
Authors  Response  to  Anonymous  Referee  #1 comments  and  suggestions  on

manuscript entitled “ On the performance of satellite-based observations of  CO2 in capturing

the NOAA Carbon Tracker model and ground-based flask observations over Africa land mass ” by

Anteneh Getachew Mengistu and Gizaw Mengistu Tsidu

We  thank  both  Anonymous  Reviewers,  for  their  time  and  constructive  comments  on  our

manuscript.  These  comments  are  very helpful  to  improve the quality  of  the manuscript  and

therefore we have carefully used them to revise the manuscript.  

Comments:  This  is  a  very  timely  and very  useful  study of  a  much neglected  problem –  I

strongly recommend publication. Scientific observation of CO2 over Africa is extremely limited.

Satellites watch the continent, but much of tropical Africa is under heavy cloud in the crucially

important high-growth periods in the rainy season. On the ground in situ observation is minimal,

and  the  few  sites  that  are  measured  are  mainly  located  on  remote  islands  or  around  the

continental periphery. Mengistu and Tsidu tackle this problem by examining the sensitivity and

trustworthiness  of  GOSAT  and  Printer-friendly  version  Discussion  paper  OCO  satellite

measurements, tested against both the NOAA Carbon Tracker model and directly in comparison

with the few available flask data sets.

Response: We thank the Anonymous Referee for his acknowledgment that our study is timely

and useful. We hope that this study will bring attention to the regional study and strengthening

the carbon network in Africa. 

Comments: The paper is well thought out, detailed, and careful. There are some problems with

the language but these are minor and there is full  clarity  of meaning. I strongly recommend

publication after minor revision.

Response:  We have made some efforts to improve the language used in the manuscript and

increases its readability.  



Specific Comments:   Page 1. Line 20 – all over Southern Africa? Does this mean south of the

equator? Or south of the Zambesi? 

Response: In the main text we define the regions as: Northern Africa (100 - 350  N), Equatorial

Africa (100 S – 100 N) and Southern Africa (350 - 100 S). However, we did not mention it in the

abstract. Now we update the text in the abstract to describe the region boundary. Rightly so,

southern Africa refers to a region south of Zambesi. Change is made on page 1 of line 21.

Specific Comments: Page 2 L4 – space after networks.

Response: Change is implemented. 

Specific  Comments: Page  2  L14  –  maybe  give  more  mention  to  the  TCCON  station  on

Ascension  Island.  Contact  D.  Feist.  https://data.caltech.edu/records/210  I  note  that  ASC  is

mentioned in table 1.

Response:  The TCCON station on Ascension Island is mentioned as an example of the TCCON

stations. Change is made on page 2 of lines 18-21.   

Specific Comments: Page 2 L35 onto P3 last sentence doesn’t really mean anything. Also note

that  total  column  over  many  places  includes  very  different  air  masses.  For  example  over

Ascension the air under the Trade wind Inversion is from the Southern Ocean and further, while

the air above it is from the Congo, and ultimately further away.

Response: The statement on Page 2 L35 gives information that validation studies are important

and had been also conducted by other researchers. It shows further that the results they have

obtained at a global and regional scale elsewhere which will give the expected accuracies from

our study. And Page 3 of the last line provides information about the TM5 model resolution on

the global and North America which can give a clue for readers about the limitation of CT on a

global scale as it has a sparse resolution due to the transport model used. These statements are

now on page 3 of line 6 and page 4 of line 16.



Specific Comments: Page 3 L 1 – say where Kuwalik found this, geographically.

Response:  The comparison study in the work of Kuwalik et al.  was done using 17 different

TCCON sites across the globe. We updated the text as "relative to 17 TCCON sites across the

globe...". This change is made on page 3 of line 8. 

Specific  Comments:  Page 3 L13 – African aerosol loading is very seasonal – very bad in

biomass burning seasons.

Response:  Thanks for reminding us of the importance of seasonal aerosol loading's beside the

geographical  variation.  We  update  the  text  as:  "In  addition,  seasonal  variation  of  biomass

burning in Africa...." change is made on page 3 line 19.

Specific Comments: Page 3 L 30 – TM5 transport modelling – good. Explain in more detail.

Response: accepted and updated. See page 4 of line 17 "The model can be used in a wide range

of applications, which includes aerosol modeling...."

Specific Comments:  Page 4 L23 – maybe explain in more detail about the systematic error.

Response:  accepted and updated as: "Chevallier (2015) shows systematic error in the African

savanna associated with underestimating the intensity of fire during March at the end of the

savanna burning season".  This change is made on page 5 of line 10. 

Specific Comments: Page 4 L25 – I think this means world’s second, not ‘second world’ (i.e.

Russia & China).

Response: thank you for noting this. Now it is corrected on page 5 of line 14. 

Specific Comments: Page 5 Table 1 – Maybe mention the TCCON instrument Leicester have

set up at Jinja Uganda (though it will be too late for this paper). 



Response:  Thank you for suggesting the newly established TCCON site in Uganda. This site

will be a promising data source for future studies. We indicated the presence of this site in the

introduction section of the revised manuscript as potential site that can provide data to bridge

existing data gaps in the future.

Specific Comments: Page 7 L8 – southern part of Congo (does this mean Congo Brazzavile???

The southern Brazzaville Congo is similar to Kinshasa so I’m puzzled by that comment.) and

then the text mentions Southern DRC....note the southern DRC is savanna, not forest, and has

intense biomass burning in winter.

Response: It was the Congo Brazzaviel to increase clarity we updated the text as: "some part of

Equatorial Guinea and the Republic of Congo for CT (Fig. 1a) and part of Democratic Republic

of Congo for GOSAT (Fig. 1b)" . This change is made on page 7 of Line 22. 

Specific Comments: Page 7 L10 – I am very puzzled by the comment on “weak anthropogenic

emissions” from South Africa, which has bigger CO2 emissions than either the UK or France.

South Africa has some of the world’s biggest CO2 point sources including the enormous SASOL

synthetic oil-form-coal plant and many >4GW coal-fired power stations. The ITCZ is critical of

course,  in  two  ways  –  it  marks  the  effective  boundary  between  the  two  meteorological

hemispheres, and it also controls the vegetation uptake, as the plants grow under it, while the

fires occur when it is in the opposite end of its range.

Response: Here we compare the Northern and Southern Africa (not South Africa). We agree that

South  Africa  is  the  biggest  fuel  source  and  CO2  emissions  from  fossil  fuels  and  cement

production on continental wise. However, the aggregated emission from countries in Northern

Africa  like  Egypt,  Algeria,  Nigeria,  Libya  and  Morocco  with  a  large  contribution  of  CO2

emission exceeded South Africa. As a result, the aggregate emission of CO2 from the Northern

part of Africa is more than that of Southern Africa. 



Specific  Comments:  Page 7 L18 – year-round rainfall  only near the coast in West Africa.

Inland northern Nigeria is highly seasonal. The forest is only at the southern equatorial frings of

this band of countries.

Response: Thank you we made them specific to the southern part of these countries. "southern

Guinea, southern Ghana, southern Nigeria, southeast of Central Africa, …" change is made on

page 8 of  line 5.

Specific Comments:  Page 7 L29 – note NOAA calibrated measurements are ppm, NOT ppmV.

Best to stick to ppm, even though there is only a tiny difference between ppm and ppmv.

Response: Thank you for noting this. It is a type error as noted in the x label of Fig. 2a it is in

units of ppm not ppmv. It is now updated on page 9 of line 2.

Specific  Comments:  Page  8  L10  –  annual  mean  position  of  the  ITCZ  –  this  is  the

meteorological hemisphere boundary. Might be worth expanding this remark.

Response:  accepted  and  updated  as  "Position  of  ITCZ  is  the  main  climatic  mechanisms

controlling rainfall in Africa. Systematic errors due to ITCZ and the East African Monsoon need

to be addressed well in satellite retrievals and modeling works."  on page 9 lines 3-6. 

Specific Comments:  Page 8 L17 – model weakness? Or terrible satellite visibility when the

ITCZ is present and clouds are extremely thick and widely present. 

Response: Thank you for the suggestion, we updated it on page 9 of line 9.

Specific Comments:  Page 9 L5 – “satellite own” ?? Typo??

Response: Revised as: "Satellite retrieval uncertainty" on page 10 of line 14. 

Specific Comments:  Page 10 L2 – Africa is one of the largest – rewrite as terrible English! I

think this means it has more land on both sides of the equator than South America, but I’m not

sure!



Response:  Thank you, this statement has been removed in the revised manuscript. 

Specific Comments:  Page 10 L4-13 – maybe move this entire paragraph to a place much earlier

in the manuscript, to explain the focus on Africa?

Response: Thank you. We have now moved this paragraph to introduction as suggested on page

3 of line 21-33.

Specific Comments:  Page 12 L15 – “simulation respond” - ??? does this mean response??

Response: It now reads  "simulation is more sensitive to  ... " on page 12 line 8. 

Specific Comments:  Page 13 L14 – sahara – it’s a desert! I have flown over it many times. Not

a weak source/sink – the vegetation is a nearly zero source/sink but there are very large flaring

operations in the Algerian and Libyan oil and gas fields. Those must be big emitters.

Response:  It appears that the text did not convey the required message as our intention is to

emphasis local emission. Therefore, we rewrote it as "This is mainly because Northern Africa is

dominated by the Sahara desert, which is a vegetation-free area, and the systematic bias due to

the local atmosphere biosphere interaction is minimum. However, the spatial mean of monthly

mean bias is slightly higher (-0.36 ppm) over North Africa than over Equatorial Africa (-0.17

ppm)  and  Southern  Africa  (0.01  ppm).  This  is  likely  due  to  the  presence  of  strong  local

emissions from Egypt, Algeria, and Libya as well due to long-range transport from the Northern

Hemisphere..." on page 14 of lines 7-13. 

Specific Comments:  Page14 L13 – these are the winter & summer months for the Northern

Hemisphere. Opposite in SH. 

Response: We agree that it is good to mention that they are for the Northern Hemisphere and the

opposite is for the southern hemisphere. Change is made on page 15 of line 10. 



Specific Comments:  Page14L18– winter (DJF) in Southern Africa???!!!! – Last time I heard it

was high summer!!! Winter in the Southern Hemisphere is JJA. More to the point, the key factor

for vegetation is the distinction between the rainy season (ITCZ present - growth) and the dry

season (No ITCZ – fires).

Response: Thank you for highlighting our silly mistake. It is corrected on page 15 of line 10. 

Specific Comments:  Page 16 L2 and L3 – maybe discuss this CT/GOSAT discrepancy in a

little more detail? ITCZ cloud blocking observation?? 

Response: We hope that it has been discussed sufficiently on the next paragraph on page 16 line

8 - 18.

Specific  Comments:  Page17  L6  CT  under  estimation  –  interesting.  Page  17  L18  –  note

Northern Africa includes two very different  biomes.  North Africa (Morocco, Algerian coast,

Tunisia) has a wet Mediterranean winter. The Sahara is desert but has big oil and gas fields,

(including supplying Europe with winter gas).

Response: accepted and changes are made to highlight the differences between these places.

 

Specific Comments:  Page 19 L3 – note that at the start of an El Nino there is often intense

biomass burning. Later, the grass fires are smaller because there is no fuel.

Response: accepted and change is made to reflect this process. 

Specific Comments:  Page 23 L2 – Question mark in text??? Which region is the text talking

about? – North Africa??  – if  so,  it  is  wet  in the Algerian  mountains  in  MAM. Fires are  in

summer. See also Line 4 in same paragraph.

Response: Thank you. The question mark in the text is due to a missed citation in compiling the

Latex. Now we include the reference. We know that regions of Africa have different burning

seasons but the reference listed refers to the burning seasons of Africa in the context of  the



general areas in the north and south of the equator. Change has been made on page 23 line 16

and page 24 line 1. 

 

Specific Comments:  Page 23 L5 – “my cause”??

Response: Corrected as “may cause” on page 24 line 4.

Specific Comments:  Page 23 L9 – plantation – well, maybe, but I flew over this a while ago

and didn’t see much! Note that Nigeria is very different form Egypt, and both are very different

from Algeria!!! I think this paragraph needs substantial revision. 

Response: Thank you for sharing your observation of the region. We updated the statement on

page 24 of line 7. 

Specific Comments:  Page 25 L13 – note that grass fires dominate in the dry savanna, while leaf

litter fires are common in the wetter wooded savanna. 

Response: Thank you for the suggestion. Our observation shows the discrepancy during the dry

season and so it is most likely due to grass fries from the dry savanna.  Now the text is updated in

this sense on page 26 from line 9-10. 

Specific Comments:  Page 27 Section 3.8 and Figure 18 – maybe it is worth expanding this

section  3.8  very  significantly–it  has  real  data!!  Also  note  that  these  are  boundary  layer

measurements. For example the Trade Wind Inversion (about 1500m in the Atlantic) is really

important – ASC is below it, while IZO is well above it, so they sample completely different

types of air mass (as noted in the last sentence of the section).

Response: We have tried out to further expand the discussion on this section 3.8. Page 27. 



Specific  Comments:  General  comment  on the text  Through the text  there are many minor

language  problems.  Some  sentences  are  especially  challenged  grammatically.  However,  in

contrast, many long sections read fluently and clearly. The language infelicities are many but

small  and not  significant  –  the  overall  message gets  through.  The problems could  easily  be

cleared up to make the work easier to read. 

Response: Efforts are made to improve the language in the revised manuscript.

Specific  Comments: AMTD Interactive  comment  Conclusion.  This  is  a  valuable  and  very

interesting study. The paper should certainly be published, but it needs minor revision. 

Response: Thank you for your recommendation of the work for publication in AMT.  

Anteneh Getachew Mengistu and Gizaw Mengistu Tsidu



Authors  Response  to  Anonymous  Referee  #2 comments  and  suggestions  on

manuscript entitled “ On the performance of satellite-based observations of  CO2 in capturing

the NOAA Carbon Tracker model and ground-based flask observations over Africa land mass ” by

Anteneh Getachew Mengistu and Gizaw Mengistu Tsidu

General comments: The manuscript entitled, “On the performance of satellite-based observations of

CO2 in capturing the NOAA Carbon Tracker model and ground-based flask observations over Africa land

mass” presents a scientifically interesting comparison of Carbon Tracker, GOSAT, OCO-2, and flask CO2

measurements. Despite Africa lacking ground-truth instruments such as TCCON, studies such as this one

are useful for pointing out differences in the models and satellite observations.

Response: We thank the anonymous referee for supporting the importance of the study. 

General comments:  In general, there is one major methodological issue and many clarifications and

technical fixes needed, but I recommend publication once they are resolved. 

Response:  We  have  carefully  addressed  the  comments  and  suggestions  raised  by  the  referee  and

improved the quality of the manuscript. 

General comments: - GOSAT and OCO-2’s primary product is the column-averaged dry-air mole fraction

of CO2 (XCO2), not a vertical profile of CO2. There are typically less than 2 degrees of freedom for

vertical CO2 for any given retrieval. Thus, the entire comparison to flasks should come with a disclaimer

that  the  NASA  L2  retrievals  for  GOSAT  and  OCO-2  are  not  designed  to  be  used  in  this  way.  The

comparison is still interesting, but I am unsure about the scientific value. 

Response: Here, we try to include information on the CO2 profile and estimate near-surface values of

CO2 mixing ratio to compare the Level 2 data sets of GOSAT and OCO-2 with the flasks values. The XCO2

from the GOSAT and OCO-2 was the column averaged with profile information from top to surface and

we have used the lower pressure levels from the satellite retrieval. This kind of comparison of in-situ

CO2 measurements and XCO2 retrieved from satellite will  provide information on how strong is the

influence of the local CO2 flux. The scientific values of comparison of in-situ CO2 measurements with

Satellite XCO2 was described in the study of Ye Yuan et.al. 2019 and our study is not for the first time in

this sense.

General comments: The authors often list characteristics of a certain region (e.g. high anthropogenic

emissions, low vegetation levels) and then attribute the difference between CT and GOSAT/OCO-2 to

these  characteristics.  The  data  is  indicating  correlation,  not  causation.  Additional  research  (e.g.  a

detailed modelling  study)  would need to be done to provide evidence that  the XCO2 difference is

*caused* by such characteristics. I note several instances of this below where it would be wise to soften

the language.



Response: We agree with the referee's comment that additional studies are needed to identify and

quantify the causes of the discrepancies observed. It is not the scope of this study to quantify all sources

of the discrepancy. We have merely indicate some possible source of discrepancy based on physical

connection, not just on correlation. Identification of causality chain is complex and may need modeling

works in some cases and it is not our intension to do so.

 General comments: For all the maps, I would strongly suggest not to use the default rainbow colormap

for XCO2. Depending on the coding language you use, there are a number of much better colormaps

available. For ordered information, such as XCO2, you should use a perceptually uniform colormap (such

as viridis in Python). For diverging data, such as CT2016 – GOSAT, you should use a diverging colormap

(such as RdBu in Python) and center the colorbar at 0.  In many of your figures, you use a rainbow

colormap with unequal positive and negative limits, which makes it  incredibly difficult to determine

where  on  the  map  the  bias  is  above  or  below  zero.

https://matplotlib.org/tutorials/colors/colormaps.html 

Response:  We understand the concern of the reviewer. It is always a difficult task in Matlab. We accept

the anonymous referee suggestion to enhance the quality of the figures.

General comments: When discussing the distance between a given GOSAT/OCO-2 measurement and

CT, could you please elaborate on what exactly this means? Each GOSAT/OCO-2 measurement should

fall within a CT grid cell, so dx seems meaningless to me. 

Response:  we averaged satellite  values  in  a 3 X  3  degree window centering  the grid  cell  of  CT  as

described on page 6 line 5. Hence, we use a rectangle the maximum distance of the observation from

the satellites can have a value √1.52+1.52=2.1 degree which is indicated on the color bar of Fig. 2. 

General comments: The mean bias for the entirety of Africa is mentioned numerous times, including in

the abstract. However, your analysis shows that there are large regional patterns. Thus, there is little

scientific value in, for example, stating that GOSAT XCO2 is 0.28 ppm higher than CT. Additionally, no

uncertainties are given for any statistics in this paper. This should be resolved before publication. For

example, 0.28 +/- 1.5 ppm is much less meaningful than 0.28 +/- 0.2 ppm.

Response: We have indicated the standard deviation of the mean bias in table 1 on page 10. However,

We agreed that it  was also good to indicate as +/-  from the mean bias as suggested.  And now we

updated in the main text including the abstract. 

General comments: For OCO-2, are you using land nadir data, land glint data, or both? For GOSAT, you

are presumably including the medium gain data, but please state so.



Response: We use both nadir data and land glint data in the analysis as they are both can normally be

used for scientific analysis (see Wunch et., al.  ). It is explicitly stated on page 5 of line 20 in the revised

manuscript.

 Specific comments: P2 L30: Citation for this? The land surface characteristics could affect retrievals, but

I’m unaware of the impact of anthropogenic sources on satellite XCO2 biases.

Response:  accepted and citation is added on page 3 of line 2.

Specific comments:  P3 L9: This makes it sound as if models are intrinsically more accurate than the

satellite measurements. If this were true, why would we even need satellite measurements? In general,

however, the paper does a good job at saying the models and obs. “agree” or “disagree” rather than one

is “wrong” or “right.”

Response: The statement on page 3 of lines 7 -11 now on page 3 from lines 13-17 shows the regional

uncertainties in GOSAT retrieval varied from one region to others. The GOSAT retrievals did a good job

over the US while it has large regional variation over China which suggests the need for consistency

check on the satellite retrievals. Our study shows that there are certain limitations and strengths of both

models and satellite data. 

Specific comments:  P4 L10: SCIAMACY measured CO2 and CH4 before GOSAT. 

Response: We  mentioned  GOSAT  as  the  world’s  first  spacecraft  dedicated  fully  to  measure  the

concentrations of carbon dioxide and methane. This statement is re-phrased in this sense on page 4 line

7. SCIAMACY on ENVISAYT is providing good data on CO2 in recent times but it was not CO2 dedicated

satellite mission.

Specific comments:  P4 L19: GOSAT ACOS B3.5 is now 5.5 years out of date. B7.3, which represents a

significant update to the retrieval, has been available for over 3 years now. It is too much to ask of the

authors to repeat their analysis with the newer version, but it must be noted that the version used is

very  outdated.  See  the  official  Data  Users  Guide  for  details  on  the  latest  product:

https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/ACOS_v7.3_DataUsersGuideRevF.pdf

Response: We have specified the data version which can indicate when the datasets were retrieved.  

Specific comments:  P4 L26: Please cite some OCO-2 papers in this section (e.g. Crisp et al., 2008,

Response: accepted and change is made on page 4 of line 15.

Specific comments:  P5 L16: If CT is a 3-hourly product, the maximum d(time) would be 1.5 hours. 

https://docserver.gesdisc.eosdis.nasa.gov/public/project/OCO/ACOS_v7.3_DataUsersGuideRevF.pdf


Response: we agree that the maximum d(time ) in CT is 1.5 hour . But  instead of 1.5 hrs sampling

interval, we used 3 hr to get more coincident measurements.  

Specific comments:  P7 L10: Citation needed regarding Southern Africa’s characterization.

Response: accepted and change is effected on page 7 line 25.

Specific comments:  P7 L11: How do you know that this is the reason for the bias dipole? 

Response: The distribution map shows that there is dipole distribution which is higher XCO2 north of the

equator than south of the equator. The Southern Africa region is characterized by weak anthropogenic

CO2 emission and high CO2 uptake by the vegetation than Northern Africa (see also Ciais et al., 2011).

 

Specific  comments:  P7  L19:  How would  low number  statistics  result  in  a  high  bias?  It’s  certainly

possible, but no explanation or mechanism is provided. 

Response: That is likely because the satellite retrievals have noise which can be smoothed out when a

large number of datasets are averaged.

Specific comments:  P7 L19: Citation needed regarding rainfall. 

Response: accepted and change is made on page 8 line 7.

Specific comments:  P8 L1: These plots are very difficult to interpret because of the large number of

data points. I would strongly suggest to instead plot heatmaps of the XCO2 difference vs. the spatial

difference. And, as noted above, it is not clear what the distance metric actually represents. 

Response: accepted.

 

Specific comments:  P9 L5: The higher GOSAT/OCO-2 uncertainty in these regions is likely driven by low

signal to noise in the strong CO2 band over dark forests.  P10 L6: Could use a general citation here. 

Response: This part is removed and partly considered on the introduction section as recommend by the

other referee.

Specific comments:  P12 L15: If the CO2 sink is growing after the rainy season, why would GOSAT not

see it? 

Response: This discrepancy is over the African equatorial region which largely covered by dense forests

since GOSAT may have large uncertainty  over  the dark  forest  region.  However,  further  studies  are

needed to answer specifically why the discrepancy occurs.  



Specific comments:  P14 L1: Same as above: why would there be a difference? You seem to imply that

the difference must be because of local sources and transport, yet this is speculation. I would simply

soften the language from “likely” to “possibly.” 

Response: accepted.

Specific comments:  P17 L4: The cirrus cloud hypothesis should be removed unless you can show that

there are more cirrus clouds over that specific region which could potentially be biasing the satellite

results. 

Response: accepted and the statement is removed. 

Specific comments:  P17 L11:  By  what  mechanism would a cold  bias  impact  the CT XCO2? Would

suggest removing unless you can provide a reasonable hypothesis.

Response: accepted and it is now removed. 

Specific  comments:  P17  L18:  How  would  low  vegetation  levels  and  local  sources  result  in  a  low

correlation between the two products? Would suggest removing unless you can provide a reasonable

hypothesis. 

Response: On a vegetation-free area, the XCO2 has weak to no seasonal patterns. Furthermore, the

presence of a point CO2 emission source may not be captured by the coarse model simulation.

 Specific comments:  P19 L17: Good. Here, a correlation is discussed (higher OCO-2 where there’s more

vegetation)  without  asserting  causation.  Another  hypothesis  could  be  cloud  contamination  in  the

satellite  retrievals.  P23  L9:  What  plantation  is  this  referring  to?  Please  elaborate  or  remove  this

statement. 

Response: accepted and the statement was removed. 

Specific comments:  P25 L11: What intensive fire is this referring to? Please elaborate or remove this

statement. 

Response: The statement is further elaborated on page 26 line 7.

Specific comments:  P29 L2: This is a disappointingly brief discussion on reasons why the model could

have issues. This paper should emphasize that neither models nor satellites are perfect, and that all that

can be done in a poorly constrained place such as Africa is a comparison and discussion of potential



reasons for the differences. For example, clouds, aerosols, and dark surfaces can result in biased XCO2

from satellites, while poor parameterizations and insufficient input data can hinder models. 

Response: Although we are clear on how both observations and model go wrong, we made further

statements  regarding potential  problems in  both cases  in the manuscript  by highlighting reviewer's

inputs at various places in the revised manuscript.

Specific comments:  P29 L4: Should thank both the appropriate Japanese agencies for GOSAT and NASA

JPL for the GOSAT ACOS and OCO-2 retrievals. Technical comments: There are numerous spelling and

grammar issues that should not be the responsibility  of  a  reviewer to fix.  I  would suggest  that the

authors spend some time resolving these issues.

Response: Changes are made according to the recommendations.

Specific comments: Overall: XCO2 is never defined.

Response: accepted and it is defined on page 1 line 4 (abstract) and page 3 line 1.

Specific comments: P3 L25: “combines observed in situ carbon dioxide”; P7 L15: Likely a typo. GOSAT in

comparison to GOSAT. 

Response: Changed to “GOSAT ….in comparison to CT” on page 8 line 3. 

Specific comments: P10 L2: Oddly worded. Just say Africa has significant land mass in both hemispheres.

Response: This paragraph have been moved to introduction and modified on page 3 line 19.

Specific comments: P27 L17: Oddly worded.  Perhaps,  “is  important to identify differences between

GOSAT and CT.

Response: Accepted and change is made on page 28 line  11.

Specific  comments: ”  Figure  comments:  -  As  stated  above,  please  use  appropriate  colormaps  and

colorbar ranges for diverging data. - For time series, please use years and months instead of “months

since.” 

Response: accepted.

Anteneh Getachew Mengistu and Gizaw Mengistu Tsidu



On the performance of satellite-based observations of CO2 :::::::::::
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2Botswana International University of Science and Technology, Palapye, Botswana
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Abstract. Africa is one of the most data-scarce regions as satellite observation at the equator is limited by cloud cover and there

are a very limited number of ground-based measurements. As a result, the use of simulations from models are mandatory to fill

this data gap. Comparison
:
A

::::::::::
comparison

:
of satellite observation with model and available in-situ observations will be useful

to estimate the performance of satellites in the region. In this study, GOSAT
::::::::::::::
column-averaged

::::::
carbon

:::::::
dioxide

::::::
dry-air

:::::
mole

::::::
fraction

:
(XCO2:

) is compared with the NOAA CT2016 and six flask observations over Africa using five years of data covering5

the period from May 2009 to April 2014. Ditto for OCO-2 XCO2 against NOAA CT16NRT17 and eight flask observations

over Africa using two years of data covering the period from January 2015 to December 2016. The analysis shows that the

XCO2 from GOSAT is higher than XCO2 simulated by CT2016 by 0.28
:
±

:::::
1.05 ppm whereas OCO-2 XCO2 is lower

than CT16NRT17 by 0.34
::
±

:::
0.9

:
ppm on African landmass on average. The mean correlations of 0.83

::
±

::::
1.12 and 0.60

::
±

::::
1.41 and average RMSD of 2.30

:
±

::::
1.45

:
and 2.57

::
±

::::
0.89

:
ppm are found between the model and the respective datasets from10

GOSAT and OCO-2 implying the existence of a reasonably good agreement between CT and the two satellites over Africa’s

land region. However, significant variations were observed in some regions. For example, OCO-2XCO2 are lower than that of

CT16NRT17 by up to 3 ppm over some regions in North Africa (e.g., Egypt, Libya, and Mali ) whereas it exceeds CT16NRT17

XCO2 by 2 ppm over Equatorial Africa (100
:

◦S - 100
:

◦N). This regional difference is also noted in the comparison of model

simulations and satellite observations with flask observations over the continent. For example, CT shows a better sensitivity15

in capturing flask observations over sites located in Northern Africa. In contrast, satellite observations have better sensitivity

in capturing flask observations in lower altitude island sites. CT2016 shows a high spatial mean of seasonal mean RMSD of

1.91 ppm during DJF with respect to GOSAT while CT16NRT17 shows 1.75 ppm during MAM with respect to OCO-2. On

the other hand, low RMSD of 1.00 and 1.07 ppm during SON in the model XCO2 with respect to GOSAT and OCO-2 are

determined respectively
::::::::::
respectively

:::::::::
determined

:
indicating better agreement during autumn. The model simulation and satellite20

observations exhibit similar seasonal cycles of XCO2 with a small discrepancy over Southern Africa
:::
(35◦

:
-
::::::
10◦S) and during

wet seasons over all regions.
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1 Introduction

Changes in atmospheric temperature, hydrology, sea ice, and sea levels are attributed to climate forcing agents dominated

by CO2 (Santer et al., 2013; Stocker et al., 2013). However, understanding the climate response to anthropogenic forcing

in a more traceable manner is still difficult due to a major uncertainty in carbon-climate feedbacks (Friedlingstein et al.,

2006). Part of this uncertainty is due to a lack of sufficient data on the regional and global carbon cycle. This is compounded5

with inappropriate modeling practices to capture spatiotemporal variability of the carbon cycle. These problems can be solved

through strengthening carbon monitoring networks, setting up proper modelling and reducing uncertainties in satellite retrieval.

Models with appropriate physical and mathematical formulations and sufficiently constrained by observations, can be used to

understand the spatio-temporal nature of atmospheric CO2.

Towards this, a number of national and international efforts have been initiated in the recent past by different government10

and non-government agencies across the globe. Among these efforts, ground-based observations of greenhouse gas using Total

Carbon Column Observing Network (TCCON) is a notable one since it provides accurate and high–frequency measurements

of column-integrated CO2 mixing ratio. For example, it has been established that TCCON has a precision of 0.25% for

measurements taken under clear sky conditions (Wunch et al., 2011). However, the number of TCCON sites is limited and can

not establish an accurate CO2 amount and flux on a subcontinental or regional scale. Moreover, some studies show that the15

large uncertainty is amplified due to the uneven global distribution of TCCON sites (Velazco et al., 2017). In addition, none

of these ground-based observation networks were found in Africa land mass. However, there are few TCCON sites around the

continent plus some flask observations in and around Africa.
:::
For

::::::::
example,

:::
the

:::::::
TCCON

::::::
station

:::
on

:::::::::
Ascension

:::::
Island

:::::::
records

:::::
direct

::::
solar

:::::::::
absorption

:::::::
spectra

::
of

:::
the

::::::::::
atmosphere

:::
in

:::
the

:::::::::::
near-infrared

::::
and

::::::::
retrieved

:::::::
accurate

::::
and

::::::
precise

:::::::::::::::
column-averaged

:::::::::
abundances

::
of

:::::::::::
atmospheric

::::::::::
constituents

::::::::
including

:::::
CO2,

::::
CH4,

:::::
N2O,

:::
HF,

::::
CO,

:::::
H2O,

:::
and

:::::
HDO

:::::::::::::::
(Feist et al., 2014)

:
.20

On the other hand, the CO2 concentration retrieved from the satellite-based CO2 absorption spectra have the advantages of

being unified, long-term, and global observations as compared to ground-based measurements. It has been established from

theoretical studies that accurate and precise satellite-derived atmospheric CO2 can appreciably minimize the uncertainties in

estimated CO2 surface flux (Rayner and O’Brien, 2001; Chevallier, 2007). Other studies have revealed that significant im-

provement in the estimation of weekly and monthly CO2 fluxes can be achieved subject to CO2 retrieval error of less than 425

ppm from satellite and modeling scheme whereby CO2 concentration is an independent parameter of the carbon cycle model

(Houweling et al., 2004; Hungershoefer et al., 2010). However, XCO2 shows temporal variability on different time scales: di-

urnal, synoptic, seasonal, inter-annual, and long term (Olsen and Randerson, 2004; Keppel-Aleks et al., 2011). More recent mis-

sions such as the Greenhouse gases Observing SATellite (GOSAT) (Hamazaki et al., 2005), the Orbiting Carbon Observatory-2

(OCO-2) (Boesch et al., 2011) and planned missions such as the Active Sensing ofCO2 Emissions over Nights, Days, and Sea-30

sons (ASCENDS) (?)
:::::::::::::::::
(Dobler et al., 2013) have been and are being developed specifically to resolve surface sources and sinks

of CO2 and provide information on these different scales of temporal variability. For example, GOSAT observations started in

2009 and provideXCO2 based on spectra in the Short-Wavelength InfraRed (SWIR) region with a standard deviation of about

2 ppm with respect to ground-based and in-situ air-borne observations (Yokota et al., 2009; NIES GOSAT Project, 2012). The
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bias and performance of
::::::::::::::
column-averaged

::::::
carbon

:::::::
dioxide

::::::
dry-air

:::::
mole

::::::
fraction

::
(XCO2)

:
retrievals from an algorithm could

change in different regions with differing land surfaces and anthropogenic emissions
::::::::::::::
(Bie et al., 2018).

Moreover, the NOAA Carbon Tracker (CT) is an integrated modeling system that assimilates CO2 from other observations

in order to complement satellite observations in understanding CO2 surface sources and sinks as well as its spatiotemporal

variabilities. However, both satellite and model data should be validated against other independent satellite observations and/or5

in-situ observations before using them to answer scientific questions. As a result, a lot of validation and intercomparison have

been conducted in previous studies. For example, Kulawik et al. (2016) found root mean square deviation of 1.7, and 0.9

ppm in GOSAT and CT2013b XCO2 relative to TCCON
::
17

:::::::
TCCON

:::::
sites

:::::
acroos

:::
the

:::::
globe

:
respectively. Other authors have

undertaken validation exercises and found the bias of −8.85± 4.75 ppm -
::::
8.85

:::
±

::::
4.75

:::::
ppm

:
in retrieving XCO2 from the

GOSAT observed spectrum by Japans the
::
the

::::::::
Japanese

:
National Institute for Environmental Studies (NIES) level 2 V02.xx10

XCO2 (Yoshida et al., 2013) with respect to TCCON (Morino et al., 2010). In addition, Chevallier (2015) shows retrieved

XCO2 from GOSAT observed spectrum by NASA Atmospheric CO2 Observations from Space (ACOS) (O’Dell et al., 2012)

suffers a systematic error over African Savanna. Lei et al. (2014) also showed a regional difference of XCO2 between the

ACOS and NIES datasets. For example, a larger regional difference from 0.6 to 5.6 ppm was obtained over China land region,

while it is from 1.6 to 3.7 ppm over the global land region and from 1.4 to 2.7 ppm over US land region. These findings15

suggest that it is important to assess the accuracy and uncertainty of XCO2 from Satellite
::::::
satellite observations with respect

to more accurate models (e.g., NOAA Carbon Tracker) and ground-based observations over other regions as well. As satellite

retrievals are strongly constrained by cloud cover, aerosol lodgings
::::::
loading, land use change and Africa is a continent with

wide extremes in surface type (which ranges from desert, rainforest and Savannah) and aerosol loading.
::
In

:::::::
addition,

::::::::
seasonal

:::::::
variation

::
of

:::::::
biomass

:::::::
burning

::
in

::::::
Africa:

::::::::::
agricultural

:::::::
residues

::::::
burned

:::
in

:::
the

::::
field,

:::::::
savanna

:::::::
burning,

::::
and

:::::
forest

::::
wild

::::
fires

::::::
results20

::
in

:
a
::::
very

::::::::
seasonal

::::::
aerosol

:::::::
loading

::
in

:::::::
African.

::::::
Africa

::
is

:::::
under

:::
the

::::::::
influence

::
of

:::::::::::::
semi-permanent

::::::::::::
high-pressure

::::
cells

::::::
which

:::
led

::
to

:::
the

::::::
Sahara

:::::
Desert

::
in
:::

the
::::::

North
:::
and

:::
the

::::::::
Kalahari

::
in

:::
the

::::::
South.

:::
The

:::::::::
equatorial

:::::::::::
low-pressure

:::
cell

::::::
which

:::::
allows

:::
the

:::::::::
formation

::
of

:::
the

:::::::::
seasonally

::::::::
migrating

::::::::::::
Inter-Tropical

:::::::::::
Convergence

::::
Zone

:::::::
(ITCZ)

::
is

:::
part

:::
of

:::
the

:::::
major

:::::
large

::::
scale

:::::::::::
atmospheric

:::::::::
circulation

:::::::
systems.

:::::
These

:::::
large

:::::
scale

:::::::
pressure

::::::::
systems,

:::::::
Oceanic

::::::::::
circulations

::::
and

::::
their

::::::::::
interaction

::::
with

:::
the

::::::::::
atmosphere

:::::::
coupled

:::::
with

::::::
diverse

:::::::::::
topographies

::
of

:::
the

::::::
region

:::::
allow

:::
for

:::
the

:::::::::
formation

::
of

::::::::
different

:::::::
climates

:::::
(e.g.,

:::::::::
equatorial,

:::::::
tropical

::::
wet,

:::::::
tropical

::::
dry,25

::::::::
monsoon,

::::
semi

:::::
desert

:::::
(semi

:::::
arid),

::::::
desert

:::::
(hyper

:::::
arid),

::::::::::
subtropical

::::
high

::::::::
climates).

:::::::::::::
Geographically,

:::
the

::::::
Sahel,

:
a
:::::::
narrow

::::::
steppe,

:
is
:::::::
located

:::
just

:::::
south

::
of

:::::::
Sahara;

:::
the

::::::
central

::::
part

::
of

:::
the

::::::
content

:::::::::
constitutes

::::
the

:::::
largest

:::::::::
rainforest

::::
next

::
to

:::::::
Amazon

:::::::
whereas

:::::
most

:::::::
southern

:::::
areas

::::::
contain

:::::::
savanna

::::::
plains.

::::
The

::::::::
continent

::::
gets

::::::
rainfall

:::::
from

::::::::
migrating

:::::
ITCZ,

:::::
west

:::::
Africa

:::::::::
monsoon,

:::
the

::::::::
intrusion

::
of

::::::::::
mid-latitude

::::::
frontal

:::::::
systems,

::::::::
travelling

:::
low

::::::::
pressure

::::::
systems

::::::::::::::::::::::::::::::::::::
(Hulme et al., 2001, and references therein).

:::::
Since

:::::
CO2 :::::

fluxes

::::::
exhibit

:::::::
seasonal

:::::::::
variability

:::
and

::::::
Africa

::::::::::
experiences

:::::::
different

:::::::
seasons

::
as

:::::
noted

:::::
above,

::
it
::
is

::::::::
important

::
to
::::::
divide

::::::
Africa

:::
into

:::::
three30

:::::
major

:::::::
regions,

::::::
namely

:::::
North

::::::
Africa

:::
(10

:::
to

::
35

:::::

0N ),
:::::::::
Equatorial

::::::
Africa

:::
(10

:::

0S
::
to

::
10

:::::

0N ),
::::
and

:::::::
Southern

::::::
Africa

:::
(35

:::
to

::
10

::::

0S)

:::
and

:::::::
conduct

:::
the

::::::::::
comparison

::
of

:::
the

:::
two

:::::::
XCO2 :::::::

datasets. Assessing the performance of satellites over the region can tell much

about how these systematic errors vary geographically over the continent.

Therefore, this paper aims to assess the performance of observed XCO2 from GOSAT and OCO-2 satellite in capturing

simulated XCO2 from NOAA Carbon Tracker model over Africa. These satellite observations and Carbon Tracker mixing35
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ratios near the surface are also compared to available in suit
::
situ

:
CO2 flask data from Assekrem, Algeria; Mt. Kenya; Gobabeb,

Namibia; and Cape Town; as well as to data off the coast at
:
of
:
Seychelles, Ascension Island, and at Izana, Tenerife. Moreover,

the consistency between the model and satellite observations in capturing the amplitudes and phases of observed seasonal

cycles over different parts of the continent are evaluated. The agreement of modeled spatiotemporal variability with the known

seasonal climatology of the regions, that determines carbon source and sink levels, is also assessed.5

2 Data and Methodology

2.1 Carbon Tracker Model and Data

Carbon Tracker provides an analysis of atmospheric carbon dioxide distributions and their surface fluxes (Peters et al., 2007). It

is a data assimilation system that combines observed
::
in

:::
situ

:
carbon dioxide concentrations from 81 sites around the world with

model predictions of what concentrations would be based on a preliminary set of assumptions (“the first guess”) about sources10

and sinks for carbon dioxide. Carbon Tracker compares the model predictions with reality and then systematically tweaks and

evaluates the preliminary assumptions until it finds the combination that best matches the real world data. It has modules for

atmospheric transport of carbon dioxide by weather systems, for photosynthesis and respiration, air-sea exchange, fossil fuel

combustion, and fires. Transport of atmospheric CO2 is simulated by using the global two-way nested transport model (TM5).

TM5 is an offline atmospheric tracer transport model (Krol et al., 2005) driven by meteorology from the European Centre for15

Medium-Range Weather Forecasts (ECMWF ) operational forecast model and from the ERA-Interim reanalysis (Dee et al.,

2011) to propagate surface emissions. TM5 is based on a global 30 × 20 and at a 10 × 10 spatial grids over North America.

:::
The

::::::
model

:::
can

::
be

::::
used

::
in
::
a
::::
wide

:::::
range

::
of

:::::::::::
applications,

:::::
which

::::::::
includes

::::::
aerosol

::::::::
modeling,

:::::::::::
stratospheric

:::::::::
chemistry

::::::::::
simulations,

:::::::::::::
hydroxyl-radical

:::::
trend

::::::::
estimates.

::::::::
Detailed

:::::::::
description

::
of

:::
the

:::::
TM5

:::::
model

::::
can

::
be

:::::
found

::
in

:::
the

::::::
works

::
of

::::::::::::::::
Peters et al. (2004)

:::
and

::::::::::::::
Krol et al. (2005)20

CT date
:::
data

:
from the CT2015 release and on wards uses aircraft profiles from the stratosphere to the top of the atmosphere

(Inoue et al., 2013; Frankenberg et al., 2016) and also co-location error are quantified (Kulawik et al., 2016). The older data

versions have been used and also compared with different data sets over other parts of the globe in previous studies (Nayak

et al., 2014; Kulawik et al., 2016). Most of the studies confirm that CT XCO2 captures observations reasonably well. In this

study, we use Carbon Tracker release version CT2016
::::::::::::::::
(Peters et al., 2007), hereafter (CT2016) and near real-time version (CT-25

NRT.v2017). Both versions of NOAA CT provides 3 hourly CO2 mole-fractions data for global atmosphere at 25 pressure

levels in a 30 × 20 spatial resolution for a period covering 2000 to 2016. The data can be accessed freely at the public domain

(ftp://aftp.cmdl.noaa.gov/products/carbontracker).

2.2 GOSAT measurements

GOSAT is the world’s first spacecraft
:::::::::
particularly

::::::::
designed to measure the concentrations of carbon dioxide and methane,30

the two major greenhouse gases, from space. The spacecraft was launched successfully on January 23, 2009, and has been

4



operating properly since then. GOSAT records reflected sunlight using three near-infrared band sensors. The field of view

at nadir allows a circular footprint of about 10.5 km diameter (Kuze et al., 2009; Yokota et al., 2009; Crisp et al., 2012).

GOSAT consists of two instruments. The sensors for the two instruments can be broadly labeled as thermal, near infrared and

imager. The first two sensors are used as part of Fourier Transform Spectrometer for carbon monitoring which is referred to

as TANSO-FTS while the imager for cloud and aerosol observations is referred to as TANSO-CAI. The details on spectral5

coverage, resolution, field of view, and different products of TANSO-FTS in the three SWIR bands can be found in a number

of previous studies (Kuze et al., 2009; Saitoh et al., 2009; Yokota et al., 2009, 2011; Crisp et al., 2012; Nayak et al., 2014;

Deng et al., 2016a, and references therein). In this study ACOS B3.5 Lite XCO2 from GOSAT Level 2 (L2) retrieval based

on the SWIR spectra of FTS observations and made available by Atmospheric CO2 Observations from Space (ACOS) of

NASA is used. ACOS B3.5 Lite XCO2 has lower bias and better consistency than NIES GOSAT SWIR L2 CO2 globally10

(Deng et al., 2016a). However, this version of ACOS XCO2 found to suffer systematic retrieval error over the dark surfaces of

high latitude lands and and over African savanna (Chevallier, 2015).
::::::::::::::
Chevallier (2015)

:::::
shows

:::::::::
systematic

:::::
error

::
in

:::
the

:::::::
African

::::::
savanna

:::::::::
associated

::::
with

:::::::::::::
underestimating

:::
the

::::::::
intensity

::
of

:::
fire

:::::
during

::::::
March

::
at

:::
the

:::
end

::
of

:::
the

:::::::
savanna

:::::::
burning

::::::
season. Therefore,

our choice of the ACOS B3.5 Lite, hereafter (GOSAT) XCO2 is motivated by these differences.

2.3 OCO-2 measurements15

OCO-2, the second world’s
:::::
second

:
full-time dedicatedCO2 measurement satellite. It was successfully launched by the National

Aeronautics and Space Administration (NASA) on 2 July 2014.
::::
2014

:::::::::::::::
(Crisp et al., 2012)

:
. OCO-2 measures atmospheric carbon

dioxide with the accuracy, resolution, and coverage required to detect CO2 source and sink on global and regional scale. OCO-

2 has three-band spectrometer, which measures reflected sunlight in three separate bands. The O2 A-band measures molecular

absorption of oxygen from reflected sunlight near 0.76 µm while the CO2 bands are located near 1.61 µm and 2.06 µm (Liang20

et al., 2017). In this study,
:::
both

:::
the

:::::
nadir

:::
and

::::::::::
glint-mode

::::::::::::
measurements

::
of OCO-2 XCO2 V7 lite level 2 covering the period

from January 2015 to December 2016, hereafter referred to as OCO-2 XCO2 are used. Due to the scarcity of data, CT values

from the two releases CT2016 for the year 2015 and CT-NRT.v2017 for the year 2016, hereafter (CT16NRT17) are employed

in this study. The OCO-2 project team at Jet Propulsion Laboratory, California Institute of Technology, produced the OCO-2

XCO2 data used in this study. The data can be accessed from NASA Goddard Earth Science Data and Information Service25

Center.

2.4 Flask observations

Measurements of CO2 from nine ground-based flask observations near and within Africa land mass were accessed from the

NOAA/ESRL/GMD CCGG cooperative air sampling network https://www.esrl.noaa.gov/gmd/ccgg/flask.php. Sites description

is given in Table 1.30
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Table 1. Information on flask observation sites near and within Africa land mass. * indicates discontinued site or project.

Code Name country
::::::
Country Latitude (0N ) Longitude (0E) Altitude (masl) Air pressure at T = 250C (Pa)

ASC Ascension Island United Kingdom
:::::::
Ascension

:::::
Island

:
-7.967 -14.400 85.00 100342.02

ASK Assekrem Algeria 23.262 5.632 2710.00 73571.64

CPT Cape Point South Africa -34.352 18.489 230.00 98682.99

IZO Izana, Canary Islands Spain 28.309 -16.499 2372.90 76650.84

LMP Lampedusa Italy 35.520 12.620 45.00 100803.63

MKN* Mt. Kenya Kenya -0.062 37.297 3644.00 65579.92

NMB Gobabeb Namibia -23.580 15.030 456.00 96141.54

SEY Mahe Island Seychelles -4.682 55.532 2.00 101301.78

WIS Weizmann, Ketura Israel 29.965 35.060 151.00 99584.09

2.5 Methods

The GOSAT and CT modelXCO2 time series used in this investigation span five years, ranging from May 2009 to April 2014.

AtmosphericCO2 concentrations of NOAA Carbon-Tracker have global coverage with a 30×20 Longitude/Latitude resolution

which covers 426 grid boxes in our study area. Satellite observations, however, is
:::
are different from model assimilation , and

have gaps because of various reasons (e.g., cloud and the observational mode of the satellite). As a result, there is no one to one5

spatiotemporal match between the two data sets. For example, CO2 products from the two datasets are not directly comparable

since CT is a 3 hourly smooth and regular grid dataset whereas GOSAT XCO2 is irregularly distributed in space and time.

Thus, the CT CO2 is extracted on the time and location of GOSAT-XCO2 data. Using the grid point of CT as a reference

bin, the corresponding GOSAT XCO2 found within a rectangle of 1.50 × 1.50
::::::
30 × 30

:
with center at the reference bin and

with a temporal mismatch of a maximum of 3 hrs is extracted. Moreover, CT has higher vertical resolutions than GOSAT. As a10

result, the two can not be directly compared. It is customary to smooth the high-resolution data (in this case CT) with averaging

kernels and a priori profiles of the low-resolution satellite measurements (in this case GOSAT). In addition
::::::
Besides, due to a

difference between CT and GOSAT on the number vertical levels, CT CO2 is interpolated to vertical levels of GOSAT. The

CT XCO2 (XCOmodel
2 ) used in the comparison is computed from the interpolated CT CO2 (COinterp

2 ), pressure weighting

function (w), XCO2 a priori (XCO2a), column averaging kernel of the satellites
::::::
satellite

:
retrievals (A) and a priori profile15

(CO2a) of the retrievals as per procedure discussed by Rodgers and Connor (2003); Connor et al. (2008); O’Dell et al. (2012);

Chevallier (2015); Jing et al. (2018) and given as:

XCOmodel
2 =XCO2a +

∑
i

wT
i Ai ∗ (COinterp

2 −CO2a)i (1)

where i is the index of the satellite retrieval vertical level and T is the matrix transpose. To compare the CT simulations

and the Satellites observation with the flask observations, the vertical profile of the satellite and CT were extracted at the20

corresponding pressure level and location within a box of 1.50.
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Correlation coefficients (R), bias and root mean square deviation (RMSD) are used to assess the level of agreement between

the two data sets. The mean bias determines the average deviations in XCO2 between Carbon Tracker simulation and satellite

observations. In this work the bias at the jth grid point is computed as:

Biasj =
1

n

n∑
i=1

(Si −Oi) (2)

where Si and Oi are CT and GOSAT XCO2 values over the jth pixel at the ith time respectively. To quantify the extent to5

which XCO2 of CT and GOSAT agree, the pattern correlations at the jth grid point are computed as:

Rj =

1

n

∑n
i=1(Si − S̄)(Oi − Ō)√

1

n

∑n
i=1(Si − S̄)2

√
1

n

∑n
i=1(Oi − Ō)2

(3)

where S̄ and Ō are the mean values of Si and Oi over the jth pixel. The root mean square deviation (RMSD) which shows the

standard error of the model with respect the observation at the jth grid point is computed as :

RMSDj =

√√√√ 1

n

n∑
i=1

((Si − S̄)− (Oi − Ō))2 (4)10

:
; this is the centered pattern root mean squared (RMS) difference which is obtained from the RMS error after the difference

in the mean has
::::
been removed (Taylor, 2001).

Comparison with in situ flask observation is achieved in a way that the Carbon Tracker and satellite observations are taken

at a corresponding pressure level of the in-situ flask observation (as mentioned in Table 1) in order to correspond to flux-towers

surface observation. Further
::::::::::
Furthermore the datasets are re sampled

::::::::
resampled to fit the flask observations in a 30X30 window15

centered
::
on

:
the flux-towers and to the available months were averaged.

3 Results and discussions

3.1 Comparison of XCO2 mean climatology from NOAA CT2016 and GOSAT

The column-averaged mole fraction of CO2 obtained from the NOAA Carbon Tracker model and GOSAT observation was

compared. The results are based on 426 grid boxes uniformly distributed to cover the whole of Africa’s land region. The20

analysis was based on five years of daily data starting from May 2009 to April 2014.

Fig. 1 shows temporal average of CT2016 (Fig. 1a) and GOSAT (Fig. 1b) XCO2 distribution. The major common spatial

feature in the mean map ofXCO2 from GOSAT and CT2016 reanalysis is dipole structure characterized by highXCO2 north-

ward of equator and low XCO2 southward of equator with the exception of Southern part of Congo
::::
some

::::
part

::
of

:::::::::
Equatorial

::::::
Guinea

:::
and

::::::::
Republic

::
of

::::::
Congo

:::
for

::::
CT (Fig. 1a) and southern part of Democratic republic of Congo

::::::::
Republic

::
of

::::::
Congo

:::
for25

::::::
GOSAT

:
(Fig. 1b)

:
; these are characterized by spatially anomalous high XCO2. The Southern Africa region is characterized

by weak anthropogenic CO2 emission and high CO2 uptake by the vegetation
:::
than

::::::::
Northern

::::::
Africa

:::::::::::::::
(Ciais et al., 2011). This
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contributed to the observed dipole distribution. Another important pattern is anomalous peak over the annual average location

of the Inter-tropical convergence zone (ITCZ) (Fig. 1b) which appears to fade over Eastern Africa. This is in agreement with

the fact that carbon stocks and net primary production per unit land area is higher
:::
high

:
over Equatorial Africa and decreases

towards northward and southward of the equator over arid environments (Williams et al., 2007). However, Fig. 1b shows that

CT2016
:::::::
GOSAT

::::::::::
observations

:
has some limitations in simulating this spatial pattern in comparison to GOSAT

:::
CT.5

Fig. 1c shows the mean difference (CT2016–GOSAT)XCO2 which ranges from -4 to 2 ppm. The highest difference between

the CT2016 and GOSAT XCO2 (as high as -4 ppm) is observed over Northern part of Equatorial Africa (e.g., Guinea, Ghana,

Nigeria,
:::::::
southern

:::::::
Guinea,

:::::::
southern

:::::::
Ghana,

:::::::
southern

:::::::
Nigeria,

::::::::
southeast

::
of

:
Central Africa, western Ethiopia and South Sudan,

.etc.) which are also known for near-year-round rainfall and relatively dense vegetation. The regions are known for their rain

forest
::::::::::::::::
(Malhi et al., 2013). The likely explanation could be XCO2 the mean (over five years) climatology may be slightly10

positively biased due to fewer GOSAT observations as shown in Fig.1d. The
::::::
satellite

::::::::
retrievals

:::::
have

:::::
noise

:::::
which

::::
can

:::
be

::::::::
smoothed

:::
out

:::::
when

::::
large

:::::::
number

::
of

:::::::
datasets

:::
are

::::::::
averaged.

:::
The

:
strategy and methods for cloud screening in GOSAT retrievals

could lead to a smaller number of observation
::::::::::
observations

:
in the equatorial region (Crisp et al., 2012; O’Dell et al., 2012;

Yoshida et al., 2013; Chevallier, 2015; Deng et al., 2016b). The number of datasets used for comparison range from 14 to 4288

from the gridbox to gridbox with a spatial mean of 1109 data over the continent. Fig. 1c also shows CT2016 simulations are15

overall lower than the values of GOSAT observation over most regions with an exception in Gabon, Congo, southern Kenya and

southern Tanzania where CT2016 simulations are higher than GOSAT observation by more than 1 ppm. The spatial distribution

of global atmospheric CO2 is not uniform because of the irregularly distributed sources of CO2 emissions, such as large power

plant and forest fire, and biospheric assimilation as clearly noted above.

Fig. 2a shows differences between CT2016 and GOSAT XCO2 :::::
which

:
ranges from -4 to 3 ppm. Out of 100% occurrence,20

more than 90% of observed differences are within ± 2 ppmv
:::
ppm. The mean difference between CT2016 and GOSAT means

is about -0.27 ppm with the standard deviation of 0.98 ppm indicating better regional consistency and low potential outliers.

Moreover, a negative mean of the difference implies thatXCO2 simulated from CT2016 is lower than that of GOSAT retrievals

over Africa land mass.

Because of selection criteria which permits a difference of 3 degrees long and wide, the two datasets are not exactly at the25

same point. The impact of the relative distance between them should be assessed before performing any statistical comparison.

Fig. 2b depicted color-coded scatter plot of CT2016 model simulation verses GOSAT to determine if the discrepancy between

the datasets arise from the spatial mismatch. The color code indicates the relative distance between the model and observation

datasets. For these datasets the 50th percentile has a relative distance of 1.190 which means 50% of the data has a relative

distance of shorter than 1.190. The maximum relative distance between them is 2.120. However, there is no indication that this30

has been the case since the scatter is not a function of the relative distance between the data sets. For example, data points with

blue color with the lowest location difference is scattered everywhere instead of along the 1:1 line. Furthermore, we found the

bias of -0.26 ppm, correlation coefficient of 0.86 and RMSD of 2.19 ppm for datasets which has a relative distance shorter than

1.190. On the other hand, the bias, correlation coefficient, and RMSD are -0.33 ppm, 0.86 and 2.22 ppm for those which are

8



Figure 1. Distribution of five-years averages of CT2016 (a) and GOSAT (b) XCO2 and their difference (c) gridded in 30 × 20 bins over

Africa’s Land mass; and the total number of datasets at each grid from the GOSAT observations(d).

above 1.190. These statistics provide information there will be
:::::::
confirm

:::
that

:::::
there

:
is
:
no strong discrepancy due to our selection

criteria. The above statistics was performed merely to test the influence of location mismatch.

Fig. 3 shows a statistical comparison of XCO2 from the CT2016 and GOSAT over Africa. The number of data used in this

comparison is shown in Fig. 1d. As it is depicted in Fig. 3a, the bias ranges from -4 to 2 ppm with a mean bias of -0.28
::
±

::::
1.05

ppm (see Table 2). A larger negative bias of about -2 ppm was found along with the annual mean position of ITCZ,
:::
the

:::::
main5

::::::
climatic

:::::::::::
mechanisms

:::::::::
controlling

:::::::
rainfall

::
in

::::::
Africa.

:::::::::
Systematic

:::::
errors

::::
duo

::
to

:::::
ITCZ

:::
and

:::
the

::::
East

:::::::
African

::::::::
Monsoon

:::::
needs

::
to

:::
be

::::::::
addressed

::::
well

::
in

::::::
satellite

::::::::
retrievals

::::
and

::::::::
modeling

:::::
works. The correlation varies from 0.4 over some isolated pockets in Congo,

Tanzania, Mozambique, Uganda, and western Ethiopia to 0.9 over the northern part of Africa above 130N , Eastern Ethiopia

and the Kalahari Desert. Fig. 3b depicts correlation coefficient between GOSAT and Carbon Tracker XCO2. The region with

poor correlation also exhibits high RMSD as shown in Fig. 3c. To understand whether this discrepancy originates from model10

weakness alone
::
or

:::::::
terrible

::::::
satellite

::::::::
visibility

:::::
when

:::
the

::::::
ITCZ

::
is

::::::
present

::::
and

::::::
clouds

:::
are

::::::::
extremely

:::::
thick

::::
and

::::::
widely

::::::
present,

we have looked at the GOSAT posterior estimate of XCO2 error (Fig. 3d), which are high over regions where the bias and

RMSD between GOSAT and Carbon Tracker XCO2 is high. GOSAT’s posterior estimate of XCO2 error is a combination of

instrument noise, smoothing error and interference errors (Connor et al., 2008; O’Dell et al., 2012). This posterior estimate of

XCO2 error does not include forward model error which may lead to underestimation of the true error of satellite XCO2 by15

a factor of two (O’Dell et al., 2012). Therefore, part of the discrepancy is clearly linked to satellite own
:::::::
retrieval uncertainty,

9



Figure 2. Histogram of the difference of CT2016 relative to GOSAT (left panel) and color code scatter diagram of XCO2 concentration

as derived from CT2016 and GOSAT (right panel). Color indicates the relative distance in unit of degrees as shown in colorbar between

datasets.

which might have been amplified due to the small number of data points used to calculate the mean error of GOSAT XCO2

measurements (see Fig. 1d). In general, the two data sets are characterized by a high spatial mean correlation of 0.83
::
±

::::
1.20, a

global offset of -0.28
::
±

::::
1.05 ppm, which is the average bias, a regional precision of 2.30

:
±

::::
1.46

:
ppm, which is average RMSD

and relative accuracy of 1.05 ppm which is the standard deviation in the bias as depicted in Table 2.

Table 2. Summary of statistical relation between CT2016 and GOSAT observation. The statistical tools shown are the mean correlation

coefficient (R), the spatial average of bias (Bias), the spatial average root mean square deviation (RMSD), the standard deviation in bias (std

of Bias), GOSAT posteriori estimate of XCO2 error (GOSAT err), the standard deviation in CT2016 XCO2 (CT2016 std) and the standard

deviation in GOSAT XCO2 (GOSAT std). The number of data used in the statistics is 472,792 over 426 pixels covering the study period,

distribution at each grid point is shown in Fig. 1d. Negative bias indicates that CT2016 XCO2 is lower than GOSAT XCO2 values.

Statistical tool R Bias (ppm) RMSD (ppm) std of Bias (ppm) GOSAT err (ppm) CT2016 std (ppm) GOSAT std(ppm)

Values 0.83 -0.28 2.30 1.05 0.91 0.90 1.55

3.2 Comparison of monthly average time series of NOAA CT2016 and GOSAT XCO25

Africa is one of the largest continents covering both northern and southern hemispheres. As a result, the continent is under the

influence of semi-permanent high-pressure cells which led to the Sahara Desert in the North and the Kalahari in the South.

10



Figure 3. Spatial patterns of bias (a), correlation (b), RMSD (c) of the two data sets, and mean posteriori estimate of XCO2 uncertainty

from GOSAT (d).

The equatorial low-pressure cell which allows the formation of the seasonally migrating inter-tropical convergence zone is part

of the major large scale atmospheric circulation systems. These large scale pressure systems, Oceanic circulations and their

interaction with the atmosphere coupled with diverse topographies of the region allow for the formation of different climates

(e.g., equatorial, tropical wet, tropical dry, monsoon, semi desert (semi arid), desert (hyper arid), subtropical high climates).

Geographically, the Sahel, a narrow steppe, is located just south of Sahara; the central part of the content constitutes the largest5

rainforest next to Amazon whereas most southern areas contain savana plains. The continent gets rainfall from migrating ITCZ,

west Africa monsoon, the intrusion of mid-latitude frontal systems, travelling low pressure systems (?, and references therein).

Since CO2 fluxes exhibit seasonal variability and Africa experiences different seasons as noted above, it is important to divide

Africa into three major regions, namely North Africa (10 to 35 0N ), Equatorial Africa (10 0S to 10 0N ), and Southern Africa

(35 to 10 0S) and conduct the comparison of the two XCO2 datasets.10

Figs. 4 - 6 show trends of monthly mean XCO2 from CT2016 and GOSAT averaged over North Africa, Equatorial Africa,

and Southern Africa respectively. Figs. 4a - 6a depict the existence of an overall very good agreement for the monthly averages

with respect to amplitudes and phase of XCO2. However, XCO2 from the two datasets slightly disagree in capturing seasonal

cycle over Southern Africa.

Fig. 4a shows that XCO2 concentration reaches maximum in April and minimum in September over North Africa. Con-15

sistent with this evidence, other authors (e.g., Zhou et al., 2008) have indicated the presence of strong absorption of CO2 by

vegetation during August in the northern hemisphere. This is the most likely cause for minimum concentration observed during

11



Table 3. Summary of statistical relation between CT2016 and GOSAT observation. The statistical analysis was made using monthly averaged

time series of 60 months (i.e., months from May 2009 to April 2014).

Statistics R Bias (ppm) RMSD (ppm) number of data

Africa 0.997 -0.254 0.265 698505

North Africa 0.996 -0.361 0.345 424070

Equatorial Africa 0.977 -0.172 0.708 101660

Southern Africa 0.964 0.006 0.841 172775
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Figure 4. The monthly mean time series of CT2016 and GOSAT from May 2009 to April 2014 averaged over North Africa (a), bias associated

with the monthly means (b), the histogram of difference (c) and the annual growth rate obtained by subtracting the mean from the mean of

the next year (d). The error bars in (a) shows the GOSAT a posteriori XCO2 uncertainty.

September over North Africa. Both datasets show a concentration of XCO2 increases from October to April and decreases

from May to September (see also Table 4). Moreover, the two dataset shows a monthly mean regional mean bias of -0.36 ppm

with a correlation of 1.0 and small root mean square deviation of 0.36 ppm (see Table 3).

Fig. 5a shows XCO2 concentration reaches maximum (392.99 ppm) for CT2016 in March and (393.53 ppm) for GOSAT in

January while minimum (389.56 ppm for CT2016 and 389.32 ppm for GOSAT) in October over Equatorial Africa. The largest5

monthly mean difference of -1.34 ppm and the smallest of -0.05 ppm between the two datasets observed in December and in

April respectively (Table 4). Moreover, both datasets show that concentration of CO2 increases from October to March while

12



10 20 30 40 50 60
Number of Months since May 2009

384

386

388

390

392

394

396

398

400

C
O

2 
co

nc
 (

pp
m

)

(a)

CT2016
GOSAT

(b)

20 40 60
Number of Months since May 2009

-2

-1.5

-1

-0.5

0

0.5

1

B
ia

s 
(p

pm
)

(c)

Mean=-0.17
Std=0.71
R=0.977

-2 -1 0 1
change in CO2 

0

0.05

0.1

0.15

0.2

0.25

0.3

N
or

m
 p

ro
b 

di
st

(d)

2009 2010 2011 2012 2013
year 

0

0.5

1

1.5

2

2.5

3

A
nn

ua
l C

O
2 

gr
ow

th
 (

pp
m

) 

CT2016
GOSAT

Figure 5. The same as Fig. 4 but over Equatorial Africa.

it decreases from June to October. This similarity in the seasonal variability of the two datasets shows that they are in good

agreement in terms of amplitude and phase. In addition, the two datasets show a monthly average regional average bias of -0.17

ppm, correlation of 0.98 and a small root mean square deviation of 0.71 ppm over Equatorial Africa (see Table 3). Fig. 6a shows

maximum XCO2 concentration in April (391.04 ppm) for CT2016 and in October (391.28 ppm) for GOSAT, while minimum

in May (389.30 ppm) for CT2016 and ( 388.46 ppm) for GOSAT over Southern Africa. The largest monthly mean difference5

of 1.53 ppm and 0.03 ppm between the two datasets is observed in April and in July (Table 4) respectively. Both datasets show

a concentration of CO2 increases from May to July while it decreases from October and November. However, theXCO2 from

CT2016 shows a gradually increasing trend from January to April. Conversely, GOSAT XCO2 shows decreasing values. This

is most likely
:::
the

:::::
result

::
of

:::
the

:::
fact

::::
that CT2016 simulation respond

::
is

::::
more

::::::::
sensitive to the growing size of sink following the

rainy season. Moreover, the two datasets show a monthly mean regional mean bias of 0.07 ppm, correlation of 0.97 and RMSD10

of 0.87 ppm over southern Africa (see Table 3).

Figs. 4b - 6b show regional averaged bias in the monthly meanXCO2 from CT2016 and GOSAT. Fig. 4b shows the presence

of seasonally varying negative bias over North Africa. A high (<-0.5 ppm) negative bias in dry seasons (April to June) and

low (>=-0.1 ppm) negative bias in wet seasons (August to September) are observed. Moreover, the strength of bias increases

from February to June. Conversely, the bias decreases from June to September. Similarly, Figs. 5b and 6b show seasonally15
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Figure 6. The same as Fig. 4 but over Southern Africa.

Table 4. Five years monthly averaged XCO2 concentration in ppm obtained from CT2016 (CT) and GOSAT (GO) and their difference

CT −GO (D) in ppm over Africa (A), North Africa (NA), Equatorial Africa(EA) and Southern Africa (SA).

Month A CT A GO A D NA CT NA GO NA D EA CT EA GO EA D SA CT SA GO SA D

January 391.81 392.17 -0.36 392.43 392.61 -0.18 392.22 393.53 -1.31 390.28 390.49 -0.21

February 392.48 392.58 -0.1 393.27 393.5 -0.23 392.72 393.21 -0.49 390.52 390.06 0.46

March 393.25 393.28 -0.03 394.02 394.29 -0.27 392.99 393.19 -0.2 390.82 389.81 1.01

April 393.81 393.91 -0.1 394.79 395.35 -0.56 392.87 392.92 -0.05 391.04 389.51 1.53

May 391.65 391.85 -0.21 392.92 393.73 -0.81 390.47 389.93 0.54 389.3 388.46 0.84

June 391.49 391.94 -0.45 392.43 393.33 -0.9 391.12 390.89 0.23 389.95 389.85 0.11

July 390.92 391.1 -0.18 391.09 391.5 -0.41 391.44 391.03 0.41 390.43 390.4 0.03

August 389.89 389.96 -0.07 389.4 389.44 -0.04 390.92 390.72 0.21 390.37 390.61 -0.25

September 389.26 389.4 -0.14 388.65 388.75 -0.1 390.02 389.67 0.35 390.39 391.01 -0.61

October 389.19 389.71 -0.51 388.85 389.26 -0.41 389.56 389.32 0.24 389.95 391.28 -1.32

November 389.97 390.43 -0.46 390.06 390.32 -0.26 389.86 390.52 -0.66 389.8 390.76 -0.96

December 391.09 391.53 -0.45 391.42 391.6 -0.18 391.23 392.57 -1.34 389.98 390.52 -0.54
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fluctuating bias. For example, Fig. 6b shows a positive bias from February to July and negative bias from August to December

over Southern Africa.

Figs. 4c - 6c show the histogram of difference. The mean difference between CT2016 simulation and GOSAT observation of

XCO2 is -0.36 ppm with a standard deviation of 0.35 ppm over North Africa (see Fig. 4c); Fig. 5c presents a mean difference

of -0.17 ppm with a standard deviation of 0.71 ppm over Equatorial Africa and Fig. 6c reveals a mean difference of 0.01 ppm5

and a standard deviation of 0.85 ppm which indicates that XCO2 from CT2016 was slightly higher than that of GOSAT over

Southern Africa on average. In addition, the low standard deviation of monthly mean difference over North Africa typically

indicates good regional consistency between CT2016 and GOSAT. This is mainly because Northern Africa is dominated by

the Sahara desertwhich is known for its weak source/sink of CO2:, :::::
which

::
is
::
a
:::::::::
vegetation

::::
free

::::
area,

::::
and

:::
the

:::::::::
systematic

::::
bias

:::
due

::
to

:::
the

:::::
local

::::::::::
atmosphere

::::::::
biosphere

:::::::::
interaction

::
is
:::::::::
minimum. However, the spatial mean of monthly mean bias is slightly10

higher (-0.36 ppm) over North Africa than over Equatorial Africa (-0.17 ppm ) and Southern Africa (0.01 ppm). This is likely

:::::::
possibly due to the presence of strong local source from emissions and

::::::::
emissions

::::
from

::::::
Egept,

::::::
Algeri

:::
and

:::::
Libya

::
as

::::
well

::::
due

::
to

long-range transport from the Northern Hemisphere as reported in other studies (Williams et al., 2007; Carré et al., 2010).

Figs. 4d - 6d display annual growth rate of XCO2 which ranges from 1.5 to 2.7 ppm yr−1. Moreover, the two datasets are

consistent in determining the annual growth rate. The results are found in good agreement with the observed variability in the15

global annual growth rate from surface measurements (http://www.esrl.noaa.gov/ gmd/ccgg/trends/global.html) which is 1.67,

2.39, 1.70, 2.40, 2.51 ppm yr−1 global during 2009 - 2013 respectively, and 1.89, 2.42, 1.86,2.63, 2.06 ppm yr−1 for Mauna

Loa during 2009 - 2013 respectively, with error bars of 0.05 - 0.09 ppm yr−1 for global and 0.11 ppm yr−1 for Mauna Loa

data sets(?)
::::::::::::::::::
(Kulawik et al., 2016). The growth rate may not be conclusive due to the short length of the datasets used. However,

it reflects how the CT and GOSAT observations perform with respect to each other.20

3.3 Comparison of seasonal climatology

The seasonal cycle has important implications for flux estimates (Keppel-Aleks et al., 2012). It is important to analyze whether

there are seasonally dependent biases that are affecting the seasonal cycle and whether the data sets are capturing the same sea-

sonal cycle. The four seasons considered here are winter (December, Januaryand February or in short
::::::::::::::::::::::
December/January/February

:
(DJF), spring (March, Apriland May or in short

::::::::::::::
March/April/May

:
(MAM), summer (June, Julyand August or in short

:::::::::::::
June/July/August25

:
(JJA), and autumn (September, Octoberand November or in short

:::::::::::::::::::::::::
September/October/November

:
(SON).

:::
DJF

:::::::::::
corresponds

::
to

:::::::
northern

:::::::::::::
winter/southern

::::::::
summer,

:::::
MAM

::
to
::::::::

northern
:::::::::::::
spring/southern

:::::::
autumn,

::::
JJA

::
to

:::::::
northern

:::::::::::::::
summer/southern

::::::
winter,

::::
and

::::
SON

::
to

::::::::
northern

::::::::::::::
autumn/southern

::::::
spring,

:::::::::::
respectively. Fig. 7 shows the seasonal distributions of CT2016 (left panels) and

GOSAT (middle panels) XCO2 and their difference (CT2016 - GOSAT, right panels). The distribution clearly shows that

XCO2 concentration is maximum during spring (MAM )
:::::
MAM and minimum during autumn (SON )

::::
SON

:
over the North30

Africa. On the other hand, maxima is found during autumn (SON )
:::
are

:::::
found

::::::
during

::::
SON

:
and minima during winter (DJF )

:::
DJF

:
over the Southern Africa. These features are in good agreement with the rainfall climatology of northern and southern

hemispheres. Moreover, Table 5 shows seasonally varying biases. Seasonal biases affect the seasonal cycle and amplitudes,

which are important for biospheric flux attribution (Lindqvist et al., 2015).
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Figure 7. Seasonal climatology of XCO2 for NOAA CT2016 (left panels) and GOSAT (midel panels) and their difference (right panels).
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Figure 8. Histogram of difference for the seasonal XCO2 climatology for DJF (a), MAM(b), JJA (c) and SON (d) seasons.

The right panels in Fig. 7 show that the seasonal mean difference (CT2016 - GOSAT) ranges from -4 to 6 ppm. A maximum

difference of 6 ppm over the Gulf of Guinea and Congo during JJA. However, such maximum difference was also observed
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Table 5. Summary of statistical relation between CT2016 and GOSAT XCO2: Bias, correlation (R), Root mean square deviation (RMSD),

standard deviation of XCO2 from CT2016 simulation (CT2016 std), standard deviation of XCO2 from GOSAT observation (GOSAT std),

aggregate number of coincident observations (number of data) and number of grids over the region (grid). Negative bias means CT2016 is

lower than GOSAT. The statistics are on the basis of spatial average of seasonal averages of bias, correlation, RMSD and standard deviations.

Region Statistics Bias (ppm) R RMSD (ppm) CT2016 std (ppm) std in GOSAT (ppm) number of data grid

A
fr

ic
a

DJF 0.06 0.73 1.91 1.15 2.57 135865 409

MAM 0.04 0.92 1.62 1.98 3.25 95942 410

JJA 0.22 0.65 1.59 1.12 2.08 116360 400

SON -0.37 0.76 1 0.94 1.52 124233 408

N
or

th
A

fr
ic

a DJF -0.25 0.36 1.08 0.67 1.12 103913 204

MAM -0.72 0.44 1.11 0.62 1.24 65115 204

JJA -0.42 0.73 1.17 0.9 1.66 60854 204

SON -0.35 0.66 0.53 0.52 0.71 91778 204

E
qu

at
or

ia
lA

fr
ic

a

DJF -0.52 0.68 2.47 1.06 3.07 22639 121

MAM 0.18 0.9 1.88 1.94 3.46 8300 115

JJA 1.51 0.59 2.02 1.46 2.52 12714 104

SON 0.25 0.7 1.3 1.16 1.83 10213 113

So
ut

he
rn

A
fr

ic
a DJF 1.61 0.42 1.72 0.88 1.9 9313 84

MAM 1.56 0.67 0.97 0.82 1.31 22527 91

JJA 0.18 0.81 0.78 0.93 1.31 42792 92

SON -1.16 0.77 0.81 0.84 1.26 22242 91

over Southern Africa during DJF. A minimum of -4 ppm over annual mean ITCZ region was observed during DJF and MAM.

Moreover, the difference is above 1 ppm over Southern Africa regions during DJF and MAM (wet season of the region). This

implies high spatial variability of the seasonal mean difference during different seasons (see also Table 5). It also suggests that

the discrepancy between the CT2016 and GOSAT becomes significant when vegetation cover is weak during DJF and MAM

(dry seasons) over North Africa.5

During SON the seasonal difference in most Africa’s land region ranges from -2 to 1 ppm. The result implies CT2016

simulates lower values ofXCO2 than that of GOSAT observation indicating that there is a better spatial consistency during this

season. Furthermore, during these seasons both the Northern and Southern Africa have a moderate vegetation cover following

their respective summer seasons. The two datasets show lower regional variation (i.e., only from -2 to 2 ppm) over most of

Africa land mass. However, Equatorial Africa exhibits the mean difference lower than -2 ppm during DJF and MAM. This10
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indicates the model tends to simulate lower than GOSAT retrievals XCO2 over the region. In addition, this strong negative

bias is partially due to a positive bias in GOSAT XCO2 retrieval due to cirrus clouds. For example,O’Dell et al. (2012) noted

that GOSAT XCO2 retrievals are positively biased due to thin cirrus clouds. Fig. 7(right panels) reveals XCO2 from CT2016

is lower than GOSAT XCO2 over Northern Africa. The underestimation of observed XCO2 by NOAA CT2016 model is

likely related to the skill of driving ERA-Interim data as noted from previous studies. For example, Mengistu Tsidu (2012)5

has shown that the ERA-Interim data has a wet bias over Ethiopian highlands. Mengistu Tsidu et al. (2015) have also shown

that ERA-Interim precipitable water is higher than measurements from radio-sonde, FTIR and GPS observations. Therefore,

such wet bias in the driving ERA-Interim GCM might have forced NOAA CT2016 to generate dense vegetation which serves

as CO2 sink. In another study, ? found ECMWF has a cold bias in the lower atmosphere between 1000 to 750 hPa against

independent upper-air sounding data which may affect CO2.10

Fig. 8 shows the mean difference between CT2016 and GOSAT XCO2 seasonal means which ranges from -0.37 to 0.04

ppm with a standard deviation within a range of 1.00 to 1.91 ppm over the continent. The highest mean difference of XCO2

(-0.37 ppm) occurs during SON and the lowest (0.04 ppm) occurs during MAM. Table 5 presents the summary of statistical

values for the spatial mean of each season means. The comparison between the two data sets also shows there is a strong

correlation (>0.5) during each season over the continent. However, there are moderate correlations (0.3 to 0.5) during DJF and15

MAM over North Africa and during DJF over Southern Africa. The low correlation over Northern Africa may be linked to a

weak absorption by vegetation and a strong emission from human activities during winter as reported elsewhere (Liu et al.,

2009; Kong et al., 2010). Moreover, Table 5 shows that the seasonal biases are negative over North Africa while they are mostly

positive over Equatorial and Southern Africa. Negative biases are observed during DJF and SON over Equatorial and Southern

Africa respectively implying that XCO2 from CT2016 are lower than GOSAT during dry seasons.20

3.4 Comparison of GOSAT and CT2016 with flask observations

Comparison of GOSAT and CT2016 with flask observation are carried out over six available ground-based flask observations.

For the comparison, the volume mixing ratio ofCO2 from GOSAT and CT2016 at the pressure level that corresponds to surface

observation of flask
::::
flask

:::::::::::
observations (see Table 1 ) were considered.

Monthly mean CO2 from flask observations at IZO and ASK in northern Africa shows an excellent agreement with both25

CT2016 and GOSAT CO2. Moreover, CT2016 has a better sensitivity in capturing the amplitudes than GOSAT where obser-

vations from GOSAT mostly under estimates
::::::::::::
underestimates higher values of flask CO2 (Fig. 9). However, this agreement

has deteriorated over sites in Equatorial Africa (ASC and MKN) and Southern Africa (MNB). Over MKN, CT2016 shows

better correlation (0.43) than GOSAT observation (0.08). In addition, monthly amplitudes from CT2016 was closer to the flask

observations suggesting that satellite retrievals need much attention over the region. On the other hand, GOSAT observations30

were found to be in better agreement with flask observations over ASC. Zhang et al. (2015) also show that GOSAT data was

correlated well with ground observation and found to be more centralized, having high system stability, especially over the

ocean.
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Figure 9.CO2 time series for the coincident period for CT2016 (red), GOSAT (green) and flask (black). The standard deviation in computing

the monthly mean is indicated by the vertical error bar.

Table 6. Summary of statistical relations of CT2016 and GOSAT observation with respect to flask observations. The statistical analysis was

made using monthly averaged covering the period from May 2009 to April 2014).

code CT R GOSAT R CT Bias (ppm) GOSAT Bias (ppm) CT RMSD (ppm) GOSAT RMSD (ppm) number of data

ASC 0.58 0.93 1.05 1.84 4.46 1.07 39

ASK 0.90 0.90 -0.63 -0.76 1.97 2.23 60

NMB 0.75 0.91 1.40 1.13 3.12 1.56 60

IZO 0.99 0.97 0.24 -0.36 0.70 1.40 60

MKN 0.40 0.04 1.83 2.88 1.48 1.64 17

WIS 0.93 0.83 -1.57 -2.61 1.95 3.31 60

CT2016 has a better sensitivity over IZO, ASK and NMB. Moreover, CT2016 compared well with flask observations than

GOSAT over these sites, ;
:
almost all flask observations are within the standard deviations of the monthly mean of CT2016.

However, GOSAT observations were found in better agreement with flask observations than CT2016 was over WIS and ASC.

On the other hand, both CT2016 and GOSAT have low sensitivity to flask observation over MKN (see Fig. 10). Similar to our

previous discussion over sites in the Northern Africa (IZO, ASK and WIS), CT2016 underestimates XCO2 during August,5

September, and October (wet season) compered to GOSAT observation and overestimates during January to June. However,

the CT2016 and the flask observations exhibit better agreement indicating a bias in GOSAT observation during the wet season.
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Figure 10. De-trended seasonal cycle of XCO2 during 2009-2014 from CT2016 (red), GOSAT (green) and flask (black) observations. The

standard deviation of the monthly variables is indicated by error bars.

3.5 Comparison of mean XCO2 from NOAA CT16NRT17 and OCO-2

The strong El Niño event occurred during 2015-2016 provides an opportunity to compare the performance of CT16NRT17

during strong El Niño events. Because of the decline in terrestrial productivity and enhancement of soil respiration, the con-

centration of CO2 increases during El Niño events (Jones et al., 2001). In this section we compare mean XCO2 of NOAA

CT16NRT17 and NASA’s OCO-2 covering the period from January 2015 to December 2016.5

The comparison was done based on the selection criteria discussed in Section 2.5. Fig. 11 shows mean distribution ofXCO2

from CT16NRT17 (Fig. 11a) and OCO-2 (Fig. 11b) over Africa’s land mass. CT16NRT17 shows high ( > 400 ppm) XCO2

values over North Africa while these highXCO2 values are observed over Equatorial Africa in the case of OCO-2 observation.

The two datasets show a discrepancy over Equatorial Africa, where CT16NRT17 simulates low XCO2 values (< 401 ppm)

while OCO-2 observes high values ofXCO2 (> 401 ppm). Both datasets show moderateXCO2 values which ranges from 39710

to 400 ppm over Southern Africa. The XCO2 distribution from OCO-2 is consistent with the maximum CO2 concentration

reported in past study by Williams et al. (2007) implying that the CT16NRT17 likely underestimates XCO2 values over

Equatorial Africa. It is also possible that the discrepancy is a compounded effect of OCO-2 XCO2 positive bias over the

region (O’Dell et al., 2012; Chevallier, 2015). Fig. 11c shows the mean difference between two years mean of XCO2 from

CT16NRT17 and OCO-2, which is in the range from -2 to 2 ppm. However, high (<-2 ppm) negative mean difference between15

the two data sets over rain forest regions (Gulf of Guinea and Congo basin) and ITCZ zone over Eastern Africa (South Sudan

and southeastern Sudan) is observed implying that CT16NRT17 simulates lowerXCO2 values than that of OCO-2 observation

over regions where vegetation uptake is strong. Conversely, high (>1) positive mean difference over the Sahara desert, Somalia
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Figure 11. Distribution of two years average XCO2 of CT16NRT17 (a) and OCO-2 (b) XCO2 and their difference (c) gridded in 30 × 20

bins; and (d) the total number of datasets at each grid

and Tanzania implies CT16NRT17 simulates higher XCO2 values than OCO-2 observation where the vegetation uptake is

weak. Moreover, a positive (>2) mean difference over Egypt, Libya, Sudan, Chad, Niger, Mali and Mauritania is likely due

to overestimates of XCO2 emission from local sources by CT16NRT17. Overall, the two datasets show a fairly reasonable

agreement with a correlation of 0.60 and offset of 0.36 ppm, a regional precision of 2.51 ppm and a regional accuracy of 1.21

ppm.5

Table 7. Summary of statistical relation between CT16NRT17 and OCO-2 observation. The statistical tools shown are the mean correlation

coefficient (R), the average of bias (Bias), the average root mean square deviation (RMSD), the standard deviation in bias (std of Bias), mean

posteriori estimate of XCO2 error from OCO-2 (OCO-2 err), the standard deviation in CT16NRT17 XCO2 (CT16NRT17 std) and the

standard deviation in OCO-2 XCO2 (OCO-2 std). Positive Bias indicates that CT16NRT17 is higher than OCO-2. The number of data used

in the statistics is 1,659,411 over 426 pixels covering the study period, distribution at each grid point is shown in Fig 11d.

Statistical tool R Bias (ppm) RMSD (ppm) std of Bias (ppm) OCO-2 err (ppm) CT16NRT17 std (ppm) OCO-2 std (ppm)

Values 0.6 0.34 2.57 1.21 0.55 0.55 1.28

Fig. 12a shows the histogram of two years mean difference, which is characterized by a positive mean of 0.34 ppm and

a standard deviation of 1.21 ppm. This suggests that CT16NRT17 simulates high XCO2 as compared to observations from

OCO-2 over Africa’s land mass.
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Figure 12. Histogram of the difference of CT16NRT17 relative to OCO-2 (left panel) and color code scatter diagram ofXCO2 concentration

as derived from CT16NRT17 and OCO-2 (right panel). Color indicates the relative distance in unit of degrees as shown in colorbar between

datasets.

Because of presence of spatial and temporal mismatch of some level between CT16NRT17 and OCO-2 datasets, it is impor-

tant to assess the effect of relative distance between the datasets. Fig. 12b shows a color coded distribution of the two datasets.

In the figure color codes indicate the relative distance. The random scatter of blue dots implies that the statistical discrepancies

do not arise from the relative distance between the two datasets. More specifically, a statistical comparison of datasets lower

and higher
::::
than the 50th percentile (1.20) shows bias of 0.58 and 0.57 ppm, correlation of 0.57 and 0.57 and RMSD of 2.655

and 2.67 ppm respectively.

Fig. 13 shows the comparison of mean XCO2 from CT16NRT17 and OCO-2 covering the period from January 2015 to

December 2016. The number of data used are displayed in Fig. 11d. Fig. 13a depicts the bias which ranges from -2 to 2 ppm

with a mean bias of 0.34 ppm. However higher biases (<-2 ppm) are observed over Equatorial Africa along the annual average

location of ITCZ. Fig. 13b shows the correlation map with values from 0.2 to 0.8 over Africa’s land mass. A good correlation10

of above 0.6 are seen over many regions of the continent while weak correlation of less than 0.2 and higher root mean square

error (> 3 ppm ) are observed over small pockets of Equatorial and Eastern Africa regions (see Fig. 13c). These regions also

show a higher (> 0.65 ppm) error in satellite retrieval (see Fig. 13d). In addition, Fig. 11d shows the number of observations

are small (< 1000 ) over these regions. This may contribute to the observed discrepancy over these regions. However, weak

correlations are also observed over a wider area in North Africa such as Mauritania, Mali, Algeria and some regions of Niger15
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Figure 13. The bias (a), correlation (b), RMSD (c) of model and OCO-2 XCO2 and mean posteriori estimate of XCO2 error from OCO-2

(d).

where satellite errors are low and sufficient data are obtained. Poor correlation and higher RMSD values are observed over

Southwest Ethiopia.

3.6 Comparison of monthly average time series of NOAA CT16NRT17 and OCO-2 XCO2

Figs. 14 - 16 show a two year monthly average time series comparison of XCO2 from CT16NRT17 and OCO-2 over North

Africa, Equatorial Africa and Southern Africa respectively. Fig. 14a shows the existence of good agreement between the5

two datasets in describing pattern over North Africa. Moreover, both datasets show a decreasing trend of XCO2 from May

to September while increasing trend from October to April. On the other hand, consistent with the climate condition and

associated CO2 exchange, the monthly mean XCO2 shows a maximum value of 403.37 ppm for CT16NRT17 and 402.06

ppm for OCO-2 during May. Conversely, a minimum concentration of 398.77 ppm from CT16NRT17 simulation and 398.27

ppm from OCO-2 observation are found in September. In addition, both CT16NRT17 and OCO-2 show maximum XCO210

values (402.15 ppm for CT16NRT17 and 402.03 ppm for OCO-2) in December. These pick values in December are not

surprising, because the 2015-2016 El Niño started on March 2015 and reached pick in December 2015 which added extra CO2

into the atmosphere (Chatterjee et al., 2017). Fig. 14a also shows that XCO2 from CT16NRT17 simulation are higher than

OCO-2 observation over North Africa.

Fig. 14b shows the monthly mean difference between CT16NRT17 and OCO-2 which ranges from -0.5 to 2 ppm. OCO-215

XCO2 observations are lower than CT16NRT17 by 2 ppm during March and April 2015. Starting from August 2015, the
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Figure 14. The monthly mean time series of CT16NRT17 and OCO-2 from January 2015 to December 2016 averaged over North Africa (a),

bias associated to
:::
with

:
the monthly means (b), the histogram of difference (c) and the annual growth rate obtained by subtracting the mean

from the mean of the next year (d). The error bars in (a) shows the OCO-2 a posteriori XCO2 uncertainty.

difference between the two datasets is minimum; On the other hand, a maximum difference of exceeding 1
:::
1.5 ppm was

observed during MAM which is
:::
can

::
be

::::::::::
mentioned

::
as

:
a burning season in the region (?),

:
of

::::::::
Northern

::::::
Africa,

:::
as

::::
area

:::::
north

::
of

:::
the

::::::
equator

::::
was

::::::
burned

::::::
mostly

:::::
from

:::::
March

:::
to

::::
June

:::::::::::::::::
(Hao and Liu, 1994).

:
The observed lower XCO2 values from OCO-2

observations than that of CT16NRT17 simulation will be a consequence of much respiration which exceeded photosynthesis

when vegetation uptake is weak following the strong El Niño and dry season over North Africa. Further more
::::::::::
Furthermore,5

intense burning of
::
the

:::::
forest

:
during this season my cause more aerosol loading which will further intensified by of

::
be

:::::::::
intensified

::
by

:::
the strong El Niño may not sufficiently estimated

::::
cause

::::::::::
unpredicted

:::::::
aerosol

:::::::
loading,

:::
and

:::::::
thereby

:::
this

:::::::::
inaccurate

:::::::::
estimation

::
of

::::::
aerosol

:::::::
loading

:::::
could

::
be

:::::::::
suggested

::
as

:::
the

:::::
most

:::::
likely

::::::
source

::
for

::::
the

:::::::
observed

::::::::::
discrepancy. Moreover, Fig. 14c displays a

monthly mean regional mean bias of 0.87 ppm, correlation of 0.95 and a root mean square deviation of 0.72 ppm between

CT16NRT17 and OCO-2 XCO2. This implies that CT16NRT17 is in a good agreement with OCO-2. However, a small10

discrepancies arose
::::
most

::::::
likely due to a strong anthropogenic emission from Nigeria, Egypt and Algeriatogether with the

establishment of plantation over North Africa, which recently exceeded deforestation, and resulted in net flux of carbon sink

(?). This might have contributed to the observed discrepancy over North Africa.

Figs. 15a - 16a show monthly mean time series of XCO2 from the model and OCO-2 instrument over Equatorial Africa and

Southern Africa which are also in good agreement in terms of pattern. However, the figures show that CT16NRT17 simulations15

are lower than those of OCO-2 during October, November and December whereas it is opposite during April, May and June

over Equatorial Africa and Southern Africa. Figs. 15b and 16b depict a seasonal bias in the monthly time series over Equatorial
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Africa and Southern Africa respectively. Positive biases are observed during dry seasons while negative biases are during wet

seasons. Moreover, the datasets have monthly averaged regional mean biases of 0.13 and 0.11 ppm, correlation of 0.90 and

0.94, RMSD of 0.84 and 0.73 ppm over Equatorial Africa and Southern Africa respectively. This shows that existence of better

agreement between CT16NRT17 and OCO-2 over these regions in terms of monthly average regional mean values. Figs. 14d-

16d show both CT16NRT17 and OCO-2 are in good agreement in estimating the annual growth rate. Patra et al. (2017) found5

a global mean of more than 3 gigatone of CO2 added to the atmosphere due to the strong El Niño event that occurred during

2015-2016. In agreement with this, both CT16NRT17 and OCO-2 shows an annual growth rate that ranges from 3.10 to 3.42

ppm year−1 ofXCO2 over Africa’s land mass (see also Table 8). However, over all regions of Africa’s land mass CT16NRT17

shows lower XCO2 annual growth rate than those of OCO-2.
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Figure 15. The same as in Fig. 14 but over Equatorial Africa.

Table 8. Annual growth rate (AGR) of XCO2 over Africa land mass from CT16NRT17 and OCO-2. The results are obtained as the mean

annual difference of 2015 and 2016 values

Region AGR of CT (ppm year−1) AGR Of OCO-2 (ppm year−1)

North Africa 3.10 3.33

Equatorial Africa 3.14 3.42

Southern Africa 3.20 3.16
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Figure 16. The same as in Fig. 14 but over Southern Africa.

3.7 Comparison of seasonal means of NOAA CT16NRT17 and OCO-2 XCO2

Fig. 17 depicts seasonal means of XCO2 over Africa’s land mass from CT16NRT17 (left panels), OCO-2 (middle panels) and

their difference (right panels) covering period of January 2015 to December 2016. The white space seen over some regions

(e.g., Mali during JJA) is due to insufficient coincident satellite data according to the selection criteria during these seasons.

XCO2 increases from winter to spring and then decreases from spring peak to summer minimum over the whole continent.5

The decrease from spring maximum to summer continued into autumn over northern half of Africa in contrast to southern

half of Africa which exhibits an increase in XCO2. The decrease from spring to autumn (northward of equator) and until

summer (southward of equator) is likely to be a consequence of the land vegetation awakening from dormancy of winter and

partly spring. Conversely, the decomposition of died and decayed vegetation which began in autumn and continued throughout

winter adds extra CO2 leading to a maximum concentration during spring (Idso et al., 1999). In agreement with this, both10

CT16NRT17 and OCO-2 show maximum XCO2 during MAM over North Africa and during SON over Southern Africa.

Conversely, minimum concentrations are observed during SON over North Africa and during DJF over South Africa.

Fig. 17 (right panels) shows the seasonal mean difference of CT16NRT17 and OCO-2. A higher mean difference greater

than 1 ppm is observed over North Africa during DJF and MAM when the vegetation cover over the region decreases and also

an intensive fire
:
in
:::

the
::::::::

presence
::
of

:::
an

::::::::
intensive

::::::
burning

:::
of

:::
the

:::::::
northern

:::::::
savanna

::::::
during

:::
this

::::::
season

:::::::::::::::::
(Hao and Liu, 1994). This15

indicates that XCO2 values from CT16NRT17 are higher than that of OCO-2 when vegetation uptake is weak and
::::
there

::
is

more fire. On the other hand, higher negative mean difference of less than -2 ppm are observed over Equatorial Africa during

DJF during
:::
and SON over Southern Africa. This difference between the CT and OCO-2 arises likely during forest fire that
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Figure 17. Seasonal mean of CO2 for NOAA CT16NRT17 (left panels) and OCO-2 (middle panels) and their difference (right panels).

naturally occurs following their respective dry season
:::
due

::
to

:::::
grass

::::
fires

::::
from

:::
the

:::
dry

:::::::
savanna. Consistent with report by Liang

et al. (2017), low seasonal variability is observed between CT16NRT17 and OCO-2 in the range from -4 to 4 ppm with greater

amplitude over North and Equatorial Africa than over Southern Africa (see Fig. 17 (right panels)). During dry seasons OCO-2

over estimates values over the Northern Africa but it underestimates for the Southern Africa.

Fig. 18 shows the histogram of seasonal mean difference of CT16NRT17 and OCO-2. The smaller standard deviation of 1.495

and 1.07 are observed during JJA and SON. On the other hand, higher standard deviation of 1.69 and 1.75 ppm are observed

during DJF and MAM respectively. The
::::
These

:
results indicate that CT16NRT17 and OCO-2 show a better consistency during

wet seasons and this consistency decreases as the vegetation cover decreases over most regions of Africa land mass during dry

seasons.

3.8 Comparison of OCO-2 and CT16NRT17 with flask observations10

Monthly CT16NRT17 XCO2 has a better sensitivity over IZO and ASK both in terms of temporal pattern (phase) and am-

plitude than OCO-2 (see Fig. 19) where observations from OCO-2 mostly underestimates XCO2 at the two flask sites. Over

LMP and WIS, both CT16NRT17 and OCO-2 have moderate sensitivity in capturing the seasonal cycle. On the other hand,

OCO-2 has a better sensitivity over ASC and SEY. In addition, XCO2 from both CT16NRT17 and OCO-2 is found to have

poor correlations with flask observations over NMB and CPT. However, OCO-2 has closer sensitivity in capturing amplitudes15

than CT16NRT where CT16NRT17 overestimates XCO2 at these flask sites. In general, CT has a better performance over
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Figure 18. Histogram of difference for the seasonal CO2 climatology for DJF (a), MAM(b), JJA (c) and SON (d) seasons.
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Figure 19. CO2 from CT16NRT17, OCO-2 and flask observations.

sites located at high altitude (IZO, ASK) where satellite observations underestimates XCO2. Conversely, satellite observa-

tions have better performance over low altitude island sites (ASC and SEY) as revealed by better agreement with flask XCO2

observations.
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Table 9. Summary of statistical relation
::
of CT16NRT17 and OCO-2 observation

:::::::::
observations with respect to flask observations. The statis-

tical analysis were made using monthly averaged covering the period from May 2009 to April 2014).

code CT R OCO2 R CT Bias (ppm) OCO2 Bias (ppm) CT RMSD (ppm) OCO2 RMSD (ppm) number of data

ASC -0.14 0.97 3.93 -0.48 7.63 1.10 22

ASK 0.97 0.93 -0.47 -2.60 0.80 1.88 24

CPT 0.91 0.98 0.62 0.90 0.80 0.53 24

NMB 0.28 0.42 2.14 0.09 3.27 2.02 24

IZO 0.93 0.97 0.46 -2.16 1.10 1.33 24

LMP 0.02 -0.09 -4.20 -4.08 3.82 3.61 18

SEY 0.68 0.71 -0.98 -0.98 2.23 1.47 22

WIS 0.73 0.68 -1.64 -4.84 2.90 3.25 24

4 Conclusions

In this study, the tow GOSAT and OCO-2 XCO2 observations values are compared with NOAA CT XCO2 and available

ground based flask observations over Africa land mass. Comparison between GOSAT and CT2016 were done using a five

years of datasets covering the period from May 2009 to April 2014. This comparison is important to test the performance

of GOSAT in capturing CT and indicating where large discrepancy occurred. Comparison of OCO-2 with CT16NRT17 and5

eight flask observations was also done using two years data during the strong El Niño event from January 2015 to December

2016. This provides opportunity to assess the performance of OCO-2 Observation during strong El Niño events. Comparison

of Carbon Tracker with the two satellites reveals biases of -0.28
::
±

::::
1.05 and 0.34 ppm, correlations of 0.83

::
±

:::
1.2 and 0.60 and

root mean square deviations of 2.30
::
±

::::
1.46 and 2.57 ppm with respect to GOSAT and OCO-2 respectively.

The monthly average time series of CT2016 over North Africa, Equatorial Africa and Southern Africa are separately com-10

pared withXCO2 from the two satellites. CT2016 agrees well with measurements from the two instruments in terms of pattern

and amplitude. However, this agreement deteriorates over Equatorial and Southern Africa in terms of amplitude. It is also found

that there is a seasonal dependent bias between them which is negative during dry seasons while it is positive during wet sea-

sons. This indicates results of CT2016 are mostly lower than the GOSAT observation during dry seasons. High spatial mean of

seasonal mean RMSD of 1.91 during DJF and 1.75 ppm during MAM and low RMSD of 1.00 and 1.07 ppm during SON in the15

model XCO2 with respect to GOSAT and OCO-2 are observed respectively thereby indicating better agreement between CT

and the satellites during autumn. CT2016 has the ability to capture monthly time series and seasonal cycles. However, XCO2

from CT2016 is lower than GOSAT observations over North Africa during all seasons whereas XCO2 from CT2016 is higher

than that of GOSAT over Equatorial and Southern Africa with the exceptions of DJF over Equatorial Africa and SON over

Southern Africa. In addition, CT2016 simulates lower XCO2 than the observations over some regions (e.g., Congo, South20

Sudan and southwestern Ethiopia) and during summer season over the whole continent following large vegetation uptake. In

contrast,XCO2 from CT16NRT17 is higher than that of OCO-2 over North Africa whereas it is lower than that of OCO-2 dur-
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ing DJF and SON over Equatorial and Southern Africa respectively. Comparison of satellite and CT with ground-based flask

observation shows CT has a better performance over sites located at high altitude (IZO, ASK) as determined from good agree-

ment with flask XCO2 observations where satellite observations underestimates XCO2. Conversely, satellite observations

have better performance over low altitude sites (ASC and SEY).

In general, XCO2 from NOAA CT shows a very small bias with respect to GOSAT and OCO-2 observation over Africa’s5

land mass. Moreover, there is a good agreement between CT simulation and observations in terms spatial distribution, monthly

average time series and seasonal climatology. However, there are some discrepancies between the model and the two XCO2

datasets from GOSAT and OCO-2 implying that the accuracy of the model data needs further improvements for the rain forest

regions (e.g., Congo) through assimilation of in-situ observations and tuning of the model through process studies.
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