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Abstract. Remote sensing observations at sub-millimeter wavelengths provide higher sensitivity to small hydrometeors and

low water content than observations at millimeter wavelengths, which are traditionally used to observe clouds and precipitation.

They are employed increasingly in field campaigns to study cloud microphysics and will be integrated into the global meteo-

rological observing system to measure the global distribution of ice in the atmosphere with the launch of the Ice Cloud Imager

(ICI) radiometer on board the second generation of European operational meteorological satellites (Metop-SG). Observations5

at these novel wavelengths provide valuable information not only on their own but also in combination with complementary

observations at other wavelengths. This study investigates the potential of combining passive sub-millimeter radiometer obser-

vations with a hypothetical W-band cloud radar for the retrieval of frozen hydrometeors. An idealized cloud-model is used to

investigate the information content of the combined observations and establish their capacity to constrain the microphysical

properties of ice hydrometeors. A synergistic retrieval algorithm for airborne observations is proposed and applied to simu-10

lated observations from a cloud-resolving model. Results from the synergistic retrieval are compared to equivalent radar- and

passive-only implementations in order to assess the benefits of the synergistic sensor configuration. The impact of the assumed

ice particle shape on the retrieval results is assessed for all retrieval implementations. We find that the combined observations

better constrain the microphysical properties of ice hydrometeors which reduces uncertainties in retrieved ice water content

and particle number concentrations for suitable choices of the ice particle model. Analysis of the retrieval information content15

shows that, although the radar contributes the largest part of information in the combined retrieval, the radiometer observa-

tions provide complementary information over a wide range of atmospheric states. Furthermore, the combined retrieval yields

slightly improved retrievals of liquid cloud water in mixed-phase clouds, pointing towards another potential application of

combined radar-radiometer observations.

1 Introduction20

Ice hydrometeors play an important role for both weather and climate. They influence the Earth’s energy budget through their

interaction with incoming and outgoing radiation, constitute a part of the global hydrological cycle and are coupled to the

dynamics of the atmosphere in multiple ways (Bony et al., 2015). Because of this, observations of ice clouds are required for
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understanding the role of clouds in a changing climate (Boucher et al., 2013), to provide information on the dynamical state

of the atmosphere in numerical weather prediction (NWP) models (Geer et al., 2017) and to validate climate models (Waliser25

et al., 2009). Despite this, today’s global observing system cannot provide accurate information on the global distribution of ice

in the atmosphere (Eliasson et al., 2011; Duncan and Eriksson, 2018). A major difficulty of measuring atmospheric ice using

remote sensing lies in the large variability of ice particle sizes, concentrations and shapes, which can only be partially resolved

by available space-borne sensors.

Current operational observation systems used to study clouds can be divided into two groups by virtue of their observing30

frequency and corresponding capabilities and limitations. Microwave sensors employ comparably long wavelengths ranging

down to about 1 mm. Since these wavelengths are large compared to the typical sizes of ice particles in a cloud, microwave

sensors are most sensitive to the largest particles and do not provide any sensitivity to the small particles in the cloud. Optical

and infrared sensors use radiation with wavelengths from around 15 µm down to several hundred nano meters. These relatively

short wavelengths make them sensitive also to the small ice particles in the cloud. The comparably low sensitivity of microwave35

sensors to small ice particles allows them to sense the larger, potentially precipitating, particles typically located at the center

and base of a cloud, which cannot be sensed at infrared and optical wave lengths due to saturation of the signal.

Active sensors have the advantage of providing high vertical resolution and generally higher sensitivity than their passive

counterparts. This, however, typically comes at the expense of lower spectral and spatial coverage of the observations.

The most accurate current information on the global distribution of ice water content (IWC) is provided by the CloudSat40

radar. A main strength of these observations is their vertical resolution, in the order of 500 m. However, the radar lacks scanning

capability and the swath width is just 1.5 km wide, to be contrasted with the swath width of passive imagers which is on the

order of 1000 km. CloudSat performs a single-frequency measurement, which limits the information per range bin to one

degree of freedom. Retrieving bulk properties like water content or particle number densities thus requires making a priori

assumptions that constrain cloud microphysical properties such as particle size, concentration and shape.45

A way to overcome the limitations of single-frequency radars is to combine them with observations from passive sensors,

which typically provide measurements at multiple frequencies and a significantly wider swath. Two types of synergies can be

distinguished for such an observation scenario: A local synergy, which consists of using the co-located radar and radiometer

observations to obtain more accurate hydrometeor retrievals, and a non-local synergy, which uses the vertically well-resolved

results from the radar-only or combined observations to support passive-only retrievals across the wide swath of the passive50

sensor, for example by providing realistic a priori constraints. Prominent examples of satellite missions that exploit both

these synergies are the the Tropical Rainfall Measuring Mission (TRMM, Kummerow et al. (1998); Grecu et al. (2004);

Munchak and Kummerow (2011)) and the Global Precipitation Measurement (GPM) mission (Hou et al., 2014; Grecu et al.,

2016; Kummerow et al., 2015)). Since the principal target of these missions is the retrieval of precipitation, they make use of

comparably low microwave frequencies and hence provide only little sensitivity to non-precipitating hydrometeors (Greenwald55

and Christopher, 2002).

With the upcoming launch of the Ice Cloud Imager (ICI) a new passive microwave sensor will become operational, which

is dedicated to observing ice hydrometeors from space. ICI will extend the range of currently available microwave frequencies
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with channels at 243, 325, 448 and 664 GHz (Eriksson et al., 2020). This will narrow the size-sensitivity gap between the

infrared and traditional microwave sensors by extending the smallest currently available microwave wavelength from 1.6 mm60

at 183 GHz down to the sub-millimeter domain (0.45 mm at 664 GHz) and significantly improve the size-sensitivity of space-

borne microwave observations of clouds. Together with ICI, the newly developed Microwave Imager (MWI) will be flown on

the satellites of the Metop-SG program. MWI will complement ICI’s observations with measurements at traditional millimeter

wavelengths as well as a spectral band around the 118 GHz oxygen line. The observations of MWI, which cover the frequency

range from 19 GHz up to 183 GHz, will provide additional sensitivity to liquid and frozen precipitation as well as water vapor.65

A number of studies have investigated the potential of ICI for studying ice in the atmosphere. The information content

and retrieval performance of radiometer observations alone has been studied in detail for column-integrated ice water content

(Jiménez et al., 2007; Wang et al., 2017; Brath et al., 2018; Eriksson et al., 2020) as well as for the vertical distribution of

ice in the atmosphere (Birman et al., 2017; Grützun et al., 2018; Aires et al., 2019). Although not directly related to ICI, the

combination of millimeter and sub-millimeter radiometer observations with active observations from a cloud radar has been70

investigated by Evans et al. (2005) and Jiang et al. (2019).

In this study, we are interested in the local synergies of co-located MWI/ICI-type radiometer observations combined with

observations from a W-band radar. In particular, we aim to answer the question what additional information can be gained

from combined observations compared to observations from a radar or MWI and ICI alone. For this, a combined, variational

retrieval is developed and applied to simulated observations of scenes from a cloud-resolving model (CRM). An airborne75

viewing geometry is assumed for the simulations with all sensors pointing at nadir and close-to overlapping antenna beams.

Our work extends the previous work by Evans et al. (2005) and Jiang et al. (2019) by comparing the performance of the

combined retrieval to that of equivalent radar- and passive-only retrievals, which allows us to quantify the value added by the

synergistic observations. In addition to that, the impact of the assumed scattering properties of ice hydrometeors on the retrieval

is investigated.80

This study consists of two principal parts: In the first part, simulated observations from a simplified cloud model are used

to perform a preliminary study of the complementary information content of radar and passive radiometer observations. In

the second part, the developed synergistic retrieval algorithm is applied to simulated observations from a CRM to investigate

the performance benefits of the combined observations compared to radar- and passive-only configurations. Following this

introduction, Section 2 introduces the test data, sensor configuration and the developed retrieval algorithm on which the study85

is based. This is followed by the experimental results on the information content of the combined observations and the simulated

retrieval results in Section 3. The article closes with a discussion of the results in Section 4 and conclusions in Section 5.

2 Methods and data

2.1 Reference cloud scenes

The cloud scenes which are used for the testing of the retrieval were produced by Environment and Climate Change Canada90

using a high-resolution NWP configuration of the Global Environmental Multiscale (GEM) Model (Côté et al. (1998)). Two
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test scenes with a horizontal resolution of 1 km and an extent of 800 km were selected. The vertical resolution of the model

scenes varies between 250 and 500 m below an altitude of 18 km and decreases steadily above that. The scenes, displayed

in Fig. 1, were chosen with the aim of covering a large range of cloud structures and compositions so as to ensure a broad

assessment of the retrieval. The first test scene, shown in panel (a), is located in the tropical Pacific and contains a mesoscale95

convective system in the northern half of the scene and its anvil which extends into the southern half. The second scene, shown

in panel (b), is located in the North Atlantic and contains an ice cloud in the southern part and a low-level, mixed-phase cloud

in the northern part.

Figure 1. The distribution of total water content including all hydrometeor classes in the two cloud scenes used to test the retrieval. Colored

lines show the 10−5 kg m−3 contour of the water content of each hydrometeor class.

The GEM model uses a two-moment scheme with six classes of hydrometeors to represent clouds and precipitation (Mil-

brandt and Yau, 2005): Two classes of liquid hydrometeors (rain and liquid cloud) and four of frozen hydrometeors (cloud100

ice, snow, hail and graupel). The particle size distribution (PSD) of each hydrometeor class is described by a three-parameter

gamma distribution. The prognostic parameters of the model are the slope and intercept parameters of the PSD, which are

derived from the predicted mixing ratios and number concentrations. The third parameter, which defines the shape of the PSD,

is set to a fixed, species-specific value. For each hydrometeor species a specific mass-size relationship is assumed.

Examples of particle size distributions of frozen hydrometeors are displayed in Fig. 2. The assumed particle size distributions105

across different ice species vary mostly in their scaling with respect to size and concentration, whereas the shape shows less

variability. An important characteristic can be identified here, which will help to better understand the retrieval results presented
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Table 1. Particle shapes used to represent the hydrometeor species of the GEM model scenes. The mass size relationship is given in terms of

the parameters of a fitted power law of the form m= α ·Dβ
max with Dmax the maximum diameter in m and m in kg.

GEM hydrometeor class Associated particle shape Size range Mass size relationship

Name (ID) Deq, min [µm] Deq, max [µm] α β

Liquid cloud LiquidSphere (25) 1 5 · 104 480 3

Rain LiquidSphere (25) 1 5 · 104 480 3

Ice cloud GEM Cloud Ice (31) 10 3 · 103 440 3

Snow GEM Snow (32) 94 5 · 103 24 2.86

Graupel GEM Graupel (33) 94 5 · 103 170 2.96

Hail GEM Hail (34) 94 5 · 103 540 3.02

later: Cloud ice is characterized by high particle number concentrations and small particle sizes, whereas snow has lower

number concentrations and larger particles.

Figure 2. Realizations of particle size distributions from the test scenes used in this study. The particle number concentration is plotted with

respect to the volume-equivalent diameter Deq. Shown are the PSDs corresponding to 100 randomly chosen grid points with a water content

higher than 10−6 kg m−3. Line color encodes the corresponding water content. Inlets display visualizations of the particle shape assumed

for each hydrometeor species.

In order to simulate observations from the GEM model scenes, the hydrometeor classes of its microphysics scheme must be110

associated with particle shapes to define their radiometric properties. The ARTS single-scattering database, described in more

detail below, contains particle models which were designed to be consistent with the mass-size relationships assumed in the

GEM model. The particle shapes used to represent the GEM model’s different hydrometeor types are listed together with their

properties in Tab. 1.

2.2 Simulated cloud observations115

An airborne sensor configuration is simulated to test the retrieval. The beams of all three sensors are assumed to point at nadir

and to be perfectly coincident pencil beams. Multiple scattering effects in the radar observations as well as the effects of particle
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orientation are neglected. Although these assumptions may be justified for an airborne configuration, this will not be the case

for space-borne observations from ICI and MWI. Moreover, the incidence angles of the beams of ICI and MWI will be around

53◦ at the Earth’s surface. This further complicates the radiative transfer modeling since it requires treating a more complex120

co-location geometry for the nadir-pointing radar and the passive instruments. At off-nadir viewing angles, also polarization

needs to be taken into account, the effects of which can be several Kelvin at the typical viewing angles of microwave imagers

(Xie et al., 2015).

2.2.1 Sensor configuration

The sensor configuration assumed for the simulated observations includes the 11 highest-frequency channels of the MWI125

radiometer and all ICI channels. For the radar, a nadir-pointing W-band cloud radar with similar characteristics as the CloudSat

Cloud Profiling Radar (CPR, Stephens et al. (2002); Tanelli et al. (2008)) is assumed.

Observations from the ICI radiometer are simulated by performing a single, non-polarized radiative transfer simulation

located at the centers of the pass bands of each double-sideband channel and averaging the resulting brightness temperatures.

For channels with multiple polarizations, only a single simulation is performed. To compensate for this, the noise of the130

corresponding channel is reduced by a factor of
√

2. The simulated ICI channels and assumed noise levels are presented in

Tab. 2.

Observations from the MWI radiometer are simulated in a similar manner to those of ICI except that for MWI only channels

with frequencies larger than or equal to 89 GHz are used. The reason for this is that the footprints of the channels with

frequencies lower than 89 GHz will have full-width at half maximum of 50 km compared to only 10 km for the MWI’s higher-135

frequency channels and 16 km for ICI’s channels. For a spaceborne configuration, these channels were deemed unlikely to be

beneficial for a synergistic retrieval due to the very small overlap of the footprints of these channels with that of the radar. The

included MWI channels are listed in Tab. 2.

The frequency of the the cloud radar is chosen to be 94 GHz similar to the CloudSat CPR. The vertical resolution of the

nadir-pointing radar observations is assumed to be 500 m ranging from 0.5 to 20 km in altitude. The minimum sensitivity is140

set to be −30 dBZ and the noise at each range gate is modeled to be independent with standard deviation 0.5 dB.

2.2.2 Radiative transfer simulations

All simulations presented in this study were performed using Version 2.3.1279 of the Atmospheric Radiative Transfer Simulator

(ARTS, Buehler et al. (2018)). Radar reflectivities are computed using ARTS’ built-in single-scattering radar solver, which

provides analytic Jacobians. For the simulation of passive radiances, a hybrid solver is used which combines the DISORT145

(Stamnes et al., 2000) scattering solver with the ARTS standard scheme for pencil beam radiative transfer. The hybrid solver

has been added to ARTS specifically for this study and provides approximate, analytical Jacobians, which are required for

variational retrievals of hydrometeors. All simulations are performed assuming an ocean surface with emissivities calculated

using the Tool to Estimate Sea-Surface Emissivity from Microwaves to sub-Millimeter waves (TESSEM, Prigent et al. (2017)).
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Table 2. Channels of the MWI and ICI radiometers used in the retrieval.

MWI

Channel Freq. [GHz] Noise [K]

MWI-8 89 1.1

MWI-9 118.75± 3.2 1.3

MWI-10 ±2.1 1.3

MWI-11 ±1.4 1.3

MWI-12 ±1.2 1.3

MWI-13 165.5± 0.75 1.2

MWI-14 183.31± 7.0 1.3

MWI-15 ±6.1 1.2

MWI-16 ±4.9 1.2

MWI-17 ±3.4 1.2

MWI-18 ±2.0 1.3

ICI

Channel Freq. [GHz] Noise [K]

ICI-1 183.31± 7.0 0.8

ICI-2 ±3.4 0.8

ICI-3 ±2.0 0.8

ICI-4 243± 2.5 1√
2
· 0.7

ICI-5 325.15± 9.5 1.2

ICI-6 ±3.5 1.3

ICI-7 ±1.5 1.5

ICI-8 448± 7.2 1.4

ICI-9 ±3.0 1.6

ICI-10 ±1.4 2.0

ICI-11 664± 4.2 1√
2
· 1.6

Polarization is neglected in all simulations performed in this study. Gaseous absorption is modeled using the absorption models150

from Rosenkranz (1993) for N2, O2 and from Rosenkranz (1998) for H2O.

Single scattering data for hydrometeors are taken from ARTS single scattering data base (ARTS SSDB, Eriksson et al.

(2018)). The database provides scattering data for a wide range of hydrometeor shapes including particles designed specif-

ically to be consistent with assumptions of the GEM microphysics scheme. It also provides a number of predefined habit

mixes, referred to as standard habits, which cover the full range of particle sizes relevant for microwave observations of ice155

hydrometeors.

2.3 Retrieval algorithm

A one-dimensional, variational cloud retrieval algorithm is proposed which uses the optimal estimation method (OEM, Rodgers

(2000)) to fit an atmospheric state to given observations. The quality of a retrieved state x̂ and corresponding simulated obser-

vations ŷ is assessed using the following diagnostic quantity:160

χ2
y = ∆yTS−1

e ∆y (1)

Here, ∆y = y− ŷ is the difference between the true and fitted observations and Se is the covariance matrix describing the

measurement errors. The quantity χ2
y corresponds to the sum of squared errors in the fitted observations weighted by the

precision of each channel or range bin. It should be noted that the quantity has no meaningful interpretation in terms of χ2-

statistic for the errors in the fitted observations since they will neither be independent (c.f. Chapter 12 in Rodgers (2000)) nor165

Gaussian due to the presence of forward model error. The value is therefore used here solely as a heuristic to quantify the

goodness of the fit to the true observations.
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Figure 3. Illustration of retrieval quantities and their respective retrieval grids. Grey, dashed lines in the background display the vertical grid

of the GEM model. Black, solid lines on the left side display the range bins of the radar observations. Filled markers represent the retrieval

grids of each retrieval quantity for the combined, radar-only and passive-only configurations of the retrieval algorithm.

2.3.1 Measurement space

The input for the synergistic retrieval is the combined observation vector y consisting of the concatenated single-instrument

observations from the cloud radar and the two radiometers. Measurement errors are assumed to be independent and Gaussian170

distributed with standard deviations according to the noise characteristics given in Section 2.2.1. For the single-instrument

retrievals the measurement vector consists only of observations from either the radar or the radiometers.

2.3.2 State space

The proposed retrieval solves for profiles of two degrees of freedom of the PSDs of frozen hydrometeors and rain along with

profiles of relative humidity (RH) and liquid-cloud water content (LCWC). An illustration of the retrieved quantities and their175

respective retrieval grids for the combined and single-instrument configurations of the retrieval are given in Fig. 3.

The PSDs of frozen hydrometeors and rain are represented using the normalized particle size distribution formalism pro-

posed by Delanoë et al. (2005). The PSD of a hydrometeor species at a given altitude is modeled using a generalized gamma

distribution function with four parameters. The mass-weighted mean diameterDm, which scales the PSD along the size dimen-

sion, and the normalized number density N∗
0 , which scales the particle concentration, are the two retrieved degrees of freedom180

of the PSD. The other two parameters describe the shape of the normalized PSD. The same shape parameters as in version 3 of

the DARDAR-CLOUD product (Cazenave et al., 2019) are chosen for frozen hydrometeors. For rain, they are chosen to match

the shape used in the GEM model for rain drops.
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The temperature-dependent a priori profile for N∗
0 for frozen hydrometeors is determined using the relation from Delanoë

et al. (2014)185

N∗
0 = exp(−0.076586 · (T − 273.15) + 17.948) , (2)

where T is in K. The a priori profile ofDm for frozen hydrometeors is chosen so that the a priori IWC is equal to 10−6 kg m−3.

For rain, a fixed value for N∗
0 of 106 m−4 is assumed and the a priori profile for Dm is determined similarly as for frozen

hydrometeors.

Since the N∗
0 parameters vary over several orders of magnitude they are retrieved in log10-space for both frozen hydromete-190

ors and rain. TheDm parameters, in contrast, are retrieved in linear space. Alternative parametrizations using water content and

Dm or the water content and N∗
0 have been tested but no considerable effect on retrieval performance has been observed. As

additional constraints, the retrieval of frozen hydrometeors is restricted to the region between the freezing level, here defined

simply as the 273.15 K-isotherm, and the approximate altitude of the tropopause. The altitude of the tropopause is approxi-

mated as the first grid point at which the lapse rate is negative and temperature below 220 K. The retrieval of rain hydrometeors195

is restricted to below the freezing level. The retrieval of the N∗
0 parameters is further regularized by retrieving them at reduced

vertical resolution of 2 km. This was found necessary to keep the retrieval from getting stuck in spurious local minima. A

similar approach is taken in the GPM combined precipitation retrievals (Grecu et al., 2016), where the PSD parameter scaling

the particle concentration is also retrieved at reduced resolution.

Relative humidity is retrieved at a vertical resolution of 2 km. However, the values are not retrieved directly but instead an200

inverse hyperbolic tangent transformation is applied to the relative humidity profile:

x= arctanh(
2RH
1.2
− 1.0) (3)

The transformation restricts the retrieved relative humidity values to the range between 0 and 120%. The a priori profile for

relative humidity is set to

RH(t) =


0.7 ,270 K< t

0.7− 0.01 · (270− t) ,220< t≤ 270 K

0.2 , t < 220K

. (4)205

LCWC is retrieved at a resolution of 2 km but is restricted to the region between the surface and the 230 K isotherm. In

contrast to frozen hydrometeors and rain, the PSD of liquid cloud droplets is not explicitly resolved in the retrieval forward

model. Instead, liquid cloud droplets are modeled as purely absorbing quantity using the model by Liebe et al. (1993) for

suspended liquid cloud droplets. Note that this is the case only for the retrieval. For the simulated observations, liquid cloud

droplets are handled as any other hydrometeor species in the GEM model. LCWC is retrieved in log10-space and the a priori210

profile is set to a fixed value of 10−6 kg m−3 in the permitted region of the atmosphere.

The a priori distributions of the 6 retrieval quantities (N∗
0 and Dm for frozen and liquid hydrometeors, RH, CLWC) are

assumed to be independent so that the overall a priori covariance matrix Sa has block-diagonal structure. Within each block,
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vertical correlations between the values of a given retrieval quantity at different altitudes are assumed to be exponentially

decaying. The covariance of the values of retrieval quantity q at points i and j of the retrieval grid is computed as215

(Sa,q)i,j = σq,iσq,j · exp

(
−d(i, j)

lq

)
, (5)

where σq,i is the a priori uncertainty assumed for retrieval quantity q at grid point i, d(i, j) the vertical distance between the

grid points and lq the quantity-specific correlation length. The assumed a priori uncertainties and correlation lengths for the

retrieval quantities are summarized in Tab. 3.

Table 3. A priori uncertainties σq and correlation lengths lq used in the retrieval.

Retrieval target Combined / Radar-only Passive-only

Name Retrieved quantity σq lq [km] σq lq [km]

Ice, N∗0 log10(N∗0,Ice) 2 2 2 5

Ice, Dm Ice Dm,Ice 300 µm 2 300 µm 5

Rain, N∗0 log10(Rain N∗0 ) 2 2 2 5

Rain, Dm Dm,Rain 300 µm 2 300 µm 5

Relative humidity (RH) arctanh( 2·RH
1.2

− 1.0) 0.5∗ 2∗ 0.5 2

Cloud liquid water content (CLWC) log10(CLWC) 1∗ 2∗ 1 2

∗: Not retrieved in radar-only retrieval

The radar-only version of the retrieval is similar to the combined version except that RH and LCWC are not retrieved.220

Instead, perfect knowledge of the true RH profile is assumed while LCWC is neglected. In addition to a two-moment radar-

only retrieval, also a one-moment version (M1), in which only the Dm parameter is retrieved has been tested. However, results

of this version will be shown only for the comparison of IWC retrieval errors. For the passive-only retrieval, the retrieval

quantities and grids are the same as for the combined retrieval. However, higher correlations lengths are assumed, which are

shown in Tab. 3225

2.3.3 Representation of ice particle shape

A major difficulty for cloud retrievals is that the observations may not provide sufficient information to distinguish different

species of hydrometeors. Due to this ambiguity, frozen hydrometeors in the proposed retrieval algorithm are represented using

only a single hydrometeor species. It is therefore necessary to find a suitable representation for frozen hydrometeors, which can

capture the variability of the four frozen hydrometeor species in the GEM model and ideally also that of real ice hydrometeors.230

The four species of frozen hydrometeors in the GEM model have different characteristic particle concentrations, sizes and

shapes (c.f. Fig. 2). Since the retrieval can adapt two degrees of freedom of the PSD of frozen hydrometeors, it can represent the

variations in particle number concentrations and particle sizes of the different hydrometeor species. By using a habit mix for

the ice hydrometeor shape used in the retrieval, variations in particle shape that correlate with particle size, such as differences

between pristine crystals and aggregates or rimed particles, can be represented in the retrieval.235
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Even with this configuration, the single hydrometeor species used in the retrieval is unlikely to be able to represent the

variability present in the GEM model or the real world. To shed some light on the question which particle shape should be

assumed in the retrieval to minimize the resulting representation error, we choose a set of multiple particle shapes and habit

mixes for which we investigate the impact of the particle choice on the retrieval results.

The selected particles are listed in Tab. 4. Three of them, GEM Cloud Ice, GEM Snow, and GEM Graupel, correspond to the240

shapes present in the GEM model scenes. The GEM Snow and Graupel habits were mixed with crystal shapes to ensure that

they cover sizes down to around 10 µm. In addition to this, two of the habit mixes distributed with the ARTS SSDB, the Large

Plate Aggregate and Large Column Aggregate standard habits, are included in the selection to increase the range of scattering

properties it covers.

Figure 4 provides an overview of the bulk mass backscattering and attenuation coefficients of the selected particles at the245

frequency of the cloud radar and three selected frequencies of the passive radiometers. Mass backscattering and attenuation

coefficients are defined as the ratio of the corresponding backscattering or attenuation coefficient σ and the bulk water content

WC:

Q=
σ

WC
. (6)

For each particle shape and frequency, Q has been computed for three different values of the N∗
0 parameter of the PSD. For a250

fixed bulk-mass, the value of the N∗
0 parameter of the PSD is related to the size of the bulk particles: For high N∗

0 values the

number of large particles is decreased while it is increased for low N∗
0 values. The variation of the mass backscattering and

attenuation coefficients with mass show the non-linear relationship between bulk mass and the particles’ radiometric properties.

For high values of N∗
0 , which are typical for cloud ice, the radiometric properties of particle shapes differ only for large masses

at the two highest frequencies considered. For low N∗
0 values, which are more typical for snow, the particles’ properties differ255

considerably at all masses and frequencies. At the two lowest frequencies, the Large Column Aggregate, Large Plate Aggregate

and GEM Snow are the least efficient in scattering or absorbing radiation whereas GEM Graupel, GEM Hail and GEM Cloud

Ice are more efficient. This behavior is also observed at the two higher frequencies, except for the lowest N∗
0 value for which

a reversal of the ordering occurs as the bulk mass increases. The mass backscattering efficiency at 94 GHz shows the greatest

relative variability across different bulk water contents and N∗
0 values, spanning six orders of magnitudes, while for the mass260

attenuation coefficients at the other frequencies the variability spans at most three orders of magnitude.

3 Results

The first part of this section presents results from a numerical experiment which investigates the complementary information

content of the active and passive microwave observations. Results of the combined and single-instrument retrievals applied to

the reference cloud scenes are presented in the second part.265
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Table 4. Particle models used to represent ice hydrometeors used in the retrieval. The mass size relationship is given in terms of the parameters

of a fitted power law of the form m= α ·Dβ
max with Dmax the maximum diameter in m and m in kg.

Name Shapes used Size range Mass size relationship

Name (ID) Deq, min [µm] Deq, max [µm] α β

GEM Cloud Ice GEM Cloud Ice (31) 10 3000 440 3

GEM Snow 8-Column Aggregate (8) 10 127 65 3

GEM Snow (32) 107 5000 24 2.86

GEM Graupel 8-Column Aggregate (8) 10 179 65 3

GEM Graupel (33) 107 5000 170 2.96

Large Plate Aggregate Thick Plate (15) 16 200 110 3

Large Plate Aggregate (33) 160 3021 0.21 2.26

Large Column Aggregate Block Column (12) 10 200 210 3

Large Column Aggregate (18) 160 3021 0.25 2.43

3.1 Complementary information content

A fundamental question regarding the benefit of combining two remote sensing observations in a retrieval is to what extent the

observations contain non-redundant information. The degree of non-redundancy in the combined observations is what we refer

to here as complementary information content. We are thus interested in the information that cannot be provided by either of

the instruments alone. As an example, we do not consider the high vertical resolution achieved by combining passive with radar270

observations as complementary information since the same vertical resolution would be provided by radar-only observations.

In order to explore the complementary information content in the radar and radiometer observations, an idealized, homoge-

neous cloud layer with a thickness of 5 km centered at an altitude of 10 km in a tropical atmosphere is considered. The cloud

is assumed to consist of a single species of frozen hydrometeors represented using the PSD parametrization which is also used

in the retrieval and described in Sec. 2.3.2. As particle model, the 8-Column Aggregate (ID 8) from the ARTS SSDB is used.275

The question that we aim to address here is whether the combination of active and passive observations is able to constrain

both the size and concentration of the ice particles in the cloud. To investigate this, the N∗
0 and Dm parameters of the homo-

geneous cloud layer are varied and observations of the cloud are simulated. The cloud signal in the radiometer observations

is the difference between the cloudy- and clear-sky brightness temperatures (∆TB). The signal in the active observations is

here defined as the maximum of the measured profile of radar reflectivity dBZmax. Figure 5 displays the contours of ∆TB and280

dBZmax with respect to Dm and the cloud’s water content, which is proportional to N∗
0 :

WC =
πρ

44
N∗

0D
4
m, (7)

with ρ the density of ice.

Along the dBZmax-contours the cloud composition changes but the observed signal stays the same. This shows the ambiguity

of the radar observations with respect to the cloud composition. A necessary condition for a passive observation at a given285
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Figure 4. Bulk mass backscattering coefficient Qb at 94.1 GHz (a) and mass attenuation coefficients Qe at frequencies 175.3 GHz (b),

314.2 GHz (c) and 657.3 GHz (d) for the particle models used in the simulated observations and the retrieval. Different colors show the

bulk properties for different values of the N∗0 parameter of the PSD.

frequency to be able to resolve this ambiguity is that the contours of the active and passive signals cross each other. The panels

in Fig. 5 thus provide an indication to what extent the information in the radar measurement and the corresponding passive

radiometer channel provide complementary information on the two degrees of freedom of the PSD. The results show that

the MWI channels provide complementary information only for very dense clouds consisting of large particles. In contrast to

that, the ICI observations exhibit crossing contours already at lower water content and Dm values, indicating complementary290

information for less dense clouds and smaller particles.
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Figure 5. Simulated observations of a homogeneous, 5 km thick ice cloud centered at 10 km with varying water content m and mass-

weighted mean diameter Dm. The panels display the maximum radar reflectivity dBZmax overlaid onto the cloud signal ∆TB measured by

selected radiometer channels of the MWI (first row) and ICI radiometers (second row).

3.2 Retrieval results

To assess the performance of the combined cloud retrieval, the developed algorithm has been applied to the two designated

cloud scenes. The same retrievals have been performed with a radar-only and a passive-only version of the algorithm to serve

as baselines for the evaluation of the combined retrieval. Each retrieval was performed multiple times using the different ice295

particle models listed in Tab. 4. Since the results for both test scenes are qualitatively similar, results from the second scene

are provided in App. A. Complete results for all retrieval quantities, test scenes and particle shapes are provided as digital

supplement to this article.

The simulated observations which were generated to test the retrievals are shown for the first test scene in Fig. 6. Independent

Gaussian noise with standard deviations according to sensor specifications has been added to the simulated observations to300
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Figure 6. Total water content (WC) and simulated observations for the first test scene. Panel (a) displays the total water content, i.e. the sum

of the water content of all hydrometeor species of the GEM model. Panel (b) shows the simulated radar reflectivities. Panel (c) displays the

simulated brightness temperatures for a selection of channels of the MWI and ICI radiometers.

account for sensor noise. It is important to note that the simulated observations used to test the retrieval assume different

microphysics than what is assumed in the retrieval. The synthetic observations are computed using the six hydrometeor classes

from the GEM model, while the retrieval forward model assumes only two classes of hydrometeors.

3.2.1 Water content

Retrieved IWC obtained using the Large Plate Aggregate particle model for the first test scene is displayed together with the305

reference IWC field in Fig. 7. The reference IWC is defined here as the sum of the masses of the four frozen hydrometeor

species in the GEM model scenes.

The normalized χ2
y values of the three retrieval configurations, displayed in Panel (a), give an indication of how well the

retrievals are able to fit the observations. For the radar-only retrieval, the values are much smaller than 1 for most parts of the

scene, while for the passive-only and combined retrieval they are around the expected value of 1. This indicates that the radar-310

only retrieval overfits the observations, while the passive-only and combined retrievals achieve the expected fit. The exception

is the region around 3◦N, where the cloud is particularly thick and consists of a mix of different hydrometeor types. Here,

especially the passive-only retrieval has problems fitting the observations.

In terms of IWP, all methods provide fairly good estimates of the reference values with the combined retrieval consistently

yielding the smallest deviations. Larger differences between the methods are observed when comparing the retrieval results315

15



in terms of IWC. While the vertical structure of the cloud is captured only very roughly by the passive retrieval, it is better

resolved by the radar-only and the combined retrieval. On closer inspection, however, it becomes evident that the radar-only

retrieval deviates systematically from the reference IWC in specific regions of the cloud, such as for example the upper part

of the cloud between 0◦N and 2◦N. These deviations are corrected in the results from the combined retrieval, however certain

retrieval artifacts remain visible.320

For a more quantitative assessment of the retrieval performance, retrieved water content is plotted against the reference

water content in Fig. 8. In terms of precision, the passive-only retrieval performs worst while both the radar-only and combined

retrieval yield much smaller spread in the retrieved values. This is not surprising considering that the passive observations

do not contain sufficient information on the vertical distribution of IWC to yield accurate results at the resolution of the

model scenes. In terms of overall accuracy, i.e. systematic deviations from the diagonal, no clear differences between the three325

configurations are visible. However, the color-coding with respect to hydrometeor species reveals that the radar-only retrieval

is biased for specific hydrometeor classes. In the combined and even the passive-only results, this effect is weaker and the

clusters are generally moved towards the diagonal. For graupel, all retrievals perform badly but this is likely due to it being

present only in the core of the convective system where the signals from all sensors can be expected to be saturated.

Comparing the results for different particle models, a clear dependency is visible in the passive-only and the combined330

results while the radar-only retrieval is affected the least. For the combined and passive-only retrieval, the effect is consistent

across the methods, with the GEM Cloud Ice and Large Column Aggregate yielding the largest deviations and the Large Plate

Aggregate yielding the most accurate results.

To summarize retrieval performance for all tested retrieval methods and particle shapes, the distributions of the logarithmic

error335

Elog10 = log10

(
xretrieved

xreference

)
(8)

for the retrieved IWC and IWP are displayed in Fig. 9. In addition to the two-moment version of the radar-only retrieval, this

figure also displays results of the single-moment version of the retrieval, which was found to yield better IWC retrievals for the

second test scene.

The error for IWC has been computed considering only grid points where either reference or retrieved IWC is larger than340

10−6 kg m−3. Similar to the results presented above, the combined retrieval yields the smallest retrieval errors for suitable

choices of the particle model. Although the two-moment radar-only retrieval performs similar to the combined retrieval in

terms of precision, it yields significant systematic errors for the second scene. The reason for this can be understood considering

the cloud composition displayed in Fig. 1. Since the clouds in the second test scene consist mostly of snow, the bias of the

radar-only retrieval with respect to this specific hydrometeor species (c.f. Fig. 8 and also Fig. A2) leads to the large observed345

systematic errors for the second scene. The single-moment radar-only retrieval does not produce the same large systematic

errors for the second scene, but instead produces systematic errors for the first scene. The passive-only retrieval yields the

largest errors in terms of retrieved IWC due its low vertical resolution.

16



Figure 7. Results of the ice hydrometeor retrieval for the first test scene using the Large Plage Aggregate particle model. Panel (a) displays

the value of the χ2
y diagnostic normalized by the dimension of the measurement space of the corresponding retrieval. Panel (b) displays

retrieved IWP in dB relative to the reference IWP. Reference IWP and the contributions from different hydrometeor classes are displayed by

the filled areas in the background. Panel (c) shows the reference IWC from the model scene. Panel (d), (e) and (f) display the retrieval results

for the passive-only, radar-only and combined retrieval, respectively.
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Figure 8. Retrieved IWC plotted against reference IWC for the tested retrieval configurations. Each row shows the retrieval results for

the particle shape shown in the first panel. The following panels show the retrieval results for the passive-only (first column), the radar-

only (second column) and the combined retrieval (third column). Markers are colored according to the prevailing hydrometeor type at the

corresponding grid point in the test scene. Due to their sparsity, markers corresponding to graupel are drawn at twice the size of the other

markers.
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In terms of IWP, however, the errors of the passive-only retrieval are decreased making the retrieval comparable to the other

methods. For the radar-only and combined retrievals, the precision is generally increased but the systematic deviations observed350

for IWC persist. This leads, particularly for the second test scene, to significant systematic errors in the IWP retrieved by the

two-moment radar-only retrieval.

Also in these results, a strong dependence on the applied particle model is observed for the passive-only and combined

retrievals. The errors are particularly large for the GEM Cloud Ice and the Large Column Aggregate. Although the impact is

stronger for the M1 version, the particle shape has less impact on the retrieval performance of the radar-only retrieval and does355

not affect the large systematic errors observed for the second test scene.
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Figure 9. Distributions of the logarithmic retrieval error in IWC and IWP for all tested retrieval methods and particle shapes displayed as

box plots. Colored boxes display the interquartile range (IQR) while whiskers show the full range of all points not considered outliers. Points

whose distance to the IQR is larger than 1.5 times the width of the IQR are considered outliers and drawn as markers. Two results are shown

for the radar-only retrieval, one for the standard version retrieving both PSD moments (solid boxes) and one for the single-moment (M1)

version (diagonal hatches).
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3.2.2 Particle number concentrations

Particle number concentrations of frozen hydrometeors have been derived from the retrieved N∗
0 and Dm parameters by

computing the zeroth moment of the corresponding PSD. The resulting particle number concentration fields are displayed

together with the reference field in Fig. 10. To simplify the comparison, number concentrations are displayed only where the360

corresponding reference or retrieved IWC is larger than 5 · 10−6 kg m−3.

Comparing the passive-only and the radar-only retrieval to the reference fields shows that both methods have little to no

skill in predicting number concentrations. Although the passive-only retrieval partly captures the gradient between very high

concentrations at the top of the cloud and the low concentrations at the bottom, it is not at all resolved in the radar-only retrieval.

In contrast to this, the combined retrieval manages to reproduce this gradient in most parts of the scene. The strongest365

deviations of the combined results from the reference field are observed between 2◦N and 3◦N latitude. Here, the results

strongly underestimate the true number concentrations. Comparison with the cloud composition displayed in Panel (a) of

Fig. 1 shows that this region contains large amounts of both cloud ice and snow. The retrieval uses only a single hydrometeor

species to represent ice in the atmosphere and is therefore not able to represent such heterogeneous conditions. Since snow

will have a stronger impact on the observations, the retrieval in these regions will likely tend to represent snow rather than ice,370

which leads to the low retrieved number concentrations.

Figure 11 displays scatter plots of the reference and retrieved particle number concentrations for all three methods and two

particle models from the first test scene. Markers in the plot are color coded according to their homogeneity in the reference

scene, here defined as the ratio of the maximum water content of any of the frozen hydrometeor species and the total water

content. These results confirm that the passive-only retrieval possesses some sensitivity to the particle number concentrations375

since the cluster at low concentrations corresponding to snow is placed correctly on the diagonal, which is not the case for the

radar-only retrieval. The radar-only retrieval does not exhibit any retrieval skill, hardly reproducing any of the variation of the

reference values. Contrary to this, the combined retrieval moves both clusters, the one corresponding to snow and the one at

high number concentrations corresponding to cloud ice, towards the diagonal. This indicates that it is capable of distinguishing

the microphysical properties of cloud ice and snow. Furthermore, the color coding shows that the strongest deviations between380

retrieved and reference number concentrations occur for grid points where the cloud composition is heterogeneous.

The general effect of particle shape on the retrieval results is similar to what has been observed for IWC, which is why only

results for two particle shapes are shown. For the passive-only and combined retrieval, the GEM Cloud Ice and Large Column

Aggregate models yield the worst retrieval results, while the Large Plate Aggregate performs best. For the radar-only retrieval

no noticeable differences are observed between different particle models.385

3.2.3 Information content

To quantify the information content of the single-instrument and combined observations, the degrees of freedom for signal

(DFS) have been computed following Rodgers (2000) by calculating the trace of the averaging kernel matrix

A = (KTS−1
e K+S−1

a )−1KTS−1
e K, (9)
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Figure 10. Reference and retrieved particle number concentrations of frozen hydrometeors for the first test scene obtained with the Large

Plate Aggregate particle model. Panel (a) displays the reference number concentrations from the model scene. Panel (b), (c) and (d) display

the retrieval results for the passive-only, radar-only and combined retrieval. Only values for which the corresponding reference or retrieved

IWC was larger than 5 · 10−6 kg m−3 are shown here.
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Figure 11. Scatter plots of the retrieved particle number concentration (NC) at grid points with reference IWC larger than 10−5 kg m−3 for

two different particle models. Rows show the results for the different particle models used in the retrieval while columns display results for

different retrieval methods. The marker color encodes the homogeneity of the corresponding ice mass, which is computed as the ratio of the

maximum water content of any of the frozen hydrometeor species and total IWC.

where K = dF(x)
dx is the Jacobian of the forward model. The information content and its decomposition into contributions from390

different retrieval quantities are displayed in Fig. 12.

With respect to ice, the passive-only retrieval yields the lowest information content. For the radar-only retrieval the infor-

mation content is significantly higher, on the order of 20 degrees of freedom, but the major part of it is attributed to the Dm

parameter. For the combined retrieval, the total information content on ice hydrometeors is increased compared to the radar-

only retrieval in regions where the passive-only retrieval provides information on frozen hydrometeors. In addition to that, a395

clear shift of information content from Dm to N∗
0 can be observed over both scenes.

The information content for rain is much smaller but in relative terms the general behavior is the same as for ice. For RH,

no difference is observed for the information content provided by the passive-only and combined retrievals. For LCWC, the

information content of the combined observations is increased slightly but remains limited to a few degrees of freedom.

In order to allow a more detailed analysis of the complementarity of the information in the passive and active observations,400

Fig. 13 displays the ratio of the DFS of the combined retrieval and the sum of the DFS in the radar- and passive-only re-

trievals. Comparison with the information content provided by the radar-only observations confirms that the active and passive

observations consistently provide a fairly high amount of complementary information across both scenes.
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Figure 12. Information content in terms of DFS using Large Plate Aggregate for all retrieval configurations and both test scenes. The colored

areas in each plot represent the contribution to the cumulative degrees of freedom from each retrieval quantity. Results for the first and

second test scene are displayed in the first and second row, respectively. The first, second and third panel in each row show the results for the

passive-only, radar-only and the combined retrieval.
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Figure 13. DFS ratios of the combined retrieval (DFSCMB) and the sum of the DFS of the single-instrument retrievals (DFSRO + DFSPO) as

well as the radar-only retrieval and the sum of the DFS of the single-instrument retrievals for the two test scenes.
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3.2.4 Impact of assumed ice particle shape

The impact of the assumed ice particle shape on the retrieval results raises the question whether it also affects the quality of405

the fit to the observations. To investigate this, the residuals for the radar observations and three ICI channels are displayed in

Fig. 14. Each test scene contains a region where the retrieval does not fit the observations well and where substantial deviations

between the fitted and true observations are observed. It is also in these regions, where the fits obtained with different particle

models differ. These are both regions where the cloud is very thick and both the radar and passive observations are likely

saturated. Since these are difficult regions for the retrieval it is not clear whether these differences can be related directly to410

the assumed particle shape. In contrast to this, the retrieval fits the observations well in the remaining parts of the scene. The

exception is the GEM Graupel particle, for which significant misfits are observed in the first test scene between 0◦N and 1◦N

latitude.
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Figure 14. Residuals of the fitted observations. First row of panels shows the profile root mean squared error (RMS) between fitted (ŷ) and

true (y) radar observations for the two test scenes. Rows 2, 3 and 4 show the residual ∆y = ŷ−y for a selection of ICI channels.
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3.2.5 Humidity and cloud water

The developed passive and combined retrieval algorithms also retrieve profiles of RH and LCWC. For RH, both retrievals415

demonstrate sensitivity but no improvement was observed in the results of the combined retrieval compared to the passive-only

retrieval.

Results of the LCWC retrieval are shown in Fig. 15. For the retrieved LCWC, the combined retrieval yields slightly improved

results compared to the passive-only retrieval. The improvements are observed mostly in the retrieved liquid cloud water path

(LCWP) in the northern part of the scene. It should be noted that the cloud in this part is a mixed-phase cloud and that both420

retrievals successfully retrieve IWC and LCWC. At the center of the scene both retrievals fail to retrieve the LCWC. The reason

for this seems to be that rain is present in these regions, whose signal can’t be separated by the retrieval from that of the liquid

cloud droplets.

4 Discussion

The principal aim of this study was to investigate the synergies between radar and passive sub-millimeter observations for425

the retrieval of frozen hydrometeors. To this end, a simplified numerical experiment has been presented, which demonstrates

the existence of complementary information on the microphysical properties of ice clouds in the radar and passive microwave

observations. Furthermore, a combined retrieval algorithm has been developed to demonstrate the feasibility of the synergistic

retrieval and further explore its potential as well as current limitations.

The novelty of this work lies, in part, in the application of ICI’s sub-millimeter channels, which sets it apart from the430

combined retrievals developed for the TRMM and GPM missions. Moreover, the development of a fully consistent variational

retrieval in which all retrieval quantities are retrieved simultaneously using the observations from all sensors is a key aspect

of this study. This allows comparison of the combined retrieval to equivalent radar-only and passive-only configurations and

therefore a direct analysis of the synergies between the active and passive observations.

4.1 Fundamental synergies435

The experiment presented in the first part of this study aimed to illustrate the fundamental synergies of active and passive mi-

crowave observations. It compared the cloud signals observed by a radar, a millimeter-wave radiometer and a sub-millimeter-

wave radiometer. The results indicate that the combined observations can constrain the size and concentration of particles in

the cloud. However, the complementary information content between the active and passive observations depends on both the

properties of the observed cloud and the frequency of the observations. For the lower frequencies considered in this study, i.e.440

the highest frequency channels of the MWI radiometer, the regions where both observations provide complementary informa-

tion on the particle size distribution of the cloud are limited to very high water content and particle sizes. It should be noted,

however, that since the radar simulations neglect multiple scattering, these results may not fully carry over to space-borne

observations.
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Figure 15. Reference and retrieved LCWP, rain water path (RWP), CLWC and IWC. Panel (a) shows the reference and retrieved LWP for

each profile. Panel (b) displays reference LWC contours drawn on top of the total hydrometeor content. Retrieval results for passive-only and

combined retrieval are given in Panel (c) and (d).
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As the passive observing frequency increases, the regions of complementary information content extend down to smaller par-445

ticle sizes and lower water content. Especially the highest-frequency channels of the ICI radiometer can therefore be expected

to provide complementary information to a W-band radar in a combined observation scenario.

4.2 Combined cloud retrieval

In the second part of the study, we have presented results from a combined, variational cloud retrieval applied to synthetic

observations from two test scenes from a CRM. The results of the combined retrieval were compared to that of a passive- and a450

radar-only version of the retrieval algorithm. The simulated observations assumed an airborne viewing geometry and therefore

neglected potential errors caused by different or non-overlapping antenna beams as well as inhomogeneity of the atmosphere

across the beams. A source of forward model error was included by applying a more complex microphysics scheme in the

simulations than the one used in the retrieval. This permits a rough assessment of the retrieval error caused by the simplified

modeling of cloud microphysics in the retrieval.455

4.2.1 Retrieval performance

Of the three considered retrieval implementations, the passive-only retrieval clearly performs worst in terms of retrieved IWC.

It should be noted, however, that the passive-only retrieval presented here has not been fully optimized and should therefore

not be taken as representative of the potential performance of the MWI and ICI radiometers for IWC retrievals. To ensure a

fair comparison, the retrieval uses almost the same a priori assumptions as the other two retrievals, which in the presented460

case provide only very limited information on the vertical structure of the cloud. As has been shown also by other studies, the

passive observations do provide information on the vertical distribution of ice in the atmospheric column (Wang et al., 2017;

Grützun et al., 2018), but the information content is limited to a few degrees of freedom. It is therefore unlikely that the vertical

resolution of the passive-only retrieval can be improved drastically without further constraining it a priori, as is typically done

in retrievals that use Monte Carlo integration or neural networks (Pfreundschuh et al., 2018).465

With respect to IWP, however, the passive retrieval can perform as well or even better than the radar-only retrieval. Fur-

thermore, the results in Fig. 10 indicate that the passive observations provide some information on the particle number con-

centrations, which is not the case for the radar observations. This shows that passive observations at multiple frequencies can

constrain the microphysics better than single-frequency radar observations alone, albeit at lower vertical resolution.

As expected, the radar-only retrieval provides much better IWC retrievals than the passive-only version. However, the results470

of the two-moment retrieval exhibit systematic deviations from the reference values in certain regions of the cloud. The analysis

shown in Fig. 8 and A2 reveals that these are caused by systematic errors in the retrieval of specific hydrometeor species from

the GEM model. Interestingly, the one-moment version of the radar-only retrieval did not produce the large errors in the second

scene but produces systematic errors for the first test scene. This indicates that the a priori assumptions used in the retrieval

do not provide a sufficiently good description of how the Dm and N∗
0 parameters of the PSD co-vary and that the radar-only475

observations alone do not constrain both of them well enough. This is plausible also from an information content perspective

since the radar provides only one piece of independent information at each range gate, which is insufficient to determine the
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two degrees of freedom (N∗
0 and Dm) of the PSD. This hypothesis is confirmed by the radar-retrieved number concentration

fields shown in Fig. 10 and Fig. 11. While the distribution of reference values has two modes corresponding to ice and snow,

the retrieved values are nearly the same throughout the whole scene indicating that the observations themselves provide almost480

no information on particle concentrations.

Despite certain visible artifacts in the retrieved IWC field (Fig. 7), the combined retrieval yields the best overall performance

for IWC and IWP as shown in Fig. 8 and Fig. 9 given that a suitable particle model is used. The benefit of the combined

observations is even more pronounced in the retrieved number concentrations (Fig. 10). Here, the passive- and radar-only

retrievals show little to no skill in retrieving the number concentrations. In contrast to this, the combined retrieval was able485

to reproduce the general structure of the number concentration field in regions where the cloud composition is homogeneous

(Fig. 11). This shows that the combined retrieval is able to distinguish the microphysical properties of ice and snow in the test

scenes. Instead of relying on the a priori, the combined retrieval can use information from the observations to constrain the

cloud microphysics, which avoids the systematic errors observed in the radar-only retrievals.

The a priori assumptions used in this study were chosen similar to those of the DARDAR-CLOUD retrieval since they490

represent well established and validated assumptions for ice cloud retrievals. The role of the a priori is to complement the

observations with additional information required to make the retrieval problem tractable. For the hydrometeor retrieval this

means that the a priori determines how information from the observations, which alone is insufficient to determine both degrees

of freedom of the PSD, is distributed between itsDm andN∗
0 parameters. For the radar-only retrieval, this works well for cloud

systems containing both ice and snow but leads to biased retrievals of both IWC and IWP when this is not the case (Fig. 9).495

The DARDAR product resolves the ambiguity of the radar-only observations by combining the observations with co-located

lidar measurements. Our results show that a similar effect can also be achieved by combining the radar with passive microwave

radiometers. However, these two different types of synergies will generally be effective in different regions of the cloud: While

the overlap between lidar and radar is restricted to relatively thin clouds and cloud tops (for a down-looking configuration),

microwave radiometers will provide sensitivity further down in the cloud where particles are larger and the water content500

higher.

4.2.2 Impact of the assumed particle shape

Our experiments show a stronger sensitivity to the assumed ice particle shape for the passive-only and the combined retrievals

than the radar-only retrieval. The passive observations probe the particle at multiple frequencies and their sensitivity to particle

shape, especially of the sub-millimeter channels, has been highlighted in several studies (e.g. Fox et al. (2019); Ekelund et al.505

(2020)).

Only the combined retrieval was able to yield accurate IWC retrievals for both test scenes for suitable choices of the particle

model. However, if an unsuitable particle shape is chosen, the induced errors may outweigh the benefits of the combined

retrieval as is the case for the Large Column Aggregate and the GEM Cloud Ice shapes (Fig. 9). Judging from the particle

properties displayed in Fig. 4, a likely explanation for the good performance of the Large Plate Aggregate and the GEM510

Graupel particle is that their properties are intermediate to those of GEM Cloud Ice and GEM Snow, which are the dominating
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shapes in the test scenes. For the test scenes considered here, this means that accurate IWC retrievals can be achieved using

only a single hydrometeor species with suitable scattering properties which are intermediate to snowflakes and heavily rimed

particles.

The analysis of the residuals of the retrieval fit (Fig. 14) showed that the residuals for different particle shapes differ most515

where the clouds are thickest. Differences between particles are observed, but no relationship to the retrieval accuracy in terms

of IWC can be established. The GEM Graupel particle, for example, yields accurate IWC retrievals but gives the worst fit

for the first test scene. A likely explanation for this is that the retrieved IWC depends mostly on the overall strength of the

interaction between particles and radiation for given water content, whereas the retrieval residual is likely caused by relative

efficiencies at different frequencies. Moreover, in the remaining parts of the scenes, there are no differences in the residuals520

for different particles. This means that the retrieval can fit the observations well regardless of the assumed particle shape and

indicates that the observations alone do not strongly constrain the particle shape. This makes it unlikely that particle shape can

be retrieved from observations, thus requiring it to be determined a priori.

It should be noted, that none of the presented retrievals accounts for the error caused by the simplified forward model and

the choice of the particle model. This has not been pursued here because of the difficulty of fitting a suitable error model to525

these errors, which can be expected to be non-Gaussian and scene-dependent. However, it is likely that accounting for them

can improve retrieval performance and weaken the impact of the particle choice on the retrieval results.

4.2.3 Humidity and cloud water

As an outlook, results from the LCWC retrieval have been provided despite it not being a focus of this study. Fig. 15 shows

improvements in retrieved LCWP and LCWC in the results of the combined retrieval compared to the passive-only retrieval.530

Although the passive-only retrieval also shows sensitivity to LCWC, the results are less robust than those of the combined

retrieval. This shows that combined millimeter and sub-millimeter radiometers, in particular in combination with radar ob-

servations, can be used for retrieving both frozen and liquid cloud water content in mixed-phase clouds. This conclusion is

supported by the information content analysis in Fig. 12 and Fig. 13. In particular, the DFS ratio of the combined retrieval

shows a distinct increase around 42◦N, where the scene contains non-precipitating mixed-phase clouds. This coincides with a535

slight increase in information content on LCWC in the combined compared to the passive-only retrieval shown in Fig. 12.

For the water vapor retrieval, no significant improvements in the combined retrieval results were observed and also the analy-

sis of the information content does not show any increase in information content. This indicates that the combined observations

do not provide any direct synergies for the retrieval of humidity.

4.2.4 Limitations540

An important limitation of this study is its scope: The aim here was not to develop a production-ready combined retrieval prod-

uct but rather a proof-of-concept to explore this observational approach. The retrieval results presented here should therefore

not be interpreted in absolute terms. The primary results are based on the relative performances of the three retrieval methods:
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Given equivalent a priori assumptions, the combined retrieval demonstrates higher sensitivity to the microphysical properties

than the radar-only retrieval and lower errors in terms of IWC than the passive-only retrieval.545

Moreover, this study is purely based on simulations from two selected CRM scenes. These two scenes are certainly insuf-

ficient to accurately represent the variability of clouds in the atmosphere. Furthermore, the accuracy of the estimated retrieval

performance will depend on the realism of the test scenes. Because of this, this study does not aim to provide an accurate

assessment of the performance of the combined retrieval in absolute terms, but instead a qualitative assessment of the potential

of a combined retrieval based on the comparison of its results to the single instrument retrievals.550

As has been stated above, simulated observations used in this study assume a viewing geometry that is realistic only for

airborne observations. They therefore do not provide a realistic assessment of the potential of a space-borne satellite mission

involving ICI, MWI and a W-band radar. For this it would be necessary to take into account a more realistic viewing geometry,

beam-filling errors as well as multiple scattering in the radar observations. Quantifying the effect of these error sources on the

retrieval synergies is left for future investigation.555

5 Conclusions

The main conclusion from this work is that the combination of radar and sub-millimeter radiometer observations can, to some

extent, constrain both the size and number concentration of frozen hydrometeors (Fig. 5). The increased sensitivity of the

combined observations to the microphysical properties of hydrometeors helps to improve the accuracy of IWC retrievals and

avoid systematic errors observed in an equivalent radar-only retrieval (Fig. 8, 9). Moreover, the combined retrieval showed560

clear sensitivity to particle number concentrations and was able to reproduce their vertical structure in regions where the cloud

composition is homogeneous (Fig. 10, 11).

The results particularly highlight the importance of sub-millimeter observations for combined retrievals of frozen hydrom-

eteors. While observations at currently available microwave frequencies provide information complementary to that from a

radar only for thick clouds with very large particles (Dm > 800 µm, IWC> 10−4 kg m−3), frequencies above 200 GHz pro-565

vide additional information on cloud microphysics (Fig. 5) at smaller particles sizes and water content (Dm > 200 µm, IWC>

10−5 kg m−3).

Regarding the representation of hydrometeors in the retrieval, our results indicate that complex mixes of hydrometeors can

be accurately represented using a single, suitable habit mix. In particular, our results indicate that a suitable habit should have

scattering properties that are intermediate between strongly rimed and more snow-flake like particles (Fig. 4, 9).570

A direct application of the synergistic retrieval algorithm developed in this study are flight campaigns involving the Interna-

tional Sub-millimetre Airborne Radiometer (ISMAR, Fox et al. (2017)) combined for example with a radar on another aircraft

or the Microwave Radar/radiometer for Arctic Clouds (MiRAC, Mech et al. (2019)). The ability of the combined retrieval to

constrain two moments of the PSD of frozen hydrometeors should make it a valuable tool for validating the representation of

clouds in cloud-resolving or large-eddy simulations which typically employ two-moment schemes. Moreover, since our results575

indicate retrieval skill also for LCWC in mixed-phase clouds, such observations can be used to study the properties of these
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clouds, which play an important role for the climate of the arctic. The sensitivity to LCWC of the passive observations is also

a promising indication for combined ICI/MWI retrievals.

Ultimately, spaceborne combined radar and sub-millimeter observations can reduce the large uncertainties in the observa-

tional record of ice hydrometeors. The Metop program provides an opportunity for a synergistic radar mission involving the580

MWI and ICI radiometers. Alternatively, the combination could be realized also by a dedicated small mission, such as the

Earth’s NexT-generation ICE mission (ENTICE) described in Jiang et al. (2019). The results presented here clearly show the

potential of this approach and can provide a first step towards the development of a retrieval algorithm for a space-borne con-

figuration. This, however, will require extending the algorithm to the more complex space-borne viewing geometry. Moreover,

to quantify the potential benefits of such a mission additional studies will be required to analyze the error sources which affect585

spaceborne observations.

Code availability. All code used to produce the results in this study is available from a public repository (Simon Pfreundschuh, 2019).

Data availability. Data to reproduce the simulations leading to the presented results will be made available on request.
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Appendix A: Results from second test scene

The retrieved IWC obtained using the Large Plate Aggregate for the second scene is shown in Fig. A1. Just as the first scene,590

this test scene contains a region in the south where the final OEM cost, shown in Panel (a), is increased for the passive-only

and combined retrievals. This is again a region of very dense cloud consisting of graupel and snow. Qualitatively, the results of

the IWC retrieval are very similar to those from the first scene. While the passive-only retrieval provides only very low vertical

resolution, both the radar-only and combined retrieval reproduce the vertical structure of the cloud well. The radar-only retrieval

consistently overestimates the IWC in the scene, which is not the case for the combined retrieval.595

Scatter plots for the retrieval results from the second scene are shown in Fig. A2. Except for the lack of cloud ice in the

scene, the results are similar to what has been observed in the first scene: The radar-only retrieval exhibits the same systematic

error for the retrieval of snow as in the first scene. Again, this is corrected by the combined retrieval for most of the tested

particle shapes. The exception are the GEM Cloud Ice and the Large Column Aggregate particles for which the retrieval does

not perform as well.600
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Figure A1. Results of the ice hydrometeor retrieval for the second test scene. Panel (a) displays the value of the χ2
y diagnostic normalized

by the dimension of the measurement space of the corresponding retrieval. Panel (b) shows retrieved IWP in dB relative to the reference

IWP. Reference IWP and the contributions from different hydrometeor classes are displayed by the filled areas in the background. Panel

(c) displays the reference mass concentrations from the model scene. Panel (d), (e) and (f) display the retrieval results for the passive-only,

radar-only and combined retrieval, respectively.
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Figure A2. Scatter plots of the reference and retrieved IWC for the second test scene. The rows show the retrieval results for a given assumed

ice particle model. The first column of each row displays a rendering of the particle model. The following columns display the results for the

passive-only, the radar-only and the combined retrieval.
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