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Abstract. We developed a mass spectrometric soil-gas flux measurement system using a portable high-resolution multiturn

time-of-flight mass spectrometer, called MULTUM, and we combined it with an automated soil-gas flux chamber for the15

continuous field measurement of multiple gas concentrations with a high temporal resolution. The developed system

continuously measures the concentrations of four different atmospheric gases (N2O, CH4, CO2, and O2) ranging over six orders

of magnitude at one time using a single gas sample. The measurements are performed every 2.5 min with an analytical precision

(two standard deviations) of ±34 ppbv for N2O; ±170 ppbv, CH4; ±16 ppmv, CO2; and ±0.60 vol%, O2 at their atmospheric

concentrations. The developed system was used for the continuous field soil–atmosphere flux measurements of greenhouse20

gases (N2O, CH4, and CO2) and O2 with a 1 h resolution. The minimum quantitative fluxes (two standard deviations) were

estimated via a simulation as 70.2 µg N m−2 h−1 for N2O; 139 µg C m−2 h−1, CH4; 11.7 mg C m−2 h−1, CO2; and 9.8 g O2 m−2

h−1, O2. The estimated minimum detectable fluxes (two standard deviations) were 17.2 μg N m−2 h−1 for N2O; 35.4 μg C m−2

−1, CH4; 2.6 mg C m−2 h−1, CO2; and 2.9 g O2 m−2 h−1, O2. The developed system was deployed in the university farm of the

Ehime University (Matsuyama, Ehime, Japan) for a field observation over five days. An abrupt increase in N2O flux from 7025

to 682 µg N m−2 h−1 was observed a few hours after the first rainfall, whereas no obvious increase was observed in CO2 flux.

No abrupt N2O flux change was observed in succeeding rainfalls, and the observed temporal responses at the first rainfall were

different from those observed in a laboratory experiment. The observed differences in temporal flux variation for each gas

component show that gas production processes and their responses for each gas component in the soil are different. The results

of this study indicate that continuous multiple-gas concentration and flux measurements can be employed as a powerful tool30

for tracking and understanding underlying biological and physicochemical processes in the soil by measuring more tracer gases

such as volatile organic carbon, reactive nitrogen, and noble gases and by exploiting the broad versatility of mass spectrometry

in detecting a broad range of gas species.
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1 Introduction

Soil acts either as a source or a sink for various atmospheric gases such as greenhouse gases (GHGs: N2O, CO2, and CH4)35

(Oertel et al., 2016; Ito et al., 2018), oxygen (O2) (Turcu et al., 2005, Huang et al., 2018), and biogenic volatile organic

compounds (BVOCs) (Insam and Seewald, 2010; Peñuelas et al., 2014; Szog et al., 2017, Mäki et al., 2019). Behaviors related

to either emitting or absorbing soil gases and their magnitudes depend considerably on soil properties such as biological and

physicochemical characteristics of the soil, which are in turn affected by environmental factors such as soil temperature,

moisture, nutrients, pH level, rainfalls, and redox state (Dick et al. 2001; Rowlings et al., 2012; Luo et al., 2013, Li et al.,40

2015, Arias-Navarro et al., 2017; Pärn et al., 2018). Soil conditions and environmental factors vary within minutes to hours,

and therefore, soil gases are expected to vary on a similar time scale. Thus, for accurate soil gas flux estimation, continuous

measurement with a high temporal resolution is necessary to capture these rapid variations and employ them to estimate

average fluxes.

Although the soil-atmosphere flux measurements of GHGs have been extensively performed because of their45

environmental effects, other soil gas measurements have been less frequently conducted despite these gases providing valuable

biological and physicochemical insights about the soil. For example, O2 concentration can be measured to quantify biological

processes because the O2 content in a soil is closely related to the respiration of soil organisms in the soil. Further, the redox

state in soil has a significant effect on biological GHGs generation processes such as nitrification/denitrification (Hall et al.,

2013, Heil et al., 2016) and methane production/oxidation (Kaiser et al., 2018); it is considerably useful to deduce the50

biological status of rice paddy soils (Lee et al., 2015). The BVOCs are produced by soil microorganisms, soil fungi, and even

plant roots (Peñuelas et al., 2014), and they does not seem to be a simple intermediate/final product of the metabolic cycles

and microbial decomposition of organic matter. Instead, they play unique roles such as signaling among microorganisms, fungi,

and plant roots activities in soil (Peñuelas et al., 2014). Noble gases are biologically and chemically inert and can therefore be

used as a tracer for physical processes if combined with biologically active soil gases. Using noble gases as tracers allow55

separating  biological and physical components when determining the behavior of biologically active gases (Yang and Silver,

2012). The concentration of O2/Ar has been used in aquatic systems to estimate net O2 productions (Kana et al., 1994;

Nakayama et al., 2002). Thus, the simultaneous measurement of multiple soil gases with a higher time resolution is expected

to be considerably advantageous to gain a better understanding of soil biological and physicochemical processes and to gauge

their environmental effects. However, such simultaneous measurements of multiple soil gases remain challenging because of60

the lack of suitable measurement technology.

To measure the concentrations of GHGs (CO2, N2O, CH4, SF6, and CO) and BVOCs in soil air, gas chromatography

(GC) analysis has been extensively used; however, it requires different measurement configurations and settings for each gas

species because all gases have different physicochemical properties and concentrations. For example, a GC coupled to an

electron capture detector (GC-ECD) has been used for N2O and SF6, while a GC coupled to a flame ionization detector (GC-65

FID) has been used for carbon-containing gases such as CH4, CO2, and CO. However, there are only a few studies in which



3

multiple gases in soil are analyzed using a single GC system, e.g., N2O, CO2, and CH4 (Christiansen et al., 2015, Brannon et

al., 2016); N2O, CO2, CH4, and CO (van der Laan et al., 2009); and N2O, CO2, CH4, CO, and SF6 (Lopez et al., 2015). Although

these studies claimed that multiple soil gases were measured using by a single GC system, several sub-GC systems optimized

for different target gases (e.g., GC-ECD, GC-FID with different columns and settings) were integrated into a single GC system.70

This complexity hinders the simultaneous measurement of multiple soil gases by the GC system.

The recently advanced optical technique of cavity ring-down spectroscopy enables simultaneous measurement of multiple

GHGs (N2O, CO2, and CH4) from soils; it has been successfully applied for simultaneous gas flux measurements of multiple

GHGs with a temporal resolution of minutes to tens of minutes (Christiansen et al., 2015, Brannon et al., 2016, Lebegue et al.,

2016, Barba et al., 2019, Courtois et al., 2019). Despite the advantages of cavity ring-down spectroscopy, its application is75

limited to GHGs because infrared absorption wavelengths of gases often overlap and experience interference with other gases.

This makes it necessary to perform appropriate water vapor corrections for accurate measurement, and thus, it is not yet applied

for the measurement of trace gases (e.g., NO, SF6), noble gases, and complex BVOCs in soil air.

Mass spectrometry (MS) provides high sensitivity and allows detecting a wide range of chemicals as it is widely used for

the trace analysis of various compounds including multiple BVOCs measurements with proton-transfer reaction mass80

spectrometry (PTR-MS) (Veres et al., 2014, Mancuso et al., 2015, references in Peñuelas et al., 2014, Yuan et al., 2017).

However, the application of MS to the simultaneous measurement of various GHGs is limited by the difficulty in resolving

CO2 and N2O. In fact, CO2 and N2O have considerably similar mass (43.989 and 44.001 u, respectively), and their ion peaks

are difficult to distinguish using ordinary mass spectrometers such as quadrupole mass spectrometers that do not have sufficient

high-mass resolving power to resolve ions. The independent detection of CO2
+ and N2O+ by MS requires a mass-resolving85

power above 10,000, which corresponds to high-resolution spectrometry that can be achieved by mass spectrometers used in

laboratories.

Recently, simultaneous mass spectrometric field measurement of multiple GHGs has become feasible (Anan et al., 2014),

after the introduction of a portable high-resolution multiturn time-of-flight mass spectrometer (MULTUM; Shimma et al.,

2010), which has dimensions comparable to that of a desktop PC (215 × 545 × 610 mm, 45 kg) and a high mass resolving90

power (30,000–50,000) for direct mass spectrometric separation of natural gas mixtures. Although MULTUM can resolve

CO2
+ and N2O+ ion peaks, it is technically difficult to measure the two GHGs and major atmospheric gas components (N2 and

O2) simultaneously. This is because their concentrations in air substantially differ by more than six orders of magnitude (78.1%,

20.9%, 405 ppmv, and 330 ppbv for average atmospheric N2, O2, CO2, and N2O, respectively) and because MULTUM has a

limited dynamic range of ion detection and signal acquisition. In addition, suppression in the electron ionization source causes95

major gases to restrict the ionization of other trace gases, which undermines sensitivity to the latter. Even using MULTUM,

these inherent restrictions in MS need to be mitigated for the simultaneous measurement of atmospheric gases such as N2O,

CH4, CO2, and O2, for which the concentrations span over six orders of magnitude. Thus far, the lack of field portable high-

resolution MS and technical difficulties in existing ion detectors and signal acquisition and processing prevented the

simultaneous field observation of multiple GHGs.100
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In this study, we combined MULTUM with a hybrid ion detectioFcampan and signal processing technique to measure

multiple gases with different concentrations over six orders of magnitude in a single measurement quantitatively and

simultaneously. We used the high-resolution MS system to measure the concentrations of N2O, CH4, CO2, and O2 every 2.5

min. The system was coupled with an automated open/closed chamber as the MULTUM–soil chamber system to obtain hourly

soil–atmosphere gas fluxes. We detail the proposed system and its characterization, including the simultaneous gas flux105

observations under both laboratory settings and at an agricultural field.

2 Materials and methods

2.1 Simultaneous GHGs and O2 measurement using MULTUM

Figure 1 illustrates the MULTUM–soil chamber system that comprises an automatic open/closed chamber, a sample/standard

gas injection unit, and a mass spectrometer. The chamber was developed at Hokkaido University. The gas-tight lid of the110

custom chamber (0.25 × 0.37 m, inner diameter × height, 0.02 m3 internal volume) is opened or closed by a DC motor attached

to the chamber. The lid aperture timing is controlled using an FPGA platform (DE0-Nano-SoC Development Kit, Terasic,

Hsinchu, Taiwan) with a Linux shell script through the “curl” command on a workstation. The system clocks of both the

embedded Linux software and the workstation are synchronized using the IEEE 1588-2008 protocol, which obtains a sub-

microsecond time difference.115

The soil gas in the chamber headspace is continuously circulated through stainless-steel tubing (1/8 inch × 10 m, outer

diameter × length) between the chamber and the sample injection unit via an air pump (CM-15-12, Enomoto Micro Pump,

Tokyo, Japan). The circulating soil gas continuously passes through a 100 µL sample loop (SL100CM, Valco Instruments,

Houston, TX, USA) fitted to a port with a six-port auto valve (V1) (SAV-VA-11-65, FLOM, Tokyo, Japan). When the collected

sample gas is analyzed with MULTUM (infiTOF-UHV, MSI Tokyo, Tokyo, Japan), the valve rotates and the soil gas sample120

is injected into a porous layer open tubular capillary column with a monolithic carbon layer (15 m × 0.320 mm, length × inner

diameter, 3.0 µM; GS-Carbon PLOT, Agilent Technologies, Santa Clara, CA, USA) with a carrier He gas stream (2.5 mL/min)

for rough gas separation before feeding into MULTUM. Another six-port auto valve (V2) (SAV-VA-11-65, FLOM, Tokyo,

Japan) switches soil-gas sampling and standard gas injection for calibration. Sample gas injection occurs every 2.5 min, and

both the sample and standard gas injections are controlled by the FPGA.125

Although MULTUM has sufficient mass resolving power for completely separating CO2
+ and N2O+ ion peaks, we include

the column to provide slight time lags between N2/O2, CO2, and N2O before injection into the system to improve quantification.

In fact, omitting the separation in the time domain (20–60 s) causes several intrinsic MS problems. For example, the N2O+ is

derived directly from co-existing N2 and O2 at the electron impact (EI) source reaction. Further, the ionization of atmospheric

trace gases with the main components of the atmosphere (e.g., N2, O2) restrict the ionization of co-existing trace gases in the130

ion source (ion-source saturation), which considerably worsens the detection limit of the trace gases. Finally, the dynamic

ranges of the ion detector and signal acquisition are limited to two to three orders of magnitude, thereby impeding the
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simultaneous and accurate measurement of N2O and CO2 within a single gas sample wherein the concentrations differ by more

than three orders of magnitude. Thus, we adopt a hybrid ion detection and signal processing technique that selects either

waveform averaging or ion counting to detect ions with intensities differing by six orders of magnitude (Kawai et al., 2018).135

In the conventional waveform averaging mode, it is difficult to recognize considerably less abundant ions (e.g., N2O+) as

an ion peak because such low abundant ions are easily overwhelmed by background noise. In contrast, ion counting allows

detecting scarce ions (Hoffmann and Stoobant, 2007) by regarding ion peaks above a pre-defined threshold intensity (−10 mV

in this study) as a single ion. However, counting loss occurs for abundant ions when two or more ions arrive at the detector

within the minimum time resolution of the ion signal detection system. The present hybrid ion detection and signal processing140

scheme employs two detection modes using a single ion detector and recording system by selecting either waveform averaging

or ion counting depending on the type of gas (at different periods from sample injection into the column) by changing the ion

detector gain and real-time signal processing protocol (Hondo et al., 2017). Thus, a column is required to create small temporal

separations for the detection of target ions and to select the appropriate measurement mode in addition to averting ion-source

saturation. For the detection of CO2
+, the ion detector voltage is set to 2400 V, and the conventional waveform recording and145

averaging are conducted for the time-of-flight ion signal where the voltage is set to 2650 V for the detection of O+, CH4
+, and

N2O+; the real-time software thresholding (i.e., ion counting) is conducted for the acquired signal (Fig. 2). Oxygen was detected

as O+ (not as O2
+) using the ion counting mode because O+ (m/z 15.99) can be simultaneously detected along with CH4

+ (m/z

16.03). If oxygen is observed as O2
+ (m/z 32.00), another mass segment around m/z 32.00 needs to be analyzed, and less

measurement time can be allocated for CH4
+ and N2O+ measurements, which results in lower sensitivity for CH4

+ and N2O+150

measurements. The optimized high-voltage settings of MULTUM for this study are listed in Table 1.

The gases injected into MULTUM are ionized by electron ionization at an electron acceleration voltage of 30 V, and the

produced ions are mass analyzed at a repetition rate of 1 kHz with 30 laps of circular ion flight; this yields a mass resolution

of approximately 10,000. After 30 laps, each ion is detected by an electron multiplier (ETP secondary electron multiplier

14882, ETP Ion Detect, Sydney, Australia). The ion signal from the ion detector is then amplified through a high-speed155

preamplifier (ORTEC 9301, Advanced Measurement Technology, Oak Ridge, TN, USA) and recorded and processed in real

time with a high-speed 1 GS/s digitizer (U5303a, Keysight Technologies, Santa Rosa, CA, USA). Mass spectra are then

transferred to a host PC (dual Intel 8-core/16-thread Xeon processor PC with Linux Debian 9.9 operating system). The data

acquisition system is controlled by the QtPlatz open-source-software (https://github.com/qtplatz) with its plugin developed for

the infiTOF system (Hondo et al., 2017, Jensen et al., 2017).160

We calibrate the system with six different concentrations including blank gas (ultrapure N2), which are prepared from

mixed standard gases (mixture of N2O, CH4, and CO2) and O2 standard gas by diluting with ultrapure N2 (>99.9995%,

Takachiho Chemical Industrial, Tokyo, Japan). We use two certified standard gases (standard #1: N2O, 279 ppbv; CH4, 1.47

ppmv; CO2, 421 ppmv in N2; standard #2: N2O, 1752 ppbv; CH4, 2.97 ppmv; CO2, 1705 ppmv in N2; Sumitomo Seika

Chemicals, Osaka, Japan) and O2 standard gas (20.9% in N2 balance gas; Takachiho Chemical Industrial, Tokyo, Japan). The165
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gas mixing rates are adjusted using mass flow controllers (Model 8500 series, KOFLOC, Kojima Instruments, Kyoto, Japan)

calibrated using a soap film flowmeter (HORIBA STEC, Kyoto, Japan).

We continuously measured the standard gases using the developed MULTUM–soil chamber system and estimated the

detection limits for N2O, CO2, CH4, and O2 based on the IUPAC criteria (Long and Winefordner, 1983) given as

ܦܱܮ = ݇ ∙ ,݉/ܦܴܵ (1)170

where k is a constant that determines the confidence level (we set k = 3 for a confidence level above 99%), RSD is the standard

deviation of the ion count or peak area of the target gas when measuring ultrapure N2, and m is the slope of linear regression

obtained from the measurement of the six above mentioned gas concentrations prepared from the standard gases and ultrapure

N2 based on 10 replicate measurements of each gas.

2.2 Flux measurement using MULTUM–soil chamber system175

The fluxes of target soil gases are determined from the variation in the target gas concentration while the chamber is closed.

During each flux measurement, nine consecutive measurements are conducted over 20 min. A complete flux measurement is

performed once per hour. The chamber is closed during the first 20 min of the flux measurement, and it remains open during

the remaining 40 min. The standard #2 and atmospheric air measurements are conducted to monitor the MULTUM stability

(Fig. 3). The standard gas measurement is repeated five times and atmospheric air measurement is repeated ten times when the180

chamber is open. The fluxes of observed soil gases are calculated as (Minamikawa et al., 2015)

ݔݑ݈ܨ = ∆
∆௧

 ∙ 


 ∙ ∙ ߩ ଶଷ
ଶଷା்

 ∙ ,ߙ (2)

where ∆C/∆t is the concentration variation of the target gas during the flux measurement period, V is the chamber volume (m3),

A is the chamber area (m2), ρ is the gas density (kg m-3), T is mean air temperature inside the chamber (°C), and α is a conversion

factor to transform N2O into N, and CH4, CO2 into C. We determine ∆C/∆t by applying linear regression to the data obtained185

from the nine consecutive concentration measurements when the chamber is closed.

Besides the flux measurement, we monitor soil temperatures and moisture with a portable digital thermometer (EM50 Data

Logger, METER Group, Pullman, WA, USA). Further, we monitor the air temperature inside the chamber and the ambient

temperature using a temperature data logger (Thermo Recorder TR-52i, T&D Corporation, Nagano, Japan).

The minimum detectable flux (MDF) of each soil gas can be estimated based on the derivations by Courtois et al. (2019)190

originally developed by Christiansen et al. (2015) and Nickerson (2016) as

ܨܦܯ = ቀ ଵ
௧
∙ ,

√
ቁ ቀ ∙

ௌ∙ோ∙்
ቁ, (3)

where Aa,i is the analytical accuracy of MULTUM for gas i, tc is the closure time of the soil flux chamber per flux

measurement (20 min), n is the number of gas concentration measurements to calculate the gas flux (i.e., nine measurements),

V is the volume of the flux chamber (0.018 m3), P is the atmospheric pressure in kPa, S is the inner surface area of the flux195
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chamber (0.049 m2), R is the ideal gas constant (8.314 m3 Pa K−1 mol−1), and T is the ambient temperature surrounding the

chamber in K.

The MDF metric is a common performance metric in flux measurements; in particular, it is used in flux measurement

methods based on continuous gas concentration observation with the chamber technique. Because MDF is a useful metric for

comparing results between CRDS and our MS-based instrument, we employed the MDF for the comparison. The device200

accuracy (Aa, i) is defined as the measurement accuracy of an instrument (Christiansen et al. 2015; Nickerson 2016). In the

flux measurement with the CRDS instrument, we use the accuracy value provided by the manufacturer. For our system, we

define the analytical accuracy (Aa,i) as the analytical precision (measurement uncertainty) of MULTUM for gas i and use two

standard deviations (2σ) obtained from 994 measurements of the gas in air. Here, the minimum detectable flux (MDF) is not

a practical measure for the reliable quantification of flux. We additionally evaluate the minimum quantitative flux (MQF) for205

each gas as a quantitatively reliable flux in our study. Since flux is the rate of increase or decrease in the gas concentration of

interest in the closed chamber, we determine the flux by applying linear regression to every set of the nine consecutive gas

concentration measurements in the closed chamber period over 20 min. The MQF is determined from the precision of the

slopes (rates of gas concentration changes) in the flux measurement relative to the true slope. However, the true slopes are

difficult to determine in actual field measurements, and therefore, we conducted a simulation study to characterize the MQF210

of the current instrument for each gas species.

We first defined a true flux value of the gas for the model simulation assuming that the flux remained constant when the

chamber is closed. Based on the defined true flux value and chamber dimension, true gas concentrations to be measured in the

chamber were calculated over time when the chamber was closed. To simulate a realistic observation, a random measurement

error based on the standard deviation derived from the atmospheric gas measurements was intentionally added to the predefined215

true gas concentrations when the chamber was closed. The simulated nine consecutive observation data were then used for

flux determination with linear regression analysis, whose results were further characterized for MQF estimation. For each

defined flux value, 10,000 sets of flux measurements were simulated, 10,000 corresponding slopes were obtained, and the

standard deviations of the slopes were characterized. The simulation was conducted on a scientific graphical data processing

software (Igor Pro, WaveMetrics, Lake Oswego, OR, USA) and the random measurement error was generated with a built-in220

Gaussian distribution noise generator.

2.3 Laboratory tests

We conducted laboratory flux measurement tests of N2O, CH4, CO2, and O2 using a soil sample collected at the university

farm of Ehime University. The soil was collected from 0–10 cm below the soil surface. After sampling, the soil was sieved to

remove roots and stones. A urea solution (CO(NH2)2) was added to the soil (4 g of urea to 1 kg of soil) to promote N2O225

production. Then, the soil was air dried for a few days prior to flux measurement. The soil was spread in a 60 L plastic container,

and the automated flux chamber was placed on the soil. The flux measurement cycle was the same as that used for the field

observation shown in Fig. 3 (chamber is closed for 20 min; flux measurement with nine concentration measurements every
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2.5 min; and chamber is open for the remaining 40 min). When the chamber was open, the standard gas and atmospheric air

measurements were conducted for system calibration and verification. After 22 h from the start of the laboratory flux230

measurement, 3 L of water was sprayed on the soil for initiating the production or consumption of CO2, CH4, and N2O, and

the flux measurement proceeded for 46 h.

2.4 Field observations

We deployed the developed MULTUM–soil chamber system at the university farm of Ehime University (Matsuyama-shi,

Ehime, Japan) for a field observation over five days (September 3–8, 2018). The university farm is used for various agricultural235

production and soil studies (Toma, et al., 2019, Asagi and Ueno, 2009).

The automated flux chamber was placed on a ridge in the upland field, as shown in the left panel of Fig. 4. The field test

was conducted during the fallow period (i.e., bare field condition). The soil pH, electric conductivity, and texture were 5.3,

34.0 µS cm−1, and sandy loam (sand, 75.6%; silt, 10.6%; clay, 13.8%), respectively. On September 2, ammonium sulfate (150

kg N ha−1) and dried cattle feces (10 Mg ha−1 of fresh weight) were added and incorporated into the soil surface (0–15 cm240

depth). After plowing, the soil bulk density and porosity were 1.02 g cm−3 and 62.9%, respectively. The automated soil chamber

was installed immediately after incorporation. The total carbon (C) and nitrogen (N) contents of the dried cattle feces were

36.1 and 2.08%, respectively. The other components of the MULTUM–soil chamber system (i.e., MULTUM platform, control,

and data acquisition system) were installed at a nearby goat hut that had a room temperature of 27 ± 2°C. Two 5-m-long

stainless-steel tubes (1/8 inch outer diameter) were used to connect the chamber and the six-port auto valve in the gas injection245

unit to circulate headspace gas within the chamber.

3 Results and discussion

3.1 Laboratory characterization of MULTUM–soil chamber system performance

In the laboratory, we characterized the performance of the developed MULTUM–soil chamber system by introducing standard

gases through the gas injection unit at six different concentrations and by following the procedure for field observations. As250

shown in Fig. 5, MULTUM linearly responds to the gas concentrations during measurement, thereby obtaining coefficients of

determination (R2) for all linear regression results above 0.996. Blank concentrations checked by introducing ultrapure N2 were

very small compared to the atmospheric concentrations of the target gases. The calculated detection limits were 12 ppbv for

N2O; 50 ppbv, CH4; 13 ppmv, CO2; and 0.68 vol%, O2, based on Eq. (2).

To verify the stability of the developed MULTUM–soil chamber system, we conducted continuous measurements of255

atmospheric N2O, CH4, CO2, and O2 in the laboratory with the flux chamber open (Fig. 6). The set of N2O, CH4, CO2, and O2

measurements was repeated every 2.5 min over 42 h. In the laboratory, the room temperature was maintained at 23 ± 1 °C and

the relative humidity was around 15% at the beginning of the measurement; it increased to 30–33% after the midnight of

January 31, 2019. The atmospheric pressure during the laboratory measurement period ranged between 1005–1014 hPa. The
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variations of atmospheric N2O, CH4, CO2, and O2 measurements are shown as histograms in Fig. 7. Because the distributions260

agree with Gaussian distributions plotted as dashed lines in Fig. 7, we calculated the standard deviations (2σ) of each gas from

the measurements to obtain frequency Aa,i. The Aa,i obtained from the atmospheric air measurements were ±22 ppbv for N2O;

±102 ppbv, CH4; ±8.1 ppmv, CO2; and ±0.38 vol%, O2. These variations may be subject to the natural variabilities of

atmospheric concentrations; however, we consider that they are instrumental variations because their distributions

demonstrated good agreements with Gaussian distributions (Fig. 7) and the analytical precision obtained from the265

measurements of standard#1 and O2 standard in the laboratory (±34 ppbv for N2O; ±170 ppbv, CH4; ±16 ppmv, CO2; and

±0.60 vol%, O2, 2σ) almost corresponded to those obtained from atmospheric air. Using the standard gas rather than ambient

air usually yields better instrumental performance because ambient air contains considerably more complicated gas species

including water vapor, which can affect the precision of mass spectrometric measurement. Our final goal in our instrumental

development is to construct a new instrument for field observation; soil gas flux is determined from the change in gas270

concentration in the flux chamber relative to its atmospheric concentration. Thus, we considered that using ambient air

measurement for out instrumental performance test is more appropriate and practical for our research purpose.

3.2 Laboratory flux measurement test

Before the field campaign, we conducted a laboratory flux measurement test to confirm whether our newly developed

instrument could capture each soil gas flux when water was added, which is a major fluctuation factor of soil gas flux. The275

temporal variations of the measured gas concentrations when the chamber is closed is shown in Fig. 8. Only data acquired

when the chamber is closed (flux measurement periods) is depicted for simplification; however, the system stability

verification and calibration were conducted when the chamber is open. At 22 h, water (approximately 3 L) was sprayed on the

soil surface as environmental perturbation resembling rainfall to reactivate the dormant soil biological processes. Immediately

after water addition, the emission of N2O and CO2 began to change in different ways. For example, the CO2 emission rapidly280

increased and reached its maximum 2 h after water addition and remained relatively high, whereas N2O emission gradually

increased until 20 h after water addition at a seemingly constant rate.

Such increases in soil CO2 flux by rainfall or rewetting soil have been reported previously (Lee et al., 2002; Smith and

Owens, 2010; Gelfand et al., 2015; Kostyanovsky et al., 2019); it enhances microbial activity and population and boosts the

availability of carbon and nutrients because of either rewetting or the assemblages (Fierer and Schimel, 2003; Iovieno and285

Bååth, 2008; Blazewicz et al., 2014). A similar increase in N2O flux on rewetting soil have been reported (Nobre et al., 2001;

Dobbie and Smith, 2003; Smith and Owens, 2010; Gelfand et al., 2015; Schwenke and Haigh, 2016; Leitner et al., 2017; Barba

et al., 2019; Kostyanovsky et al., 2019), although very few research reported the simultaneous response of N2O and CO2 fluxes

upon artificial watering (Smith and Owens, 2010; Gelfand et al., 2015; Kostyanovsky et al., 2019). Only Kostyanovsky et al.

(2019) reported short-term flux changes of both CO2 and N2O upon simulated rainfall with a time resolution of 2 h. They290

showed that the simulated rainfall immediately triggered increases in both CO2 and N2O fluxes; however, the increase in CO2

flux continued till about 3 h after the simulated rainfall, while that in N2O flux continued till about 5 h after the simulated
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rainfall. In the present laboratory test, CO2 and N2O fluxes showed different temporal behaviors from those observed by

Kostyanovsky et al. (2019), although the observed N2O flux change was similar to that observed by Leitner et al. (2017). We

speculate that the slow increase in N2O flux may reflect a slow building-up of nitrification and denitrification microorganisms295

after watering, although further studies that consider both the biological and physicochemical aspects of the soil gas formations

are necessary for gain better understanding. The fluxes of CH4 and O2 during the laboratory test were below their minimum

detectable fluxes.

3.3 Minimum detectable and minimum quantitative fluxes of GHGs and O2

In Fig. 7, the frequencies of atmospheric concentrations of N2O, CH4, CO2, and O2 observed with the MULTUM–soil chamber300

system during the laboratory stability check (Fig. 6) are compiled as histograms. Their frequency distributions agree well with

Gaussian distributions (plotted as dashed lines in Fig. 7), and thus, their standard deviations are considered to have the Aa,i of

the MULTUM–soil chamber system for each gas. The Aa,i is defined as the analytical precision (measurement uncertainty) of

MULTUM for gas i and the use of two standard deviations (2σ) obtained from 994 measurements of atmospheric gas as a

reference.305

We estimated the MDFs based on Eq. (3) using the Aa,i for each gas, and we obtained 17.2 μg N m−2 h−1, 35.4 μg C m−2 h−1,

2.6 mg C m−2 h−1, and 2.9 g O2 m−2 h−1 for N2O, CH4, CO2, and O2, respectively. However, the MDF is not a practical measure

for the reliable quantification of flux. Thus, we evaluated the MQF for each gas as the quantitatively reliable flux in our study

via model simulation.

Figures 9(a)–(d) show the relationship between the true flux and the calculated fluxes from the simulation. The error bars310

in the figures represent error ranges of fluxes (2σ) determined from the simulation. The average fluxes determined by the

simulation were almost equal to their corresponding true fluxes, and the errors were relatively constant. Here, we define MQF

as the flux when the true flux is equal to the error (2σ) of the corresponding simulated flux. We obtained the MQFs of 70.2 µg

N m−2 h−1 for N2O; 139 µg C m−2 h−1, CH4; 11.7 mg C m−2 h−1, CO2; and 9.8 g O2 m−2 h−1 , O2. We consider the observed fluxes

below the MQFs as qualitatively uncertain, and we do not use them in subsequent data analyses for this study.315

We conducted data quality checks for the filed observation flux data using coefficients of determination (R2) in the linear

regression analysis for nine consecutive concentration measurements when the chamber was closed. Fig. 10 shows the

relationships between observed fluxes and the corresponding R2 in the N2O and CO2 flux derivation during field flux

observation at Ehime University. The R2 was approximately 0.4 at its MQF (70.2 µg N m−2 h−1) in the N2O flux observation.

The data with R2 = 0.4 in its linear regression analysis is regarded to have a statistically significant correlation, which supports320

that MQF is a reasonable metric for reliable quantification. In the field N2O flux measurement, R2 increased with an increase

in the observed flux, which indicates that the improvement of quality in N2O measurement (i.e., detection limit and sensitivity)

is desirable for more reliable determination, and in particular, under a low N2O flux condition. All CO2 flux measurements

showed R2 > 0.9, indicating that the present system is reliable for CO2 flux determination. The observed fluxes of CH4 and O2

during the laboratory/field study were usually below their MDFs; however, during a different field campaign in March 2019325
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at the same field, the CH4 flux above the MDF was observed (Fig. 12). For O2 flux, the analytical precision for the current O2

concentration measurement was ± 0.60 vol% (± 6000 ppmv). The current flux observation was under a dark condition and the

CO2 concentration change was caused by respiration of the soil organisms. Therefore, the increase in CO2 concentration in the

flux chamber is roughly equal to the decrease in O2 concentration during flux measurement. As shown in Fig. 8, to capture the

O2 flux, an analytical precision of more than three orders of magnitude is necessary because the CO2 concentration change is330

about 100 ppmv after water spraying. It is considerably difficult to achieve an improvement in measurement precision by more

than three orders of magnitude. Although quantitative O2 flux measurement is difficult, our developed instrument can detect

the variation in O2 concentration as a tracer for the redox state in soil environments (Kaiser et al., 2018).

3.4 Field observation

The N2O fluxes were mostly below 300 µg N m−2 h−1 and generally dependent on soil moisture, which substantially affected335

the production, consumption, and atmospheric exchange of GHGs (Davidson and Swank, 1986, Dobbie and Smith, 2003,

Liebig et al. 2005, Ellert and Janzen 2008, Sainju et al., 2012). An interesting event was observed in the N2O flux on September

4. The N2O flux abruptly increased from 70 to 682 µg N m−2 h−1 within a few hours after rainfall, while a sudden drop in CO2

flux was observed. These observed responses exhibit sharp contrast with our laboratory flux measurement test, in which CO2

flux showed a rapid increase while N2O flux showed a slow sustained increase upon water spraying (Fig. 8). Various studies340

have reported an increase in the N2O flux after rainfall (Nobre et al., 2001; Dobbie and Smith, 2003; Smith and Owens, 2010;

Gelfand et al., 2015; Schwenke and Haigh, 2016; Leitner et al., 2017; Barba et al., 2019; Kostyanovsky et al., 2019) and

similar increases in CO2 flux after rainfall have also been reported (Lee et al., 2002; Smith and Owens, 2010; Gelfand et al.,

2015; Kostyanovsky et al., 2019). However, no short-term responses of CO2 and N2O fluxes similar to our observation upon

rainfall have been reported. Further, two heavier rainfalls occurred on September 5 and 7; however, the N2O flux showed no345

obvious increase similar to that after the first rainfall. The different responses in N2O flux may reflect the complexity in

microbial and nutrient dynamics initiated in the soil upon rainfall (Gordon et al., 2008; Blazewicz et al., 2014), although

further detailed studies that investigate both biological and physicochemical aspects of the soil gas formations are necessary

to determine the causes of the response. The CO2 flux, in contrast, remained constant except during rainfall periods, in which

an abrupt decrease and quick recovery within several hours of the flux occurred. This can be attributed to the suppression of350

CO2 permeation within the soil column caused by a capping effect of wet soil and different vertical distributions within the

soil column; although these explanations are feasible, they require further temporal and spatial investigation.

4 Conclusion and Future perspectives

We developed a field-deployable MS-based multiple gas flux measurement system utilizing a portable high-resolution

mass spectrometer (MULTUM) combined with an automated soil-gas chamber. The MULTUM was coupled with a short gas355

separation column to roughly separate atmospheric major and trace gases over a short period, and a new hybrid ion detection
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and signal processing technique was employed to ensure a much wider dynamic range for quantitative and simultaneous

measurement of multiple gas concentrations that differ by six orders of magnitude. The present hourly continuous gas flux

measurement of multiple gas species clearly indicates its considerable advantage of capturing rapid and different temporal

responses of different gas species toward sporadic abrupt environmental changes (e.g., sudden rainfall), which provides more360

detailed understanding of underlying soil biological and physicochemical processes.

Further improvement in the detection limit and analytical precision is required for the accurate measurements of low GHG

fluxes, in particular, for N2O and CH4. We believe that the improvement in the sensitivity by one order of magnitude can be

achieved relatively easily by retrofitting a larger vacuum pump to the MULTUM (from 50 l/s to 250 l/s), using a higher mass

measurement rate (from current 1 kHz to 10 kHz), and using a flux chamber with a lower ratio of the height to bottom area.365

The privilege of MS-based gas measurement in highly sensitive and wider range of detectable gas species, including reactive-

nitrogen gases (e.g., NO, NO2), noble gases (e.g., Ar, Ne), inorganic gases (e.g., N2, H2, CO, H2S), small organic gases (e.g.,

ethylene) should be quite advantageous in providing deeper insights into soil microbiological ecosystems, physicochemical

processes, and their responses to environmental perturbations. A wide variety of gas species such as He, Ar, and

polychlorinated biphenyls have already applied by MULTUM (Jense et al.,2017, Kawai et al., 2018, Shimma et al., 2013).370

Coupling proton transfer reaction (PTR) ionization source with the MULTUM can help detect a wider range of individual

BVOCs and subsequently their soil-atmosphere fluxes, and our group is coupling a PTR ion source to MULTUM.

We expect that further instrumental improvements and further expansion in detectable gas species will boost providing

deeper insights on the biological and physicochemical processes in soil and lead to more comprehensive their understanding.
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Table 1. Elapsed time between sample injection and corresponding adjustment of ion detector voltage in MULTUM to perform hybrid ion
detection and signal processing (waveform averaging or ion counting) for specific target ions.

   GC elapsed time
(s)

Detector voltage
 (V) Target gas m/z Data acquisition method

0 1400 - - -

48 2650
O

+ 15.994
 ion-counting

CH
4

+
16.031

73 2400 CO
2

+
44.001 waveform averaging

96 2650 N
2
O

+
43.989  ion-counting

125 1400 - - -
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Figure 1. Schematic of developed mass spectrometric multiple soil-gas flux measurement system with a portable high-resolution multiturn
time-of-flight mass spectrometer (MULTUM) coupled with an automated soil-gas flux chamber. The headspace gas in the chamber
continuously circulates a sample loop in the gas injection unit through stainless-steel tubing. In each gas analysis, the headspace gas in the
sample loop is injected into a capillary column for rough gas separation before analyzing each gas with MULTUM. (o.d., outer diameter; ss,
stainless steel).
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Figure 2. Schematic of two-dimensional gas/ion separation for O2, CH4, CO2, and N2O in chromatographic and m/z domains using a short
column for rough separation and high-resolution mass spectrometry (MULTUM) for further complete separation. O2, CH4, and N2O are
detected as O+, CH4+, and N2O+ with ion counting mode, whereas CO2 is detected as CO2+ with waveform averaging mode. In the
chromatographic domain, CO2 and N2O are not fully separated; however, in the m/z domain, residual contributions of CO2+ and N2O+ are
fully separated by high mass resolving power of MULTUM.
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Figure 3. Example sequence of flux measurement conducted over 1 h and continued during field and laboratory flux observations. The flux
chamber is closed for the first 20 min of flux measurement. During the remaining 40 min, the chamber is open and standard and atmospheric
gas measurements are conducted for system stability verification and calibration.
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Figure 4. Instrument setup during a field flux campaign at the university farm of Ehime University (Matsuyama-shi, Ehime, Japan).
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Figure 5. Calibration curves of MULTUM obtained by introducing standard gases of N2O, CH4, CO2, and O2 diluted by ultrapure N2. The
coefficients of determination (R2) for each linear regressions were above 0.996 for all gases regardless huge concentration difference by six
orders of magnitude. Each points were based on ten replicate injections.
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Figure 6. Continuous measurements of atmospheric N2O, CH4, CO2, and O2 in the laboratory with the soil chamber opened. Every 2.5 min,
concentrations of the four gases were observed. The blue dots indicate individual data points. Top panel: the variations of atmospheric
conditions during the laboratory measurement; atmospheric temperature (℃), pressure (hPa), and relative humidity (%).
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Figure 7. Frequency distributions of measured atmospheric concentrations of N2O, CH4, CO2, and O2 (994 measurements) during the
laboratory measurement with the MULTUM-soil chamber system. For visual comparison, Gaussian distributions are plotted as dotted lines.
Averages (avg) and standard deviations (sdev) shown in the panels were calculated from the atmospheric measurement for each gas species.
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Figure 8. Example of continuous and simultaneous flux measurement of N2O, CH4, CO2, and O2 in the laboratory with a simulated plowed
field. After 22 h, water (3 L) was sprayed on the soil surface. Immediately after the water addition, emission of N2O and CO2 began to change
in different ways. For CH4 and O2, no flux beyond their minimum quantitative fluxes was observed throughout the flux measurement.
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Figure 9. Relationship between true and simulated fluxes of (a) N2O, (b) CH4, (c) CO2, and (d) O2. In the simulated flux determination,
random deviations of each gas concentration measurements were considered. The error bars in the figures represent two standard deviations
of the fluxes derived from 10000 simulated flux measurements for each flux condition. The MQF is defined as a minimum quantitative flux
when the true flux is equal to two standard deviations of simulated flux.
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Figure 10. Relationship between determined fluxes during field observation and coefficient of determinations (R2) in the linear regression
to derive corresponding slopes (fluxes) from nine consecutive gas concentration observations per flux measurement.
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Figure 11. Temporal variations of observed N2O and CO2 fluxes at the university farm of Ehime University during field flux observation in
September 2018. The dotted lines represent QMFs. Fluxes below the MDF are masked. The shaded areas represent no data due to
measurement interruption by system issues, and so on.
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Figure 12. Temporal variations of observed CH4 flux at the university farm of Ehime University during field flux observation in March
2019. Fluxes smaller than the MDF (35.4 µg C m−2 h−1) are masked. Dotted grey lines represent the MQF (139 µg C m−2 h−1).


