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Abstract. We present an approach to derive a systematic mathematical representation of the statistically significant features 

of the average long-term changes and seasonal cycle of concentrations of trace tropospheric species. The results for two 10 

illustrative data sets (time series of baseline concentrations of ozone and N2O at Mace Head, Ireland) indicate that a limited 

set of seven or eight parameter values provides this mathematical representation for both example species. This method 

utilizes a power series expansion to extract more information regarding the long-term changes than can be provided by oft-

employed linear trend analyses. In contrast, the quantification of average seasonal cycles utilizes a Fourier series analysis 

that provides less detailed seasonal cycles than are sometimes represented as twelve monthly means; including that many 15 

parameters in the seasonal cycle representation is not usually statistically justified, and thereby adds unnecessary “noise” to 

the representation and prevents a clear analysis of the statistical uncertainty of the results. The approach presented here is 

intended to maximize the statistically significant information extracted from analyses of time series of concentrations of 

tropospheric species regarding their mean long-term changes and seasonal cycles, including non-linear aspects of the long-

term trends. Additional implications, advantages and limitations of this approach are discussed. 20 

1 Introduction 

Utilizing observations to fully characterize the four-dimensional (latitude, longitude, altitude and time) concentration 

distribution of a trace tropospheric species is a daunting prospect. This paper discusses an analysis approach for 

quantification of only a small part of the full distribution - the mean long-term changes and seasonal cycle at a particular 

point in the troposphere - but it provides that quantification in an accurate, precise and simple form. The discussion focuses 25 

on monthly mean, baseline ozone (Derwent et al., 2018a) and N2O concentrations reported for the surface site at Mace Head, 

Ireland, but the analysis approach is general, and so can be applied to other locations and trace species. This approach 

extends the techniques developed in earlier publications: Parrish et al. (2012; 2014; 2017) for long-term changes and Parrish 

et al. (2016) and Derwent et al., (2016, 2018b) for seasonal cycles. This extension provides consistently defined parameters 

with confidence limits that quantify these systematic temporal variations. 30 
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From a wider, more formal perspective, Bowdalo et al. (2016) discuss the temporal variability of hourly average, 

tropospheric ozone concentrations through an extensive spectral analysis. They identify two distinct scaling regimes of 

ozone variability, one at high frequencies with periods from 2 hours to about 10 days, and a second at lower frequencies with 

10 day to 5 year periods (the maximum period they considered). In analogy with spectral analysis of meteorological 

variability, Bowdalo et al. (2016) identify the higher frequencies as the “weather” regime, driven by meteorological 5 

processes with frequencies up to those of planetary-scale weather systems. Meteorological frequencies with periods greater 

than ~10 days are driven by the average of the largest planetary-scale weather systems, which they term “macroweather”. 

They also suggest that there would be a third “climate” regime beginning between 10 and 100 years caused by low-

frequency interactions such as solar, volcanic, or anthropogenic forcings. Since they limited their consideration to time series 

of 5 years, they could not identify any evidence of the climate regime. In this work we consider some of the longest available 10 

observational records (as long as thirty years), but work with monthly mean concentrations. Thus, we aim to characterize the 

macroweather regime and the higher frequency fraction of the climate regime.  

The focus of our analysis is on mean seasonal cycles and long-term changes spanning the complete data records. By 

considering monthly average data we avoid most of the influence from higher frequency variability, although interannual 

variability of lower frequency weather regime phenomena contributes “noise” to the monthly averages, and thereby affects 15 

the precision of the mean seasonal cycle and long-term change quantifications. Even when using monthly averaged data, 

observable autocorrelation remains in the data after accounting for the seasonal cycle and long-term changes. This 

autocorrelation is estimated from an autoregressive process, and accounting for the autocorrelation results in expanded error 

estimates for the derived parameters.  

An accurate and precise quantification of the mean long-term changes and seasonal cycles of trace species distributions with 20 

well-defined confidence limits is the ultimate goal of the analysis. This quantification meets three needs: 1) it provides a 

robust, minimum set of parameters capturing the statistically significant information in the observational data set regarding 

these two temporal variations, parameters that can serve as metrics for quantitative comparisons of long-term changes and 

seasonal cycles between data sets collected at different locations or for different species; 2) these same metrics serve as a 

basis for evaluation of results from models that simulate these temporal features of atmospheric concentrations; and 3) it 25 

provides a coherent, conceptual view of these features of the species’ concentration distribution, a view that can provide 

indications of the need for more detailed studies of particular aspects of the distribution.  

Importantly, no physical model underlies the statistical analysis. Instead we use two mathematical series to fit the long-term 

change (a power series) and the seasonal cycle (a Fourier series). These series provide flexible fits to these temporal 

variations, even though the functional form of these variations is not known a prioi. The data sets themselves dictate the 30 

functional form defined by the mathematical series. To avoid over fitting the data, the number of terms in each series is 

limited to only those that are statistically significant. Without an underlying physical model, care must be exercised in the 

interpretation of the derived parameter values, and in the attribution of a physical cause to any of the terms in the series. 
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Parrish et al. [2016] do present evidence of a direct physical cause of the statistically significant second harmonic of the 

seasonal cycle of ozone in the marine boundary layer (MBL) by showing that the photolysis rate of ozone, i.e. j(O1D), which 

drives the loss of ozone in the MBL, also has a second harmonic of opposite phase to that of ozone’s seasonal cycle. 

However this identification required information and analysis beyond that of the time series of concentration measurements 

alone.  5 

2 Example Data Sets 

The analysis approach discussed here is exemplified through application to two data sets collected at Mace Head Ireland: 

monthly mean concentrations of ozone (O3) and nitrous oxide (N2O) filtered for baseline conditions. These two data sets 

provide an informative contrast – ozone has a strong seasonal cycle with a relatively small long-term change, while N2O has 

a relatively small seasonal cycle superimposed on a pronounced long-term change.  Derwent et al. (2018a) fully describe the 10 

ozone data set; it covers the 30-year period from April 1987-April 2017. The N2O data were provided by the AGAGE 

program and downloaded from the public U.S. Department of Energy (DOE) Carbon Dioxide Information Analysis Center 

(CDIAC) website (http://cdiac.esd.ornl.gov/ndps/alegage.html); these data cover the 22-year period from March 1994-

September 2016. All AGAGE data are available from the public AGAGE website (http://agage.mit.edu/data), and the World 

Data Center for Greenhouse Gases (WDCGG) in Japan (http://gaw.kishou.go.jp/wdcgg), as well as on the CDIAC website.  15 

3 Analysis Approach  

The overall goal of the analysis is to quantify the minimum set of parameters (including robust confidence limits) that 

mathematically describes the mean long-term evolution and seasonal cycle of an atmospheric trace species’ concentrations, 

within the limits of statistical significance, from a time series of measured concentrations. The minimum set of parameters is 

desired because 1) it minimizes the possibility of over fitting to the data and 2) the analysis can quantify these parameters to 20 

the highest precision, which thus provides the most concise picture of the variations and the most stringent metrics for 

comparisons of different data sets and for model evaluation through model-measurement comparisons. In Sections 3.1-3.4 

the analysis is illustrated through application to Mace Head baseline ozone observations (Derwent et al., 2018a), but the 

method is generally applicable to other trace species; Section 3.5 illustrates the application to Mace Head baseline N2O 

observations.  25 

Here we first quantify the long-term changes through a power series fit to the time series of monthly mean ozone 

concentrations (Section 3.1). The derived function defining the long-term changes is then used to detrend the monthly mean 

data (Section 3.2) in order to facilitate characterization of the seasonal cycle through a Fourier transform and harmonic 

analysis of the detrended monthly means (Section 3.3). Finally, a non-linear regression fit of a function containing the 

statistically significant terms of both the power and Fourier series gives the most precise determination (i.e., yields the 30 
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smallest confidence limits) of the derived parameters (Section 3.4). Sections 3.6 through 3.8 discuss additional statistical 

features of the data, including their influence on the confidence limits of the derived parameter values. 

Working with monthly mean data reduces the impact of autocorrelation due to weather regimes and results in residuals that 

are more Gaussian in nature. As long as the temporal sampling scheme does not introduce any bias to monthly means (e.g., 

through sparse sampling such that the data are not fully representative of the actual monthly means), restricting the analysis 5 

to monthly mean time data rather than working with higher frequency data does not reduce the statistically significant 

information regarding the average long-term trends or seasonal cycles. A qualitative explanation for this can be given. 

Deriving monthly means from higher frequency data (e.g., hourly or daily mean data) is an averaging process that minimizes 

the sum of the squares of the deviations of the higher frequency data from the derived monthly means. The fitting procedures 

employed in the analysis here minimize the sum of the squares of the deviations of the monthly mean data from the derived 10 

long-term changes and seasonal cycles. The overall result is independent of whether the sum of the squares of the deviations 

is minimized in two steps (monthly mean calculation followed by further fits), or in one step (extracting long-term trends and 

seasonal cycles directly from the higher frequency data). One example of this independence is shown in Section 3.1 where a 

fit of the long-term change function to annual mean data gives results equivalent to the fit to monthly mean data. We work 

with monthly mean data because they provide clearer illustrations of the method and its results, compared to higher 15 

frequency data. 

3.1 Long-term Change Analysis 

A power series fit is a general and convenient means to quantify the long-term temporal evolution of a time series of 

concentration measurements. This is a general approach in that no underlying assumptions are made regarding the functional 

form of the temporal evolution of the data set, since any continuously varying curve can be fit to any desired accuracy given 20 

enough terms in a power series. In practice, the power series fit is obtained through a non-linear regression fit of monthly 

mean data to a polynomial as indicated in Equation 1: 

    [O3] = a + bt + ct2 + dt3 + ….     (1) 

The fits utilized in this work include all terms in Eq. 1 whose coefficients are statistically significant at the 95% confidence 

level. This means that as longer data records develop, additional terms can be added and new insights can be gained. Figure 25 

1 shows a fit (black solid curve) to monthly mean baseline ozone data (blue solid circles) obtained at Mace Head Ireland 

(Derwent et al., 2018a). The annotation gives the derived values (with 95% confidence limits) for the first three coefficients 

of Eq. 1. The fit to the calendar annual mean data (violet dotted line and larger violet symbols) are also shown. Table 1 

compares the coefficients derived from these fits. For this data set, only the first three terms of Eq. 1 are retained, as the 

coefficients of higher order terms are not statistically significantly different from zero (see derived d parameters in Table 1). 30 

All three parameter values derived from the two fits agree within their confidence limits; the small differences are due to the 

exclusion of the partial years of data at the beginning and end of the data record when calculating the calendar means. The 
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scatter of the annual means about the fitted curve is considerably smaller than that of the monthly means (compare root-

mean-square deviation, RMSD, values in Table 1) since the variability associated with the seasonal cycle has been removed 

by the annual averaging period.  

To more precisely determine the coefficients, it is important for the time origin to be well within the time span of all the data 

series considered. Here we choose year 2000 (i.e., t in Eq. 1 equals year-2000). If the time origin is selected outside the time 5 

spanned by the data (an extreme example would be year 0), the confidence limits of the derived parameters and the absolute 

values of a and b (but not c) change, but the fitted curve does not change. With year 2000 chosen as the time origin, the first 

coefficient (a, with units ppb O3) is the intercept of the fitted curve at the year 2000; it quantifies the absolute magnitude of 

the average ozone concentration at that year. The second coefficient (b, with units ppb O3 yr-1) is the slope of the fitted curve 

at that same year; it gives the best estimate of the (continually varying) time rate of change of ozone at that particular time. 10 

Finally, the third coefficient (c, with units ppb O3 yr-2) is equal to one-half of the (constant) time rate of change of the slope 

of the fitted curve. This third term is important for characterizing the non-linear aspects of long-term behavior of the data. 

Many published studies rely on various approaches to analyze long-term trends through linear fits; the recent Tropospheric 

Ozone Assessment Report (TOAR) project (Chang et al., 2017; Gaudel et al., 2018; Lefohn et al., 2018) takes this approach. 

The focus of TOAR is on shorter measurement records at hundreds of sites where only the first two terms of Eq. 1 are 15 

statistically significant, so their choice is appropriate. Linear trend approaches can accurately quantify the average rate of 

change in concentrations over a measurement record of any length, but do not fully quantify the long-term temporal 

evolution of data sets with strong non-linear behavior, as is the case in the Mace Head ozone data illustrated in Figure 1. The 

choice of examining linear behavior or more complex modes of change depends upon the purpose of the analysis; this study 

focuses on deriving scientific insights into concentration changes that may be driven by non-linear factors.  20 

The long-term fit to the Mace Head data finds a statistically significant, negative value for c, with ozone concentrations 

increasing early in the data record. The polynomial fit reaches a maximum, and then decreases later in the record. When 

three terms are included, Eq. 2 allows the calculation of the year that the maximum of the fit was reached, yearmax: 

    yearmax = -b/2c + 2000.     (2) 

The yearmax calculated from Eq. 2 is included in Table 1, which is within the time period of the observational record. The 25 

physical interpretation of the maximum derived from the fit, and any extrapolation to a maximum year outside the 

observational time period, would depend on the scientific understanding of the factors driving the concentration changes. As 

discussed later, the apparent decrease after the derived maximum of the fit in Figure 1 is not statistically significant, and the 

existence of a physical maximum of Mace Head ozone concentrations remains an open question. Extrapolation of fits 

derived from Eq. (1) is likely misleading, since polynomials generally diverge to large negative or positive values when 30 

extended outside the data range used to derive the polynomial itself. 
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In summary, only three parameters are required to describe the long-term changes in the Mace Head ozone data set; 

additional terms are not statistically significant, and are therefore omitted from the analysis. This parameter set is a, b and c, 

or equivalently a, c and yearmax, with the last derived from Eq. 2. The second parameter set has more direct physical 

significance for this time series. Derwent et al. (2018a) conducted a similar analysis of the long-term change in this data set 

and obtained statistically equivalent results. 5 

3.2 Detrending monthly mean data 

The time series of monthly mean ozone data can be detrended simply by subtracting the second and third terms of the fit to 

Eq. 1 from the original time series. As expected, no significant long-term change remains; the average of the detrended data 

(39.8 ppb) agrees with the a parameter derived above (i.e., the year 2000 intercept of the original fit); and their standard 

deviation (5.4 ppb) agrees with the RMSD of the original monthly means about the long-term trend fit to Eq. 1. All 3 10 

statistically significant terms of Eq. 1 could be subtracted from the monthly means, which would give detrended data 

averaging zero with the same standard deviation; subtracting only the second and third terms preserves the year 2000 

intercept as the mean of the data set. 

3.3 Seasonal Cycle Analysis 

The quantitative analysis of the seasonal cycle has two steps; first, a Fourier analysis determines the number of statistically 15 

significant harmonic contributors to the seasonal cycle of the detrended data, and second, a least-squares fit of those data to 

the significant harmonic terms provides a set of parameters that quantify the seasonal cycle to the fullest extent that is 

statistically justified.  

A Fourier Transform of a time series of data captures the information of that time series in frequency space, i.e., as a series 

of sine functions whose magnitude and phase are expressed as a sequence of complex numbers. Plotted in Figure 2 are 20 

results from the Fourier transform of the detrended data. These are the magnitudes of the real parts of each term, normalized 

to give the magnitude of the respective sine functions plotted as a function of frequency. There is one point that is off scale at 

zero frequency, which gives the magnitude of the average of the detrended monthly means. The fundamental (frequency = 1 

yr-1) and the second harmonic (frequency = 2 yr-1) terms clearly have much greater magnitudes than any of the other terms of 

non-zero frequency. Terms of frequencies < 1 yr-1 describe the systematic, multi-year variability that contributes to 25 

deviations from a purely repetitive seasonal cycle in Figure 1. There is an indication that the third harmonic (frequency = 3 

yr-1) may have a significant magnitude, but it is on the edge of statistical significance; in the following analysis, only the 

fundamental and second harmonic terms will be considered further. This approach is consistent with that of Parrish et al. 

(2016), who found that, at most, two terms were required to quantify the seasonal cycle of monthly mean ozone 

concentrations in the marine boundary layer and in the lower free troposphere. 30 



7 
 

The Fourier transform indicates that the seasonal cycle of the detrended data is quantitatively described by two terms – the 

fundamental and the second harmonic – plus a third constant term equal to the annual average. The second step in this 

analysis is to fit these three terms to the detrended monthly means through a least-squares regression to Equation 3: 

   [O3] = yo + A1*sin(χ + φ1) + A2*sin(2*χ + φ2).      (3) 

Figure 3 illustrates this fit for the detrended data. The second and third terms in Eq. 3 are the fundamental and second 5 

harmonic. If the Fourier transform indicated one or more additional harmonics terms were statistically significant, an 

additional term would be added to Eq. 3 for each additional harmonic, but for the data sets investigated here, no additional 

harmonics are statistically significant. Two parameters, the amplitude, A, and the phase angle, φ, are required to define each 

of these sine functions.  yo is the annual average ozone concentration over the entire data set, and from the discussion above, 

must equal both a (the year 2000 intercept derived from the fit to Eq. 1) and the average of the detrended data. In Eq. 3 the 10 

variable χ spans one year's time period in radians from 0 to 2π. The parameters derived from the least-squares fit are 

annotated in Figure 3; they agree closely with those derived for Mace Head by Parrish et al. (2016) (see their Table 2). The 

small differences between the results here and in that earlier work are due to the baseline reanalysis and extra years of 

measurements (Derwent et al., 2018a) now available from Mace Head. The extra years of measurements have resulted in 

noticeably smaller confidence limits for most of the derived parameters. Derwent et al. (2018a) conducted a similar analysis 15 

of this seasonal cycle and obtained statistically equivalent results. 

3.4 Improved Confidence Limits through Simultaneous Long-term Change and Seasonal Cycle Analysis 

It is possible (and preferable) to do a simultaneous fit to the long-term change and seasonal cycle by utilizing an iterative, 

non-linear regression to Equation 4, which combines the statistically significant terms of Eqs. 1 and 3, giving a total of seven 

(or eight) parameter values: 20 

   [O3] = a + bt + ct2 (+ dt3)+ A1*sin(χ + φ1) + A2*sin(2*χ + φ2) + residuals, (4) 

where residuals represent the unexplained portion of the data, and will be examined in Section 3.6. Whether the fourth term 

(or even additional terms) of Eq. 1 are included in Eq. 4 depends upon whether each additional term is statistically 

significant. The violet curve in Figure 4 shows the fit of Eq. 4, and the values derived for the seven parameters are annotated. 

(For ozone the fourth terms in Eqs. 1 and 4 are not statistically significant, so no value is given for the d parameter.) The 25 

results here are nearly identical to those discussed earlier, except the confidence limits for the a, b, c parameters are smaller 

than those derived in the analysis illustrated in Figure 1 (see Table 2). This improvement is due to simultaneously treating 

the two systematic sources of data variability (i.e., the long-term change and the seasonal cycle).   



8 
 

3.5 Analysis of Nitrous Oxide Time Series 

The preceding sections developed and illustrated the application of Eqs. 1 through 4 for a time series of monthly mean ozone 

concentration data, but in principle these equations and analysis approach can be applied to a series of measurements of any 

trace species. For example, Figure 5 illustrates the analogous analysis of the time series of monthly mean, baseline-selected 

nitrous oxide (N2O) measurements from Mace Head. This time series (Figure 5a) is significantly different from that of 5 

ozone, with the long-term change dominating the variability of the data, perturbed by only a relatively small seasonal cycle. 

Further, with ozone only three terms of Eq. 1 are statistically significant, but for N2O the fourth (cubic) term is also 

statistically significant (while higher order terms are not). Figure 5a shows fits of Eq.1 for two, three and four terms; it is 

difficult to discern the differences between these fits in the figure, but as the annotations indicate, these differences are 

statistically significant. For N2O the quadratic term in the three-term fit is positive, indicating that the rate of increase of 10 

nitrous oxide has, on average, accelerated over the measurement record in contrast to ozone whose rate of increase 

decelerated. The statistically significant cubic term shows that the acceleration of the rate of increase has not been constant 

over the measurement record; Section 3.7 discusses these issues in more detail. 

The N2O data can be detrended as for ozone by subtracting the second, third and fourth terms of the fit to Eq. 1 from the time 

series (results not shown). The Fourier transform of the detrended data (Figure 5b) is similar to that of ozone in that the only 15 

important harmonic terms are the fundamental and second harmonic. For comparison the Fourier Transform results are 

shown for data detrended with both the cubic and quadratic fits; the magnitudes at frequencies < 1 yr-1 are significantly 

smaller for the cubic fit compared to the quadratic fit, reflecting the reduced variability of the monthly mean data about the 

cubic fit. Also, for N2O the magnitudes at frequencies < 1 yr-1 are relatively larger than those for ozone (Figure 2). These 

larger magnitudes reflect the noticeable interannual departures of the N2O monthly means from the fitted curve (violet) in 20 

Figure 5d. For example, in the years near 2000, the data appear to be significantly smaller than the fit before 2000, and 

higher after that year. Investigating statistically significant departures, such as this example, may yield additional 

information regarding sources or sinks of N2O (or other trace species investigated through this analysis approach).  

The fit of the detrended data to Eq. 3 to define the seasonal cycle (Figure 5c) is also similar to that of ozone in that the 

phases of the two harmonics are similar (see Table 2) for these two species, agreeing (or nearly agreeing) within their 25 

confidence limits. This close correspondence is consistent with the long-standing observation that many trace gases show a 

springtime maximum and a summertime minimum at Mace Head (e.g., Derwent et al., 1998); the cause(s) of this 

correspondence is an issue warranting further investigation. Finally, Figure 5d illustrates the fit of the original data (plotted 

in Figure 5a) to both the long-term change and the seasonal cycle as defined by Eq. 4 with the inclusion of the cubic term 

from Eq. 1.  30 
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3.6 Autocorrelation and Parameter Confidence Limits 

Through the preceding discussion the statistical fitting ignored any autocorrelation in the data. Systematic intra- or inter-

annual variability associated with persistent meteorological and/or climate variability, could possibly cause autocorrelation 

in these data sets. If such autocorrelation is significant, we expect that the derived parameter values would not be 

significantly affected, but the confidence limits derived for those parameter values would be unrealistically small. Parrish et 5 

al. (2016) considered this issue for ozone data sets from several sites within the marine boundary layer throughout the globe, 

and found it to have only small influence. Here we discuss this issue from a more general perspective, and illustrate this 

discussion through the two example Mace Head data sets.  

The time series of the residuals (i.e., the deviations between the monthly mean baseline ozone concentrations and the fit of 

Eq. 4 to these means) for the two example data sets are shown in Figures 6a and 7a. (For N2O the residuals are shown for 10 

both the quadratic and cubic fits to the long-term change.) The characteristics of these time series differ noticeably; the N2O 

residuals (Figure 7a) show much more coherent variability than is apparent in the more chaotic ozone residuals (Figure 6a).  

The autocorrelations of the time series are shown in Figures 6b and 7b. Each plot shows the correlation of the time series of 

the monthly means with a duplicate of itself as a function of a time offset (i.e., month lag) between the time series and its 

duplicate. When the lag is zero, the correlation is perfect (i.e., autocorrelation coefficient = 1), and as the lag increases, the 15 

autocorrelation coefficient decreases. These plots differ markedly between the two species. As expected, the more chaotic 

time series of the ozone residuals shows smaller autocorrelation coefficients (Figure 6b), decreasing in an approximately 

exponential manner with a time constant, tau, ≈ 1 month as the time offset increases. The autocorrelation of the N2O 

residuals (Figure 7b) is greater, also decreasing in an approximately exponential manner with tau ≈ 4 and 10 months for the 

cubic and quadratic fits, respectively). Leith (1973) discusses the degree to which autocorrelation affects the confidence 20 

limits of parameters derived from observational time series, and finds that the confidence limits increase proportionally to (2 

tau)1/2. Thus for the two example data sets discussed here, the confidence limits annotated in Figures 1 and 3-5 and included 

in Table 1 must be increased by a “correction factor” of 1.4 and 2.9 for ozone and N2O (for cubic long-term change fit), 

respectively; Table 2 gives the corrected confidence limits for the final values derived for the seven or eight parameters.  

As is common to all basic treatments of error propagation, the confidence limit analysis presented here is based on the 25 

assumption that the residuals of the fits are Guassian distributed. The nearly linear relationships in Figures 6c and 7c (at least 

for the cubic long-term change fit) give a qualitative indication that this assumption is approximately valid. Each time series 

has a few apparent outliers of unknown cause; since the prevalence of these outliers is small (no more than 1 to 2%), and 

they are not greatly outside the general distribution, their influence is believed to be minor, and will not be considered 

further. 30 

It is notable that Figure 7 clearly reflects the improvement made by the addition of the cubic term to the long-term change fit 

for the N2O time series. The standard deviation of the residuals is reduced, the degree of autocorrelation is reduced, which 
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results in improved confidence limits for all of the derived parameters, and the residuals are more closely fit by a Gaussian 

distribution.   

3.7 Rate of Change of Concentrations 

Estimates of the rate of change of the mean concentrations of ozone (or other species) can be derived through differentiation 

of Eq. 1 to give Equation 5, 5 

d[O3]/dt = b + 2ct (+ 3dt2),    (5) 

where the third term applies when a cubic fit to the long-term change is statistically justified. Acceleration or deceleration in 

the rates of change of a species may contain information regarding changes in the magnitude of sources or sinks of the 

species, and thus may lead to improved physical understanding of the processes that determine the observed atmospheric 

concentrations. The quadratic fits to the two species indicate that over their respective data records, the rate of increase on 10 

average decelerated at ~0.04 ppb yr-2 for ozone and accelerated at ~0.01 ppb yr-2 for N2O. The deceleration reversed the 

trend of ozone from an increase of  ~ 0.8 ppb yr-1 to a decrease of ~ 0.3 ppb yr-1 over the 30-year data record, while the 

acceleration increased the trend of N2O from  ~ 0.9 ppb yr-1 to ~ 1.1 ppb yr-1 over the 23-year record. The statistically 

significant value of the cubic term (i.e., the positive value of the d parameter) indicates that the acceleration of the N2O rate 

of increase was not uniform; the rate increased more slowly near the middle (minimum ~2002) than at the beginning and end 15 

of the data record. In contrast, no statistically significant change can be discerned in the deceleration of the trend derived 

from the ozone data record. A caution to this discussion should be noted – Eq. 5 is obtained by differentiation of an equation, 

whose parameters are derived from fits to data sets that have significant unexplained variability. As noted previously, Eq. 5 

is not based on a physical model; hence, the above discussion regarding the rate of change must be considered cautiously, as 

discussed in Section 4.   20 

3.8 Sources of Variance of data sets  

The squares of the standard deviations of the original data sets that are annotated in Figures 1 and 5a give the total variance 

in the original data, and the square of the RMSD values that are annotated for all of the illustrated fits provide an 

approximate measure of the variance remaining in the data set after accounting for the average long-term change and/or the 

seasonal cycle. Table 3 summarizes the fraction of the original variance of the monthly mean time series due to the average 25 

long-term changes and seasonal cycle. Despite the obvious differences of the data records in Figures 1 and 5a, the total 

variance per month of the ozone and N2O data sets are similar (36 and 29 ppb2, respectively); however the source of that 

variance is quite different. The average long-term change accounts for only 19% of the ozone variance, but 99.7% of the 

N2O variance, while the seasonal cycle accounts for 58% and 0.19% of the ozone and N2O variance. The residuals thus 

account for the remaining 23% and 0.12% of the variance; these residuals represent systematic interannual variability, i.e. 30 

the lower frequency “macroweather” regime of Bowdalo et al. (2016), and any other effects leading to variability in the data 

record (including any measurement errors or analysis biases).    
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4 Discussion and Conclusions 

The analysis approach presented in this work derives a limited set of parameter values that defines a mathematical 

representation of the statistically significant features of the mean long-term changes and seasonal cycles of the 

concentrations of trace tropospheric species. The results for the two example data sets (baseline concentrations of ozone and 

N2O at Mace Head Ireland) selected to illustrate the analysis show that no more than the seven or eight parameter values 5 

included in Table 2 are needed for this mathematical representation. Three or four parameters (the coefficients of the 

polynomials given by the first three or four terms of Eq. 1) quantify the long-term changes, including the absolute 

concentration in the reference year 2000, and four parameters (the amplitude and phase of the two harmonic terms of Eq. 3) 

quantify the seasonal cycle. These parameters provide a minimum set of parameters that capture the statistically significant 

information in the observational data set regarding these temporal variations. These parameters can serve as metrics for 10 

quantitative comparisons of long-term changes and seasonal cycles between different locations or for different species, and 

can serve as a basis for evaluation of model simulations atmospheric concentration variations.  

In the quantification of mean long-term concentration changes, the method presented provides statistically significant 

information not given by linear trend analysis, an approach often employed to quantify long-term trends. Linear analysis 

does provide a quantification of the average annual rate of change of a species’ concentration over the time span of the 15 

measurement record, but does not generally provide information about any statistically significant changes in the rate of 

concentration change (i.e., acceleration or deceleration of the rate of concentration increase or decrease) within the data 

record. For baseline ozone concentrations, such changes of rate have been identified as quite important as shown here in 

Figure 1, and have been quantified in earlier work (Logan et al., 2012; Parrish et al., 2012; 2014; 2017; Derwent et al., 

2018a); these analyses show an increase early in the data record that slows, with concentrations reaching maxima, followed 20 

by decreases in the latter part of the record. In such cases, Eq. 2 provides an estimate of the year when the maximum 

concentration was reached. The Mace Head N2O record gives a contrasting result, with a statistically significant acceleration 

of the rate of increase throughout the data record, which is in agreement with an independent analysis of N2O trends, which 

also identifies a significant acceleration of similar magnitude (Rona Thompson, private communication, 2018). 

In the quantification of average seasonal cycles, the method presented here provides less detailed seasonal cycles than are 25 

sometimes derived in analyses of average seasonal cycles. Here it is shown that only four statistically significant, 

independent pieces of information are needed to quantify the mean seasonal cycles in the example data sets. Published 

studies often represent the seasonal cycle as twelve monthly means; such an approach implicitly assumes that there are 

twelve statistically significant, independent pieces of information available from the mean seasonal cycle. At least for the 

example data sets examined in this and earlier work, (e.g., Parrish et al., 2016) the mean seasonal cycles are well described 30 

with no more than 4 independent pieces of information (i.e., independent parameter values) that can be extracted from the 

analysis. Including twelve monthly means in the seasonal cycle representation adds statistically insignificant variability to 

the results, and thus over fits to the available data, preventing a clear analysis of the statistical uncertainty of those results. 
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For the greatest statistical significance of the description of the seasonal cycle, we recommend a harmonic analysis that 

includes only significant terms, as exemplified in the method presented in this work. However, it is possible that other data 

sets from different locations may warrant more or fewer terms.  

The analysis approach presented here is based on non-linear regression fits to Eq. 4, which assumes a number of properties 

about the behavior of the data, including that the data behave in a smooth manner, that the long-term change is independent 5 

of season, and that the seasonal cycle is stable over the data record. Should any of these assumptions fail, or additional 

information be desired, the equation could be modified appropriately. The analysis derived a minimum set of statistically 

significant parameters that capture as much statistically significant information as possible from the original data sets, while 

avoiding over fitting the data. However no physical model underlies Eq. 4, so physical interpretation of the parameter values 

and extrapolation of the functional fit must be done only very cautiously. For example, the fit to the long-term changes in the 10 

Mace Head ozone record indicates that maximum ozone concentrations occurred within 2.2 years of 2008.7, i.e. within ~26 

months of September 1, 2008, and that after that maximum, ozone concentrations have been decreasing. The question arises 

as to whether the maximum and the subsequent decrease are physically real, or are simply mathematical implications of the 

three-term polynomial utilized to fit the data. Supplementary trend analyses indicate that 1) there has been no statistically 

significant trend after the year 2000 (average trend = -0.015 ± 0.070 ppb yr-1), so it is at least clear that the positive trend in 15 

the early years of the data record has ended, and 2) that any decrease after the derived maximum in the year 2008.7 is not 

statistically significant. Thus, answering the above question requires additional information that perhaps may come from 

additional years of data collected at Mace Head, or analysis of other ozone data sets that can be considered to reflect the 

same physical driving forces as those at Mace Head.   
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Table 1. Parameter values of fits of long-term change in Mace Head, Ireland ozone data to Eq. 1. 

      Data fit a  
(ppb) 

b 
(ppb yr-1) 

c (x10-3) 
(ppb yr -2) 

RMSD 
(ppb) 

d (x10-4) 
(ppb yr -3) 

yearmax 

Monthly means 39.8 ± 0.8 0.35 ± 0.08 -20 ± 6 5.4  5 ± 11 2008.8 ± 4.2 
Annual means 39.8 ± 0.7 0.31 ± 0.07 -17 ± 8 1.3 -4 ± 11 2008.9 ± 4.5 
Combined regression 39.8 ± 0.4 0.34 ± 0.04 -20 ± 4 2.9 --- 2008.7 ± 2.2 

 

 5 

Table 2. Parameter values of fits of long-term change and seasonal cycle in Mace Head, Ireland data to Eq. 4. 

Data set a  
(ppb) 

b 
(ppb yr-1) 

c (x10-3) 
(ppb yr -2) 

d (x10-4) 
(ppb yr -3) 

A1  
(ppb) 

φ1  
(rad) 

A2  
(ppb) 

φ2 
(rad) 

RMSD 
(ppb) 

Ozone 39.8 ± 0.6 0.35 ± 0.06 -20 ± 6 --- 5.7 ± 0.6 0.52 ± 0.10 3.1 ± 0.6 -2.37 ± 0.19 2.9 
N2O quad 315.9 ± 0.2 0.76 ± 0.04 +5.1 ± 3.1 --- 0.31 ± 0.17 0.48 ± 0.55 0.10 ± 0.17 -3.42 ± 1.67 0.23 
N2O cubic 316.0 ± 0.1 0.76 ± 0.02 -4.7 ± 5.1 +6.0 ± 2.9 0.31 ± 0.09 0.48 ± 0.29 0.10 ± 0.09 -3.39 ± 0.86 0.18 

 
 

Table 3. Sources of variance in Mace Head, Ireland data sets. 

Data set Total variance 
(ppb2/month) 

Long-term trend 
contribution (%) 

Seasonal cycle 
contribution (%) 

Residual (%) 

Ozone 36.1 19.2 58.0 22.7 
N2O quad 28.2 99.6 0.19 0.18 
N2O cubic 28.2 99.7 0.19 0.12 
 10 
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Figure 1. Fits of long-term change in mean baseline tropospheric ozone measured at Mace Head, Ireland. Monthly means are from 
Appendix A of Derwent et al. (2018a), from which the annual means were calculated. The solid black and dotted violet curves are 
non-linear regression fits of the first three terms of Eq. 1 to the monthly and annual means, respectively. 5 
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Figure 2. Results of the Fourier transform of the detrended monthly mean ozone concentrations. 

 

 
Figure 3. Results of the fit of Eq. 3 to the detrended monthly mean concentrations. The black curve is the non-linear regression fit 
to the plotted points.  5 
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Figure 4. Results of the non-linear regression fit of Eq. 4 (violet line) to the monthly mean concentrations from Figure 1. Table 2 
gives the units of the parameters, and the confidence limits corrected for autocorrelation in the data set.  
  

5 
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Figure 5. Analysis results for a time series of monthly 
mean baseline nitrous oxide measured at Mace Head, 
Ireland. a) The three curves are fits of the monthly 
means to Eq. 1 with two terms (i.e., linear), three terms 
(i.e., quadratic), and four terms (i.e., cubic), with the 
derived parameters annotated. b) Results of the Fourier 
transform of the monthly mean concentrations 
detrended using the cubic (blue points) and quadratic 
fits (violet points). c) Results of the fit of Eq. 3 to the 
detrended monthly mean concentrations. The black 
curve is the non-linear regression of Eq. 3 to the plotted 
points. d) Results of the cubic fit (violet curve) of Eq. 4 to 
the detrended monthly mean concentrations. Table 2 
gives the parameter values and the confidence limits 
corrected for autocorrelation in the data set. 
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Figure 6. Analysis of the deviations between the monthly mean baseline ozone concentrations and the fit of Eq. 4 to these means 
(i.e. the fit residuals) illustrated in Figure 4. a) Time series of the residuals. b) The time lag autocorrelation of the residuals. The 
fitted curve is an exponential decrease from unity at a lag of 0 month, with the time constant, tau, annotated. c) Cumulative 5 
probability distribution of the residuals, plotted on an ordinate scale that gives a linear fit for a Gaussian distribution.  
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Figure 7. Analysis of the fit residuals for the monthly mean baseline N2O concentrations illustrated in Figure 5d (blue points). For 
comparison, the violet results show the analysis with a quadratic fit to the long-term changes. The annotations are similarly color-
coded. The format of the figure is generally the same as that of Figure 6. 
 5 


