
Reply (in blue) to Referee #1 

We thank the referee #1 for the positive assessment of the paper. 

Our reply is included after the referee comments. 

1. The paper describes a novel method to derive the geometry dependent Lambert Equivalent 

Reflectance of the Earth scene, which is an important parameter needed for the retrieval of 

trace gases. The method is shown to have many benefits over the use of a climatology, as has 

been used often for past missions. The introduction of the paper is well written and of good 

quality, nonetheless, the remainder of the paper is a bit thin when it comes to provide 

evidence of the improvements over existing climatologies. Only comparisons with OMI are 

given while there exists more climatologies based on other missions. Also the directional 

aspect of the GE_LER needs more validation. The paper covers new and interesting topics 

and techniques, and after the comments (some of which major) and corrections have been 

adequately addressed, the paper could certainly be published. 

In the updated paper (new Section 4.4) we include comparisons with OMI and GOME-2 LER 

 

2. Although the paper stresses the importance of the inclusion of BRDF in the newly derived 

TROPOMI surface reflectivity, this is not the only factor that plays a role, and probably not 

the strongest factor. Since the radiation field in the UV is largely diffuse, the actual BRDF of 

the surface is not so important. The better inclusion of snow/ice areas and the higher spatial 

resolution probably play a stronger role. Please discuss this point, and try to separate the 

effects of the three factors: BRDF, snow/ice, and spatial resolution in the comparison of 

TROPOMI GE-LER with OMI-LER climatology. The improvement that is found in the 

TROPOMI total ozone retrieval in Fig. 11 when using the TROPOMI GE-LER instead of the 

OMI-LER is apparently due to the better snow/ice mapping at high latitudes, not to BRDF 

effects. 

The reviewer is certainly right; in the UV the main improvements are from the accurate 

snow/ice retrievals whereas in the VIS the BRDF effects are stronger. 

To better balance the different benefits from GE_LER we have: 

 Remove BRDF from the title, the new title is “Applying FP_ILM to the retrieval of 

geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) daily maps 

from UVN satellite measurements” 

 Emphasize in the introduction and conclusions the advantages of retrieving daily 

surface properties (especially important for snow/ice conditions) with the same spatial 

resolution and the same fitting window as the trace gases. 

 

3. Are the GE_LER data available to the community? Please specify whether and how you 

plan to distribute the GE_LER and G3_LER data products. In order for other people to 

reproduce your results and claims they need open access to the data presented in this paper. 



The retrieved GE_LER and the G3_LER used for each single TROPOMI ground pixel will be 

included in the operational S5P total ozone product. All operational S5P products are open 

and free available. We will discuss with ESA/EU the possibility of disseminating the 

G3_LER total ozone daily maps in the same way as the operational S5P products. 

 

4. Which are the wavelengths for which GE_LER is retrieved? In the paper it is not so clear 

for which wavelength the results apply. For instance, only in the caption of Figure 6 this is 

mentioned. 

As mentioned in the Introduction and Conclusions, the GE_LER/G3_LER algorithms can be 

applied to any wavelength region. The examples shown for S5P are for the total ozone fitting 

window and the corresponding wavelengths are given in the first sentence of section 4 

“…using the fitting window of 325-335 nm”. 

Additionally we added the fitting window information for the S5P examples in Section 4.2 

and in the Conclusions.  

 

Specific comments 

1 p1 The title is hardly readable due to the many acronyms. Please make the title clearer. In 

the rest of the paper the construction “FP_ILM GE_LER” is hardly readable. Can you think of 

a better name?  

We simplified the title by removing the BRDF part. See the reply to the general comment#2 

FP_ILM GE_LER together is indeed hard to read; in the updated paper we use only GE_LER. 

 

2 p2 l16 These are not fundamental problems of a climatology itself, but rather information 

missing in the currently available climatologies. It would definitely be possible to create a 

climatology that includes the viewing angle dependency, or address separately snow and 

snow-free conditions. 

That is correct, the sentence is reformulated to ”common problems with typical LER 

climatologies” 

 

3 p3 l15 The drawbacks mentioned for lookup tables are not very convincing, consider 

rephrasing this sentence. 

This sentence reads now “The main drawbacks of look-up tables representing high 

dimensional RTM simulations (common in atmospheric composition retrievals) are that the 

memory requirements increase exponentially with the number of input dimensions, the 

interpolation/extrapolation in this multi-dimensional space are computational expensive, and 

the interpolation/extrapolation errors could be significant.” 



 

4 p4 l8 The smart sampling technique should be explained in a bit more detail because readers 

may not want to read the full paper referred to.  

The following text is included in Section 2.2. “Training data is traditionally created at fixed 

intervals uniformly distributed for each input variable; as a consequence the training samples 

are grouped around the node points and a very poor coverage of the multidimensional input 

space is reached. Deterministic sampling methods provide a more uniform distribution of the 

training data covering the entire space of each input variable” and “For this work we select a 

Halton sequence that uses prime numbers for creating sample points in each input dimension 

and a radiative transfer model computes the corresponding simulated radiances”. 

 

5 p4 l16 I do not understand this sentence: “Machine learning techniques perform best with 

low-dimensional datasets by avoiding the effects of the curse of dimensionality.” 

This second part of the sentence “by avoiding the effects of the curse of dimensionality” is 

removed.  

 

6 p5 l27 What about the azimuth dependence of \rho ? This also holds for other places in the 

paper. Please clarify in Sect. 2 how you deal with the solar zenith angle and relative azimuth 

dependence of the BRDF. 

The following clarification is included in Section 3 “solar zenith angel dependencies can be 

ignored when combining GE_LER data from Sun-synchronous satellites over the same 

position because the angle of sunlight upon the Earth's surface is consistently maintained. 

Likewise relative azimuth angle dependencies are negligible in the UV.”. 

 

7 p7 l9 How did you calculate the standard deviation, is it the based on all simulations in the 

validation training set? Figure 5 on page 22 seems to indicate larger errors (up to 0.01) for 

individual LER retrievals. What are these red error bars in this figure? How does this error 

propagate in the final accuracy of the trace gasses? 

Correct, we use all simulations in the validation dataset. 

The following clarification is included in section 4.1 “the x-axes are divided in bins and the 

mean and standard deviation (red bars) are calculated for each bin.” 

The larger errors correspond to high SZA. The effects of LER errors on the trace gasses 

accuracy is discussed in the first sentence of the Introduction. 

8 p7 l15 Why do you use Z as symbol for pressure and not P? Z can easily be confused with 

height. 



Thanks for pointing out this inconsistency. The retrieval is actually based on surface height 

and not pressure. The symbol Z is correct, the text in Section 2 and 4 is updated. 

 

9 p7 l21 The histograms presented in Figure 7 are not discussed in detail. 

In chapter 4 we include a new section describing the comparison with GOME-2 and OMI 

LER. 

 

10 p7 section 4.3 / Figure 9: This should become a separate main section, with a thorough 

and complete validation of the product. The comparison that is presented is not sufficient. 

Comparisons can be performed with a number of the surface LER -databases that were 

mentioned in the introduction (OMI, SCIAMACHY, GOME-2), but also with BRDF 

information from MODIS. Using MODIS BRDF would mean adjusting the retrieval to 

retrieve wavelengths of the nearest MODIS band. Can this be done? 

The main focus of this paper is to present the algorithms for obtaining G3_LER and G3_LER, 

the results for S5P total ozone are shown as demonstration. 

In chapter 4 we include a new section describing the comparison with GOME-2 and OMI 

LER. 

The MODIS BRDF is available only in the VIS. As explained in the Conclusions, GE_LER 

retrievals in the VIS are planned for future work. 

 

The differences have to be analysed properly. The difference plot in Figure 9(b) does not 

allow the reader to study differences on the order of 0.02, which is the typical difference/error 

one would expect for snow-free areas. 

In chapter 4 we include a new section describing the comparison with GOME-2 and OMI 

LER. 

 

11 p8 l2 “from the couple of days”: how many days did you use? 

This sentence is reformulated as follows “The TROPOMI G3_LER map for a given day is 

created by regridding (using a 0.1° x 0.1° resolution) the clear-sky LER data from the same 

day with the G3_LER map based on the LER data from previous days” 

 

11 p8 l11 Figure 8 needs more explanation, what order polynomial is used, what do the blue 

error bars represent? Why do land, water and snow scenes all have more or less the same 

relative albedo (around 1.0 – 1.6)? Have you calculated this average using all global pixels? 



This implies that you have mixed different land types in the calculation of the average. How 

representative is the viewing angle dependency then for individual land types? 

The data for each surface type are normalised relative to the central detector pixel (nadir) 

therefore the range is around 1. This explanation is included in Section 4.3 and Figure 8. 

 

12 p8 l15 Please check which version of the OMI LER was used; the second version covers 5 

years of data between 2005 – 2009, released in 2010. 

The data used here are the 4 years data released in 2008. In an early stage of the S5P project 

we compared both the 2008 and the 2010 versions and found some systematic structures in 

the 2010 version especially in the 328 nm dataset. Therefore we decided to use 2008 version. 

 

13 p8 Which field of the OMI-LER is used to compare with? Is it the 

“MonthlyMinimumSurfaceReflectance" field or is it the "MonthlySurfaceReflectance" field? 

We use the MonthlyMinimumSurfaceReflectance field.  

 

14 p11ff  References: please put all references in alphabetical order. 

Done 

 

15 Fig 5 Did you also consider the sensitivity of the GE_LER error due to ozone profile 

assumptions? 

We are using ozone profile climatologies organized as function of the total ozone (the total 

ozone and the ozone profile are strongly correlated). Therefore the sensitivity of the GE_LER 

to the ozone profiles is covered by the total ozone dependency. 

 

16 Fig 8 What do you mean with “relative mean albedo”? Can you please also provide the 

GE_LER itself? 

Please clarify, “relative mean albedo” is not mentioned in Fig. 8. 

 

17 Fig 19 These maps are not very informative because the dynamic range is too large. Please 

choose a color scale and albedo range that provides spatial information on the distribution of 

surface albedo in the UV. 

Maps updated 



  



Reply (in blue) to Referee #2 

We thank the referee #2 for the constructive comments. 

Our reply is included after the referee comments.  

This manuscript presents a new approach to derive effective scene albedo on a pixel per-pixel 

basis from TROPOMI observations and to build a viewing zenith angle dependent LER 

climatology with an improved spatial resolution compared to former data bases. Although the 

topic of the study fits well within AMT and there is no obvious issue with the approach, I 

would suggest to further discuss the results and to extend the comparisons to better 

demonstrate the added-value of the database. For example, results are discussed for only one 

spectral region and a limited amount of data (April 2018).  

It would be beneficial to have more illustrations for different months. Reading the manuscript, 

I had many comments similar to those from reviewer 1. I won’t list those again but encourage 

the authors to carefully reply to them. Below are a few additional comments. Once the 

comments have been addressed and the manuscript 

consolidated, this work will be worth being published within AMT. 

 

As general reply we would like to highlight that the G3_LER is not a climatology or database 

as commonly created by other methods but a dynamic map updated every day and in this way 

it represents the current surface conditions. 

Furthermore, the main focus of this paper is to present the algorithms for obtaining G3_LER 

and G3_LER, the results for S5P UV (ozone) are shown as demonstration. Results for 

different seasons were already included in the submitted version, see for example Fig. 8. 

 

Comments: 

• The description of the smart sampling and machine learning approaches is quite technical. It 

would be beneficial to the readers to further describe the general ideas/concepts on which rely 

those methods. 

The following text is included in Section 2.2. “Training data is traditionally created at fixed 

intervals uniformly distributed for each input variable; as a consequence the training samples 

are grouped around the node points and a very poor coverage of the multidimensional input 

space is reached. Deterministic sampling methods provide a more uniform distribution of the 

training data covering the entire space of each input variable” and “For this work we select a 

Halton sequence that uses prime numbers for creating sample points in each input dimension 

and a radiative transfer model computes the corresponding simulated radiances”. 

 

• Section 3: Could you provide more details here on how clear-sky pixels are selected? Such 

details are given later in the manuscript but it would good to already describe this in section 3. 

Could you also provide some statistics on the number of days required to have a global 



coverage? There must be some regions with persistent clouds for which the update frequency 

drastically decreases. Actually, it would be useful for traceability to provide this information 

in the database along with the G3_LER values. For example, for one given cell, the LER 

value has been derived from day-1, -2, -3, or . . . 

TROPOMI and VIIRS data are used for the clear-sky determination. The following sentence 

is included in the paper: “In the case of S5P, clear-sky is determined using both the 

operational cloud properties retrieved from TROPOMI (Loyola et al., 2018) and the 

VIIRS/SNPP (Visible Infrared Imaging Radiometer Suite sensor onboard Suomi National 

Polar-orbiting Partnership satellite) cloud mask regridded to the TROPOMI resolution (R. 

Siddans, 2016). Note that S5P and SNPP fly in loose formation, the S5P orbit trails 3.5 to 5 

minutes behind SNPP” 

One month of data is usually enough for obtaining a globe map. The following explanation is 

added in section 3: “The spatial resolution of the G3_LER maps for TROPOMI is 0.1° and 

global maps can be generally derived combining data from one month. Two to three months 

of data are only needed for regions covered with persistent clouds like the Intertropical 

Convergence Zone (ITCZ).” 

The G3_LER is not a classical static database, as explained in section 4.3 the G3_LER maps 

are updated on a daily basis to represent the current surface conditions. To address the 

traceability question of the reviewer, we added the following in section 4.3: ”Time 

information (orbit number) of the LER used in each grid cell is included in the GE_LER 

maps.” 

 

• G3_LER data seems to be available only for the ozone fitting window and for three surface 

types. Could you comment why only those three surface have been considered? In other 

regions than UV, BRDFs effects will differ much more significantly as a function of the 

surface type. Could you clarify if you intend to provide GLER data in other spectral ranges 

and how you intend to proceed with respect to this aspect. 

The selected land, water and snow/ice cover well the BRDF effects in the UV. We include the 

following sentence in section 4.3 “Note that the selected surface types cover the BRDF effects 

in the UV ozone fitting window; other trace gases like NO2 in the VIS will require different 

land cover types (e.g. water, snow/ice, urban, paddy, crop, deciduous forest, evergreen forest) 

to properly model the BRDF effects, see Noguchi et al., 2014.”. 

Regarding the second question about the spectral ranges, in the Conclusions we already 

indicate our plans to apply the GE_LER/G3_LER to other S5P fitting windows.   

• It is mentioned that the Bodeker ozone database is combined with the McPeters/Labow 

climatology as input of the RT simulations. Could you be more specific on the needs for this 

combination and on what is provided by each of those databases. Also in Table 1, the ozone 

profiles appear to be classified only as a function of the total column. Is it sufficient or are the 

geographic variations of the profiles accounted for somehow? Is there any latitude/longitude 



dependence taken into account? If not, please be more specific on the profiles that have been 

used. Also could you provide typical sampling steps of the different dimensions? 

The corresponding paragraph in section 4.1 was rephrased as follows: “We use the Bodeker et 

al., (2013) database for representing the stratospheric ozone combined with the 

McPeters/Labow (Labow et al., 2015) climatology for the lower tropospheric ozone.” 

A classification as function of the total column is sufficient thanks to the strong correlation 

between the total ozone and the ozone profile shape. 

The smart sampling does not use “sampling steps”. Please see our reply to your first 

comment. 

 

• Figure 7: to better illustrate the possible impact of BRDF, could you show such clear-sky 

histograms for different range of viewing angles. If BRDF effect is important, we could 

expect systematic biases varying as a function of the VZA.  

Also, biases are more important for cloud cases. Is it because cloud albedo are retrieved in a 

different spectral region? 

We created histograms as function of VZA but they are not really informative. The BRDF 

dependency on the VZA can be better appreciated in the plots from Figure 8. 

 

• Figure 8 : what are the implications of the numerical instability of the RT simulations 

around VZA=0 on the retrieved LER? 

We removed the numerical instability and created extra simulations around nadir (VZA=0).  

 

• Figure 9: There is a clear general bias between the G3_LER and OMI_LER data, even at 

low/mid-latitudes. Could you better quantify and discuss this? Is there any indication that one 

of the two data sets would be more realistic? 

We found out that the small bias was due to imperfections on the current TROPOMI L1 

products. The following sentence was added in section 4.2 “The version 1 of the TROPOMI 

Level 1 product has small deficiencies on the UV band; therefore a soft-correction based on 

comparisons with OMPS radiances is applied to S5P. It is expected that the version 2 of the 

TROPOMI Level 1 product will include a more accurate radiometric calibration”. 

We include a new section 4.4 describing the comparison with GOME-2 and OMI LER. 

However, it is not obvious which of the three data basis is actually best / most realistic. For 

some cases two of them agree well for other cases other two agree better.  

 

Minor/Technical comments: 



• Quality of figures is generally low. Could you increase the quality as well as the size of 

labels? 

Figure quality and font size improved 

.  

• Page 2 – line 6: 35% on ozone column seems large. Is this value correct? 

Figure 4 of Lerot et al. shows AMF changes in this magnitude when a surface albedo of 

snow/ice is used instead of surface albedo of water. 

 

• Page 2 – line 12: Could you be more specific with that statement? Are there some references 

providing estimates of errors on TROPOMI products caused by the too coarse resolution of 

old databases? 

Error estimates are not yet available, but this is a known data quality issue listed in the 

“Product Readme File” of the S5P L2 products, see http://www.tropomi.eu/documents/prf 

 

• Page 3 – line 29: Add “solar and” before “viewing geometry”? 

Done 

 

• Page 6 – line 8: The LER data could still differ from the actual surface properties in case of 

sudden snow fall combined with significant cloudiness. 

That is correct, at the end of the sentence we added “The only exceptions are cases of sudden 

snow fall combined with significant cloudiness”. 

 

• Page 6 – line 16: remove “viewing geometry” 

Done 

 

• Figure 4 shows negative optical densities, which is not physical. In the text, those quantities 

are referred to optical densities differences but it is not clear what is the reference. Could you 

homogenize the text and y-label and clarify what are those optical density differences? 

Negative optical densities are indeed misleading. What is shown here is the optical density of 

the DOAS polynomial (p(λ) in Equation 2). This information is added in Section 4.1 and in 

Figure 4. 

 

http://www.tropomi.eu/documents/prf


• Page 7 – lines 5-6: This is very technical and the meaning is not clear at all for me. Could 

you rephrase this? 

We use common nomenclature of machine learning; the text has been updated as follows: 

“The best results are obtained using a feedforward NN (the neurons are grouped in layers) 

with a topology …”  

 

• Page 8 – line 2: “from the couple of days” is not clear. Please be more specific. 

This sentence is reformulated as follows “The TROPOMI G3_LER map for a given day is 

created by regridding (using a 0.1° x 0.1° resolution) the clear-sky LER data from the same 

day with the G3_LER map based on the LER data from previous days” 

 

• Page 8 – line 29: “smoother” instead of “smother” 

Done 

 

• Page 9 – line 31: Mention that those numbers are valid for April 2018. 

Done 

 

 

  



Reply (in blue) to Referee #3 

We thank the referee #3 for the positive comments and for the detailed review of the 

paper. 

Our reply is included after the referee comments. 

 

Mateer et al. (1971) first proposed a Lambertian Equivalent Reflectivity (LER) concept in 

BUV total ozone retrievals to account for combined spectral dependence of surface, aerosols 

and cloud reflectance [Mateer, et al., 1971]. The concept works well because ∼90% ozone is 

in the stratosphere, above effective reflecting surface. The simple LER concept with some 

modifications (e.g. extrapolated LER spectral dependence, effective surface pressure) has 

been successfully used in heritage (TOMS, GOME, SCIAMACHY) and current (GOME-2, 

OMI, OMPS, S5P/TROPOMI) stratospheric ozone and other trace gases (e.g., volcanic SO2) 

BUV retrievals. The need for satellite retrievals of tropospheric ozone and other pollution 

gases (NO2, SO2, HCHO) in partly cloudy scenes, with peak concentrations in or just above 

the planetary boundary layer, required modification of the simple LER concept, replacing it 

with the mixed-LER (MLER) concept: mixing two LER surfaces, one at the ground and the 

other at the effective cloud pressure, e.g., [Ahmad, et al., 2004; Stammes, et al., 2008]. The 

MLER approach is currently used in operational BUV pollution gas retrievals (e.g., [Levelt et 

al., 2018] and references therein). The MLER approach requires a-priori “clear-sky” LER 

estimate, which can be taken either from concurrent satellite measurements (e.g., OMI 

geometry-dependent GLER product uses higher-resolution atmospherically corrected MODIS 

BRDF [Vasilkov et al., AMT 2017]) or from prior measurements (e.g., OMI cloud-cleared 

climatological LER [Kleipool et al., JGR 2008]). The climatological “clear-sky” LER 

estimation is less accurate, since it disregards the observational geometry- and time-

dependence of surface reflectance. The paper by Loyola et al. presents new geometry-

dependent (GE-LER) LER implementation, the "Full Physics – inverse Learning Machine 

(FP_ILM)" algorithm and the multiple day gridded LER product (G3_LER) derived from the 

present and previous clear-sky scenes observed by S5P/TROPOMI. In previous LER 

implementations for ozone retrievals, the LER values were derived at non-absorbing 

wavelengths (e.g., 340nm and 380nm for Nimbus-7 TOMS) and spectrally interpolated to the 

ozone and SO2 retrieval windows. The important advantage of the new GE-LER retrieval is 

that it is retrieved in the same spectral fitting window used by ozone retrieval (325-335nm), 

thus does not require spectral extrapolation. This is the first simultaneous retrieval of both 

ozone and LER in this spectral window. The G3_LER can be applied to existing S5P aerosol, 

clouds and trace gas algorithms by replacing climatological clear-sky LER with the new 

G3_LER product. I recommend publishing the paper with clarifications and technical 

corrections and releasing the new S5P GE_LER and gridded G3_LER products for 

community evaluation. 

We include now references to Mateer et al. and Ahmad et al. in the Introduction. 

 



General comments 

1) The name “full physics” is misleading, because the forward radiative transfer model used 

for NN training does not include important physical processes, such as , aerosols and inelastic 

(RRS) scattering; 

The goal is to retrieve the surface properties under clear-sky conditions, therefore the RTM 

simulations don’t consider modelling of aerosols or clouds. 

The impact of using RSS in the forward simulation for the GE_LER retrieval in the ozone 

fitting window is negligible. We add the following in Section 4.1 “The mean difference in 

GE_LER retrievals based on LIDORT-RSS and VLIDORT is in the range of 5e-5 for SZA<75° 

and 3.5e-4 for larger SZA”. 

 

2) acknowledge that BRDF effects on trace gas retrievals cannot be modeled exactly using 

forward RTM with Lambertian surface. Estimate the ozone errors due to Lambertian surface 

assumption (GE_LER or simple LER) using BRDF supplement available in VLIDORT RTM. 

The following sentence is included at the end of Section 4.1 “The BRDF effects on the ozone 

fitting window are well modelled using the GE_LER approximation, the difference in the total 

ozone retrieved using VLIDORT and VLIDORT-BRDF simulations is in the order of 0.5 DU 

or 0.2%”. 

 

3) Provide more details about GE_LER algorithm:  

a. Do you assume that GE_LER is wavelength independent within DOAS fitting window? 

Correct, we listed this assumption in Section 2.3. 

 

b. Give reference to the machine learning (NN) software and explain selecting optimal NN 

topology used in the algorithm training. 

We use the MATLAB neural network Toolbox. The following explanation is included in 

Section 4.1 “Different NN topologies were tested using one, two, and three hidden layers”. 

 

c. Clarify whether the RTM with Lambertian surface or with BRDF model was used for 

training? 

As already indicated in Section 4.1, we use the VLIDORT model with Lambertian surface. 

 

d. Explain which cloud masking algorithm was used in creating G3_LER clear-sky daily map 

We add the following explanation in Section 4.3 “we use the S5P OCRA and the VIIRS/SNPP 

(flying in constellation with S5P) cloud fractions fc for identifying clear-sky measurements.” 



 

e. Fig. 1– clarify that “simulated features” are DOAS ozone slant columns and polynomial 

closure coefficients. 

Fig. 1 is the general scheme for the FP_ILM training phase. The particularities for each 

GE_LER step (e.g. VLIDORT used as forward model, NN used as machine learning, DOAS 

used as feature extraction) are described in Sections 2.1 to 2.4.  

 

f. Fig. 2 – clarify that “extracted features” are DOAS ozone slant columns and polynomial 

closure coefficients. 

Fig. 2 is the general scheme for the FP_ILM retrieval phase. The “extracted features” used in 

each case are algorithm dependent, for example for the GE_LER retrieval we use the DOAS 

results and for the SO2 layer height retrieval we use principal components. 

 

4) Clarify what are effects of UV-absorbing aerosols (dust or smoke) on GE_LER? 

Absorbing aerosols can induce GE_LER values lower than the actual surface LER. As already 

mentioned in Section 4.3, in the future we plan to use the S5P absorbing aerosol index for 

filtering the affected measurements. 

 

5) Clarify that the neural network is trained on synthetic clear-sky spectra, but applied to the 

TROPKMI measurements over mixed, partly cloudy scenes (equation 5). 

The GE_LER retrieval is applied to all TROPOMI measurements. Equation 5 indicates only 

how we compute the effective surface height in case of cloud contamination. 

 

6) Compare TROPOMI GE_LER retrievals with the traditional LER retrievals at 340nm, 

where ozone absorption is negligible. Add TROPOMI simple LER340 map to Figure 10. 

We include a new Section 4.4 describing the comparison with GOME-2 and OMI LER. 

 

7) Publicly release G3_LER data set for community evaluation. 

The retrieved GE_LER and the G3_LER used for each single TROPOMI ground pixel will be 

included in the operational S5P total ozone product. All operational S5P products are open 

and free available. We will discuss with ESA/EU the possibility of disseminating the 

G3_LER total ozone daily maps in the same way as the operational S5P products. 

 



Technical comments 

Table 2 is not mentioned in the text. 

reference added in Section 4.2  

 

P1, 12: with a significant[ly] lower spatial resolution . . . 

corrected 

13: satellite viewing [geometry] dependencies 

added 

P2,  

1: are mayor [major] error sources – clarify that the surface reflectance has larger influence on 

boundary layer trace gases retrievals and much less on the mid-and upper-tropospheric 

constituent retrievals. 

corrected and clarification added. 

 

13: significant[ly] lower spatial resolution 

corrected 

 

18: (b) the effect of surface reflectance anisotropy [is]  

corrected 

 

20: Retrieval of [Lambertian] effective scene albedo has been used in total ozone algorithms 

from nadir and limb – add pioneering reference: Mateer et al., 1971.  

corrected. Reference to Mateer et al. added two sentences before. 

 

22: - add references to heritage TOMS ozone, e.g., Bhartia et al., 1996  McPeters, et al., 1998. 

- and OMI ozone references, e.g., McPeters, et al., 2015 or  Veefkind, et al., 2006.  

added references to Bhartia (TOMS) and McPeters (OMI) 

 

24: from other [higher spatial resolution] satellite sensors  

added 

 

28:” needed for computing LER from [and] BRDF may not be fully compatible” – need 

clarification: In Vasilkov et al., [2017] LER is calculated from the RT model simulated TOA 

radiance in a standard way, which is fully compatible with OMI cloud and NO2 retrievals. 

However, MODIS BRDF product may use different RT assumptions.  

modified to “needed for computing MODIS BRDF may not be fully compatible”  



 

P3, 

16: errors could be large and [multi-dimensional interpolations are] time consuming. .  

modified to “the interpolation/extrapolation in this multi-dimensional space are 

computational expensive, and the interpolation/extrapolation errors could be significant” 

 

21: During the last years we [Recently] we developed an approached called . . .  

modified 

 

22: applied for retrieving [ozone] profile shapes . . .  

added 

 

P4, 

4, . . . the surface properties - clarify what properties? Did you use RTM with Lambertian 

surface for training or did you use RTM with BRDF model? Specify, which land/ocean BRDF 

model/dataset was used for training ?  

clarification added “Lambertian surface properties” 

 

15 resolution to resolve [absorbing] features  

added 

 

16 usually contains [hyperspectral] radiances at a high-dimensional space  

added 

 

17 . . .avoiding the effects of the curse of dimensionality ? – clarify  

sentence deleted 

 

27 Explain where does the GE_LER information come from (i.e., equation (3))?  

at the end of Section 2.1 (same page as equation (3)) it is already indicated that surface 

properties Ae are the source of the GE_LER  

 

P5,  

19 . . . effective scene approximation - add reference ([Mateer et al., 1971, Coldewey-Egbers 

et al., 2005])  

added 

 

21 whereas a [clear-sky] LER is needed  

added 



 

22 GE_LER retrieved under clear sky conditions – explain cloud masking algorithm  

explanation included 

 

24, Fig 3 . . . based on the [GE_]LER data from previous days – Clarify if the GE-LER map 

instrument and viewing geometry specific?  

The sentence after this already explains that the G3_LER map should include the viewing 

geometry dependencies. The GE_LER is instrument specific as it is based on L1 

measurements of a given instrument. 

 

25-26 (BRDF) effects, as it is based on radiative transfer model simulations using the actual 

viewing geometry – clarify did you use RTM with Lambertian or BRDF surface? What 

surface BRDF model/dataset (if any) was used in creating training spectral dataset?  

RTM with Lambertian surface is used, see also reply to comment P4/4. 

 

P6, 

2 fitting a polynomial of clear-sky LERs averaged as function of  ð˙IIJC . – Please, clarify: -  

sentence reformulated as follows: “the dependency on the solar zenith angle can be 

characterized by fitting a polynomial (or exponential) function over clear-sky LERs sorted as 

function of θ” 

 

should BRDF function also depend on solar and azimuthal angles in addition to 

satellite view angle?  

- Provide examples (add figure) of the clear sky LER(theta) for land and water surfaces. 

this explanation is added “solar zenith angel dependencies can be ignored when combining 

GE_LER data from Sun-synchronous satellites over the same position because the angle of 

sunlight upon the Earth's surface is consistently maintained. Likewise relative azimuth angle 

dependencies are negligible in the UV” 

 

17 synthetic UV spectra – clarify that spectra were simulated assuming Lambertian surface, 

no aerosols and no inelastic RRS effects.  

see reply to General comment 1) 

 

19 ozone [profile?] climatology  

added 

 

24 Figure 4 shows the optical densities difference – clarify definition of the optical density 

and the OD difference. Explain why is Figure 4 necessary?  

25 ... albedo of 0.05, 0.3, 0.6, and 0.9 [,which] correspond to water,.. – not clear how [ozone?] 



optical density is related to the surface albedo? 

clarification added “optical densities of the DOAS polynomial in Equation (2)” 

Fig. 4 nicely illustrate how the optical densities of the DOAS polynomial change for different 

conditions 

 

28 higher [longer?] wavelength.  

corrected 

 

P7, 

1, Fig 4 . . . optical density increases when the viewing zenith angle decreases – please, 

explain. The ozone optical density is proportional to the slant column ozone amount, which 

should decrease when the viewing zenith angle decreases. . . . for all cases, the optical density 

increases along the wavelength region –Explain why is this important?  

clarification added “optical densities of the DOAS polynomial 

 

3 . . .is reorganized according to (3) – clarify the meaning of equation (3) an reorganization 

algorithm  

sentence reformulated to “The simulation results from (3) are reorganized by grouping as 

input the DOAS polynomial coefficients and ozone slant column, the viewing geometry, and 

surface height” 

 

5 . . . using a NN with a topology of 9-20-8-2-1, - provide reference to the NN software used 

and how the optimal topology has been selected?  

see reply to General comment 3b 

 

10, Fig.5 . . .represents the inverse function [of the synthetic dataset] in a very precise way – 

this does not guarantee similar accuracy when applied to the real satellite measurements.  

we agree 

 

Figure 6(a) title and color bar show “E_LER” – change to GE_LER 

Figure 6(b) – explain cloud fraction stripes over Antarctica?  

The cloud stripes over Antarctica are an artefact of the S5P v1 cloud retrieval algorithm that is 

based on OMI cloud-free composites and scan angle corrections. The S5P v2 of the cloud 

algorithm solves this issue. 

 

20 In the case of clear-sky (ð˙IS ¸Sð ´ ˙IS´ Rˇ ≤ 0.05 ) the GE_LER represents the surface 

albedo – clarify if GE_LER represents hemispherical albedo or directional BRF ?  

clarification added “hemispherical surface albedo” 

 

25 the TROPOMI clear-sky GE_LER and OMI LER climatology – Add comparison with the 



OMI/TROPOMI simple LER at 340nm in Table 2. 

26 summarized in Figure 7. - in Table 2?  

We include a new Section 4.4 describing the comparison with GOME-2 and OMI LER. 

 

P8, 

1 . . . aggregating normalized [GE_]LER from the couple of days. – these retrievals are 

obtained under different viewing geometries. - Couple of days may not be sufficient to obtain 

cloud-free observations over certain locations. - Explain how GE_LER are normalized and 

what viewing geometry does the aggregated G3_LER map correspond to?  

sentence reformulated. 

explanation added “normalized to the central detector pixel (nadir)” 

 

10 . . . averaged as function of the viewing zenith angle. – BRDF depends also on solar zenith 

and relative solar azimuthal angles. Why is this dependence ignored?  

see reply to P6, 2 

 

Fig. 8 Why is sun-glint is not visible for the water surface GE_LER and “hot spot” is not 

visible for the land GE_LER ? 

What would GE_LER look like for a cloud-free sun-glint region? 

as already explained in the second sentence of 4.3, measurements affected by sun-glint are not 

used in the G3_LER 

 

Fig. 9(a) – what viewing geometry does the aggregated G3_LER map corresponds to? Reduce 

upper scale or use logarithmic scale to better show LER variability for snow-free regions.  

nadir, see also reply to P8, 1 

 

Clarify wavelength for the OMI climatological LER. 

“(335 nm)” added  

 

Fig 9 caption: the ma[j]or differences  

corrected 

 

Fig 10. Add comparison with the TROPOMI simple LER map at 340nm (negligible ozone 

absorption)  

TROPOMI LER at 340 nm is not available 

 

25 associated to [with] the coarse resolution 

corrected 



26 most important[ly]  

corrected 

 

p9, 

5 what is even wors[e]  

corrected 

 

11 reduced from -2.53 ± 2.46% using OMI LER to 0.78 ± 3.49% using TROPOMI G3_LER - 

why did the standard deviation increase?  

it was a typo, the correct value should be 2.49 

 

P12, 

11 Loyola, D., et al.: The near-real-time total ozone retrieval algorithm from TROPOMI 

onboard Sentinel-5 Precursor, Atmos.Meas. Tech. Discuss., in preparation, 2019. –provide 

complete citation  

done 
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Abstract. The retrieval of trace gas, cloud and aerosol measurements from ultraviolet, visible and near-infrared (UVN) 

sensors requires precise information on the surface properties that are traditionally obtained from Lambertian equivalent 10 

reflectivity (LER) climatologies. The main drawbacks of using such LER climatologies for new satellite missions are (a) 

climatologies are typically based on previous missions with a significantly lower spatial resolutions, (b) they usually do not 

fully take into account the fully for satellite viewing geometry dependencies characterized by the bidirectional reflectance 

distribution function (BRDF) effects, and (c) climatologies may differ considerably from the actual surface conditions 

especially under with snow/ice situationsscenarios. 15 

In this paper we present a novel algorithm for the retrieval of geometry-dependent effective Lambertian equivalent 

reflectivity (GE_LER) from UVN sensors; the algorithm is based on the full-physics inverse learning machine (FP_ILM) 

retrieval. The rRadiances are simulated using a radiative transfer model that takes into account the satellite viewing geometry 

and the inverse problem is solved using machine learning techniques to obtain the GE_LER from satellite measurements. 

The GE_LER retrieval is optimized not only for the trace gas retrievals employing using the DOAS algorithm, but also for 20 

and the large amount of data from existing and futureof the new atmospheric Sentinel satellite missions. The GE_LER can 

either be deployed used directly for the computation of AMFs using the effective scene approximation or it can be used to 

create a global gapless geometry-dependent LER (G3_LER) daily map can be easily created from the GE_LER under clear-

sky conditions for the computation of AMFs using the independent pixel approximation. 

The FP_ILM GE_LER algorithm is applied to measurements of TROPOMI launched in October 2017 on board the EU/ESA 25 

Sentinel-5 Precursor (S5P) mission. The TROPOMI GE_LER/G3_LER results are compared with climatological OMI and 

GOME-2 LER datasets and the advantages of using GE_LER/G3_LER are demonstrated for the retrieval of total ozone from 

TROPOMI. 

6. Introduction 

mailto:Diego.Loyola@dlr.de
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Lack of knowledge of the magnitude of Uncertainties about the surface reflectance and the neglect of surface not accounting 

their anisotropic effects properties are the two majyor error sources for the retrieval of trace gas, cloud and aerosol 

information from ultraviolet, visible and near-infrared (UVN) satellites measurements (Vasilkov et al., 2018; Lorente et al., 

2018; Lin et al., 2014; Seidel et al., 2012; Zhou et al., 2010). Surface reflectance has a stronger influence on the retrievals of 

boundary layer trace gases and aerosols than is the case for mid- and upper-tropospheric trace gas and cloud retrievals. For 5 

example errors of 0.02 in the surface reflectivity may induce errors of 10%–20% in retrieved SO2 column amount (Lee et al., 

2009) and seasonal snow cover could can change the retrieved NO2 column by 20%–50% (O'Byrne et al., 2010) and the 

retrieved O3 column by 5%–35% (Lerot et al., 2014). 

The Lambertian Equivalent Reflectivity (LER) concept was first introduced for the BUV (Backscatter Ultra-Violet) total 

ozone retrievals (Mateer et al., 1971) and it was extended to retrievals of tropospheric ozone, NO2, SO2 and other pollutants 10 

under partly cloudy conditions using the independent pixel approximation (Ahmad et al., 2004). Traditionally, surface 

properties are obtained from Lambertian equivalent reflectivity (LER) climatologies and in the case of new missions like 

such as TROPOMI launched in October 2017 on board the EU/ESA Sentinel-5 Precursor (S5P) mission, the climatologies 

used at the beginning of the mission start are based on LER data from previous missions like such as TOMS (Herman and 

Celarier, 1997), GOME (Koelemeijer et al., 2003), OMI (Kleipool et al., 2008), SCIAMACHY (Tilstra et al., 2017), and 15 

GOME-2 (Pflug et al., 2008). 

The unprecedented spatial resolution of TROPOMI (3.5 x 5.5 km² currently and 3.5x7 km
2
 for data before August 6

th
 2019) 

has clearly showed shown the disadvantages of using LER climatologies based on previous missions with a significantly 

lower spatial resolution. Indeed, The initial studies version of the TROPOMI trace gas retrieved products based on such LER 

using climatologies have exhibited show flawed patterns related to the coarser resolution of the OMI LER climatology. A 20 

LER climatology based on TROPOMI measurements could solve this particular problem, but creating such a new 

TROPOMI LER climatology will probably require at least two years of data. Furthermore, there are two fundamental 

common problems with typical LER climatologies: (a) the actual surface conditions of a satellite measurement may differ 

considerably from climatological values like, as for example under for snow/ice scenariossituations, and (b) the effect of 

surface reflectance anisotropy are is usually not properly covered by the climatology. 25 

Retrieval of Lambertian effective scene albedo has been used in total ozone algorithms from nadir and limb satellite sensors, 

see for example Bhartia et al., 1996 and McPeters, et al., 2015. The WFDOAS (Coldewey-Egbers et al., 2005) algorithm 

approach retrieves the effective LER at 377 nm, while the GODFIT (Lerot et al., 2010) and SAGE III (Raul and Taha, 2007) 

approaches both retrieve simultaneously the effective LER and other parameters along with total ozone the effective LER 

and other parameters. 30 

Another approach used for NO2 and cloud retrievals involved is the computation of LER from bidirectional reflectance 

distribution function (BRDF) data obtained from other satellite sensors with higher spatial resolution. In a recent work 
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(Vasilkov et al., 2017), the BRDF data from MODIS is first resampled to the lower resolution of the OMI instrument, and 

then a geometry-dependent LER is computed using radiative transfer model simulations. Unfortunately MODIS BRDF data 

is available only from visible (VIS) wavelengths and rescaling the VIS BRDF (or LER) to UV is not straightforward. 

Furthermore, the radiative transfer (RT) model assumptions needed for computing LER from MODIS BRDFs may not be 

fully compatible with the RT model assumptions required for UV-basedmade in the trace gas retrievals. 5 

In this paper we present a novel algorithm to be used not only for the retrieval of geometry-dependent effective Lambertian 

equivalent reflectivity (GE_LER) from UVN measurements but also for and the creation of global gapless geometry-

dependent LER (G3_LER) daily map based on using GE_LER data obtained for under clear-sky conditions. The retrieved 

GE_LER/ and G3_LER retrieval should represent the current surface conditions, while mitigating solves the problems of 

using LER climatologies, and accountings for surface anisotropy effects in cloud, aerosol and trace gas retrievals, in a 10 

similar manner way as does the effective LER (Coldewey-Egbers et al., 2005) and the geometry-dependent LER (Qin et al., 

2019). But in contrast to these approaches, the GE_LER retrieval is performed in precisely exactly the same fitting windows 

used for the trace gas, cloud and aerosol retrievals themselves; furthermore our algorithm does not require external data 

sources such as from other sensors like BRDFs (land surfaces) or Chlorophyll and wind parameters (water surfaces). 

First we describe in sSection 2 the full-physics inverse learning machine (FP_ILM) technique used for the retrieval of 15 

GE_LER from UVN measurements, and we demonstrate how it is optimized for the DOAS trace gas retrievals. Section 3 

discusses describes the creation of global gapless geometry-dependent LER (G3_LER) daily maps using the retrieved 

GE_LER under for clear-sky conditions. In section 4 we apply the GE_LER algorithms to S5P measurements, first and then 

we comparinge the TROPOMI G3_LER results with climatological OMI and GOME-2 LER data, and secondly . Finally in 

Section 5 we demonstrate the advantages of using GE_LER/G3_LER for the retrieval of total ozone from TROPOMI. and 20 

iIn Section 56 we discuss future work. 

7. The FP_ILM algorithm for the GE_LER retrieval 

Trace gas, cloud and aerosol retrievals from UVN measurements rely on complex radiative transfer model (RTM) 

simulations. The RTM calculations are computationally expensive and therefore not well suited for processing massivethe 

big data from the new generation of atmospheric- composition Sentinel missions. A classical approach for speeding up the 25 

RTM performance simulations is to use look-up tables (LUTs), but they require significant amount of memory and what is 

more important the interpolation/extrapolation errors could be large and time consuming. The main drawbacks of LUTs with 

high dimensionality (common in atmospheric composition retrievals) are that the memory requirements increase 

exponentially with the number of input dimensions, the interpolation/extrapolation in this multi-dimensional space are 

computationally expensive, and interpolation/extrapolation errors can be significant. To solve avoid these LUT issues, the 30 

DLR team has developed during the last two decades machine learning techniques for the optimal generation of RTM 

samples (Loyola et al., 2016) and the accurate parameterizationing of RTM simulations using artificial neural networks 
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(NN). These algorithms are being used for the operational processing of GOME-2 (Loyola et al., 2010) and now TROPOMI 

(Loyola et al., 2018) data. 

Machine learning can be used not only for forward problems (like such as the parameterization of RTM simulations), but 

also for solving inverse problems, see for example (Loyola et al., 2016). Recently During the last years we have developed 

an approached called the “full-physics inverse learning machine” (FP_ILM) technique; this has been applied that was 5 

successfully applied for retrieving ozone profile shapes from GOME-2 (Xu et al., 2017) and retrieving SO2 layer height from 

GOME-2 (Efremenko et al., 2017) and TROPOMI (Hedelt et al., 2019). 

Figure 1 presents shows a flow diagram of the different steps of the FP_ILM algorithm and the following subsections 

describe in more detail how FP_ILM is tailored applied for the retrieval of GE_LER. 

7.1. Forward Model 10 

The forward model segment has two components: first a radiative transfer model (RTM) that computes the spectral intensity 

as a function of the solar and viewing geometry, atmospheric components and Lambertian surface properties; and second a 

sensor model that transforms the RTM intensities spectra to simulated spectra using sensor information such as like the 

instrument spectral response function and the instrument signal to noise ratio. 

The forward model F can be used to compute will simulated spectral radiances 𝑅𝑠𝑖𝑚 for a given wavelength 𝜆 according toas 15 

 𝑅𝑠𝑖𝑚(𝜆) ± 𝑅 = 𝐹(𝜆, Θ, Ω, 𝐴𝑒 , 𝑍𝑒)  (6) 

where 𝑅 denotes the expected instrument error, Θ is the light path geometry (solar and satellite zenith and azimuth angles), 

Ω  are the atmospheric composition components, and the surface properties denoted by 𝐴𝑒  for the geometry-dependent 

effective Lambertian equivalent reflectivity (GE_LER) and 𝑍𝑒 for the effective surface pressureheight. 

7.2. Smart Sampling 20 

Traditionally, training data are created at uniformly distributed fixed intervals for each input variable; as a consequence, the 

training samples are grouped around the node points and poor coverage of the multidimensional input space is the result. 

Deterministic sampling methods provide a more uniform distribution of the training data covering the entire space of each 

input variable. 

A key element of FP_ILM is the creationg of a training data set that extensively covers extensively the multidimensional 25 

space of the forward problem and at the same time minimizes the computational expensive calls to the radiative transfer 

model. We use the smart sampling techniques (Loyola et al., 2016) for creating a dataset of samples {Θ, Ω, 𝐴𝑒 , 𝑍𝑒} that fully 

represent the expected viewing and geophysical conditions of the problem at hand. For this work we select a Halton 

sequence that uses prime numbers for creating sample points in each input dimension and a RTM that computes the 

corresponding simulated radiances. 30 
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As indicated shown in Figure 1, the smart sampling and forward module calls are iterated in a loop until the multi-

dimensional integral of the output samples dataset {𝑅𝑠𝑖𝑚(𝜆) ± 𝑅} converges. This technique allows us to determine the 

minimum number of samples needed to properly cover the output space; see (Loyola et al., 2016) for more details. 

7.3. Feature Extraction 

Retrieval of trace gas, cloud and aerosol concentrations from UVN sensors requires spectrometers with sufficiently detailed 5 

spectral resolution to resolve absorbing features in the electromagnetic spectrum. ; therefore tThe fitting- window used for 

the retrieval of a trace gas usually contains requires hyperspectral radiances at for a high-dimensional space (tens to hundreds 

of wavelengths). Machine learning techniques perform best with low-dimensional datasets by avoiding the effects of the 

curse of dimensionality. 

Feature extraction is a mapping function that transforms a dataset from a high- to a low-dimensional space by the removaling 10 

of redundant information and noise. In previous FP_ILM applications (Loyola et al., 2006; Xu et al., 2017) we used principal 

component analysis for the feature extraction., Hhowever for the GE_LER retrieval we take advantage of the DOAS fitting 

results model  

 𝑅𝑠𝑖𝑚(𝜆) = − ∑ 𝑁𝑠,𝑔(Θ) ∙ 𝜎𝑔(𝜆)𝑔 − 𝑝𝑃(𝜆)  (7) 

wherewith 𝑁𝑠,𝑔(Θ) is the effective slant column density of gas g for the light path geometry Θ, 𝜎𝑔(𝜆) the associated trace gas 15 

absorption cross-section for at wavelength 𝜆, and 𝑝𝑃(𝜆) the an external closure polynomial.  

The feature extraction step comprises annsists in applicationying of the DOAS fit to the simulated radiances. Combining (1) 

and (2) for a given fitting window  we obtain the following approximation with simulated datasets that representing the 

forward problem  

 {𝑁𝑠,𝑔(Θ), 𝑃()} ≅ {𝐹(Θ, 𝐴𝑒(), 𝑍𝑒)}  (8) 20 

where 𝐴𝑒() is the wavelength independent GE_LER for the particular DOAS fitting window. 

7.4. Machine Learning 

Machine learning approximates a function that is represented by input/output datasets by means of using either linear or non-

linear regression algorithms. In this paper we use artificial neural networks (NN) to learn the non-linear inverse problem by 

reorganizing the datasets from (3) to represent the inverse problem:  25 

 {𝐴𝑒()} ≅ {𝐹𝑁𝑁
−1(𝑝𝑃(), 𝑁𝑠,𝑔, Θ, 𝑍𝑒)}  (9) 

In other words, a neural network will solves the inverse problem and retrieves the GE_LER as function of the DOAS closure 

polynomial, the DOAS fitted effective slant column density, the viewing geometry and the effective surface heightpressure. 

The inverse operator itself is the collection of are the weights and biases of the neural network approximating 𝐹𝑁𝑁
−1. 
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7.5. GE_LER Retrieval 

Obtaining the inverse operator is very time consuming mainly due to the relatively large amount of RTM simulations needed 

to properly characterize represent the forward problem. Finding a neural network (NN) topology that learns the inverse 

function with minimuma small error is also computationally intensive. However, But all these steps are carried out done 

offline and need to be done only once for a given sensor and trace gas fitting window. 5 

Figure 2 shows the flow diagram for applying the FP_ILM to satellite measurements. There is no additional extra 

computational needed for the feature extraction part, as we are using the results from the DOAS fitting; also, application and 

the application of the NN to retrieved GE_LER is extremely very fast as it only involves simple matrix multiplications. 

The extremelyexceptionally fast retrieval using the FP_ILM is a crucial advantage for the operational near-real-time 

processing of the Big Data from the current and future atmospheric composition Sentinel missions. 10 

8. Global Gapless Geometry-dependent (G3) LER Daily Map 

The cConversion of the DOAS effective slant column amounts to a geometry- independent total column requires the 

calculation of air mass factors (AMF) calculated using either the effective scene approximation (Mateer et al., 1971; 

Coldewey-Egbers et al., 2005) or the independent pixel approximation (e.g. Loyola et al., 2011). The retrieved GE_LER can 

be used directly for the AMF computation of AMFs using based on the effective scene approximation;, whereas a clear-sky 15 

LER is needed for the computation of AMFs using calculated with the independent pixel approximation. 

A global gapless geometry-dependent LER (G3_LER) daily map can be easily created from GE_LER values retrieved under 

clear-sky conditions. In the case of S5P, a clear-sky situation is established not only with the operational cloud properties 

retrieved from TROPOMI (Loyola et al., 2018) but also with the VIIRS/SNPP (Visible Infrared Imaging Radiometer Suite 

sensor, on board the Suomi National Polar-orbiting Partnership satellite) cloud mask regridded to the TROPOMI spatial 20 

resolution (R. Siddans, 2016). Note that S5P and SNPP fly in loose formation, with the S5P orbit trailing 3 to 5 minutes 

behind SNPP. 

The G3_LER map for a given day is created by merging the clear-sky GE_LER data from the same day with the G3_LER 

map based on the GE_LER data from previous days, see Figure 3. The spatial resolution of the G3_LER maps for 

TROPOMI is 0.1° latitude and 0.1° longitude, and global maps can in general be derived by combining data from a single 25 

month. Two to three months of data are needed only for regions with persistent cloud cover such as the Intertropical 

Convergence Zone (ITCZ). 

It is important to note that the GE_LER determination incorporates takes into account the bidirectional reflectance 

distribution function (BRDF) effects, as since it is based on radiative transfer model simulations using the actual viewing 

geometry. But wWhen combining GE_LER data their BRDF dependencies (, 𝜃, ) as function of the wavelength in the 30 
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fitting window , the viewing zenith angle 𝜃, and the surface types  must be considered. In contrast, solar zenith angle 

dependencies can be ignored when combining GE_LER data from sun-synchronous satellites over the same location, 

because the angle of sunlight at the Earth's surface is consistently maintained. Likewise relative azimuth angle dependencies 

are negligible in the UV. The (, 𝜃, )  dependencies function can be easily obtained separately for different fitting 

windows  (in the UV, VIS and NIR spectral region), for different surface types  (e.g. land, water, snow/ice) and various 5 

time periods (e.g. monthly); any dependency on viewing zenith angle can be characterized by fitting a polynomial (or 

exponential) function of over clear-sky LERs averaged sorted as function of 𝜃.  

The G3_LER daily map comprises the contains normalized LER, i.e. the GE_LER retrieved under clear-sky conditions 

divided by the fitted BRDF dependency, as well as the multiplicative factors (𝜃) needed to compute the geometry-

dependent LER as a function of the actual satellite viewing zenith angle 𝜃. 10 

It is necessary to aggregate normalized LER retrievals over several days (between one to four weeks depending on 

cloudiness) in order to obtain a global gapless map. In contrast to LER climatologies, the G3_LER map represents the actual 

surface properties as it is updated on a daily basis. The only exceptions are cases of sudden snow fall combined with 

significant cloudiness. 

9. GE_LER and G3_LER from TROPOMI/S5P 325-335 nm 15 

In this section, we apply the The GE_LER and G3_LER algorithms described in the previous sections are applied to 

measurements of TROPOMI/S5P in the total ozone wavelength region. The S5P operational near-real-time total ozone 

products (Loyola et al., 2019) are based on the DOAS algorithm with using the fitting window of 325-335 nm. First we 

discuss aspects of the training process. 

9.1. FP_ILM GE_LER Training 20 

The training dataset is based on spectra simulated by the Vector LInearized Discrete Ordinate Radiative Transfer 

(VLIDORT) model (Spurr, 2016). The RTM inputs are ozone concentration profiles, Lambertian surface albedo, surface 

heightpressure and the viewing geometry solar and viewing angles. The smart-sampling technique (Loyola et al., 2016) was 

used to create more than 2 × 105 synthetic UV spectra for the using ozone profile, viewing geometry and surface parameters 

in the ranges listed in Table 1. We use the Bodeker et al., (2013) ozone profile climatology for representing the stratospheric 25 

ozone in conjunction ozone database merged with the McPeters/Labow (Labow et al., 2015) ozone climatology for an 

optimal representation of the ozone vertical distribution in the stratosphere and lower tropospherice ozone.  

Synthetic TROPOMI/S5P-like measurements are created by convolving these RTM radiances with applying the instrument 

slit function to the RTM simulated radiances and adding a Gaussian instrument noise with a signal-to-noise ratio of 300 

representative of TROPOMI band 3, see Kleipool et al., 2018. 30 
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The DOAS fitting is applied to these simulated S5P radiances using the same DOAS settings as in the operational S5P 

retrieval including a cubic external-closure polynomial resulting in a dataset of ozone slant columns and associated the 

polynomial coefficients.  

Figure 4 shows the optical densities difference of the DOAS polynomial (𝑝(𝜆) in Equation (2) for three scenarios:. In panel 

(a) these are given as functions ofwith respect to four typical values of surface albedo of 0.05, 0.3, 0.6, and 0.9 which 5 

correspond to water, land, melted snow/ice-covered and fresh snow/ice-covered regions. The largest absolute value of the 

optical density corresponds to the highest largest surface albedo; the optical densities for the four albedos do not differ 

significantly at the lower wavelengths, while the differences are more significant increase at the higher longer wavelengths. 

In panel (b) optical densities of the DOAS polynomial are shown with respect to three total ozone columns of 150 DU, 300 

DU, and 500 DU; the optical density increases gradually along the selected wavelength region, the absolute value of the 10 

optical density increases when the total ozone column increases. Finally in panel And (c) densities are plotted for with 

respect to three viewing zenith angles of 50°, 30°, 10°; the absolute value of the optical density increases with decreasing 

when the viewing zenith angle decreases. For all cases, the optical density increases along thewith wavelength region. 

The input and output of the simulation results from (3) areis reorganized according to (3) and aby grouping the DOAS 

polynomial coefficients, ozone slant column, the viewing geometries, and surface heights as inputs to the neural network. A 15 

feedforward neural network (the neurons are grouped in layers) is trained to learn the inverse function (retrieval of surface 

albedo) using 70% of the simulations for training, 15% for testing and 15% for validation. Different NN topologies were 

tested using one, two, and three hidden layers; tThe best results are obtained using a NN with a topology of 9-20-8-2-1, 

which is 9 neurons in the input layer, three hidden layers with the given number of neurons, and one neuron on the output 

layer. 20 

In Figure 5, we depict tThe GE_LER retrieval errors as function of the different input parameters calculated using the 

validation dataset (i.e. part of the dataset not used for the NN training) are depicted in Figure 5; the x-axes are divided into 

bins and the mean and standard deviation (red bars) are calculated for each bin. The dDifferences between the true and 

retrieved GE_LER are very small with a mean and standard deviation of only 0.0016 ± 0.0018. These results demonstrate 

that the NN represents the inverse function in a very accurate mannerprecise way. 25 

The Ring effect (filling in of Fraunhofer and telluric spectral signatures through inelastic rotational-Raman scattering by air 

molecules) is a significant spectral interference in DOAS total ozone fitting in the 325-335 nm window. We tested its impact 

for the GE_LER training by adding filling-in corrections obtained with the LIDORT-RRS model (Spurr et al., 2008) to the 

VLIDORT simulations. We found that the Ring-effect impact on GE_LER retrieval in the ozone fitting window is not 

significant. Indeed, the mean difference in GE_LER retrievals with and without the inclusion of LIDORT-RSS corrections is 30 

in the range of 5e-5 for SZA<75° and 3.5e-4 for larger SZA. 
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The BRDF effects on the ozone fitting window are well modelled using the GE_LER approximation, the difference in the 

total ozone retrieved using VLIDORT with and without the BRDF supplement is in the order of 0.5 DU or 0.2%. 

9.2. FP_ILM GE_LER Retrieval 

The neural network trained with the inverse function is applied to TROPOMI/S5P measurements. The inputs are the DOAS 

fitted polynomial coefficients and ozone slant column, the solar and viewing zenith angles, the relative azimuth angle, and 5 

the effective surface heightpressure 𝑍𝑒 computed in the independent-pixel approximation as 

 𝑍𝑒 = (1 − 𝑓𝑐)𝑍𝑠 + 𝑓𝑐  𝑍𝑐 (10) 

where 𝑓𝑐  is the cloud fraction,  𝑍𝑠 the surface heightpressure, and 𝑍𝑐 the cloud heightpressure. The S5P cloud properties are 

obtained from the operational TROPOMI cloud products using the OCRA and ROCINN algorithms (Lutz et al., 2016; 

Loyola et al., 2018) algorithms. 10 

It is known that version 1 of the TROPOMI Level 1 product has small deficiencies in the UV band (Rozemeijer and 

Kleipool, 2019); therefore a “soft” correction based on comparisons with OMPS radiances is applied to the S5P radiances. It 

is expected that these issues will be solved for version 2 of the TROPOMI Level 1 product, obviating the need for this soft 

correction. 

The TROPOMI/S5P GE_LER results for the total ozone fitting window (325-335 nm) for April 10
th

, 2018 are shown in 15 

Figure 6., aAs expected the GE_LER field shows the same patterns as the clouds field for that day. In the case ofFor clear-

sky conditions (𝑓𝑐 ≤ 0.05) the GE_LER represents the hemispherical surface albedo and, while for the cloudy scenarios 

cases (𝑓𝑐 ≥ 0.95) the GE_LER represents the cloud albedo. Figure 7 shows the histograms of the differences between the 

TROPOMI clear-sky GE_LER and the OMI LER climatology (Kleipool et al., 2008) and also the differences between the 

cloudy TROPOMI GE_LER and the cloud albedo from the operational cloud product retrieved with ROCINN_CRB (Loyola 20 

et al., 2018). The second mode around 0.5 in the histogram for the snow/ice cases indicates snow- or ice-cover conditions 

scenarios in TROPOMI data that are not wellpoorly represented in with the OMI LER climatology. The comparison between 

S5P GE_LER and the GOME-2 and OMI climatologies is discussed in more detail in Section 4.4. 

The mMean differences for the clear-sky and cloudy cases as a function of the surface type are summarized in Table 2 and 

Figure 7, with the relatively larger offsets and spreads are mainly due to the differencet in spectral regions betweencovered 25 

by GE_LER retrieved for the total ozone fitting window in the UV (325–335 nm) and the cloud properties retrieved with 

ROCINN_CRB from the O2oxygen A-bBand in the NIR (758–771 nm). 

9.3. G3_LER Daily Map 

The TROPOMI G3_LER map for a given day is created by regridding (using at resolution 0.1° x 0.1° resolution) and 

aggregating normalized LER from the couple of daysthe clear-sky LER data from the same day with the G3_LER map based 30 
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on LER data from previous days. The FP_ILM LERs are obtained from the S5P GE_LER retrievals under clear-sky 

conditions. In this version of the TROPOMI G3_LER map we use the S5P OCRA and the VIIRS/SNPP (flying in 

constellation with S5P) cloud fractions 𝑓𝑐 for identifying clear-sky measurements, more concretely, we use the measurements 

with (𝑓𝑐 ≤ 0.05 is the criterion here). In the future we plan to additionally use the S5P absorbing aerosol index product and 

the regridded VIIRS/SNPP (flying in constellation with S5P) for an even more stringent cloud/aerosol screening. 5 

The gGround pixels affected by sun glint as well as the pixels influenced byand solar eclipse are removed according to using 

the corresponding flags available in the S5P total ozone product (Pedergnana et al., 2018). The remaining FP_ILM LERs 

from a given day replace the corresponding grid points of the G3_LER map from the previous day. Time information (orbit 

number) of the LER used in each grid cell is included in the G3_LER maps. 

The BRDF dependencies (𝜃) are calculated by fitting a polynomial to the TROPOMI LER data normalized to the central 10 

detector pixel (nadir viewing) and averaged as function of the viewing zenith angle. Three different surface types are 

considered: land, water and snow/ice. Figure 8 shows the BRDF dependencies calculated with normalized TROPOMI/S5P 

data from January, April, July and October 2018. For tThe surface classification we use is based on the Lland/Wwater mask 

and the snow/ice flags available in from the S5P total ozone product (Pedergnana et al., 2018). Note that these surface types 

are appropriate to BRDF effects in the UV ozone fitting window; other trace gases retrievals (such as NO2 in the visible 15 

spectrum) will require different land cover types (e.g. water, snow/ice, urban, paddy, crop, deciduous forest, evergreen 

forest) to properly model BRDF effects; see Noguchi et al., 2014. 

Figure 9 shows the TROPOMI/S5P G3_LER daily map corresponding tofor April 30
th

, 2018, and plus a comparison to with 

the OMI LER climatology for the month of April. The OMI LER climatology is based on 3 years of data (2004 to 2007) 

whereas the TROPOMI G3_LER contains data ofis based only a few weeks of data. The main advantages of the TROPOMI 20 

G3_LER daily map compared to climatology are first that it better represents the current surface conditions like such as 

snow/ice contamination,; second that it takes into accounts for the BRDF effects; and third that it has improveda better 

spatial resolution (0.1°). 

9.4. G3_LER comparison with OMI and GOME-2 LER 

In this section we compare TROPOMI G3_LER with climatology LER from OMI (Kleipool et al., 2008) and GOME-2 25 

(Tilstra et al., 2017). Since TROPOMI G3_LER is retrieved with fitting window 325 to 335 nm, we chose 335 nm LER 

values from the two climatologies. For GOME_2 there is no shorter wavelength available in the published dataset, and for 

the OMI climatology use of the 328 nm is not recommended (Kleipool et al., 2010). In the following the instrument names 

will act as synonym for the respective albedo data sets. The three albedo datasets have different time and horizontal 

resolutions: OMI covers four years with grid resolution 0.5°, GOME: covers six years with grid resolution 0.25°, and 30 

TROPOMI covers only one year with a grid of 0.1°. 
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The histograms in Figure 10 show the differences between the TROPOMI, OMI and GOME-2 albedo maps for three 

different surface types land water and snow/ice. A grid cell is assumed to contain snow/ice if the albedo of all three 

instruments is above 0.7, and the latitude is outside the ±60° range. For the snow- and ice-free observations over land and 

sea, the latitude range was restricted to ±40°. In general the three data sets agree quite well. Over land and water the mean 

differences are lower than 0.03 and the distributions are small (standard deviation around 0.04). The histograms with S5P 5 

over land have tails towards higher values of up to 0.1 indicating that for some areas S5P data overestimate the albedo. 

According to the corresponding world maps (Figure 11) this occurs mainly over rain forests in Brazil, central Africa or 

Indonesia, where the TROPOMI data might be affected by residual cloud contamination. Note that for TROPOMI we have 

only one year of data compared to the multi-years for OMI and GOME-2  

Over snow and ice larger deviations are found between OMI and GOME-2 LERs and between TROPOMI G3_LER and the 10 

climatological OMI/GOME-2 LERs. We conclude that the historical climatologies from OMI and GOME-2 do not properly 

represent actual snow/ice conditions observed in 2018/2019. 

9.4.9.5. Usage of TROPOMI/S5P G3_LER for the Total Ozone retrieval 

The near-real-time S5P total ozone product is based on an iterative DOAS/AMF algorithm (Loyola et al., 2019) and the 

current operational version (1.1.57) uses the OMI LER climatology (Kleipool et al., 2008). The median bias between near-15 

real-time total ozone from S5P and reference data from Brewer, Dobson, and SAOZ sites is of the order of +1% (Verhoelst 

et al., 2018; Garane et al., 2019). 

S5P near-real-time ozone agrees well with the Copernicus Atmosphere Monitoring Service (CAMS) analysis with the 

exception of some anomalies at high latitudes (Inness et al., 2019). Those anomalies are associated to with the coarse 

resolution of the OMI LER climatology and most importantly, with the differences between the climatological LER values 20 

and the actual surface conditions (mainly like snow/ice). 

When we replace the OMI LER climatology with the TROPOMI G3_LER daily maps, and the resulting total ozone field is 

significantly smoother and has significantly fewer with far less outliers. Figure 12 shows the TROPOMI/S5P surface albedo 

and total ozone retrievals from April 1
st
, 2018 around the Bering Strait which separatinges Russia and Alaska. The 

TROPOMI G3_LER daily map agrees very well with the surface types apparent visible in the corresponding VIIRS/SNPP 25 

images (S5P flies only 3-5 minutes behind SNPP) including the water surface along the coastlines of the shores of the 

Chukchi Sea in Russia, and the Sarichef Island in to the north of Alaska and the Seward Peninsula in south of Alaska. These 

coastal water surfaces along the coast as well as the open water of the Bering Sea are not properly well represented in the 

OMI LER climatology, which indicates that shows snow/ice cover for these regionssea areas. SimilarlyLikewise, the OMI 

LER climatology (erroneously) shows no snow/ice cover in the Yukon–Koyukuk Census Area in Alaska. The coarse spatial 30 

resolution of the OMI LER climatology is clearly visible in the total ozone field, and in addition, incorrect what is even 
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worset the wrong snow/ice assignments values in the OMI LER climatology induce large errors on the retrieved total ozone 

with differences between −10% and  +15%. 

Moreover, the agreement of the S5P total ozone with the CAMS assimilation at high latitudes is significantly better than that 

for the LER climatologies, as seen in , see Figure 13. The mMean differences between total ozone from S5P and CAMS for 

the complete month of April 2018 are summarized in Table 3. The agreement with CAMS improves considerably in at all 5 

latitudesinal regions: the differences in the total ozone in for the region [80°S-60°S] is are reduced from −2.5361 ±

2.4622% using OMI LER to 0.784 ± 23.493% using TROPOMI G3_LER, in the regionfor [60°S-50°N] the difference 

remains at the same level with a small increase is reduced from 0.253 ± 1.174% to −0.1238 ± 1.213%, in the region 

[50°N-70°N] is reduced from 1.214 ± 2.465%  to −0.0179 ± 21.0298% and finally in the regionfor [70°N -90°N] the 

difference is reduced from −1.0041 ± 2.58% compared to −01.135 ± 2.645%. 10 

10. Conclusions 

We have developed a novel algorithm for the accurate and fast retrieval of geometry-dependent effective Lambertian 

equivalent reflectivity (GE_LER) from UVN sensors based on the full-physics inverse learning machine (FP_ILM) 

technique. The main inputs to the GE_LER retrieval are the DOAS fitting polynomial coefficients and the fitted trace gas 

slant column amounts, as well as the satellite viewing geometry. The inversion problem is solved using neuronal networks 15 

trained with radiative transfer model simulations based on the same kind of RTM and settings used for the AMF 

calculations. 

A global gapless geometry-dependent LER (G3_LER) daily map can be easily created from the GE_LER retrievals under 

clear-sky conditions. The G3_LER daily maps better characterize current surface; in particular they minimize errors induced 

by the LER climatologies through inaccurate representation of snow/ice scenarios. Both GE_LER and G3_LER take into 20 

account the for satellite viewing dependencies which are characteristiczed by the bidirectional reflectance distribution 

function (of BRDF) effects. 

GE_LER is retrieved from each single ground pixel using the same spectrum and DOAS/AMF settings as those employed 

for the trace gas retrievals, and GE_LER is therefore it is fully consistent with the trace gas retrieval itself. This is in contrast 

to LER products based on data from other satellites or LER data derived from the same satellite but using different fitting-25 

window or RTM settings. G3_LER maps are updated on a daily basis using the clear-sky GE_LER under clear-sky 

conditions fromfor that day, and they are evidently therefore it is clearly superior to LER climatologies that fail to represent 

the actual surface conditions like snow/ice. 

We have applied the FP_-ILM algorithm to retrieve GE_LER from TROPOMI for the 325-335 nm fitting window and 

thereby generate daily /G3_LER maps that are used to retrieve the S5P total ozone.and showed that the S5P total ozone 30 

retrievals based on using theis novel product is TROPOMI G3_LER daily maps are clearly substantially superior to those 
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one created using thebased on OMI_LER climatology. The ozone fields are not only much more smoother, but also the 

differences compared to the total ozone from CAMS in April 2018 is reduced from −2.53 ± 2.46% to 0.78 ± 3.49% in the 

latitudinal region [80°S-60°S]. Large eErrors oin the S5P total ozone between −10% and  +15% induced by snow/ice miss-

representations in the OMI_LER climatology are removed using with the FP_-ILM GE_LER/G3_LER TROPOMI products. 

FP_ILM GE_LER can be applied to any trace gas, cloud and aerosol product retrieved in the UVN and is fully compatible 5 

with the DOAS/AMF settings used for the trace gas retrievals. GE_LER and G3_LER can be used as inputs for computing 

AMFs, either with based on the effective scene assumption approximation or the independent pixel approximation 

respectively. In this paper we demonstrated their effectiveness for improving the quality of TROPOMI the total ozone from 

TROPOMI; in the near future we will plan to extend GE_LER/G3_LER to the fitting windows of for the S5P operational 

UVN cloud product (Loyola et al., 2018), and the UV/VIS trace gases NO2 (van Geffen et al., 2018), SO2 (Theys et al., 10 

2017), HCHO (De Smedt et al., 2018) as well as to fitting windows for S5P research products like such as H2O, BrO, OClO, 

CHOCHO and aerosol optical depth. 

The GE_LER retrieval is accurate and extremely very fast and is therefore well suited for the (near-real-time) processing of 

the huge amount ofmassive data of from the atmospheric Sentinel satellite missions. We plan to apply the FP_ILM 

GE_LER/G3_LER retrieval to the future Copernicus Sentinel-5 mission that (like Sentinle-5P) tracks along will follow a 15 

sun-synchronous polar orbit. Furthermore, we plan to assess the suitability of FP_ILM GE_LER to capture the diurnal LER 

dependencies on the sun-satellite geometry of the future UVN geostationary missions Sentinel-4, TEMPO and GMES. 
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Table 4: Ranges of for the input parameters appropriate used for radiance simulations in the total ozone fitting window; the ozone 

profiles are classified as a function of the total column. Smart sampling is employed used to generate node points optimally 

covering all input dimensions and more than 𝟐 × 𝟏𝟎𝟓 synthetic UV spectra are generated.  

Parameter Minimun Maximum 

Ozone Profile 125 DU 575 DU 

Solar Zenith Angle 0° 90° 

Viewing Zenith Angle 0° 70° 

Relative Azimuth Angle 0° 180° 

Surface Albedo 0 1 

Surface Pressure 125 hPa 1013 hPa 
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Table 5: Summary of the comparison between TROPOMI GE_LER clear-sky and OMI LER (first three rows) and between as 

well as for TROPOMI GE_LER cloudy and ROCINN_CRB cloud albedo (rows 4-6). There are more than 4.5 million clear-sky 

and more than 1.4 million cloudy cases out of approximately the around 15 million S5P measurements from in April 10th, 2018. 

 Number Mean Std. Dev. 

Clear-sky Land 866 907 0.0014 0.0624 

Clear-sky Water 1 837 686 -0.0144 0.0762 

Clear-sky Snow/Ice 1 852 222 -0.0048 0.2573 

Cloudy Land 254 645 0.0834 0.1865 

Cloudy Water 1 084 985 0.0487 0.1464 

Cloudy Snow/Ice 127 636 -0.0343 0.5432 

 

 5 
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Table 6: Latitudinal differences between total ozone from CAMS and S5P using TROPOMI G3_LER and OMI LER for the 

complete month of April 2018. The values represent the total number of measurements for each latitudinal range and the mean 

differences ± standard deviations (in percentages). Latitude bands with less than 100000 data points/degree were skipped, due to 

the polar winter conditions, there are hardly any data south of 81°S. The number of measurements increases towards higher in the 

north because of the overlapping orbits. 5 

Latitude 

Range 
Number 

TROPOMI 

G3_LER 
OMI LER 

80°S-70°S 11297206 -1.341 ± 2.364 -2.041±2.114 

70°S-60°S 29018428 -0.364 ± 2.472 -2.727±2.300 

60°S-50°S 32351377 0.557 ± 1.783 0.808±1.815 

50°S-40°S 31580917 -0.345 ± 1.189 0.048±1.224 

40°S-30°S 31154717 -0.776 ± 0.906 -0.336±0.930 

30°S-20°S 30948143 -0.726 ± 0.770 -0.252±0.807 

20°S-10°S 30814933 -0.001 ± 0.736 0.537±0.745 

10°S-0°S 30744238 -0.163 ± 0.774 0.517±0.720 

0°N-10°N 30732173 -0.199 ± 0.833 0.607±0.738 

10°N-20°N 30779225 -0.581 ± 0.798 0.142±0.728 

20°N-30°N 30894360 -0.788 ± 0.945 -0.097±0.901 

30°N-40°N 31091907 -0.710 ± 1.340 0.173±1.336 

40°N-50°N 31469922 -0.456 ± 1.858 0.584±1.880 

50°N-60°N 32250750 -0.474 ± 1.721 1.287±1.920 

60°N-70°N 39590441 -0.977 ± 2.211 1.155±2.798 

70°N-80°N 56545121 -1.182 ± 2.581 -0.730±2.701 

80°N-90°N 26178029 -1.717 ± 2.424 -1.595±2.317 
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Figure 14: Data flow diagram of for the FP_ILM training phase. The smart sampling techniques is used to creates simulated state 

vector xs and geophysical conditions Ws that are used as input to a the forward model for the calculation creation of simulated 

spectra with their expected errors ys+ey.  Machine learning techniques are deployed used for computing the inverse operator that 5 

is trained using as input the features extracted from the simulated spectra M(ys) and the geophysical conditions Ws as an output the 

state vector and the errors xs+ex. 
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Figure 15: Data flow diagram of for the FP_ILM retrieval phase. The inverse operator computed during the FP_ILM training 

phase is used to solves the inverse problem and retrieve the state vector x taking as input the features M(y) extracted from the 10 
measured spectra y and the geophysical conditions W.  
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Figure 16: Data flow diagram of for the creation of the global gapless geometry-dependent LER (G3_LER) map for day d, 5 
obtained by merging the clear-sky LER data from the same day with the G3_LER map from the previous day. 
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(a) 

 

(b) 

 

(c) 

 

Figure 17: Optical densities difference of the DOAS polynomial as a function of wavelength: with respect to (a) surface albedo, (b) 

total ozone, and (c) viewing zenith angle. The dotted-lines represent the DOAS fitted polynomial.  

 5 

  



59 

 

 

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

    

Figure 18: GE_LER retrieval error as a function of (a) total ozone, (b) surface pressure, (c) solar zenith angle, (d) viewing zenith 

angle, and (e to h) the four DOAS polynomial fitting coefficients. 
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(a) 

 

(b) 

 

Figure 19: (a) GE_LER in the total ozone fitting windows [325-335 nm] retrieved from TROPOMI/S5P data from on April 10th, 

2018 and (b) the corresponding cloud fraction for this day. 
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Figure 20: Histograms of the differences (left) between clear-sky TROPOMI GE_LER and OMI LER climatology and (right) 

between the cloudy TROPOMI GE_LER and the ROCINN_CRB cloud albedo from the operational S5P cloud product. The 

comparisons are performed separately according to per surface types (land, water, and snow/ice), with and using S5P data from 

April 10th 2018. 5 

  



62 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

Figure 21: BRDF dependencies (𝜽) as a function of the viewing zenith angle for land, water, and snow/ice conditions, as 

calculated with normalized TROPOMI/S5P data from (a) January, (b) April, (c) July, and (d) October 2018. The negative viewing 

zenith angles correspond to the first 225 detector pixels. The discontinuity at nadir is due to numerical issues in the radiative 

transfer model calculations with very small relative azimuth angles.  5 

 

 

  



63 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

(c) 

 

Figure 22: (a) TROPOMI G3_LER daily map (325-335 nm) for corresponding to April 30th, 2018, (c) OMI LER climatology (335 

nm) for the month of April, and (b) the difference between these two datasets. There is a very good agreement over land and water 

surfaces, the with majyor differences are due toin snow/ice regions in of the OMI LER climatology from 2004-2007 that do not 

match with the actual surface conditions observed in April 2018. 
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Figure 23: Histograms of the differences (left) between TROPOMI G3_LER and GOME-2B climatology, (middle) between 

TROPOMI G3_LER and OMI LER climatology, and (right) between OMI and GOME-2B LER climatologies. The comparisons 

are performed separately for surface types (land, water, and snow/ice) using data from October 2018. 5 
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Figure 24: Albedo difference maps between TROPOMI, GOME-2 and OMI for October 2018. North of 60°N the discrepancy 

between the three datasets reaches a maximum due to snow/ice conditions. While S5P overestimates compared to GOME-2, it 

underestimates compared to OMI. 
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(a) (b) (c) 

 
 

 

(d) (e) (f) 

   

Figure 25: TROPOMI/S5P (top) surface and (bottom) ozone measurements from April 1st, 2018 around the Bering Strait. The (a) 

TROPOMI/S5P G3_LER daily map agrees very well with the surface types observed in the (b) VIIRS/SNPP image including the 

water surface along the coastals waters of Russia and Alaska. These coastal waters surfaces along the coast as well as the open 

waters of the Bering Sea are not properly represented in the (c) OMI LER climatology that shows snow/ice over these regions. 

Likewise, the OMI LER climatology erroneously shows no snow/ice in Alaska. The total ozone field using the (d) TROPOMI 5 
G3_LER daily map is significantly smoother than the field derived from corresponding one using the (f) OMI LER climatology. 

The coarse spatial resolution of the OMI LER climatology is clearly manifested visible in the total ozone field and incorrect what is 

even worst the wrong snow/ice values in the OMI LER climatology induce large errors oin the retrieved total ozone (e) with 

differences between −𝟏𝟎% and +𝟏𝟓%. 
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Figure 26: Comparison of total ozone from CAMS and the S5P retrieved ozone using the OMI LER climatology and the daily 

TROPOMI G3_LER maps for April 2018. The total ozone values based on daily G3_LER maps is significantly closer to those 

from CAMS especially for the high latitude regions. 
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