 

km from 30 to 60 km 

 

Atmospheric air density: 

Pressure [hPa]: US1976 standard atmosphere 

Temperature [K]: US1976 standard atmosphere 

 

Gas volume mixing ratio profiles: 

O3 profile: climatology over Cabauw in September 

O3 molecular absorption cross-section: Daumont 

O2O2 profile: from temperature and pressure 

O2O2 molecular absorption cross-section: Thalman and Volkamer (2011) 

 

Aerosol properties: 

Single scattering albedo:  0.775, 0.825, 0.875, 0.925, 0.975 

Henyey-Greenstein asymmetry factor: 0.675, 0.725, 0.775, 0.825 

 

Aerosol extinction coefficient profiles [1/km] as a function of altitude; 

Exponential function at the surface combined with “sliding” Gaussian function above; 

Total AOD: 0, 0.15, 0.3, 0.45, 0.6, 0.75;  

Gaussian profile center height: 0.5, 1, 1.5, 2 km;  

Gaussian width: 0.1, 0.2, 0.3, 0.5 km;  

Partitioning between exponential and Gaussian attributed AOD: 0.3, 0.6, 0.9 

 

Surface reflectivity: 

Lambertian albedo at 0.04 

 

VLIDORT models radiative transfer processes at a specific wavelength in a stratified atmosphere. It requires 

geometrical and “optical” information about the atmospheric layers and the underlying ground surface. These 

include layer heights, pressure and temperature at layer boundaries for refractive geometry calculations, solar 215 

zenith, viewing zenith direction and relative azimuth angles between the viewing direction and solar position.  

Each atmospheric layer is described by total optical thickness, total single scatter albedo, and the set of Greek 

matrices specifying the total scattering law.  

VLIDORT simulations were performed for the US 1976 standard atmosphere divided into 67 layers (same 

as in Frieß et al., 2019) with 0.1 km layers from the surface to 4 km; 0.5 km layers from 4 to 8 km and varying 220 
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width up to 60 km. Since surface reflectivity has a small effect on ground-based MAX-DOAS measurements 

we performed simulations only for a single Lambertian albedo of 0.04. Absorption only by two gases was 

considered in this study: ozone and O2O2. Light polarization, direct beam refraction, and inelastic scattering 

were not included in this study. Table 1 summarizes VLIDORT inputs and general settings. 

Aerosol types in this study are described by a single scattering albedo and asymmetry factor combination 225 

with total 20 “types”: (1) Single scattering albedo: 0.775, 0.825, 0.875, 0.925, 0.975; (2) Henyey-Greenstein 

asymmetry factor: 0.675, 0.725, 0.775, 0.825. Aerosol extinction coefficient profiles were generated by 

combining an exponential function at the surface with a “sliding” Gaussian function above. The aerosol total 

optical depth was partitioned between the exponential and Gaussian functions. Total AOD cases included 

0.15, 0.3, 0.45, 0.6, and 0.75 with exponential to Gaussian partitioning fractions of 0.3, 0.6 and 0.9. The 230 

Gaussian function peak center height was varied from 0.5 km to 2 km in steps of 0.5 km. The Gaussian 

function peak width was varied too: 0.1, 0.2, 0.3, and 0.5 km. This results in 4800 aerosol cases and a total 

of 1459200 measurement simulations (sky scan). While VLIDORT simulations were performed for an 

atmosphere divided into 67 layers ML training was done by resampling onto 23 layers only. The new layer 

heights are: 100 m from the surface to 1km, 200 m from 1 km to 3 km, 500 m from 3 km to 4 km, and the 235 

last layer is 56 km high. The new layer partial AODs were generated by adding the neighboring layer partial 

aerosol optical depths. ML algorithm was trained on 75% randomly selected measurement simulations 

(1094400 samples) and evaluated on the remaining 25%.  

5. Learning inverse mapping using ML  

A novel multi-output sequence-to-sequence model to learn the inverse mapping from MAX-DOAS 240 

measurements to aerosol optical properties is illustrated in Figure 3. The inputs to the ML model comprise 

of a sequence of ΔAMFaerosol at 16 VZAs, as well as two scalar inputs: the solar zenith angle (SZA) and the 

relative azimuth angle (RAA) of the single sky scan. To extract sequence-based features from MAX-DOAS 

data, a 1-dimensional Convolutional Neural Network (CNN, Fukushima, 1980; LeCun et al., 1999) applies 

a learnable convolution operator on the sequence of MAX-DOAS values to produce a sequence of hidden 245 

features. These hidden features are then fed into the subsequent neural network layers to predict a sequence 

of partial AOD values, along with two scalars: single scattering albedo and asymmetry factor. Given the 

sequential nature of the partial AOD outputs, we employ a Long Short-Term Memory network (LSTM, 

Hochreiter and Schmidhuber, 1997) that is able to capture varying scales of memory in the sequence of partial 

AOD values at varying levels. The complete ML model is implemented in the Jupyter Notebook by using 250 

the Keras library. RMSprop was chosen as the optimizer and the mean squared error as the loss function 

(Hinton, 2012).  
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Figure 3. Schematics of the multi-output sequence-to-sequence model for deriving aerosol optical properties from 

MAX-DOAS measurements.  255 

6. Results 

Evaluation of the accuracy of ML mapping rules derived during the training stage for MAX-DOAS data 

inversion was done by comparing the “true” atmospheric aerosol properties to the ML inverted properties. 

The evaluation data set consists of 364800 MAX-DOAS simulated sky scans that are outside of the training 

set. The number of simulations in the evaluation data set as a function of solar zenith angle (SZA) and relative 260 

azimuth angle (RAA) are shown in Figure 4. Between 1100 and 1300 aerosol scenarios are present in each 

SZA-RAA bin. 

 

Figure 4. Number of simulations in the evaluation data set as a function of solar zenith (SZA) angle and relative 

azimuth angle (RAA). 265 

The following ML predicted aerosol properties were evaluated: (1) asymmetry factor, (2) single scattering 

albedo, (3) total aerosol optical thickness, and (4) partial aerosol optical thickness for each layer from 0 to 4 

km. A relative error ϵ of the retrieved by ML parameter �̂� relative to the “true” value x is calculated according 

to Eq. (10):  

ϵ ≡
x̂−𝑥

𝑥
∙ 100% ,                                                                        (10)  270 

The relative error evaluation presented in the subsequent sections was performed on the retrievals from a 

single ML training. Since ML itself introduces randomness during the training stage, we retrained the model 

20 times with the same hyperparameters for evaluating the uncertainty of the ML training.   
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6.1. Asymmetry factor at 360 nm 

The ML-based approach shows an ability to invert aerosol asymmetry factor with a mean error of -0.14% 275 

and two standard deviations of 2.04% and nearly normal error distribution (Fig. 5(a)). To evaluate if any 

dependence of the asymmetry factor retrieval exists on SZA and RAA the mean error and the two standard 

deviations are shown in Fig. 5(b, c). These distributions suggest that dependence of the asymmetry factor 

retrieval on SZAs and RAAs is relatively small. However, systematically higher relative errors are observed 

around SZA of 65° and RAA of 30-40°.  The cause of these elevated errors is not clear at this point.  280 

 

Figure 5. Asymmetry factor retrieval errors: (a) error histogram; (b) mean error as a function of SZA and 

RAA; (c) two standard deviations as a function of SZA and RAA. 

6.2. Single scattering albedo at 360 nm 

Similar high accuracy is achieved for ML retrieval of the single scattering albedo with a mean error of 0.19% 285 

and two standard deviations of 3.46% and nearly normal error distribution, somewhat positively skewed (Fig. 

6). Slightly higher errors are observed at RAA smaller than 60° and most SZA.  

 

Figure 6. Single scattering albedo retrieval errors: (a) error histogram (b) mean error as a function of SZA and 

RAA (c) two standard deviations as a function of SZA and RAA. 290 

Mean errors are also larger at small RAA and SZA > 85°. Traditional optimal estimation techniques also 

struggle with the MAX-DOAS data inversion at small RAA due to uncertainty in aerosol forward and 

backward scattering. 

6.3. Total aerosol optical depth at 360 nm 
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Total AOD retrieval is more challenging for the ML model than the single scattering albedo or asymmetry 295 

factor, especially at lower total AOD levels.  Box plots of the total AOD error for different “true” total AOD 

values are given in Fig. 7.  In general, ML algorithm tends to underestimate total AOD from the mean error 

± 2 standard deviations of  -8.39 ± 8.81% (total AOD 0.15) to -1.52 ± 3.10%  (total AOD of 0.75). Total 

AOD retrieval error distribution over all cases is close to Gaussian distribution, but with two peaks (Fig. 8). 

The mean error (± two standard deviations) is -3.58% ± 7.68%. The bias of the model does not have much 300 

dependence on SZAs and RAAs (Fig. 8(b)). Still, lager errors and uncertainties can be observed at higher 

SZAs and lower RAAs (Fig. 8(c)).  

 

Figure 7. Box plots of total AOD prediction errors for each “true” total AOD value. 

 305 
Figure 8. Total AOD retrieval errors: (a) error histogram (b) mean error as a function of SZA and RAA (c) two 

standard deviation as a function of SZA and RAA. 

 

6.4. Partial aerosol optical depth profile from 0 to 4 km 

The contribution of partial AOD retrieval error at each atmospheric layer from 0 to 4 km to the total AOD is 310 

shown in Fig. 9. This error contribution to the total AOD error depends on the absolute amount of aerosols 

and its altitude and on average is less than 1% per layer. Just like OEM methods, the ML method has lower 
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accuracy of retrieving elevated aerosol layers especially corresponding to smaller total AOD. The larger 

distribution of relative errors in partial AOD at 1.5 km and 2 km is mainly due to the presence of elevated 

layers in the training data that peaked at those heights. If the aerosol were also present in meaningful amounts 315 

above those altitudes the error distribution would have been larger above 2 km.   

 

Figure 9. Mean partial layer AOD error ± one standard deviation. 

A linear regression analysis of the “true” versus the retrieved partial AOD was performed using the least-

squares fitting for each layer from 0 to 2.2 km (Fig. 10). Intercepts of linear regression analysis for all layers 320 

were zero with RMS ≤ 0.01. High 𝑅2 values (0.93 – 0.99) and slopes (m) close to one suggest that the ML 

method relatively accurately estimates partial AOD at the layers between 0 and 2.2 km. As was noted earlier 

lower retrieval accuracy is observed at the higher altitudes. 
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Figure 10. Correlation between the retrieved partial AOD and the “true” partial AOD for each layer from 0-2.2 325 
km (𝒓𝒆𝒕𝒓𝒊𝒆𝒗𝒆𝒅𝒑𝒂𝒓𝒕𝒊𝒂𝒍𝑨𝑶𝑫 = 𝒎 ∙ "𝒕𝒓𝒖𝒆"𝒑𝒂𝒓𝒕𝒊𝒂𝒍𝑨𝑶𝑫+ 𝒊𝒏𝒕𝒆𝒓𝒄𝒆𝒑𝒕). The intercept of all linear regression 

analyses is 0 with RMS < 0.01. 

Figure 11 shows some examples of the partial AOD profiles retrieved by the ML inversion model. Panels 

(a)-(h) in Fig. 11 contain randomly selected profiles out of the tested pool. While panels (i)-(l) contain some 

of the worst predictions. These examples show that the ML model is able to predict the elevated aerosol 330 

layers and even in those cases having large discrepancies, the model is still capturing the correct shape. 
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Figure 11. Examples of predicted partial layer AOD profiles: (a)-(h) randomly selected examples and (i)-(l) bad 

predictions 

6.5. Effect of random noise in ML training on the retrievals 335 

To estimate retrieval uncertainties due to random noise in ML training on the aerosol properties we reran the 

ML training stage 20 times. Mean errors and standard deviations for total AOD, single scattering albedo and 

asymmetry factor for each trained model are shown in Fig. 12.  

 

Figure 12. Effect of random noise in model training on the retrieved aerosol properties 340 
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Table 2 summarizes the effect of random model training noise on the retrieved properties. In general, most 

ML models result in a normal distribution of errors with an additional bias in the mean. Since the individual 

model training has a very small effect on error distribution (small changes in standard deviation between the 

different training runs) we add the variation in bias with standard deviation in quadrature to estimate the total 

error of the ML model including the random error of the training as: 345 

(1) Total AOD error ± 2 standard deviations  =  -1.4 ± 10.1 %; 

(2) Single scattering albedo error ± 2 standard deviations  = 0.1 ± 3.6 %; 

(3) Asymmetry factor error ± 2 standard deviations = -0.1 ± 2.1 %. 

Table 2. Statistics of aerosol property error analysis from 20 ML models (20 different training runs) 

Optical property bias ± std, % Standard deviation ± std, % 

Total AOD error -1.43 ± 3.54 3.56 ± 0.64 

Single scattering albedo error 0.06 ± 0.47 1.72 ± 0.10 

Asymmetry factor error -0.08 ± 0.25 1.01 ± 0.03 

7. Conclusions and future work 350 

This paper presents a fast ML-based algorithm for the inversion of ΔSCD(O2O2) from a single MAX-DOAS 

sky scan into aerosol partial optical depth profile, single scattering albedo and asymmetry factor at 360 nm. 

Training and evaluation of ML algorithm are performed using VLIDORT simulations of ΔAMF(O2O2) for 

about 1.45 million scenarios with 75% randomly selected cases for training and 25% (~ 365 thousand cases) 

for evaluation. 355 

Evaluation of four retrieved aerosol properties (asymmetry factor, single scattering albedo, total AOD and 

partial AOD for each layer from 0 to 4 km) shows good performance of the ML algorithm with small biases 

and normal distribution of the errors. 95.4% of the retrieved optical properties have errors within the 

following ranges: (-1.4 ± 10.1) % for total AOD, (0.1 ± 3.6) % for single scattering albedo, and (-0.1 ± 2.1) % 

for asymmetry factor. Linear regression analysis using the least-squares fitting method between the “true” 360 

and retrieved layer partial AODs resulted in high correlation coefficients (R2 = 0.93 – 0.99), slopes near unity 

(0.95 – 1.02) and zero intercepts with RMS ≤ 0.01 for each layer from 0 to 2.2 km. The ML algorithm, in 

general, has less accuracy retrieving low total AOD scenarios and their corresponding profiles. Even in those 

scenarios with less accuracy, the ML model is still capable of capturing the correct profile shape. 

Application of ML-based algorithm to real data inversion has the following advantages:   365 

(1) Fast real-time data inversion of the aerosol optical properties;  

(2) Simple implementation by using an HDF file with the model coefficients in open source codes such as 

Python; 

(3) Ability to retrieve single scattering albedo and asymmetry factor; 
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(4) Use of the ML algorithm retrieved aerosol extinction coefficient profiles; single scattering albedo and 370 

asymmetry factor as initial guess inputs in more formal inversion algorithms (with radiative transfer 

simulations). 

To verify that the ML retrievals are representative of the physical processes we suggest simulating 

ΔSCD(O2O2) using a radiative transfer model (e.g. VLIDORT) with the ML retrieved properties as inputs 

(aerosol extinction coefficient profile, single scattering albedo, and asymmetry). Deviations from the 375 

measured and simulated ΔSCD(O2O2) should be included in error analysis. 

To make the ML model more robust the training data should include more realistic aerosol inputs and 

radiative transfer simulations including 1) Rotational Raman scattering simulations to add Ring 

measurements from MAX-DOAS; 2) different surface albedos; 3) more realistic aerosol profiles (e.g. from 

a 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET aerosol profiles, LIVAS 380 

(Amiridis et al., 2015)); 4) multiple wavelengths. 
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