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Abstract. Microwave (1GHz–300GHz) dual-polarization measurements above 100GHz are so far sparse, but they consistently

show polarized scattering signals of ice clouds. Existing scattering databases of realistically shaped ice crystals for microwave

and submillimeter (> 300GHz) typically assume total random orientation, which cannot explain the polarized signals. Con-

ceptual models show that the polarization signals are caused by oriented ice particles. Only few works considering oriented

ice crystals exist, but they considered microwaves only. Assuming azimuthally randomly oriented ice particles with a fixed but5

arbitrary tilt angle, we produced scattering data for two particle habits (51 hexagonal plates and 18 plate aggregates), 35 fre-

quencies between 1GHz and 864GHz, and 3 temperatures (190K, 230K, 270K). The scattering data of azimuthally randomly

oriented particles depends in general on the incidence angle and two scattering angles compared to one angle for total random

orientation. The additional tilt angle further increases the complexity. The simulations are based on the discrete dipole approx-

imation in combination with a self-developed orientation averaging approach. The scattering data is publicly available from10

Zenodo (https://doi.org/10.5281/zenodo.3463003). This effort is also an essential part of preparing for the upcoming Ice Cloud

Imager (ICI) that will perform polarized observations at 243GHz and 664GHz. Using our scattering data radiative transfer

simulations with two liquid hydrometeor species and four frozen hydrometeor species of polarized GMI (GPM (Global Pre-

cipitation Measurement) Microwave Imager) observations at 166GHz were conducted. The simulations recreate the observed

polarization patterns. For slightly fluttering snow and ice particles, the simulations show polarization differences up to 11K us-15

ing plate aggregates for snow, hexagonal plates for cloud ice and totally randomly oriented particles for the remaining species.

Simulations using strongly fluttering hexagonal plates for snow and ice show similar polarization signals. Orientation, shape

and the hydrometeor composition affect the polarization. Ignoring orientation can cause a negative bias for vertically polarized

observations and a positive bias for horizontally polarized observations.

1 Introduction20

Passive microwave (MW) observations are nowadays a standard tool for cloud observation. The ice cloud related sounding

channels of passive microwave sensors typically do not possess a fixed polarization or they measure only at one polarization.

Observation of polarization in view of MW and submillimeter (SubMM) remote sensing of ice clouds is still rare. Existing
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passive microwave sensors that measure polarization are typically confined to frequencies below 100GHz. Due to the low

frequency, their sensitivity considering ice clouds is low (Buehler et al., 2007), though there still can be enough sensitivity for25

precipitating ice, but these sensors are affected by surface contamination.

Currently, GMI (GPM (Global Precipitation Measurement) Microwave Imager, Hou et al., 2013) is the only spaceborne

microwave radiometer that measures polarization above 100GHz. In the past, MADRAS (Microwave Analysis and Detection of

Rain and Atmospheric Structure, Defer et al., 2014) on board of Megha-Tropique also observed polarization at ice cloud related

frequencies, but due to mechanical failure only till January 2013 (Shivakumar and Pircher, 2013). GMI and MADRAS observe30

polarization around 160GHz. Defer et al. (2014); Gong and Wu (2017) and Zeng et al. (2019) showed MW observations of

polarized scattering signals of clouds using GMI and MADRAS. Based on radiative transfer simulations, Defer et al. (2014)

and Gong and Wu (2017) explained these polarized signals by the asphericity and a preferred orientation of the ice particles.

Therefore, exploiting polarization can deliver additional information about the shape and orientation. Ice crystals have several

shapes and sizes in reality. Furthermore, even the cases that have been explained by horizontally aligned particles consist in35

reality not only of particles with only one orientation, but of particles with several different orientations, from which some

orientations may have a higher probability than others. With the upcoming ICI (Ice Cloud Imager, Eriksson et al. (2020);

Bergadá et al. (2016); Buehler et al. (2012, 2007)) there will be additional polarized observations at 243GHz and at 664GHz.

These polarized observations will deliver new insights about clouds and their structure, because of their higher sensitivity to

ice clouds compared to GMI. The scattering data directly affects simulations and inversions of MW and SubMM ice cloud40

observations, because the scattering data describes the interaction between ice particles and the electromagnetic radiation.

This limits the phenomena that can be considered and the amount of information that can be retrieved from the observations,

respectively. Therefore, to exploit polarization, we need the scattering properties of oriented and realistically shaped particles.

Existing single scattering databases of realistically shaped ice particles for the microwave and submillimeter range, like the

ones of Eriksson et al. (2018), Liu (2008) or Hong et al. (2009), assume total random orientation of the scatterers. This is often45

a reasonable assumption, but cannot explain polarized cloud signals. This requires oriented scatterers. The studies of Lu et al.

(2016) and of Adams and Bettenhausen (2012) take orientation into account but are limited to frequencies below 94GHz and

166GHz respectively.

This paper aims to simulate the MW and SubMM scattering data of realistically shaped ice crystals that possess arbitrary

fixed orientations relative to the zenith direction under the assumption that there is no preferred orientation in azimuth direction.50

The resulting single scattering database is publicly available from Zenodo (https://doi.org/10.5281/zenodo.3463003). The idea

behind the scattering database is that the users can use the scattering data of a desired zenith orientation or combine the data

of different zenith orientations to mimic any desired distribution of zenith orientations. The scattering database is structured so

that it can be used together with the scattering database of Eriksson et al. (2018).

To simulate the scattering properties, the scattering of ice crystal from various incidence directions is simulated and conse-55

quently used to calculate orientation averaged scattering. Similar to the work of Eriksson et al. (2018), Adams and Bettenhausen

(2012), Hong et al. (2009) or Liu (2008) the scattering is simulated on the basis of the discrete dipole approximation (DDA,
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Draine and Flatau (1994)). Furthermore, the simulated scattering properties of ice particles are used for radiative transfer

simulations of cloudy scenes to investigate their influence on actual brightness temperature observations.

The text is structured as follows: in Sect. 2 we explain the particle orientation. Sect. 3 provides an overview of the basic setup60

and the simulated particles. Sect. 4 explains the scattering simulation. Sect. 5 shows some example results. Sect. 6 considers the

influence of the simulated scattering properties in view of radiative transfer simulations. In Sect. 7 we summarize the results.

2 Particle orientation

Particle orientation refers to how the main axes of the particle are oriented with respect to the local horizon and the azimuthal

reference. If the particle possesses spherical symmetry there is no particle orientation, because it does not matter from which65

side the particle with spherical symmetry is viewed or how it is rotated - it will always look the same. The particles considered

in this paper are not spherically symmetric and therefore can be oriented.

In general, the orientation of a particle in a three-dimensional space can be described by a set of three parameters. There is

no unique set of these parameters. Depending on the definition of the rotation axes, there are different sets of these parameters.

The three Euler angles are one such parameter set. The Euler angles define the orientation of the particle (coordinate) system70

relative to a fixed coordinate system, hereafter called laboratory system. The particle system is the coordinate system that is

attached to the particle. This means, if a particle is rotated, the particle system is rotated the same way. The laboratory system

stays under the rotation of the particle whereas the particle system changes its orientation. The laboratory system and particle

system share the same origin. In this study, the Euler angles, which are shown in Fig. 1, are used according to the zyz′-notation.

The particle is first rotated by angle α around the laboratory Z-axis, then the particle is rotated by angle β around the particle75

Y-axis (y′) and last the particle is rotated by angle γ around the particle Z-axis. The value ranges of the angles are

α ∈ [0, 2π]

β ∈ [0, π]

γ ∈ [0, 2π]

(1)

These rotations are described by three orthogonal rotation matrices, see Appendix B for details. It is important to note that in

general the order of the rotations must not be changed, because the combination of rotations is generally not commutative.

In addition to the Euler angles, the orientation of the non-rotated particle is needed. As there is no absolute coordinate system,80

the orientation of the non-rotated particle is in general arbitrary. Therefore, we define that the non-rotated particle lies with its

center of gravity at the origin of the laboratory system and all particle rotations will be relative to the origin of the laboratory

system. The non-rotated particle is defined to have its principal moments of inertia axes aligned along the Cartesian coordinate

axes, with the maximum inertia axis along the z-axis and the smallest along the x-axis (see Appendix A). This means for a

plate-like particle that its longest dimensions lay parallel to the x-y-plane. This is the orientation that one intuitively expects for85

a falling plate-like particle in air. In reality the orientation of a particle determined by the balance of the gravitational force on

one side and the drag force and other forces like e.g. electrical force on the other side (Khvorostyanov and Curry, 2014). The
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Figure 1. Euler angles

drag force is determined by the interaction of particle and the surrounding air. Estimating the drag force is a challenging task,

as one has to solve the Navier-Stokes equations for that. Klett (1995) modeled the orientation of falling ice columns. Under

turbulent free conditions falling plates with diameters > 40µm and columns with lengths > 30µm are on average horizontally90

oriented. As most of the particles considered in our study are greater than 40µm, we expect our definition for the non-rotated

particle to be reasonable. Though we do not consider column-like particles in the study, the study of Klett (1995) suggests that

even for them our definition is reasonable.

Within this study, we are not interested in the scattering of a single oriented particle but in the scattering of an ensemble of

particles, that are oriented differently but otherwise are identical. Generally, the scattering properties of such an ensemble of95

oriented particles are described by averaging the single scattering properties over the three Euler angles, such that for example

for the scattering matrix Zeo and the extinction matrixKeo of an ensemble of orientated particles hold

Zeo (θinc,φinc,θs,φs) =

2π∫
0

π∫
0

2π∫
0

pα(α)pβ(β)pγ(γ)Z (θinc,φinc,θs,φs,α,β,γ) dαdβdγ (2)

Keo = (θinc,φinc) =

2π∫
0

π∫
0

2π∫
0

pα(α)pβ(β)pγ(γ)K (θinc,φinc,α,β,γ) dαdβdγ (3)100

with θinc the incidence polar angle, φinc the incidence azimuth angle, θs the scattering polar angle and φs the scattering

azimuth angle. pj (x) are probability density functions describing the distribution of particle orientation. Eq. 2 and 3 implicitly

assume independent scattering, which is typically assumed in context of atmospheric radiative transfer. This means, that the

scatterers are separated enough in distance, so that their scattered waves do not interact and that there are no systematic phase

relations between the scattered waves (Mishchenko et al., 2000). In other words, Eq. 2 and 3 assume incoherent scattering.105

We distinguish between two basic states of particle orientation

1. total random orientation (TRO) and
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2. azimuthal random orientation (ARO).

Both orientation states are explained in the two following subsections.

2.1 Total random orientation110

Totally randomly oriented particles are defined as the orientation average over the three Euler angles, in which the Euler angles

are uniformly distributed. That is,

pα (α) = pγ (γ) =
1

2π
(4)

pβ (β) =
sinβ

2
(5)

(Mishchenko and Yurkin, 2017). Due to this averaging, totally randomly oriented particles have effectively a spherical sym-115

metry. This implies that the scattering matrix of totally randomly oriented particles depends only, like the scattering matrix of

spheres, on the scattering angle Θ, i.e.

Ztro (Θ) =Ztro (θinc,φinc,θs,φs) , (6)

andKtro will have no angular dependency. The scattering angle Θ

Θ = cosθinc cosθs + sinθinc sinθs cos(φs−φs) (7)120

is the angle between incoming and outgoing direction. Eriksson et al. (2018), Ding et al. (2017), Liu (2008) and Hong et al.

(2009) assume total random orientation in their databases.

2.2 Azimuthal random orientation

Azimuthally randomly oriented particles with a specific orientation to the horizon, also referred to as tilt or canting, are defined

as the orientation average over α and γ, in which α and γ are uniformly distributed as for total random orientation. The125

scattering matrix Zaro and the extinction matrixKaro of azimuthally randomly oriented particles are thus calculated as

Zaro (θinc,θs,∆φ,β) =

2π∫
0

2π∫
0

pα(α)pγ(γ)Z (θinc,φinc,θs,φs,α,β,γ) dαdγ (8)

Karo (θinc,β) =

2π∫
0

2π∫
0

pα(α)pγ(γ)K (θinc,φinc,α,β,γ) dαdγ (9)
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Figure 2. Schematic of the difference between totally random (TRO) and azimuthally random orientation (ARO).

The averaging over α and γ results in a rotational symmetry of the scattering matrix to the laboratory Z-axis (cylindrical130

symmetry). The orientation average results in an effective particle shape as indicated in Fig. 2. To get a better picture of it,

assume that the particle rotates very fast around the laboratory Z-axis and the particle Z-axis to symbolize the orientation

averaging. By rotation it creates an effective solid of revolution. Changing the tilt angle β results in a different shape of

this effective solid of revolution. Due to the cylindrical symmetry after orientation averaging, the averaged scattering matrix

depends in azimuth only on the difference between incident and scattered azimuth direction. Whereas the scattering matrix135

of totally randomly oriented particles depends only on the scattering angle Θ, the scattering matrix of azimuthally randomly

oriented particles depends on the incidence polar angle θinc, the scattering polar angle θs, the difference of the incidence and

scattering azimuth angles ∆φ= φinc−φs and the tilt angle β. Without any loss of generality, the azimuth incidence angle

φinc is set to 0◦ for the azimuthally randomly oriented case from here on. It is important to note that the azimuthal symmetry

does not mean that the scattering matrix Zaro is symmetric. This depends on the symmetry properties of the particles and the140

orientation of the rotation axes relative to the symmetry axes. To get a better idea of it, assume a flag rotates fast around its

flagpole in counterclockwise direction as shown in Fig. 3. The flag has a red frontside, a blue backside and its hoist is to the

left. Independent from which side we look on the flagpole, the projections of the red front side are always seen on the right side

of the flagpole and the projections of the blue backside are always seen on the left side. If both sides of the flag have the same

color then the projections on both sides will look the same. Although the rotation results in a rotational symmetry around the145

flagpole, the actual image we see depends on the symmetry properties of the flag.
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Figure 3. Schematic showing that rotation results in a rotational symmetry around the flagpole (axis). The actual image, that we see, depends

on the symmetry properties of the flag (object).

3 Basic setup and shape data

The scattering calculations are computational demanding in view of computation time and the amount of data. Therefore, we

have to compromise in terms of the accuracy of the resulting scattering data. Considering the measurement errors of existing

and upcoming passive MW and SubMM sensors, which are in the order of O (1K), and the brightness temperature depression150

due to scattering of frozen hydrometeors, which is typically < 100K, we aim for an accuracy of the scattering database in the

order of a few percent.

For the scattering calculations ADDA version 1.2 was used. ADDA is a DDA implementation of Yurkin and Hoekstra

(2011). The basic idea of DDA is to represent the particle by a discrete set of electric dipoles. To calculate the scattering,

ADDA iteratively solves the linear system155

αiP i−
∑
i 6=j

HijP j =Einc,i (10)

with i, j the dipole indices, αi the dipole polarizability, P i the unknown dipole polarization, Hij the interaction term and

Einc,i the incident electric field. The resulting scattering quantities of ADDA are derived from the solution of the dipole

polarization P l, for details see Yurkin and Hoekstra (2011). The iteration is stopped when the relative norm of the residuals

ε is less than a user specified value. The relative norm of the residuals ε is essentially the relative difference between the left-160

hand side and the right-hand side of Eq. 10. To reduce the computation time in view of our desired accuracy for the scattering

database, we set the relative norm of the residuals to

ε= 10−2. (11)
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For further details of the DDA method, see Yurkin and Hoekstra (2011) and the references therein.

ADDA can simulate the scattering of totally randomly oriented particles and the scattering of particles with a fixed but165

arbitrary orientation. The internal averaging method of ADDA is not suitable for our approach to simulate azimuthally oriented

particles. Instead, we developed an averaging approach that involves integration over a set of DDA calculations at different

angles, which is explained in Sect. 4.

For DDA simulations it is important that the size of the dipoles is small compared to the wavelength and to any structural

length within the scatterer (Yurkin and Hoekstra, 2011). For all particles considered in our study holds170

|m|kd < 1

2
(12)

with m the refractive index of ice, k the angular wavenumber and d the dipole size. With the microwave refractive index of ice

this results in ≈ 22 dipoles per wavelength. Furthermore, all simulated particles consist of at least 1,000 dipoles so that small

particles are reasonably resolved.

Following Eriksson et al. (2018), we organize the different particle shapes as habits. A habit is defined as a set of particles175

of different sizes with a common basic morphology, roughly following a mass-size relationship. In this work we consider two

different types of frozen hydrometeor habits:

– plate type 1, which is a solid hexagonal plate-like single crystal, and

– large plate aggregate, which consists of several solid hexagonal plates aggregated to one particle.

Fig. 4 shows some different sized particles of both habits as example. The shape data including the actual dipole grids for180

ADDA were taken from the database of Eriksson et al. (2018). The mass-size relationship is defined as

m= a

(
D

D0

)b
(13)

with m the particle mass, D the maximum diameter, the unit diameter D0 = 1m and the parameters a, b. The maximum

diameter is defined as the diameter of the minimum circumscribed sphere of a particle. Table 1 shows for each habit the size

range and the values of the parameters a, b. For the plate type 1 habit, 51 differently sized particles were simulated. The185

size range is between 10µm and 2,596µm volume equivalent diameter, which corresponds to maximum diameters between

13µm and 10,000µm. The volume equivalent diameter is defined as the diameter of a solid ice sphere with the same mass

as the particle. The plate type 1 habit in our study has slightly different sizes than the plate type 1 in Eriksson et al. (2018),

because an older version of shape data was used than in Eriksson et al. (2018) and given the high computational costs of

the scattering calculation a recalculation was not feasible. For the large plate aggregate habit, 18 differently sized particles190

were simulated. The size range is between 197µm and 4,563µm volume equivalent diameter, which corresponds to maximum

diameters between 349µm and 22,860µm. For details on the particle shape data the reader is referred to Eriksson et al. (2018).

In this work we follow the approach of Eriksson et al. (2018) for the temperature and frequency selection. The selected

frequency range of the scattering calculation consists of 35 frequencies between 1GHz and 864GHz. Most selected frequencies
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Table 1. Overview of the selected habits. a- and b- are the parameters of the mass-size relationship (Eq. 13), Dveq is the volume equivalent

diameter and Dmax is the maximum diameter. ID is the identification number from the database of Eriksson et al. (2018).

habit name ID type a [kg] b No. of sizes Dveq [µm] Dmax [µm]

plate type 1 9 single crystal 0.76 2.48 51 10 – 2,596 13 – 10,000

large plate aggregate 20 aggregate 0.21 2.26 18 197– 4,563 349– 22,860

Figure 4. Example scatterer shapes.

are organized to include channel sets of existing and planned submillimeter and microwave radiometers. Table 2 shows the195

selected frequencies. Due to a rounding mistake when the simulation was set up, the frequencies of the plate type 1 habit

slightly deviate from the frequencies of the large plate aggregate habit by at maximum 0.5GHz. The selected temperatures are

190K, 230K, and 270K. Following Eriksson et al. (2018), the refractive index of ice is calculated by the model of Mätzler

(2006).
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Table 2. The frequencies for the scattering calculations. Except for 35.6GHz, the channels ≥ 18.6GHz are organized in channel sets, see

text.

Channel set 1 2 3 4 5 6 7 8 9 10 11 12

Freq. 18.6 31.3 50.1 88.8 115.3 164.1 175.3 228 314.2 439.3 657.3 862.4

[GHz] 24 31.5 57.6 94.1 122.2 166.9 191.3 247.2 336.1 456.7 670.7 886.4

Other frequencies [GHz]:

1, 1.4, 3, 5, 7, 9, 10, 10.65, 13.4, 15, 35.6

Figure 5. Schematic drawing of the calculation of the single scattering properties. (left) the non rotated particle with the incidence and

scattering directions fixed to the particle. (right) the rotated particle and the rotated incidence and scattering directions.

4 Scattering calculations200

In general, the scattering matrix Z of a non-spherical particle depends on the incidence direction (θinc,φinc), the scattering

direction (θs,φs) and the particle orientation described by the three Euler angles α, β and γ. The same holds for the extinction

matrixK except that it is independent of the scattering directions. The rotation of a particle is equivalent to the inverse rotation

of the incidence direction. This means, it is equivalent if the scattering of a particle is calculated for any incidence angle at a

fixed orientation or if the scattering of a particle is calculated for any orientation but at a fixed incidence angle. This equivalence205

is the key point in our approach. Therefore the scattering is calculated for any incidence direction and scattering direction and

the particle orientation is kept fixed. The orientation averaging is calculated by rotating the incidence and scattering direction

according to the particle orientation. With ADDA it is only possible to calculate the scattering properties for a finite set of

incidence and scattering directions. Hence, the scattering matrix and the extinction matrix are calculated for a set of different

incidence directions and scattering directions (only scattering matrix). The result is the scattering matrix and the extinction210

matrix for finite set of incidence and scattering directions, which are fixed to the particle, see Fig. 5 a. For a specific orientation

of the particle, the set of incidence and scattering directions are rotated according to the orientation of the particle, see Fig. 5 b.
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The actual results of an ADDA calculation are the scattering amplitude matrix and the Mueller matrix for a desired incidence

direction and a grid of scattering directions, whereas we are interested in extinction matrix and scattering matrix. The relation-

ship between the scattering amplitude matrix and the extinction matrix and between the Mueller matrix and the scattering215

matrix are explained in the following paragraphs. Difficulties arise from the fact that the matrices are defined in different coor-

dinate systems. The scattering matrix and the extinction matrix for the scattering database are defined in the laboratory system.

The extinction matrix that results from the scattering amplitude matrix and the Mueller matrix are defined in the coordinate

system that is defined by the incidence direction and the particle system, from here on called wave reference system. Due to the

relation to the particle system the wave reference system rotates if the particle (particle system) rotates. Therefore the main part220

of our averaging approach consists essentially of transformations from one coordinate system to another coordinate system.

The extinction matrix K depends on the scattering amplitude matrix for the forward direction (θinc = θs, φinc = φs,

Mishchenko et al. 2002)

K =
2π

k


Im(S11 +S22) Im(S11−S22) −Im(S12 +S21) Re(S21−S12)

Im(S11−S22) Im(S11 +S22) Im(S21−S12) −Re(S12 +S21)

−Im(S12 +S21) −Im(S21−S12) Im(S11 +S22) Re(S22−S11)

Re(S21−S12) Re(S12 +S21) −Re(S22−S11) Im(S11 +S22)

 (14)

with the scattering amplitude matrix225

S =

S11 S12

S21 S22

=
1

−ik

s2 s3

s4 s1

 , (15)

k the angular wavenumber and sj scattering amplitude matrix element of ADDA. The scattering amplitude is a complex matrix

and operates on the complex electric field, whereas the extinction, the scattering, and the Mueller matrix operate on the Stokes

vector, which is a real vector. Between the scattering matrix Z and the Mueller matrixM , which are both real 4× 4 matrices,

following linear relationship holds230

Z =
1

k2
LsMLi (16)

with Li, Ls the Stokes rotation matrices (Mishchenko et al., 2002). The Stokes rotation matrices transform the Mueller matrix

from the wave reference system to the laboratory system. The stokes rotation matrices Li,s are defined in Sect. D. Due to the

linear relationship, it does not matter if first the Mueller matrix is transformed to a scattering matrix and then the scattering

matrix is averaged or vice versa. Instead of transforming every calculated Mueller matrix into the scattering matrix, the aver-235

aging will be done for the Mueller matrix and at the end the averaged Mueller matrix is transformed to the scattering matrix,

which is described in Appendix D.

Each Mueller matrix element Mij (θinc,φinc,θ
′
s,φ
′
s), which has a scattering direction grid spacing of 1◦, is expanded as a

spherical harmonics series over the scattering directions θ′s,φ
′
s (see Appendix E) to efficiently store the results of the ADDA

calculation. The prime denotes that the angles are related to the wave reference system and not to the laboratory system as240

the unprimed angles. To reduce the amount of data, the spherical harmonic series is truncated to the number of coefficients,
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for which the mean square error between the series expansion and the original representation is less than 0.5% of the standard

deviation of the M11 element over the scattered direction. The relation to the M11 element results on average that after the

truncation features of the other Mueller matrix elements are still resolved, if their magnitude is greater than the truncation

error of M11. This allows to resolve the relevant features given the desired accuracy of the scattering database and reduces the245

amount of data by up to two orders of magnitude.

For each incidence direction, ADDA automatically calculates the Mueller matrix for a desired regular grid of polar angles and

azimuth angles. A regular grid of polar and azimuth angles has the property that the grid spacing at the pole is much finer than

at the equator. For the set of incidence angles, a regular grid of polar angles and azimuth angles are disadvantageous, because

for the incidence angle an isotropic sampling is needed but the distribution of the directions of a regular grid of polar angles250

and azimuth angles is not isotropic. Therefore, an icosahedral grid is used, which is shown in Fig. 6. An icosahedral grid is

almost isotropic. The distances between two neighboring vertices (grid points) is everywhere the same and an icosahedral grid

consists of equilateral triangles, which have all the same size. This makes the icosahedral grid convenient for grid refinement

and adjusting the grid size for the needed accuracy. An icosahedral grid can be set up by recursively bisecting the edges of an

icosahedron and projecting the new vertices on a sphere. Such an icosahedral grid consists of255

Nv = 10 · (2l)2
+ 2 (17)

vertices and

Nt = 20 · (2l)2 (18)

triangles with l the refinement level. The coordinates of the vertices of the icosahedral grid on the unit sphere are the set

incidence directions. For more details on icosahedral grids, see for example Satoh (2014).260

The orientation averaged Mueller matrixMaro is

Maro (θinc,θ
′
s,φ
′
s,β) =

2π∫
0

2π∫
0

pα (α)pγ (γ)R∗αβγ (M) dαdγ (19)

and orientation averaged extinction matrixKarois

Karo (θinc,β) =

2π∫
0

2π∫
0

pα (α)pγ (γ)R∗αβγ (K) dαdγ (20)

The rotation operator R∗αβγ rotates the Mueller and the extinction matrix according to the desired orientation, which is ex-265

plained in Appendix. B. The needed interpolation is done by using a barycentric interpolation for triangles, which is explained

in Appendix C. Afterwards the averaged Mueller matrix Maro (θinc,θ
′
s,φ
′
s,β) is transformed into the scattering matrix Zaro

using Eq. 16, which is explained in Appendix. D. As mentioned in Sect. 2.2, the resulting scattering matrix Zaro is in general

not symmetric, as this depends on the actual particle. The scattering matrix Zaro is symmetric if it is averaged with its own

mirrored version, in which it is reflected relative to the plane of incidence direction and laboratory Z-axis. This is equivalent to270
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Figure 6. Example of an icosphere grid with 162 vertices. Each gridpoint represent an incoming angle for which a DDA calculation is

performed. This type of configuration ensures that the grid density is isotropic, making the overall calculations more efficient (a standard

polar grid would be inefficient since it yields an excessive amount of angles around the ‘North and South poles”).

having simulated the scattering of the desired particle and its mirrored version, in which it is reflected by a plane that includes

the laboratory Z-axis, see Mishchenko et al. (2002) or van de Hulst (1981) for further details on the symmetry of the scattering

matrix.

The actual scattering calculations are done iteratively. For each particle, the scattering calculation begins with 12 incidence

angles (refinement level l = 0). With each additional refinement level l the number of incidence angles increases according275

to Eq. 17 roughly by a factor of four. With each iteration step the edges of the triangles of the icosahedral grid are bisected

creating new vertices (incidence angles). This means that the incidence angles of the previous iteration are part of the grid for

the current iteration. Due to that only about 3
4 of the number of incidence angles have to be calculated for each iteration step.

The iteration stops when

δl,l−1

δl−1,l−2
≤ 10−2 . (21)280

The change δl,l−1 between the current iteration step l and the previous iteration step is defined as the summed root mean

square differences between the upper left block of the orientation averaged extinction matrix of iteration step l and l−1 for five

different tilt angles β and ten incidence angles θinc. Depending on the particle size and shape, between 162 and 2562 incidence

angles were used.

To test our approach, the scattering of azimuthally randomly oriented prolate ellipsoids with an aspect ratio of 0.5 for several285

size parameters were simulated and compared with results from T-matrix calculations. The overall differences in view of the

extinction matrix and the scattering matrix were in the order of a few percent.

The methodology to calculate the scattering matrix and the extinction matrix can be summarized as:
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1. DDA calculations: A set of DDA runs are performed over an icosahedral angle grid of incidence directions, demonstrated

in Fig. 6. This type of grid ensures that the angle density is isotropic and increases the efficiency.290

2. Represent the Mueller matrix elements of each ADDA run in a spherical harmonics series and truncate them to reduce

the amount of data.

3. Averaging: Azimuthally averaged Mueller matrices Maro (θinc,θ
′
s,φ
′
s,β) and extinction matrices Karo (θinc,β) for a

set of tilt angles β and polar incidence angles θinc are calculated by integrating the Mueller and extinction matrices over

the Euler angles α and γ.295

4. Transformation: The averaged Mueller matrices are transformed to averaged scattering matrices Zaro.

5 Results of the scattering simulations

In this section we give an overview of the scattering simulations and show some example results. 51 sizes of plate type 1 (hexag-

onal plate) and 18 sizes of large plate aggregates for 35 frequencies and 3 temperatures were simulated. The simulations were

conducted on DKRZ’s (Deutsches Klimarechenzentrum) supercomputer Mistral. This took about 1.6 · 106 core hours on Intel300

Xeon E5-2695V4 processors with a clock rate of 2.1GHz. The amount of data of the scattering calculations is huge. Whereas

the scattering matrix Ztro (Θ) for total random orientation depends on one angle, the scattering matrix Zaro (θinc,θs,φs) for

azimuthal random orientation depends on three angles. Furthermore, the tilt angle β adds an additional dimension. This leads

to an up to three orders of magnitude larger amount of data. To reduce the computational time, the residual relative norm,

which is the stopping criterion of ADDA’s iterative solver, was set to 10−2 following Eriksson et al. (2018). The Mueller and305

the scattering matrices for a given incidence angle were represented in a truncated spherical harmonics series. with an accuracy

of 0.5% to reduce the amount of data. Even then, the total size of the data from the DDA simulations is about 1.5TB. Due to

the orientation averaging the amount of data reduces to about 0.18TB.

The orientation averaging is done for a finite set of incidence and tilt angles. The incidence angles θinc span a range from

0◦ to 180◦ with a 5◦ spacing and the tilt angles β span a range from 0◦ to 90◦ for plate type 1 and from 0◦ to 180◦ for large310

plate aggregates with a 10◦ spacing. The tilt angle range for plate type 1 is confined to 90◦, because of its mirror symmetry to

the x-y plane. In this case it holds for the scattering matrix Zaro and the extinction matrixKaro that

Zaro (θinc,θs,φs,β) =Zaro (θinc,θs,φs,π−β)

Karo (θinc,β) =Karo (θinc,π−β) .
(22)

The scattering database with the orientation averaged data is publicly available from Zenodo (https://doi.org/10.5281/zenodo.

3463003). The data from the DDA simulations is available upon request from us. The scattering database is organized so that315

the Python 3 interface of the database of Eriksson et al. (2018) can be used to extract and interact with the data. The scattering

database additionally includes the absorption vector a for each incidence and tilt angle. The i-th component of the absorption

14

https://doi.org/10.5281/zenodo.3463003
https://doi.org/10.5281/zenodo.3463003
https://doi.org/10.5281/zenodo.3463003


vector is

ai (θinc,β) =Karo,i1 (θinc,β)−
2π∫
0

π∫
0

Zaro,i1 (θinc,θs,φs,β)dφsdθs (23)

with Karo,i1 and Zaro,i1 the i-th component of the first column of the extinction matrix Karo and scattering matrix Zaro320

(Mishchenko et al., 2000).

In the following analysis we will not address the absorption vector, because it is derived directly from the extinction and

scattering matrix and is just added to the database for convenience.

5.1 Extinction matrix and asymmetry parameter

The orientation averaging (Eq. 20) reduces Eq. 14 to325

Karo =
2π

k


Im(S11 +S22) Im(S11−S22) 0 0

Im(S11−S22) Im(S11 +S22) 0 0

0 0 Im(S11 +S22) Re(S22−S11)

0 0 −Re(S22−S11) Im(S11 +S22)

 (24)

with Sii the scattering amplitude matrix elements (Eq. 15) and k the angular wavenumber. Whereas the extinction matrix has

seven independent entries in general, the extinction matrix for azimuthal random orientation has only three independent entries

that depend on the incidence angle θinc and the tilt angle β. For total random orientation the extinction matrix has only one

independent entry that is constant.330

Fig. 7 and Fig. 8 show the three independent entries of the extinction matrix (K11, K21, and K43) of plate type 1 and large

plate aggregate at 671GHz for several tilt angles β and size parameters x

x= kaeq =
2πaeq
λ

=
πDeq

λ
(25)

with aeq the volume equivalent frozen radius, Deq the volume equivalent frozen diameter and λ the wavelength. For the large

plate aggregate habit only size parameters x > 3 are shown, because for smaller sizes it is practically the same as plate type335

1. The extinction matrix elements in Fig. 7 and Fig. 8 are normalized by the extinction cross section Ktro for total random

orientation of the specific shape. Using Eq. 5 the extinction cross section for total random orientation Ktro is

Ktro =

π∫
0

pβ (β)Karo,11 (θinc,β)dβ . (26)

For the large plate aggregate, we skip the tilt angles β > 90◦ in Fig. 8, because for β > 90◦ the results are the same as for

β < 90◦ but mirrored around θinc = 90◦. Due to the mirror symmetry to the x-y plane of the hexagonal plates, the curves340

shown in Fig. 7 are symmetric relative to θinc = 90◦.

For the plate type 1 habit the effect of orientation and incidence angle results in differences of up to 50% of the Karo,11

element compared to total random random orientation, whereas for the large plate aggregate habit the biggest differences
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are at maximum about 15%. The biggest differences occur for tilt angles of 0◦ and 90◦ when looking from the top/bottom

(θinc = 0◦,180◦) and from the side (θinc = 90◦). Depending on the size parameter, shape and magnitude of the curve change.345

For example, the maximum for the plate type 1 habit occurs at tilt angle β = 0◦ and incidence angles of 0° and 180° for x> 1

and x≈ 10, whereas it occurs at an incidence angle of 90◦ for x≈ 3 and x≈ 5. The large plate aggregate habit shows a similar

behavior albeit with much lower magnitude.

The Karo,21 matrix element describes the extinction of the polarization difference between vertical and horizontal polariza-

tion and the Karo,43 matrix element the extinction of polarization difference between the +45◦ and −45◦ polarization. For350

total random orientation, these matrix elements are zero, which is indicated by the gray line in Fig. 7 and Fig. 8. For the plate

type 1 habit the Karo,21 and the Karo,43 matrix element show a strong dependency on the tilt angle and the incidence angle,

which reduces with increasing size parameter. Except when looking from the top/bottom (θinc = 0◦,180◦) both elements are

non-zero. For the large plate aggregate habit the Karo,21 and the Karo,43 matrix element are practically zero showing only

small deviations from zero for x& 3.355

The results for the plate type 1 with x≈ 1.4 and tilt angle β = 0◦ agree qualitatively with the results of Adams and Bet-

tenhausen (2012) for azimuthally randomly oriented hexagonal plates with tilt angle β = 0◦ and a similar size parameter but

at a different frequency. Adams and Bettenhausen (2012) simulated for microwave frequencies among others the scattering of

azimuthally randomly oriented hexagonal plates with tilt angle β = 0◦.

The asymmetry parameter describes the distribution between forward scattering and backscattering and gives an overview360

of the scattering behavior. For example, g = 0 means forward scattering and backscattering are of equal strength, whereas

g = 1 and g =−1 mean only forward scattering and only backscattering, respectively. The asymmetry parameter for azimuthal

random orientation is

garo (θinc,β) =
1

2

2π∫
0

π∫
0

cos(θs− θinc)Zaro,11 (θinc,θs,0,φs,β)dφsdθs (27)

with Zaro,11 being the (1,1)-element of the scattering matrix Zaro. The asymmetry parameter is shown in Fig. 7 and Fig. 8.365

The asymmetry parameters for the different tilt angles are centered around the asymmetry parameter gtro for total random ori-

entation, which is shown as a gray line. The asymmetry parameter gtro for total random orientation is calculated by integrating

garo (θinc,β) over the tilt angle β similar to Eq. 26. For x� 1, the total random orientation asymmetry parameter gtro is zero

indicating symmetric forward and backward scattering as expected for Rayleigh scattering. With increasing size parameter

forward scattering increases. The azimuthal random orientation asymmetry parameter garo for the large plate aggregate habit370

deviates slightly from the total random orientation asymmetry parameter gtro with changing tilt angle β, whereas for the plate

type 1 habit it deviates strongly from the total random orientation asymmetry parameter gtro especially for 1< x < 6. For

example, at tilt angle β = 0◦ and incidence angles of 0° and 180° for x= 1.4 the scattering in forward and backward direction

is almost symmetric but at tilt angle β = 90◦ the scattering in forward direction is much stronger than in backward direction.
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Figure 7. Extinction matrix elements Karo,ij normalized by the extinction cross section for total random orientation and the asymmetry

parameter g of plate type 1 (hexagonal plate) for different size parameter x at 671GHz as function of incidence angle θinc for several tilt

angles β. The gray lines denote total random orientation. The shapes of the scatterers are shown in Fig. 4.

5.2 Scattering matrix375

The scattering matrix of a particle describes the angular distribution of the scattered radiation in relation to the incidence di-

rection of the incoming radiation. For unpolarized incoming radiation, the Zj1-element with j = {1, ..., 4} shows the angular

distribution of the scattered radiation field. For example, the Z11-element shows the angular distribution of the scattered inten-

sity (I component of the Stokes vector), whereas the Z21-element shows how and where the scattered radiation is horizontally

and vertically polarized (Q component of the Stokes vector) due to the scattering. Negative Z21 values mean that the horizontal380

polarization dominates and vice versa. For polarized radiation, the j-th component of the scattered radiation field depends

additionally on the coupling with the other components of the incoming Stokes vector, which is described by the Zji-element

with i= {2, 3, 4}.
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Figure 8. Extinction matrix elements Karo,ij normalized by the extinction cross section for total random orientation and the asymmetry

parameter g of large plate aggregate (hexagonal plate aggregate) for different size parameter x at 671GHz as function of incidence angle

θinc for several tilt angles β. The gray lines denote total random orientation. The shapes of the scatterers are shown in Fig. 4.

After the orientation averaging, the resulting scattering properties possess a rotational symmetry relative to the laboratory

z-axis. The scattering matrix Zaro (Eq. 19, D1) depends for tilt angle β on the polar incidence angle θinc, the polar scattering385

angle θs and the scattering azimuth angle φs. In contrast, the scattering matrix of totally randomly oriented particles depends

only on the scattering angle Θ. The different tilt angles β result in different effective shapes and therefore different scattering

matrices. The impact of the tilt angle β depends also on the incidence direction and is different for the different scattering

matrix elements.

As an example, Fig. 9 shows at 671GHz and for several incidence angles θinc and tilt angles β the upper left block of the390

normalized scattering matrix Ẑaro (θinc,θs,φs) of plate type 1 for size parameter x≈ 3. The normalized scattering matrix
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Ẑaro (θinc,θs,φs) is

Ẑaro (θinc,θs,φs) = 4π
Zaro∫ 2π

0

∫ π
0
Zaro (θinc,θs,φs)dφsdθs

. (28)

We show only the upper left block, because these are the most relevant entries of the scattering matrix considering the present

spaceborne microwave and submillimeter wave sensors, but all 16 elements are calculated. At incidence direction θinc = 0◦,395

the Ẑ11- and Ẑ22-element differ strongly between the different tilt angles β. Especially in the backscattering direction they

strongly decrease with increasing tilt angle β. The Ẑ21- and Ẑ12-element show only slight differences between the different

tilt angles. Whereas the Ẑ11-element decreases at backscattering direction with increasing tilt angle, it is fairly constant at the

forward direction resulting in total in an increased forward direction, which is also shown by the asymmetry parameter garo

in Fig. 7. Within the Rayleigh regime (x� 1, not shown) the influence of the tilt angle β on the normalized scattering matrix400

Ẑaro is negligible at incidence direction θinc = 0◦.

For non nadir/zenith incidence directions the Ẑ21- and Ẑ12- element as well the other scattering matrix elements differ

strongly for different tilt angle β. For example, the Ẑ21- and Ẑ12- elements have a negative peak at θs = 180◦− θinc and

φs = 0◦ for tilt angle β = 0◦, which means that incoming unpolarized radiation scattered at this direction is horizontally

polarized. There is no peak at this scattering direction for tilt angle β = 50◦ or β = 90◦. For tilt angle β = 50◦ there is a405

negative peak at θs = θinc and for tilt angle β = 90◦ there is a positive peak at θs = θinc. The negative peaks of the Ẑ21- and

Ẑ12- element at θs = 180◦−θinc and φs = 0◦ for β = 0◦ are accompanied by peaks of the Ẑ11- and Ẑ22-element. For tilt angle

β = 50◦ or β = 90◦ the Ẑ11- and Ẑ22-elements do not have peaks at that direction but only in the forward direction θs = θinc.

The peak at θs = 180◦− θinc and φs = 0◦ for tilt angle β = 0◦ coincides with the specular reflection direction of a plane. The

results of Adams and Bettenhausen (2012) for the Ẑ11- and the Ẑ21- element for size parameter x≈ 4 fit qualitatively with410

the Ẑ11- and the Ẑ21-element for tilt angle β = 0◦ in Fig. 9. Interestingly, the large plate aggregate in Fig. 10 with similar

size parameter x as the plate type 1 habit in Fig. 9 does not show these peaks. There is also no strong backscattering for nadir

incidence direction. Fig. 10 shows at 671GHz and for several incidence angles θinc and tilt angles β the upper left block of the

normalized scattering matrix Ẑaro (θinc,θs,φs) of large plate aggregate for size parameter x≈ 3. Compared to the plate type

1 habit in Fig. 9 the Ẑ21- and Ẑ12-elements are practically zero. This means unpolarized incoming radiation scattered by the415

large plate aggregate does not show much polarization. On the other hand, at 167GHz the Ẑ21- and Ẑ12-elements are non-zero

and significantly differ between the different tilt angles β. Fig. 11 shows at 167GHz and for several incidence angles θinc and

tilt angles β the upper left block of the normalized scattering matrix Ẑaro (θinc,θs,φs) of the same large plate aggregate as in

Fig. 10. At 167GHz the size parameter for this particle is x≈ 0.75. Compared to Fig. 10 the scattering is less focused toward

the forward scattering direction.420

The data from the simulated scattering matrix can be used for simulations of passive and active observations. However, for

simulations of horizontally scanning radars the scattering matrix in the backscattering direction has to be handled with care.

In the spherical harmonics representation of the Mueller matrix, the polarization at the poles, which are in the forward and

backward direction, is not well represented. This can result in errors for the polarization. Most of this is averaged out due to the
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Figure 9. The upper left block of the normalized scattering matrix Ẑ of plate type 1 with a volume equivalent diameter of 429µm (Fig. 4)

and a size parameter x≈ 3 at 671GHz as function of the polar scattering angle θs and the azimuth scattering angle φs for a set of tilt angles

β and incidence angles θinc.

orientation averaging and the transformation to the scattering matrix, but there can be some residual effects for the polarization425

at the backscattering direction. This will be revised for the next iteration of the database.

6 Radiative transfer simulations

In this section, we show radiative transfer simulations at 166GHz using azimuthally randomly oriented scatterers in order to

give an example of the capabilities of the simulated scattering data. For the radiative transfer simulations, 200 atmospheric pro-

files over the tropical pacific were taken from one of the EarthCARE scenes. These scenes were prepared for the EarthCARE430
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Figure 10. The upper left block of the normalized scattering matrix Ẑ of large plate aggregate with a volume equivalent diameter of 427µm

(Fig. 4) and a size parameter x≈ 3 at 671GHz as function of the polar scattering angle θs and the azimuth scattering angle φs for a set of

tilt angles β and incidence angles θinc.
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Figure 11. The upper left block of the normalized scattering matrix Ẑ of large plate aggregate with a volume equivalent diameter of 427µm

(Fig. 4) and a size parameter x≈ 0.75 at 167GHz as function of the polar scattering angle θs and the azimuth scattering angle φs for a set

of tilt angles β and incidence angles θinc.
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mission with Environment Canada’s high-resolution numerical weather prediction model known as the Global Environmental

Multiscale Model (GEM, Côté et al., 1998). The GEM scenes have a resolution of 250m and include two liquid hydrome-

teor species (rain, liquid clouds) and four frozen hydrometeor species (cloud ice, snow, graupel, and hail). The profiles were

randomly selected except for that they should cover the whole possible brightness temperature space as uniformly as possible.

The simulations were done using the Atmospheric Radiative Transfer Simulator (ARTS, Buehler et al., 2018; Eriksson435

et al., 2011) version 2.3.1118. The discrete ordinate iterative solver (DOIT, Emde, 2004) was used as scattering solver within

ARTS. The simulations of Rayleigh–Jeans brightness temperatures were done using independent pixel approximation (IPA)

with a local incidence angle of 49° for a satellite orbit height of 407km at 165.1GHz and 166.9GHz, which were averaged

to mimic the GMI’s 166GHz channel. Within ARTS, gas absorption was taken into account by using the HITRAN data base

(Rothman et al., 2013) and the MT_CKD model for the continuum absorption of water vapor and molecular nitrogen in440

version 2.52 (Mlawer et al., 2012). The gas absorption of molecular oxygen was processed by using the full absorption model

of Rosenkranz (1998) modified by the values from Tretyakov et al. (2005). The ocean surface emissivity was calculated with

the Tool to Estimate Sea-Surface Emissivity from Microwaves to sub-Millimeter waves (TESSEM2, Prigent et al. (2017))

implementation within ARTS using the surface speed and temperature from the GEM profiles.

The Milbrandt-Yau two-moment microphysics (Milbrandt and Yau, 2005a, b) implementation within ARTS with the same445

hydrometeor types and size distributions as for the GEM runs was used. The Milbrandt-Yau two-moment microphysics assumes

a modified gamma distribution with characteristic parameters for each individual hydrometeor;

N (x) =N0x
ν exp(−λxµ) (29)

with the parametersN0 and λ, which are functions of the number density and the hydrometeor content and parameters µ and ν.

The parameters µ and ν are fixed for each hydrometeor type and are summarized in Table 3. The Milbrandt-Yau two-moment450

bulk microphysics use the particle maximum diameter as independent variable x for the size distribution.

The scattering properties for the hydrometeors were taken from Eriksson et al. (2018) except for cloud ice and snow. The

database of Eriksson et al. (2018) contains among others the single scattering properties of hydrometeors, which are modeled

to be consistent with the m-D parameters of the Milbrandt-Yau two-moment bulk microphysics scheme. The particles inside

the database of Eriksson et al. (2018) are assumed to be totally randomly oriented.455

For cloud ice and snow the azimuthally randomly oriented plate type 1 and the azimuthally randomly oriented large plate

aggregate are used. No averaging of the scattering data of the particles with its mirrored version was done for the radiative

transfer simulation. Normally, this is done to assure that the scattering medium, in our case ice clouds, are mirror symmetric to

the incidence plane. Mirrorsymmetric particles like the plate type 1 automatically fulfill this, but unsymmetric particles like the

large plate aggregate generally do not. Due to the orientation averaging and the random structure of the large plate aggregate the460

effect of the non-mirror symmetry are so small, that we neglected it for the radiative transfer simulations. For the simulations

the azimuthally randomly oriented particles are orientation-averaged over Gaussian distributed β angles with zero mean and

increasing standard deviation. Six different orientation states were prepared for the simulations to mimic different stages of
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Table 3. Size distribution parameters and the scatterer shape of the radiative transfer simulations. The size distribution parameters were taken

from the source code of the Milbrandt-Yau two-moment bulk microphysics (Milbrandt and Yau, 2005a, b) of the GEM model. Except for

cloud ice and snow the scattering properties were taken from Eriksson et al. (2018).

MGD parameter scatterer habits

ν µ Fig. 12 Fig. 13 Fig. 15

cloud water 1 1 Liquid Sphere, ID 25 Liquid Sphere, ID 25 Liquid Sphere, ID 25

rain 0 1 Liquid Sphere, ID 25 Liquid Sphere, ID 25 Liquid Sphere, ID 25

cloud ice 0 1 Plate Type 1 (ARO) Plate Type 1 (ARO) Plate Type 1 (ARO)

snow 0 1 Large plate aggr. (ARO) Large plate aggr. (ARO) Plate Type 1 (ARO)

graupel 0 1 GEM Graupel, ID 33 - GEM Graupel, ID 33

hail 0 1 GEM Hail, ID 34 GEM Hail, ID 34 GEM Hail, ID 34

fluttering of the particle. Additionally, the azimuthally randomly oriented particles were averaged over uniformly distributed β

angle to show the results for total random orientation. The used single scattering properties are summarized in Table 3.465

6.1 Results and discussion

Fig. 12 shows the vertical polarization of the brightness temperature Tbv and the polarization difference Tbv −Tbh as function

of the frozen water path (FWP) for the different orientations. The FWP is the sum of each vertically integrated mass content

of the four frozen hydrometeors. The plate type 1 habit for ice clouds and the large plate aggregate habit for snow were

used for the simulation, see Table 3 for the other hydrometeors. The vertical polarization of the brightness temperature Tbv470

decreases from ≈ 280K at a FWP of ≈ 10−2 kgm−2 with increasing frozen water path to ≈ 85K at a FWP of ≈ 20kgm−2.

The polarization difference Tbv −Tbh increases with increasing FWP till a maximum is reached at a FWP of ≈ 5kgm−2

and then decreases with increasing FWP. The maximum of the polarization difference depends on the orientation state. For

total horizontal orientation the maximum polarization difference is ≈ 11K. With increased standard deviation (fluttering) the

maximum polarization difference decreases down to≈ 2.5K for totally randomly oriented particles. The orientation depending475

polarization difference also indicates that particle orientation is not only an issue for dual polarized observations but also for

single polarized observations. Ignoring orientation can cause a negative bias for vertically polarized observations and in a

positive bias for horizontally polarized observations.

Additionally, Fig. 12 shows the polarization difference Tbv−Tbh as function of the vertical polarized brightness temperature

Tbv . The polarization difference has a bell shaped distribution with a flat top and its maximum at ≈ 195K for total horizontal480

orientation. With increased standard deviation the curve gets flatter. For small standard deviations (≤ 10◦) the bell like dis-

tributions of the polarization difference are similar to the mean polarization differences that Gong and Wu (2017) estimated

from GMI measurements over tropical ocean and the mean polarization differences that Defer et al. (2014) estimated from

MADRAS. The results of Gong and Wu (2017) and of Defer et al. (2014) are additionally shown in Fig. 12 as gray solid and

24



dashed lines. Though MADRAS has a slightly higher incidence angle than GMI and measures at 157GHz instead of 166GHz,485

the observations of GMI and MADRAS are similar.

Additional tests show that the polarization difference and the brightness temperature are mainly influenced by snow and

graupel. For these tests (not shown) one hydrometeor at a time was set to zero, while the others were unchanged, and the

simulations for the 200 profiles and 7 orientation states were rerun. Cloud liquid and rain have an impact on single profiles but

do not change the overall behavior of the polarization difference. The influence of ice clouds is negligible, because most of the490

ice cloud particles are too small to cause significant scattering at 166GHz. Hail does not need to be considered, because within

the 200 profiles its content is very little and therefore does not cause any significant scattering. Setting graupel or snow to zero

strongly alters the polarization difference and the brightness temperature.

For the simulations shown in Fig. 13 the mass content and number density of graupel was added to snow but without

changing the total amount of frozen water mass content and the other hydrometeors. In this case snow is the only significant495

cause of scattering. Compared to Fig. 12 the minimum brightness temperature Tbv is higher by ≈ 40K, which means that the

scattering of the large plate aggregate habit is weaker than the graupel habit. The reason for that is that the graupel habit due

to its higher density has a larger scattering coefficient than the large plate aggregate. More interesting is how the polarization

differs. The polarization difference Tbv −Tbh distribution has indications of a bell like distribution but compared to Fig. 12

it does not reach zero for the minimum brightness temperature Tbv and it is flatter. Furthermore, the polarization difference500

maximum is shifted by ≈ 30K to lower brightness temperature and is slightly higher. Down to Tbv ≈ 170K the polarization

differences for small standard deviations (≤ 10◦) are similar to the observed polarization differences of Gong and Wu (2017)

and of Defer et al. (2014). For Tbv > 170K the polarization differences are larger than the observed ones. Around brightness

temperature Tbv = 125K, approximately the minimum brightness temperature, the polarization difference is roughly twice as

large as for the similar brightness temperature in Fig. 12 and the observations of Gong and Wu (2017) and of Defer et al.505

(2014).

The bell like distribution of the polarization difference Tbv −Tbh in Fig. 13 is caused by two opposing effects. On one hand

increasing the amount of scatterers results in increased scattering and in increased polarization difference. On the other hand,

increasing the amount of scatterers results in increased multi-scattering and in decreased polarization difference. For small

amount of scattering the polarization increase dominates and for large amount of scattering polarization decrease dominates.510

In Fig. 13 snow is the only significant cause of scattering, whereas in Fig. 12 snow and graupel are the causes of scattering.

The smaller polarization differences in Fig. 12 compared to Fig. 13 for brightness temperatures Tbv < 220K show that not only

multi-scattering reduces the polarization but also the composition of the scatterers. As the amount of frozen particles increases

the composition changes. For small amount of frozen hydrometeors the amount of snow dominates whereas the amount of

graupel dominates for large amount of frozen hydrometeors, see Fig. 14. Graupel is simulated by the GEM graupel habit of515

the database of Eriksson et al. (2018). Due to its total random orientation and its sphere-like shape the GEM graupel habit

causes only negligible polarization at 166GHz. For small amount of frozen hydrometeors snow dominates the scattering and

increasing the amount of frozen hydrometeors results in increased scattering and in increased polarization difference. With

increasing amount of frozen hydrometeors not only multi-scattering increases but also the scattering due to graupel. Both
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Figure 12. Simulated brightness temperature at 166GHz for 200 randomly selected atmospheric profiles. For each of these atmospheric

profiles the scattering properties of the azimuthally randomly oriented scatterers are orientation averaged over 7 different distributed β

angles with zero mean and different standard deviation. The different colors denote the standard deviation of the β angle distribution and the

distribution type. For the used scatterers, see Table 3. The gray line solid line denotes the mean polarization difference over tropical ocean

from GMI observations at 166GHz of Gong and Wu (2017) and the gray dashed line the mean polarization difference over tropical ocean

from MADRAS observations at 157GHz of Defer et al. (2014).

decreases the polarization difference. Due to this the polarization difference in Fig. 12 is smaller for Tbv < 220K and the520

maximum polarization difference is at higher brightness temperatures than in Fig. 13.

As an additional scenario, the large plate aggregate habit for snow was replaced by the plate type 1 habit and the simulations

for the 200 profiles and 7 orientation states were rerun, which is shown in Fig. 15. The polarization difference Tbv −Tbh
distribution has similar shape as in Fig. 12 but it has a roughly three times higher magnitude and a much higher spread,

whereas the brightness temperature Tbv differs only slightly. This shows that the polarization difference not only depends on525

the orientation but on the shape, too. For a standard deviation of ≈ 40◦ the bell like distribution of the polarization difference

is comparable to the mean polarization differences of Gong and Wu (2017) and of Defer et al. (2014).

The comparison of the three different scenarios with the observations of Gong and Wu (2017) and of Defer et al. (2014)

shows that snow simulated as large plate aggregate with small standard deviations (≤ 10◦) or as plate type 1 with standard

deviations in the order of O (40◦) is compatible with the observations, if additionally graupel is included within the simula-530

tions. Without graupel, the observed decrease of the polarization differences for brightness temperature Tbv < 170K cannot be

reached.

7 Summary

We provide microwave and submillimeter wave scattering simulations of azimuthally randomly oriented ice crystals with a

fixed but arbitrary tilt angle. For the simulations, DDA simulations made with ADDA were combined with a self developed535
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Figure 13. Same as Fig. 12 but the mass content and the number density of graupel added to snow.

orientation averaging approach. The scattering of 51 sizes of hexagonal plates (plate type 1) between 10µm and 2,596µm

volume equivalent diameter and 18 sizes of hexagonal plate aggregates (large plate aggregate) between 197µm and 4,563µm

for 35 frequencies between 1GHz and 864GHz and 3 temperatures (190K, 230K, 270K) were simulated. The scattering data

for azimuthal random orientation is much more complex than for total random orientation. Whereas for total random orientation

the scattering matrix Ztro (Θ) depends only on one angle and the extinction matrixKtro has no angular dependency at all and540

has only one independent entry, for azimuthal random orientation the scattering matrix Zaro (θinc,θs,φs) depends on three

angles and the extinction matrix Karo (θinc) depends on the incidence angle and has three independent entries. Furthermore,

the tilt angle β increases the complexity. Due to the high demands in view of computation time and the amount of data we have

to compromise in terms of the accuracy of the resulting scattering data, which is in the order of a few percent. For a finite set of

incidences and tilt angles, in which the incidence angles θinc span a range from 0◦ to 180◦ with a 5◦ spacing and the tilt angles545

β span a range from 0◦ to 90◦ for plate type 1 and from 0◦ to 180◦ for large plate aggregates with a 10◦ spacing, the scattering

data has a size of 181GB, which is roughly 20 times bigger than the database of Eriksson et al. (2018). The scattering database

of the azimuthally randomly oriented particles is publicly available from Zenodo (https://doi.org/10.5281/zenodo.3463003).

The scattering database is organized so that the Python 3 interface of the database of Eriksson et al. (2018) can be used to

extract and interact with the data.550

To give an example of the capabilities of the dataset, we conducted radiative transfer simulations of polarized GMI measure-

ments of differently fluttering ice crystals at 166GHz. The radiative transfer simulations were conducted using ARTS (Buehler

et al., 2018; Eriksson et al., 2011) and assuming Milbrandt-Yau two-moment microphysics (Milbrandt and Yau, 2005a, b) with

two liquid hydrometeor species (rain, liquid clouds) and four frozen hydrometeor species (cloud ice, snow, graupel, and hail).

For slightly fluttering snow and ice particles, the simulations show polarization differences up to 11K using the azimuthally555

randomly oriented large plate aggregate habit for snow, the plate type 1 habit for cloud ice and totally oriented particles for the

other four hydrometeors. The simulations cover the observed brightness temperatures and polarization differences from Gong
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Figure 14. Hydrometeor content profiles used for the radiative transfer simulation in Fig. 12. The color indicates the frozen water path (FWP)

of each atmospheric profile.
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Figure 15. Same as Fig. 12 but with plate type 1 for snow instead of large plate aggregate.

and Wu (2017) and Defer et al. (2014). Further analysis shows that not only multi-scattering affects the polarization but also

the hydrometeor composition. The polarization difference and the brightness temperature are mainly influenced by snow and

graupel. Exchanging the large plate aggregate habit with the plate type 1 habit for snow results in roughly three times bigger560

polarization difference. For strongly fluttering snow and ice particles, the simulations using the plate type 1 habit for snow

and ice are similar to Gong and Wu (2017) and Defer et al. (2014). Particle orientation also affects single polarized observa-

tions. Ignoring orientation can cause a negative bias for vertically polarized observations and in a positive bias for horizontally

polarized observations.

Using the new scattering data for retrievals of polarized observations from GMI, MADRAS and especially the upcoming ICI565

can give us new insights for the understanding of clouds. For example, to the authors’ knowledge none of the latest atmospheric

weather and climate models handle orientation. Furthermore, polarization can give us additional information on the shape of

the particle.

Data availability. The scattering database of the azimuthally randomly oriented particles is publicly available from Zenodo (https://doi.org/

10.5281/zenodo.3463003). The data of the radiative transfer simulations of Sect. 6 is also publicly available from Zenodo (https://doi.org/10.570

5281/zenodo.3475897). The data from the DDA simulations is available upon request from us.
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Appendix A: Initial particle alignment

Before any orientation averaging can be performed, the initial orientation of the particle has to be defined. The alignment

algorithm is based mainly on aligning the principal moments of inertia axes along the Cartesian coordinate axes. Also, a

number of special cases are treated in order to make the alignment consistent between particles and not dependent on small

numerical differences. The result of the algorithm is that the particle fulfills the following criteria: the principal axis of the590

particle with the largest inertia is aligned along the z-axis, and its principal axis with the smallest inertia along the x-axis.

The algorithm involves a several steps. For particles that possess no symmetries, one step can be skipped. The algorithm

operates on a coordinate grid and consists of the following steps:

1. First, the particle mass center coordinate r is calculated, according to

r =

N∑
i=1

miri, (A1)595

where ri is (3x1) column vector describing the coordinate of the grid point with index i, and mi is the mass of the

corresponding dipole. The dipole grid is then displaced so that the mass center is located at the origin.

2. Next, the inertia matrix I relative to the origin is calculated using

I =−
N∑
i=1

mi[R]2i , (A2)
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where [R]i is the skew-symmetric matrix associated with coordinate r, defined as600

[R] =


0 −z y

z 0 −x
−y x 0

 . (A3)

I contains the products of inertia along the Cartesian coordinate axes, i.e.

I =


Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

 . (A4)

Since I is real and symmetric, it can be diagonalized using eigenvector decomposition, as

Λ =QIQT , (A5)605

where Λ is a diagonal matrix with elements I1, I2 and I3, which are called the principal moments of inertia. The

diagonalization is performed in such way that I1 ≤ I2 ≤ I3. The columns of Q, Q1, Q2 and Q3, are the corresponding

principal axes.

It follows thatQ is a rotation matrix, which rotates the x, y and z-axes to corresponding axes of inertia. Thus, to align the

particle principal axes to the coordinate axes, one has to rotate the particle grid by the inverse of Q, i.e. QT . In order to610

ensure that the rotation does not mirror the particle (that the rotation is pure), one has to make sure that det
(
QT
)

= 1.

The rotation matrixA is thus calculated as

A=
QT

|QT |
. (A6)

After the rotation, recalculation of the inertia matrix should yield

I =


Ixx 0 0

0 Iyy 0

0 0 Izz

 , (A7)615

With

Ixx ≤ Iyy ≤ Izz. (A8)

This criteria must always be satisfied, i.e. any of the remaining steps must make sure that it does not violate the condition.

3. If the particle contains symmetries, then two or all of the principal moments of inertia can be equal. This means that

the rotation in the previous step is unambiguous, i.e. several possible orientations fulfill Eq. A8. As an example, for620

hexagonal plates, Ixx = Iyy, meaning that its orientation in the xy-plane is unambiguous. It is desirable to remove this

uncertainty, which here is done by minimizing the particle dimensions along the coordinate axes. Three cases are possible

and are treated as follows:
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– Ixx = Iyy = Izz: The particle is spherically symmetric (for example, a six bullet rosette), hence no rotation will

have an impact on I . First, the particle dimension along the z-axis is minimized by rotation around the x and y-axis.625

Similarly, the particle dimension along the x-axis is then maximized by rotation around the z-axis.

– Iyy = Izz: The particle is symmetric around the x-axis (a hexagonal column for example). The particle dimension

along the z-axis is minimized by rotation around the x-axis.

– Iyy = Ixx: The particle is symmetric around the z-axis (for example, a hexagonal plate). The particle dimension

along the x-axis is maximized by rotation around the z-axis630

4. In the final step, it is determined whether the particle is aligned upside down or upright. First, the minimum circumsphere

of the particle is calculated, with its corresponding center. If the center is found to be below the mass-center of the particle

(with respect to the z-axis), then the particle is said to be aligned upright. Vice versa, it is said to be aligned upside down

in the case when the sphere center is above the mass center. In this case, the particle is rotated 180◦ around the x-axis to

be upright.635

Appendix B: Particle rotation

The key point in our averaging approach is the rotation of the particle for the averaging process. When rotating the particle

the wave reference system rotates, too. The wave reference system is the coordinate system that is defined by the incidence

direction and the particle system The changed direction êi,rot for a desired orientation is given by

êi,rot =Rαβγ êi (B1)640

with êi the non-rotated incidence or scattering direction andRαβγ the rotation matrix. The rotation matrixRαβγ is

Rαβγ =Rα (α)Rβ (β)Rγ (γ) =


R11 R12 R13

R21 R22 R23

R31 R32 R33

 (B2)

with the Euler angles α, β, and γ. The rotation matrix elements Rij are

R11 = cos(γ)cos(β)cos(α)− sin(γ)sin(α) (B3)

645

R12 = cos(γ)cos(β)sin(α) + sin(γ)cos(α) (B4)
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R13 =−cos(γ)sin(β) (B5)

R21 =−sin(γ)cos(β)cos(α)− cos(γ)sin(α) (B6)650

R22 =−sin(γ)cos(β)sin(α) + cos(γ)cos(α) (B7)

R23 = sin(γ)sin(β) (B8)

655

R31 = sin(β)cos(α) (B9)

R32 = sin(β)sin(α) (B10)

R33 = cos(β) (B11)660

with Euler angles α, β, and γ (Tsang et al., 2000). When the wave reference system changes, the polarization directions change,

too. The polarization directions of each simulated Mueller matrix and extinction matrix are relative to the wave reference

system, which is different for each incidence angle. This means the original polarization directions of the Mueller matrix and

the extinction matrices change under rotation as indicated in Fig. B1. The rotation about the laboratory Z-axis by the Euler

angle α does not change the polarization, because the vertical polarization direction stays always in the plane spanned by665

incidence direction unit vector êki and the laboratory z-axis and the horizontal polarization direction stays parallel to the x-

y-plane. But the combined rotations by the Euler angles β and γ do change. After the combined rotation the original vertical

polarization unit vector êv is rotated out of the plane spanned by incidence direction unit vector êki and the laboratory z-axis

by angle ϕ and original horizontal polarization unit vector êh is rotated out of the x-y-plane by angle ϕ. After the rotation

using Rαβγ the polarization of the Mueller matrix M and the extinction matrix K need to be transformed to the laboratory670

polarization using the stokes rotation matrix L (Mishchenko et al., 2002)

L(ϕ) =


1 0 0 0

0 cos2ϕ −sin2ϕ 0

0 sin2ϕ cos2ϕ 0

0 0 0 1

 . (B12)
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rotate 

rotate 

Figure B1. Change of the polarization directions under rotation. (top left) the incidence direction unit vector êki together with the vertical

polarization unit vector êv and the horizontal polarization unit vector êh, which are fixed to the particle, before the rotation is performed. (top

right) the unit vectors after the rotation by angle β and (bottom right) after the rotation by angle γ. As indicated (bottom left) the polarization

vectors after the rotation by angles β and γ are twisted by angle ϕ compared to the laboratory unit vectors.

The Mueller matrixM rot and the extinction matrixKrot of the rotated particle are given by

M rot =R∗αβγ (M) =L(ϕ)M (Rαβγ (θinc,φinc) ,Rαβγ (θ′s,φ
′
s))L(−ϕ) (B13)

and675

Krot =R∗αβγ (K) =L(ϕ)K (Rαβγ (θinc,φinc))L(−ϕ) . (B14)

The rotation angle ϕ is

ϕ= atan2(êv · êh,lab, êv · êv,lab) (B15)

with the rotated vertical polarization direction êv , the horizontal polarization direction in the laboratory system

êh,lab = êv,lab× êki , (B16)680

the vertical polarization direction in the laboratory system

êv,lab = (êz × êki)× êki , (B17)

and z-direction êz .
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Figure C1. Geometry of triangular barycentric interpolation.

Appendix C: Barycentric interpolation

On an icosahedral grid any arbitrary point on the sphere is accompanied by three nearest points that form a equilateral triangle.685

Within this triangle the value at that point can be interpolated from the vertices of the triangle. A schematic of the problem is

shown in Fig. C1. The vertices A, B, and C form the equilateral triangle ABC. The point D is the evaluation point. Always

two vertices and the evaluation point D form a sub-triangle. For example, the vertices B and C and the evaluation D form the

triangle BCD on the opposing side of vertex A. The idea behind the barycentric interpolation is to use the ratio of the area of

a sub-triangle and the area of the triangle ABC as interpolation weights. The weight belonging to vertex A is690

wA =
SA
SABC

(C1)

with SA the area of sub-triangle BCD and SABC the area of the triangle ABC. The weights belonging to the other two

vertices are analogue to the weight of vertex A. The area S of a triangle is using Heron’s formula

Si =
√
s(s−u)(s− v)(s−w) (C2)

with695

s=
u+ v+w

2
(C3)

and u, v, w the sides of the triangle i. The interpolated value fint at the evaluation point D is

fint (D) = wAf (A) +wBf (B) +wCf (C) (C4)

with f (i) the value at a vertex i.
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Figure D1. Scattering geometry in the laboratory system

Appendix D: Transformation of the averaged Mueller matrix to the averaged scattering matrix700

Between the scattering matrix averaged Z and the averaged Mueller matrixM following relationship holds

Z (θinc,θs,φs,β) =
1

k2
L(−ϕs)M (θinc,R (θ′s,φ

′
s) ,β)L(ϕi) (D1)

with k the angular wavenumber, L the Stokes rotation matrix (Eq. B12), ϕi, ϕs the polarization rotation angles, and R (θ′s,φ
′
s)

the rotation operator that transforms the incidence direction related coordinate system to the laboratory system.

As defined in Sect. 2.2, the incidence azimuth direction is zero. In that case the incidence direction vector is always within705

the X-Z-plane. The rotation operator R (θ′s,φ
′
s) then is θs

φs

=R

 θ′s

φ′s

=

 arccos(−sinθinc sinθ′s cosφ′s + cosθinc cosθ′s)

atan2(sinθ′s sinφ′s,cosθinc sinθ′s cosφ′s + sinθinc cosθ′s)

 . (D2)

The Stokes rotation matrices L(−ϕs), L(ϕi) transform the polarization basis from relative to the scattering direction to

relative to incidence direction. Fig. D1 shows the geometry for polarization basis transformation. The Stokes rotation matrix

L(−ϕs) describes the rotation by angle ϕs, which is the angle between the plane, that is spanned by the unit vector of the710

scattering direction êks and the laboratory Z-axis, and the scattering plane, which is the plane that is spanned by the unit vector

of the incidence direction êki and the unit vector of the scattering direction êks. The Stokes rotation matrix L(ϕi) describes

the rotation by angle ϕi, which is the angle between the plane that is spanned by the unit vector of the incidence direction and
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the laboratory Z-axis, and the scattering plane. The unit vector êkj describing the incidence or scattering direction is

êkj =


sinθj cosφj

sinθj sinφj

cosθj

 (D3)715

and the unit vector of the vertical polarization êvj for the incidence direction or the scattering direction is

êvj =


cosθj cosφj

cosθj sinφj

−sinθj

 (D4)

with j = i, s for the incidence direction and the scattering direction, respectively. The rotation angle is

ϕj =

−arccos(êvj · p̂j) , êvj · n̂j ≥ 0

arccos(êvj · p̂j) , êvj · n̂j < 0
. (D5)

with the unit vector720

p̂j = n̂× êkj (D6)

that is parallel to scattering plane and orthogonal to êkj . The normal vector

n̂=
êks× êki

sinΘ
(D7)

is orthogonal to the scattering plane. The scattering angle Θ, which is the angle between the incidence direction and the

scattering direction is725

sinΘ = |êks× êki| (D8)

In the actual implementation each matrix element Mij,aro (θinc,θ
′
s,φ
′
s) of the averaged Mueller matrix is represented as a

spherical harmonics series over the scattering directions θ′s,φ
′
s. For the calculation of the averaged scattering matrix Zaro, the

Mueller matrix elements Mij,aro (θinc,θ
′
s,φ
′
s) in angular grid representation are used. The resulting scattering matrix elements

Zij,aro in angular grid representation are expanded afterwards as spherical harmonics series over the scattering directions730

θs,φss .

Appendix E: Spherical harmonics expansion of the Mueller and scattering matrix elements

Each matrix elementXij (θinc,φinc,θs,φs) of the Mueller matrix or the scattering matrix is expanded in a spherical harmonics

series over the scattering directions (θs,φs).

Xij (θinc,φinc,θs,φs) =

lmax∑
l=0

l∑
m=−l

Clm (θinc,φinc)Ylm (θs,φs) (E1)735
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with Ylm the spherical harmonic function of the l-th and m-th order and with

Clm (θinc,φinc) =
∫

Ωs
Xij (θinc,φinc,θs,φs)Y

∗
lm (θs,φs)dΩs (E2)

the expansion coefficients of the incidence direction (θinc,φinc). To save data space, the expansion of Xij is truncated to the

value lmax. lmax is defined as the lowest l for which holds, that∫
Ωs

∣∣∣∣∣Xij (θinc,φinc,θs,φs)−
lmax∑
l=0

l∑
m=−l

Clm (θinc,φinc)Ylm (θs,φs)

∣∣∣∣∣
2

dΩs

 1
2

< εM11 . (E3)740

εM11 is 0.5% of the standard deviation over the scattering directions (θs,φs) of the X11 (θinc,φinc) matrix element. For the

actual calculation of the spherical harmonics the SHTns library version 2.8 (Schaeffer, 2013) and its Python interface are used.
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