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Abstract7

The United States Environmental Protection Agency (US EPA) list of Hazardous Air Pollutants8

(HAPs) includes toxic metal suspected or associated with development of cancer. Traditional techniques9

for detecting and quantifying toxic metals in the atmosphere are either not real time, hindering identi-10

fication of sources, or limited by instrument costs. Spark emission spectroscopy is a promising and cost11

effective technique that can be used for analyzing toxic metals in real time. Here, we have developed a12

cost-effective spark emission spectroscopy system to quantify the concentration of toxic metals targeted13

by US EPA. Specifically, Cr, Cu, Ni, and Pb solutions were diluted and deposited on the ground electrode14

of the spark emission system. Least Absolute Shrinkage and Selection Operator (LASSO) was optimized15

and employed to detect useful features from the spark-generated plasma emissions. The optimized model16

was able to detect atomic emission lines along with other features to build a regression model that pre-17

dicts the concentration of toxic metals from the observed spectra. The limits of detections (LOD) were18

estimated using the detected features and compared to the traditional single-feature approach. LASSO19

is capable of detecting highly sensitive features in the input spectrum; however for some toxic metals20

the single-feature LOD marginally outperforms LASSO LOD. The combination of low cost instruments21

with advanced machine learning techniques for data analysis could pave the path forward for data driven22

solutions to costly measurements.23
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1 Introduction24

The United States Environmental Protection Agency (US EPA) lists a number of metals in their list of25

Hazardous Air Pollutants (HAPs). These metals are known or suspected to cause cancer or other serious26

health effects (Buzea et al. (2007); Pope III et al. (2002)). Table 1 lists the metals in US EPA’s HAPs list.27

Table 2 lists other metals that are not on US EPA’s HAPs list but have been implicated in a range of

Table 1: List of hazardous metals targeted by US EPA

US EPA Metal HAPS
Antimony
Arsenic

Beryllium
Cadmium
Chromium

Cobalt
Lead

Manganese
Mercury
Nickel

Selenium

Table 2: List of other toxic metals

Toxic Metals
Copper

Iron
Zinc

28

adverse health effects so are of concern to the California Air Resources Board (CARB). It has been shown29

that presence of these metals are associated with various health concerns such as diabetes (Zanobetti et al.30

(2009)), cardiovascular disease (Brook et al. (2004)), and asthma (Gent et al. (2009)). Therefore, it is31

necessary to monitor and quantify their ambient concentration.32

Various techniques over the years have been developed and used to measure metal particles. X-ray33

fluorescence (XRF) (Van Meel et al. (2007); Vincze et al. (2002)) and inductively coupled plasma mass34

spectrometry (ICP-MS) (Rovelli et al. (2018); Venecek et al. (2016)) have been used traditionally to quan-35

tify metals in atmospheric particles. XRF is excellent for measuring lighter elements and metals on filter36

substrates, but for field application it is expensive, has a high limit of detection (LOD) for heavier elements,37

and includes radiation risk. ICP-MS requires collection of aerosol on a substrate, such as a filter or impactor38

foil, extraction of the metals or elements from the substrate using harsh acidic chemicals, and then analyz-39

ing in the ICP-MS along with standards that help the instrument quantitate. Moreover, ICP-MS is most40

suitable for heavier elements and metals so has a high LOD for lighter toxic metals and is not available in41

field-deployed, real-time applications. Additionally, these instruments are expensive and hence are limited42

by cost and complexity as well.43

Spark-induced breakdown spectroscopy (SIBS) and laser-induced breakdown spectroscopy (LIBS) have44

been employed in various applications from combustion (Do and Carter (2013); Kiefer et al. (2012); Kotza-45

gianni et al. (2016)), nanomaterials (Davari et al. (2017a); De Giacomo et al. (2011); Hu et al. (2017);46

Matsumoto et al. (2015a,b, 2016)), and environmental/bio-hazards (Diwakar et al. (2012); Diwakar and47

Kulkarni (2012); Zheng et al. (2018b)), forensics (Martin et al. (2007)), semiconductors and thin films (Ax-48

ente et al. (2014); Davari et al. (2017b, 2019); Hermann et al. (2019)), explosives (Gottfried et al. (2009)),49

pharmaceuticals (Mukherjee and Cheng (2008a,b); St-Onge et al. (2002)), and biomedical (Abbasi et al.50

(2018); Baudelet et al. (2006); Davari et al. (2018)). Particularly, Fisher et al. (2001) studied various toxic51

metals in aerosols by optimizing the spectrometer response with respect to gate delay. Hunter et al. (2000)52
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employed spark emission spectroscopy for continuous monitoring of metallic elements in aerosols. Yao et al.53

(2018) used spark emission spectroscopy to obtain the carbon content of fly ashes. Diwakar and Kulkarni54

(2012) employed spark emission spectroscopy coupled with a corona aerosol microconcentrator (CAM) to55

improve the particle collection efficiency and detection limits of toxic metals. Zheng et al. (2017) character-56

ized the CAM performance with respect to different experimental parameters and obtained the optimized57

design parameters for their CAM system.58

Recently, machine learning and deep learning techniques have been applied in different fields. These59

techniques in general learn patterns that can be used to distinguish different labels. Boucher et al. (2015)60

employed various linear and nonlinear machine learning techniques on LIBS spectra obtained from geological61

samples and concluded that a combination of models yields a lower total error of prediction. Chengxu et al.62

(2018) used convolutional neural networks to detect potassium in LIBS spectra and improve the linearity63

of their prediction model incorporating deep convolutional layers. Zheng et al. (2018a) employed spark64

emission spectroscopy on metals and used partial least squares regression to analyze their spectra set. They65

compared their multivariate models to univariate models and showed in their study these two groups have66

similar performance.67

While LIBS and SIBS address issues regarding the field measurement and instrument complexity, they68

are still considered expensive. Current interest in low-cost sensors and their ability to characterize local69

air pollution concentrations motivated development of a low-cost system. We employed two complementary70

approaches: (1) decreasing the cost of the electronics associated with SIBS and (2) incorporating advanced71

data analysis techniques to improve quantification and limit of detection. In recent years, numerous studies72

have used artificial neural networks (Ferreira et al. (2008)), partial least squares regression and least absolute73

shrinkage and selection operator (LASSO) (Dyar et al. (2012)) on emission spectra to improve the quantifi-74

cation and limit of detection of spectroscopic systems. In this study, we have developed a low-cost spark75

emission spectroscopy system to quantify toxic metals. To reduce the overall cost, inexpensive replacements76

for necessary components, such as the spark generator and delay generator have been developed in the lab.77

To improve performance, advanced machine learning tools such as K-Means clustering and LASSO have78

been employed to improve the system performance. The resulting instrument was evaluated against four79

toxic metals listed by US EPA.80

2 Instrument development:81

2.1 Spark generation system:82

Setting up a spark emission spectroscopy system requires expensive components. However, depending on83

the application some of the components can be replaced. Components such as spark generator and delay84

generator can cost up to $10K and $5K respectively. According to our application and needs, we developed85

these components for less than $600 and $50 respectively. One costly component that is required for devel-86

oping a spark emission spectroscopy system is the spark generation system. Numerous papers have studied87

the fundamental principles of spark emission spectroscopy (Sacks and Walters (1970); Walters (1969, 1977)).88

The key idea is to discharge a capacitor as quickly as possible to increase the power dissipated in the spark89

gap. Fig. 1 illustrates the schematic of the spark generation system. The overall goal is to charge a capacitor90

at high voltage and once it has been charged sufficiently, discharge the capacitor through the spark gap.91

An Arduino board controls the timing between charging and discharging the capacitor. A boost convertor92

converts 24v DC to 5000v DC and is connected to a mechanical relay with two switching states controlled93

with the Arduino board. In the charge state, the mechanical relay provides the conduction path between94

the boost convertor and the capacitor. In this configuration, the capacitor reaches full charge in 5µs. Once95

the capacitor is fully charged, the Arduino board sends a signal to turn off the boost convertor and sends96

another signal to the mechanical relay to flip to the discharge state. At the discharge state, the mechanical97

relay provides a conduction path between the capacitor and the spark gap. Shepherd et al. (2000) showed98

that the discharge process could be controlled by a resistor after the spark gap. For low resistor values, the99

spark current exhibited a periodic behavior as the capacitor discharges, which can be associated with an100

under damped discharging. On the other hand, increasing the resistor value damped the discharge process101

and dissipated a large portion of the capacitor energy through the resistor instead of the spark gap.We found102

that 10 Ω resistor maximizes the power dissipation in the spark gap, while minimizing oscillations. Fig. 2103
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Figure 1: Schematic of the developed spark emission spectroscopy.

Figure 2: Spark voltage evolution in time.

illustrates the evolution of the generated spark as a function of time. The voltage shows a sudden increase104

followed by an exponential decrease fully discharging in less than 5µs and thus delivering sufficient energy105

to the arc and deposited analyte.106

2.2 Delay generator:107

The delay generator is another costly component typically used in time-resolved spectroscopy. Electronics108

advances have paved the way for developing a cost-effective delay generator. The delay generator suppresses109

initial noise in the emission spectrum so needs to cover a range between 1µs and 20µs with resolution less110

than 0.2µs. We designed a custom-built delay generator in order to lower the overall cost of the instrument.111

Fig. 3 illustrates the schematic of the circuit. Upon generation of the spark-induced plasma, a pair of112

lenses collects and focuses the plasma emission into a photodiode. The pulse generated by the photodiode113

is passed into a voltage comparator (LM 311-N) to generate a transistor–transistor logic (TTL) signal. The114

output TTL signal from the comparator is sent to a pulse width modulator (PWM) controller (LTC6992),115

which adds delay to the TTL signal. An Arduino board adjusts a digital resistor (AD5241), which in turn116

determines the delay value. Fig. 4 shows the delay generator performance. The Y axis illustrates the delay117

values requested of the delay generator while the X axis shows the measured values. The red dashed line118
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shows the desired 1:1 line while the circles show the measured performance. The performance is linear over119

the relevant delay range with only a slight deviation from the 1:1 line. Considering the spark generated

Figure 3: Schematic of the built-in delay generator.

Figure 4: The expected delay set by the Arduino board as a function of the measured delay.

120

plasma short lifetime, our measurements require short delay values (< 5µs) where the built-in delay generator121

shows excellent performance and accuracy.122

2.3 Spectra Collection:123

Four toxic metals with different concentrations were used to test the developed spark emission spectrometer124

system performance. Cr, Cu, Ni and Pd (1000µg/mL) were purchased from AccuStandard and diluted to125

specific concentrations. For each concentration more than 10 spectra have been collected and used for model126

development. A micropipette was used to deposit diluted solutions on a 1 mm diameter Tungsten ground127

electrode of the spark system for emission analysis. The total mass can be calculated from the deposited128

volume and solution concentration. Upon evaporation of the droplets, the capacitor was discharged to ablate129

the deposited material and obtain spectra. A pair of lenses (75mm focal length and 1” diameter, Thorlab)130

focused the emission into an optical fiber connected to a spectrometer (Ocean Optics).131

3 Results and discussions:132

To address shot-to-shot variations in the spark-generated plasma and nullify possible faults caused by the low133

cost components, an unsupervised learning technique, K-Means clustering, classifies the collected spectra.134

Following this procedure, it is possible to identify and remove outliers and hence improve the accuracy of135
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Figure 5: The elbow plot suggests two centroids for clustering the spectra set.

Figure 6: K-Means clustering for detecting outliers before passing the spectra set to LASSO model. Two clusters
were plotted for the normalized intensities of two arbitrary wavelengths at λ1 (208.365 nm) and λ2g (208.759 nm).

the analysis. Fig. 5 illustrates the elbow plot that is used to optimize the number of spectral classes. The136

standard approach is to set the optimum number of clusters to the value where the within-cluster sum137

of squares (WCSS) error plateaus. The WCSS error plateaus once we have two or more centroids and138

therefore, the number of centroids is set to two. Fig. 6 illustrates the performance of the model for 300139

spectra obtained from the background (Tungsten ground electrode ablation). The results show clearly two140

clusters with different emission response. The lower left cluster containing < 10% of the spectra represent141

low-signal outliers so were eliminated from further analysis. For each toxic metal, 0.1, 1, 10 and 100 ng of142

mass were deposited on the ground electrode. For each concentration, 10 spectra were collected using 2 µs143

delay between the observed and recorded emissions. After ablating the deposited mass and recording the144

spectrum, feature scaling has been used as a preprocessing step to improve the optimization process for out145

machine learning model. Plasma temperature can be obtained as:146

Iem =
hc

λki
NkAki (1)

147

Nk = N
gke

− Ek
kBT

U(T )
(2)
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Combining equations (1) and (2) and taking log from both sides:148

ln(
Iemλki
gkAki

) = − Ek
kBT

+ ln(
hcN

U(T )
) (3)

where kB is Boltzmann constant, Aki is the transition probability between two energy states (i) and (k), Nk149

is the population density at energy state k (Ek). λki indicates the wavelength associated with the transition150

and gk represents the degeneracy of energy state k. The slope of equation (3) is used to estimate the plasma151

temperature based on a series of Tungsten lines for the recorded cleaned spectra set at 2µs . Fig. 7 illustrates152

the Boltzmann plot (Hahn and Omenetto (2010, 2012)) constructed by Tungsten lines. Based on the slope153

of the fit, the plasma temperature is estimated as 4013 ± 579 K. Upon identifying and removing the outlier

Figure 7: Boltzmann plot for various Tungsten lines in order to estimate plasma temperature.

154

spectra, the cleaned spectra set is normalized using the Tungsten peak at W I (400.87 nm) and fed into the155

Least Absolute Shrinkage and Selection Operator (LASSO) algorithm for model development and prediction.156

LASSO:157

The cleaned scaled spectra set has been used to detect and quantify concentrations of the toxic metals.158

Simple linear regression obtains the slope and intercept of a linear line by minimizing the mean squared159

error between the predictions and known values. Least absolute shrinkage and selection operator (LASSO)160

detects and employs more features to perform predictions by optimizing the following loss function:161

J(θ) =
1

m

m∑
i=1

(y(i) − hθ(x(i)))2 + c

k∑
j=1

|θj | (4)

where x(i) ∈ R2048 and hθ(x
(i)) represent the normalized spectrum and the LASSO concentration prediction162

based on spectrum (i) (x(i)), respectively, and where y(i) is the known concentration corresponding to163

spectrum (i). m refers to total number of spectra and the LASSO coefficients are indicated by θj . k164

indicates the total number of features (spectral lines) used to build the model. The first term in equation165

(4) is the mean squared error and is common with simple linear regression, while the second term is a166

regularization term that minimizes the magnitude of θj . The L1 norm essentially sets most of the features167

in the spectrum to zero and maintains only a few features to build the linear model and perform predictions.168

The regularization constant (c) determines the number of features to be used in the model, and therefore169

the model loss needs to be optimized with respect to the regularization constant. To obtain the optimized170

regularization constant, we plotted the loss values for the Ni spectra training and testing sets as a function of171

number of features for various c values based on Leave-One-Out cross validation (Fig. 8). As expected, the172

train loss monotonically decreases as the number of features increases, while the loss for the test set initially173
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Figure 8: The train and test losses for Ni as a function of number of features.

Figure 9: (a) LASSO predictions based on Leave-One-Out cross validation for Ni , (b) the averaged predictions for
each concentration.

Figure 10: Ni 10ng spectrum (black line) and selected features by LASSO (red line).

decreases and then starts increasing. This implies that after incorporating a certain number of features into174

the model, the model starts memorizing rather than generalizing, which is known as overfitting. Therefore,175

we set the regularization constant to the value that minimizes the loss for the test set. Fig. 9 illustrates176

the optimized LASSO model predictions obtained by cross validation. For each concentration, the cross177

validation predictions were averaged and plotted along with the standard deviations. The predicted values178

vary linearly with the actuals. Figure 10 shows the wavelengths chosen by LASSO and the mean spectrum179

for 10 ng. LASSO chose a few Ni emission peaks along with other features to build the model. The same180

optimization process was applied to other toxic metals specifically Cr, Cu, and Pb. Fig. 11 illustrates the181
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resulting predictions and demonstrates the value of LASSO for predicting deposited mass from the spectra.

Figure 11: The optimized LASSO models predictions for Cr, Cu, Ni and Pb.

182

To obtain the limit of detection (LOD), the following function of the LASSO coefficients θj was used:183

LOD = 3
σB
S

= 3σB ‖θB‖ (5)

where σB is the standard deviation of the background and ‖θB‖is the Euclidean norm of LASSO coefficients.184

Table 3 reports the LODs of the studied toxic metals.185

Multivariate regression models such as LASSO might be more powerful in detection and quantification

Table 3: Detection limits for various toxic metals based on the LASSO and univariate models.

Toxic Metal LASSO R2 MAELASSO Univariate R2 MAEUnivariate Regularization cons.
Cr 3.55 0.99 6.71 3.28 0.98 3.83 0.0008
Cu 12.09 0.92 49.67 0.68 0.11 143.27 0.0006
Ni 9.60 0.98 6.67 2.32 0.88 68.63 0.0009
Pb 54.40 0.90 36.67 8.37 0.45 124.42 0.0018

186

over univariate models; however, there is no guarantee that multivariate models outperform simple linear187

regression (Braga et al. (2010); Castro and Pereira-Filho (2016)). To evaluate LASSO performance, we188

compared LASSO with univariate methods, by calculating the LODs using simple univariate linear regression189

based on the features selected by LASSO. Fig. 12 illustrates the LODs obtained using this univariate190

technique (circles) compared to LASSO LOD (dashed line) for Ni. Considering only the sensitivity (LOD)191

is necessary but not sufficient for evaluating model performance since low R2 values are also problematic.192

Therefore, in order to incorporate both R2 and LOD for model assessment, we defined a score as:193

Score = (
LOD

R2
)2 (6)
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Figure 12: (a) the univariate LODs based on LASSO selected features and (b) LASSO and univariate models scores.

Figure 13: Model scores defined by equation 3 for Cr, Cu, Ni and Pb. Circles indicate univariate models scores and
dashed lines correspond to LASSO scores.

Based on this definition, a model that has low LOD and high R2 is desirable. LASSO score outperforms194

single feature linear regression for Pb, but the two methods were comparable for Cu, Ni, and Cr (Fig. 13).195

Other studies have reported that univariate techniques performed better than multivariate ones (Braga et al.196

(2010); Castro and Pereira-Filho (2016)). In LASSO, this may be related to the cost function defined for197

the regression (equation (4)). LASSO is a special case of elastic net family where both L1 and L2 norms198

are combined and used in the cost function. Considering the cost function in equation (4), the model goal is199

to minimize the prediction error and coefficient values (minimizing L1). This does not necessarily optimize200

LOD. Therefore, cost function minimization does not correspond to LOD minimization. Considering Fig.201

12, using features defined by LASSO in a univariate model may yield better LOD than that obtained by202

LASSO alone. This might be an advantageous approach if the physical intuition of the features is not as203

important as detection of toxic metals.204
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4 Conclusion205

A cost-effective spark emission spectroscopy instrument was designed and developed to quantify toxic metals206

targeted by US EPA and the California Air Resources Board. Costly components such as the spark generation207

system and delay generator were developed to lower the overall cost. An unsupervised learning technique208

was employed to detect outlier spectra. The cleaned spectra set was fed into LASSO for predicting the209

concentration of deposited samples on the ground electrode of the spark system from spectra obtained210

from the plasma. A combination of LASSO feature detection with univariate regression might improve the211

detection limits. Our results illustrate the promising realm of cost-effective sensors combined with advanced212

machine-learning techniques to provide data driven solutions to the traditional challenging problems.213
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