
Response to both reviewers
In this feedback to reviewers we copied in the author response that we provided for each point mentioned by the
reviewer and then added our response and how we revised the manuscript. Reviewer feedback is copied in with
black text, our final author response and our plan to revise our manuscript (doi:10.5194/amt-2019-402-AC1 and
doi:10.5194/amt-2019-402-AC2) is given in indented gray text, and our response of how we actually were able to
do this is presented with blue text. Line numbers relating to the clean revised manuscript are given in blue font,
followed by the line numbers in the track-changes version of the revised manuscript in red font.

Response to Reviewer #1

1 General comments
The manuscript summarises the findings from a 6-year field deployment of a small, low-cost methane sensor
under low Arctic conditions. Given the interest of the community in small, low-cost sensors on the one hand
and the measurement of atmospheric methane on the other hand, this work is of high relevance to the readers of
Atmospheric Measurement Techniques.

The manuscript is written and structured well. The methods are described in appropriate detail. However, I see
some shortcomings in the data analysis and presentation of results, detailed below, that should be addressed before
publication.

Thank you for your very valuable and detailed assessment, which definitely helps us improve our
paper.

2 Specific comments
It is unclear which quantity the Authors use when they report the abundance of methane. The sentence ‘We report
all gas concentrations in mixing ratios by volume (ppm or ppb dry mole fractions)’ (ll. 78–79) is contradictory, as it
uses three distinct quantities as if they were synonymous. In a mixture of two components A and B, concentration
c is defined as c = qA/(VA + VB) , where V is volume and q one of the quantities mass, amount, volume or number
concentration [1]. Mixing ratio by volume r is rather uncommon and defined as r = VA/VB [2]. Mole fraction x
(IUPAC recommends y for gaseous mixtures, but this is not common in atmospheric science) finally is defined as x
= nA/(nA + nB), where n is amount of substance [3]. Given that the WMO scale for methane abundance is a mole
fraction scale [4], the reporting of mole fractions would be desirable. While the use of the term ‘concentration’ for
mole fraction is accepted for communication with the general public [4], a publication in a scientific journal should
in my eyes favour exact terminology. In any case the Authors must make clear which quantity is reported.

We apologize for the units confusion. We measured the dry mole fraction of methane (confirmed with
our associate Dr. Martin Steinbacher from the Swiss Federal Labs for Materials Science and Technolo-
gy, Empa), and we have replaced all other terms used to express methane units in the manuscript with
“mole fraction” (defined in the first instance as dry mole fraction). We also now define ppm explicitly
as µmol mol−1 for clarity.

Mole fraction is now used throughout the text, and the explicit clarification that the reference measure-
ments are reported as dry mole fractions is given in Section 2.2 when specifying the LGR instruments
(lines 77–80 [79–82]). Moreover, we now use µmol mol−1 and nmol mol−1 in text and figures.

Two TGS 2600 sensors were deployed at the site, referenced to as #1 and #2. However, in several instances
in the manuscript ‘TGS 2600’ appears without a number when I think TGS 2600 #1 is meant. Also, ‘sensor’,
‘TGS’ and ‘TGS2600’ are used. This should be made more consistent. Results from TGS 2600 #2 are presented
exclusively in l. 104, ll. 185–186 and Fig. 9. Explaining the minor role of TGS 2600 #2 around l. 59, l. 104 or l.
162 might prevent confusion of the reader.

The paper is revised to be more explicit about the minor role of TGS 2600 #2. With only one sensor
in place, an acceptable critique would have been that one sensor could be far off in its readings. Hence
the second sensor #2 was only there for redundancy, and using this sensor actually showed that sensor
#1 on which our analysis is primarily based, could be backed up by another (randomly selected) sensor
of the same type.
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We added the following text in Section 2.2 (lines 60–63 [61–64]):
Sensor #1 is the primary sensor used in this study, whereas sensor #2 was only used as a replicate
to simplify assessing potential problems with sensor #1. Because no such problems occurred, we will
focus only on the results obtained with sensor #1 except for Section 2.2, where we used both sensors
to assess their performance at weekly time resolution.

ll. 74–77 How often and to which scale were the reference analysers calibrated?

Note that this is not a GAW reference station, but a seasonal research camp where we were able
to check the LGR every summer season. We’ll add this information and the numbers of the NOAA
reference gas bottles we used. Before we had NOAA reference gases available it turned out that the
accuracy of LGR was better than the specification of the available reference gases for calibration at
the research station.

We added the following text to lines 92–96 [95–99]:
Both FMA and the later FGGA analysers were used for eddy covariance applications, and thus the in-
struments were not calibrated as frequently as is done in applications for the Global Atmosphere Watch
network (WMO, 2001). Both sensors were more accurate than the available calibration CH4 gases at
TFS. In 2015 for the first time it was possible to use a NOAA reference gas cylinder (#CB09827) to
fine-tune the FGGA. This was typically done in the early summer season when field personnel arrived
at TFS (late May).

l. 153 ‘[...] relative humidity (which is a ratio and not a physical variable of atmospheric water content)’ – I
think I have an idea of what the authors mean, but I find the wording not quite right. Would the authors say that the
refractive index of a material is not a physical variable because it is a ratio? In general, I miss some thoughts about
the temperature dependence of the quantity used for expressing humidity.

We eliminated this statement about the ratio (line 172 [180–181]). A statement addressing the thoughts
on temperature depencence of humidity was added in lines 301–304 [325–328]):
Based on physical considerations one might expect that specific humidity or water vapor mixing ra-
tio instead of absolute humidity could lead to further improvements, because absolute humidity still
depends on temperature. However, our tests have not indicated a relevant gain of information or ac-
curacy of prediction, but future work should also try to find a better physical correction model than
the purely empirical one used here based on manufacturer information.

The Figaro TGS 2600 has a heated sensing element, so the relative humidity at the sensing surface is diffe-
rent from the relative humidity in the environment. The temperature dependence of relative humidity makes this
quantity a less than ideal choice for this type of correction. Unfortunately, both alternative quantities chosen by
the authors to express water vapour content depend on temperature as well. Mixing ratio (by mass) or specific
humidity would be temperature-independent alternatives [6]. Using the ideal gas equation, the terms in Eq. 2 that
contain the product Ta·ρv would also cancel out the temperature dependence of absolute humidity if Ta was abso-
lute temperature (in K) – but in the manuscript a Celsius temperature is used. Hence, my suggestion to the authors
is to try out either mixing ratio by mass or specific humidity as an independent variable in Eq. 2. Using absolute
instead of Celsius temperature might be advisable as well.

We see the point, but one challenge is that such low-cost sensors are closer to a black-box system
than to a fully controllable physical sensor. In addition, the manufacturer does not reveal all details of
the sensor operation. In a conversation with Dr. Nick Martin, National Physics Laboratories, London,
we learned that his lab has also explored the validity of using water concentration instead of relative
humidity – in their laboratory tests they found an almost linear relationship between the two. We tried
absolute humidity, vapor pressure, and relative humidity in our calculations, but absolute humidity
always performed slightly better than the other two. We considered specific humidity and mixing ratio
to be too close to absolute humidity and thus did not test this so far. Further tests could be run, but our
approach is to adopt the same method as was used by previous authors (Collier-Oxandale et al., 2018;
lines 258–260 in the discussion paper version).

We also understand the point that if we mix units of K or ◦C in the various equations (due to how the
temperature dependence is expressed), we might introduce a constant bias (or at best just make the
units messy). We can empirically test the question of whether temperature in K or ◦C gives the better
results in our prediction models, and select the one that performs better for the revised version.
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This is the parameter table from the linear model where temperature was entered in K instead of ◦C:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.5259 0.1021 44.31 <0.0001
Rs R0 -0.4626 0.0247 -18.73 <0.0001

I(1/Rs R0) -0.5538 0.1189 -4.66 <0.0001
TA AVG M1B1 1.65 1 K -0.0112 0.0004 -26.86 <0.0001

RHO V CALC M1B1 1.65 1 -148.7784 5.7656 -25.80 <0.0001
Rs R0:TA AVG M1B1 1.65 1 K 0.0019 0.0001 18.15 <0.0001

I(1/Rs R0):TA AVG M1B1 1.65 1 K 0.0037 0.0005 7.96 <0.0001
Rs R0:RHO V CALC M1B1 1.65 1 26.9994 4.9153 5.49 <0.0001

I(1/Rs R0):RHO V CALC M1B1 1.65 1 -72.1729 15.4509 -4.67 <0.0001
Rs R0:TA AVG M1B1 1.65 1 K:RHO V CALC M1B1 1.65 1 0.1939 0.0213 9.10 <0.0001

I(1/Rs R0):TA AVG M1B1 1.65 1 K:RHO V CALC M1B1 1.65 1 0.4949 0.0442 11.21 <0.0001

And this is the model output where temperature was entered in K instead of ◦C and humidity was
entered as mixing ratio instead of absolute humidity:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.6552 0.1005 46.30 <0.0001

Rs R0 -0.4985 0.0239 -20.83 <0.0001
I(1/Rs R0) -0.7269 0.1176 -6.18 <0.0001

TA AVG M1B1 1.65 1 K -0.0117 0.0004 -28.59 <0.0001
MR CALC M1B1 1.65 1 -113.5592 4.3851 -25.90 <0.0001

Rs R0:TA AVG M1B1 1.65 1 K 0.0021 0.0001 20.24 <0.0001
I(1/Rs R0):TA AVG M1B1 1.65 1 K 0.0043 0.0005 9.46 <0.0001

Rs R0:MR CALC M1B1 1.65 1 42.1642 3.8241 11.03 <0.0001
I(1/Rs R0):MR CALC M1B1 1.65 1 -71.0242 11.8599 -5.99 <0.0001

Rs R0:TA AVG M1B1 1.65 1 K:MR CALC M1B1 1.65 1 0.0709 0.0164 4.31 <0.0001
I(1/Rs R0):TA AVG M1B1 1.65 1 K:MR CALC M1B1 1.65 1 0.4354 0.0339 12.84 <0.0001

For comparison, the same output from the model that we use in Eq. (2) is copied in below:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.4611 0.0172 84.97 <0.0001
Rs R0 0.0597 0.0046 13.03 <0.0001

I(1/Rs R0) 0.4499 0.0162 27.82 <0.0001
TA AVG M1B1 1.65 1 -0.0112 0.0004 -26.86 <0.0001

RHO V CALC M1B1 1.65 1 -148.7784 5.7656 -25.80 <0.0001
Rs R0:TA AVG M1B1 1.65 1 0.0019 0.0001 18.15 <0.0001

I(1/Rs R0):TA AVG M1B1 1.65 1 0.0037 0.0005 7.96 <0.0001
Rs R0:RHO V CALC M1B1 1.65 1 79.9518 1.8763 42.61 <0.0001

I(1/Rs R0):RHO V CALC M1B1 1.65 1 63.0215 4.5666 13.80 <0.0001
Rs R0:TA AVG M1B1 1.65 1:RHO V CALC M1B1 1.65 1 0.1939 0.0213 9.10 <0.0001

I(1/Rs R0):TA AVG M1B1 1.65 1:RHO V CALC M1B1 1.65 1 0.4949 0.0442 11.21 <0.0001

As expected the model performance in all aspects did not change when the unit of the temperature
measurements was changed from ◦C to K, but of course the parameter estimates changed. There was,
however, no indication that the empirical interaction term in Eq. (2) cancels out because of the change
in units. The last three lines in each table copied in above show these interaction terms. The para-
meters are 0.1939± 0.0213 and 0.4949± 0.0442 for the models using ρv , and 0.0709± 0.0164 and
0.4354± 0.0339 for the model using mixing ratio instead of ρv (note that these parameter estimates
do not change by changing the units used for temperature).

The overall model performances in a similar display as the one used in Table 1 in the manuscript looks
like this:

Eq. (2) Ta in K, not ◦C MR not ρv ; Ta in K, not ◦C
Calibration Validation Calibration Validation Calibration Validation

Overall
R2 0.447 0.207 0.447 0.207 0.446 0.208
RMSE (µmol mol−1) 0.026 0.041 0.026 0.041 0.026 0.041
Warm conditions (Ta ≥ 0◦C)
R2 0.518 0.288 0.518 0.288 0.519 0.289
RMSE (µmol mol−1) 0.026 0.032 0.026 0.032 0.026 0.032
Cold conditions (Ta < 0◦C)
R2 0.345 0.034 0.345 0.034 0.343 0.033
RMSE (µmol mol−1) 0.027 0.052 0.027 0.052 0.027 0.052

Thus, using mixing ratio results in a marginally lower R2 overall during the calibration period; alt-
hough at temperatures above freezing mixing ratio is marginally performing better than ρv , the R2 at
temperatures below freezing is lower. Overall, this exercise confirms that the key physical processes
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affecting the TGS 2600 are not well understood and hence we decided to keep using ρv . However, we
added the following text to inform readers about this issue (lines 301–304 [325–328]):

Based on physical considerations one might expect that specific humidity or water vapor mixing ra-
tio instead of absolute humidity could lead to further improvements, because absolute humidity still
depends on temperature. However, our tests have not indicated a relevant gain of information or ac-
curacy of prediction, but future work should also try to find a better physical correction model than
the purely empirical one used here based on (incomplete) manufacturer information.

ll. 161–162 Using the entire dataset for estimating the parameters of Eq. 2 is a comprehensive test of how
well the model can describe the dataset, but is of limited relevance for field deployments where calibrations are
performed during limited periods of time and the main interest is in the uncertainty of independent measurements.
For this reason, splitting the dataset into a calibration and a validation part yields important insights. The caption
of Table 1 explains that the authors have in fact performed analyses of a split data set. This fact should also be
mentioned in the main text around the lines given.

This point was also addressed by Reviewer 2. We will thus recalculate the ANN with the same selec-
tion for training vs. validation as we used for the linear model.

We did the reanalysis and this solved the issue with non-comparable presentations of goodness of
fits due to different choices in calibration vs. validation periods. When done with the same selected
periods the R2 values of the ANN are lower during the calibration periods than our linear model (see
updated Table 1), but are slightly higher during the validation period, except for warm conditions with
temperatures above freezing.

l. 167 For the reasons given before, the results presented in the columns ‘Linear Model - Calibration’ and
‘Linear Model - Validation’ in Table 1 should be discussed here, even more so because the results for the validation
period are substantially worse than for the period used for calibration.

This will be done.

This is where the ANN has a more even performance between calibration and validation period, alt-
hough its performance in the calibration period was lower than was the performance of the linear mo-
del. Positively phrased one could say that the linear model makes more of the data that are available,
but ANN learns more from the available data to make a prediction with validation data. Depending on
what the aim is, both have benefits, and thus we added the following text (lines 205–209 [214–218]):
When testing the linear model approach (Eq. 2) more rigorously by splitting the available data into
a calibration period (years 2014–2016) and a validation period (years 2012–2013 and 2017–2018),
some limitations can be seen, in particular under cold conditions where none of the approaches per-
formed very well in the validation period. The ANN had a more balanced performance between cali-
bration and validation period, although it performed slightly less well under warm conditions (Ta ≥
0 ◦C).

ll. 193–194 Is there any conclusion that can be drawn from this finding of a -1:1 relationship?

The conclusion should be that both variability and stability can be improved at the same time because
there is no tradeoff visible in Fig. 11. We will add text about this in the revised manuscript version.

We added the following text on lines 246–247 [255–256]:
This indicates that both variability and stability can be improved at the same time because there is no
tradeoff visible in Fig. 11.

Sect. 3.4 The discussion in Sect. 3.1 leans heavily on the coefficient of determination R2. In Table 1, each R2
for the ANN approach is higher than the corresponding R2 for the Linear Model. Considering just the validation
period, the ANN approach outperforms the Linear Model by a factor of 3–10 by this measure. Similarly, in Fig. 6
and 8 the ANN approach outperforms the Linear Model (comparing R2 of ‘ANN’ and ’c/v’, ’all’ is irrelevant in
this respect); in Fig. 5 and 7 they perform nearly equally well. None of these comparisons is made here. Instead,
the authors state that the root mean square error (RMSE) does not improve substantially with the ANN approach.
While I generally appreciate the reporting of RMSE together with R2, its interpretation here is questionable.

The reviewer is right, R2 in an ANN is not the same as R2 in a linear model and thus comparing
the numbers may be misleading. We will revise this and provide a goodness-of-fit statistic that is
comparable between a linear model and ANN. RMSE is of course the better comparison because it
has the same meaning in cases where either linear or nonlinear fits are used and evaluated.
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We homogenized the computation of the R2 values for both methods, which however was not the
primary issue here; the biggest change was related to the different selection of calibration vs. validation
periods. How the values given in Table 1 are directly comparable and relate to the same selection of
calibration vs. validation period. The text on lines 159–160 [166–168] was updated accordingly.

On the one hand, RMSE is reported in Table 1 with one significant digit only, potentially masking up to ∼30%
differences for an RMSE of 0.03 ppm (0.025 ppm vs. 0.0349 ppm). On the other hand, the RMSE should be seen
in the context of the variability of the data, specifically the root mean square difference between the reference
measurements and their mean value over the whole dataset, which is not stated. Overall, the discussion in this
section appears negatively biased with regard to the ANN approach. This also manifests in the last paragraph of
this section, where ‘understand[ing] the physical response of TGS sensors’ is prioritised over ‘technically nicer fits
to data’, a stark contrast to the lack of a physical interpretation of the terms in the empirical model (Eq. 2). Section
3.4 must be revised to reach the level of neutrality expected from a scientific publication.

Thank you for these suggestions; we will remove the wording used in the conclusion about neural
networks, and rethink how we can best compare the two models both with unbiased estimators of
their fit to the data and with their usefulness in interpreting the data in mind. We will also adjust the
significant digits of the measures we use (e.g., RMSE) to make them more comparable and useful.

We now show one additional digit in both R2 and RMSE values. We also added the extra digit in
the R2 lines to allow the reviewer to compare the minor differences between some values that would
otherwise be hidden in the rounding to the second digit. In Figures 5–8 we added RMSE below R2.

Section 3.4 was revised to be more neutral and reflect the conditions that when the same calibration
and validation periods are used with both approaches, then the apparent outperformance of ANN is
less obvious. We agree that for many other applications there is a high potential of using an ANN but
not really in this context where we try to separate the influence of Ta and ρv on the sensor signal,
while at the same time of course Ta and ρv influence the production of methane in anaerobic soils and
thus modify the CH4 mole fractions to be measured in ambient air.

We thus rewrote Section 3.4 accordingly (see lines 274–289 [284–312]).

Please take note that in the previous submission we had used ca. five years of calibration period vs.
only 1.5 year of validation for the ANN, whereas we used the same setting as in the revised version for
the linear model (3 calibration years vs 4 validation years). Please be aware that while we have noticed
good performance of ANNs in other applications, we do have some reservations for applications as
the one presented here.

ll. 229–231 To make such an argument, the reader must be informed about the amplitude of all input variables,
especially SC.

In light of the comments above we will reword or delete this statement.

We deleted this statement since with reduced coverage of winter conditions by the calibration peri-
od (to make the linear model and ANN approaches comparable) the ANN performance deteriorated
substantially.

l. 237 I might be mistaken, but as far as I understand the term homoscedasticity it would in this case mean
that the variance of the deviation in CH4 abundance is the same for every temperature bin. The authors do not
report variances, but both interquartile range and 95% confidence interval suggest that the variance is higher at low
temperatures than at high temperatures, i.e. heteroscedasticity.

What we wanted to say is that the variances (shown with the 95% CI) are quite constant over a wide
range of temperatures and absolute humidity. We of course agree that if one focuses at the difference
between one bin and another there are many comparisons where the statement is not 100% correct,
even when the Bonferroni correction for multiple testing is considered. In comparisons that span a
difference of more than 10–15 ◦C, the within-bin variances are of course not always homoscedastic.
We will therefore reword our description of this point to avoid this confusion.

The new wording (lines 291–293 [314–317]) is:
The inter-quartile ranges and 95% confidence intervals of each air temperature (Fig. 12a) or absolute
humidity bin (Fig. 12b) are very similar over a wide range of temperature and humidity, but tend
to become more variable in bins with few data (i.e., lowest and highest temperatures, and highest
absolute humidities in Fig. 12).
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ll. 253–257 ‘laboratory conditions simplify the real world too much’ – What could be the simplification that
makes laboratory calibrations problematic? The input variables used in the empirical model (Eq. 2) can – practical
difficulties taken aside – be controlled in the lab. Any other variable that might prevent transfer of lab results to
field conditions is not included in the empirical model, so the problem would not be a simplification of the lab
environment but a model deficiency. The last sentence of the paragraph seems to go in this direction (‘relevant
factors’), but is unclear. Please explain better or leave out.

This statement also caught the attention of Reviewer #2, and given both reviewer comments we will
revise the text. As the reviewer says, there are several ways in which laboratory and real world condi-
tions apply to sensor calibrations. For example, in our revision we will emphasize that testing in the
temperature and moisture conditions that exist in the range from –40 ◦C to 0 ◦C is not easy in a labo-
ratory environment. In addition, we have discussed this general point with Dr. Nick Martin, National
Physics Laboratories, London, and will adopt some of his perspective and advice in our revised text.

We revised the text to read (lines 313–320 [338–351]):
While this is theoretically correct, it remains difficult to carry out laboratory treatments from –41 ◦C
to 27 ◦C as would be required for our Arctic site. The data we present indicate that most likely it is
absolute humidity (or specific humidity or mixing ratio), not relative humidity, that should be used for
such calibrations, which in principle should provide the best quality results if the relevant factors are
known and can be included in the calibration set-up. It would be desirable that manufacturers carry
out both laboratory tests and field trials and provide the necessary correction functions together with
sensors. However, due to the expense and time it takes to carry out long tests, be it in the laboratory or
in the field, the present development goes in the direction of collocation studies en route to certification
of sensors (N. Martin, NPL, UK, pers. comm.), similar to what we have done in the Arctic.

ll. 258–261 Suggesting to move the first sentence to l. 150 and to remove the other one (repetition).

This will be done.

The second sentence was deleted [344–348], and the first was moved to lines 168–170 [177–178].

Fig. 5–8 The graphs are squeezed in horizontal direction, making comparisons between the lines difficult. A
shorter period, e.g. 14 days, would give more insight.

We agree that the graphs are squeezed, but we are concerned that expanding them horizontally would
invite comparisons over shorter time periods that are not the focus of the study. For example, on lines
179–181 we wrote “The TGS 2600 is not expected to provide short-term accuracy comparable to
high-quality instrumentation (see also Lewis et al., 2018). However, Eugster and Kling (2012) argued
that such measurements still may provide additional insights as compared to the passive samplers
described by Godbout et al. (2006a, b), integrating over longer time frames”. Given that, we tried
to draw the attention of the reader to the fact that such a low-cost sensor is not expected to provide
high accuracy over the short-term. Zooming in would thus highlight the opposite of what we consider
meaningful in this study. However, we will publish the original data along with our paper (we will
however select a different repository than the original mentioned under “Data availability”), which
will allow the interested reader to download the data and zoom in as desired.

The data set will be made available via DOI:10.6073/pasta/dddeb05b2806e2f5788fadd6fc590ef1, and
the fits shown in Figures 5–8 will be made available via DOI:10.3929/ethz-b-000369689. The text
under “Data availability” was updated accordingly. Note that the second DOI will only be published
after acceptance of the manuscript.

Fig. 5 and 7 The collected in 2012 and 2015 are both part of the calibration period, not the validation period,
which is important to know for the reader to correctly interpret ‘TGS 2600 c/v’ and ‘ANN’. I therefore strongly
suggest a note in the figure caption.

This information will be added.

We added the information This example belongs to the validation period of the TGS 2600 c/v and ANN
fits to the captions of Fig. 5–8. Note that only the ANN in the previous version was using 2012 and
2015 for calibration. In the revised version both approaches show validation period results in all four
figures. Thanks for pointing this out.
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Fig. 5 Suggesting to replace ‘(TGS 2600 - Reference)’ with ’(TGS 2600 all - Reference)’ in the caption

This will be done.

Done.

Fig. 9 A plot of the difference of the methane abundance calculated from the measurements of the two sensors
would be of high interest for the readers. With such a new panel it is also important to state if the parameters derived
for TGS 2600 #1 have been used when applying Eq. 2 to the measurements of TGS 2600 #2. In my opinion the
new panel could replace panel (b), as the signal difference seems of little relevance.

We will replace panel (b) that currently shows the relative differences with a new panel showing the
absolute differences as suggested by the reviewer. And we will more clearly state that we used the
parameters derived for sensor #1 also for sensor #2 (as correctly interpreted by this reviewer).

We replaced panel (b) but then rearranged (b) and (c), so that the absolute difference between the two
sensors is now shown in panel (c). And we added the information The signals from both sensors were
converted to CH4 using Eq. (2) parameterized with data from TGS sensor #1 to the caption.

Fig. 10 If the main text in ll. 189–190 is correct, ‘and the reference’ is missing at the end of the first sentence
of the figure caption.

Yes, this will be added.

Done.

3 Technical corrections
l. 1 Suggesting to remove “weak” to avoid misunderstanding. Alternatively, it could be written in parentheses like
it the conclusions.

Done.

l. 8 Insert a space between value and unit of temperature. This correction is necessary wherever ‘◦C’ is used [5].
Done.

l. 76 replaced
Done.

l. 140 typeset ‘Ta’ as Ta
We assume this relates to former line 149, there we found an occurrence of Ta that should be Ta which
we corrected.

l. 305 ‘cross-sensitivities [...] are of no concern’
Done.

Fig. 2 There seems to be a non-displayable glyph at the beginning of the label for the vertical axis, possibly a∆.
This is also the case in Fig. 3, 5 and 12.

We could not reproduce this problem in Acrobat or Preview on Mac. Could it be an issue with the PDF
reader you’re using? If you can specify with which reader you use to see this problem, then we will
double-check at print stage to make sure the PDF has all fonts correctly embedded. Please also specify
on which operating system you see this problem (Windows, Linux, iOS, Android, MacOS, . . . ).

‘CH4’ specifies a substance, not a quantity. Use ‘xCH4’ or another appropriate quantity symbol. The same applies
to Fig. 3 through 9 and Fig. 12.

We now use χCH4 in all figures as suggested by this reviewer. Please use Acrobat Reader for double-
checking, because if ∆ is not correctly seen in your tool, then most likely the same might be the
problem with χ. But we’ll solve this issue at print stage if we can reproduce the problem. Normally
this is a mismatch of PDF file type versions. Our figures use PDF version 1.4, but this could be changed
if needed (although AMT also uses PDF version 1.4 for their file versions, which is archivable PDF of
type PDF/A-1 and thus should be correctly displayed in all readers, hence our question for the details
to reproduce the problem observed by this reviewer).

These will be incorporated in the revised manuscript, thank you for highlighting these items.
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Response to Reviewer #2
This manuscript presents the results from a field deployment of a pair of low-cost metaloxide sensors. The sensors
were co-located with a reference instrument, allowing the researchers to train various calibration models to predict
methane concentrations. These calibration models relied on the signals from the low-cost sensors as well as other
sensors (i.e., temperature and humidity). Researchers then assessed the performance of and potential for these
sensors using the predicted signals.

This manuscript is especially relevant to the field of low-cost sensor research and readers of Atmospheric
Measurement Techniques for two reasons: (1) it provides an example of a long-term (multi-year) field deployment
of low-cost metal-oxide sensors, and (2) it provides an example of VOC sensors deployed to predict ambient
methane levels - two areas that would benefit from further study. Furthermore, the deployment of the sensors
in a remote area with little potential for the presence of confounding pollutants provides useful information on
the potential ability of this sensor to be used for methane detection. Though a few revisions (listed below) are
recommended prior to publication.

Thank you for your very supportive assessment. Your comments are very valuable for us to improve
clarity and add an interesting aspect about the sensitivity of the TGS 2600 to CO from wildfires.

1. Please clarify throughout whether the results for the linear model being discussed in the text are based on
the model that was fitted to the complete data set or the model which was fitted to the shorter training data set.

This will be done.

We added the following text to clarify (lines 186–189 [195–198]):
Unless explicitly mentioned, we analysed CH4 mole fractions computed with Eq. (2) using the para-
meters obtained from all data measured by TGS 2600 sensor #1. Only in the direct comparison with
the ANN (Section 3.1) did we determine an additional parameter set using the same calibration period
as the ANN used, so that a direct comparison of performance in validation was possible.

Additionally, the training and testing periods defined for the linear model (in Table 1) and for the ANN (in the
end of Section 2.4) appear to be different. Could the authors comment on the rationale for this choice and whether
the use of these different periods might affect the comparability of the results for these two models presented in
Table 1?

We will recalculate the ANN to match the same data selection as we used for the linear model.

Done. See also our response to reviewer #1 on this issue.

2. In Section 2.3, please provide information on any additional processing of the sensor data that may have
occurred (e.g., filtering outliers, or removing sensor “warm-up” periods), or state that the data did not undergo
additional filtering or processing.

This will be done.

We added the following text (lines 103–110 [106–113]):
Before analyses the data were processed in the following way: (1) outliers were removed; (2) relative
humidities > 105% (accuracy of capacitive humidity sensors) were deleted; (3) reference CH4 mole
fractions obtained from the FGGA (since 2016) were filtered based on hard boundaries of house-
keeping variables available for quality control. For the latter we used the following hard boundaries
for filtering: (a) sample cell pressure had to be in the range 130–143 Torr; (b) the instrument-specific
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ringdown time of the laser for CH4 measurements had to be in the range 13–17 ms. The accepted
reference CH4 mole fractions were thus all measured in the narrow range of cell pressures between
139.7 and 140.3 Torr and laser ringdown times between 14.02 and 14.94 ms, which indicates best
performance of the analyser. Before 2016 (FMA instrument) these house-keeping variables were not
recorded.

3. Suggest moving the description of the motivation and development of the model for heat loss to an earlier
point in the manuscript (e.g., after the description of the linear model in Section 3.0). This would assist the reader
in their interpretation of the results in Table 1. Though the discussion of how this approach could be improved
should remain in Section 3.5.

This can be done.

We moved former lines 268–278 to Section 3 (now lines 192–202 [201–211]) with an additional
introductory sentence: If ambient temperature influences the signal of the TGS 2600 in such a way as
expected from the technical documentation (Figaro, 2005b,a), then wind speed could be a third factor
influencing the conversion from TGS 2600 sensor voltages to CH4 mole fractions.

In the gap from where we moved the text away we inserted (lines 327–328 [358–368]):
To address this additional factor, we used the heat loss model given in Eq. (3).

4. Could the authors provide additional information or discuss how the parameters of the model were selected
(Eq. 2), for example, did this model yield substantial improvements over a simpler linear model?

We used the stepAIC function of the MASS package in R. We will add the details to the text.

We added the text (lines 184–186 [193–195]):
The linear model in Eq. (2) was derived from a suite of candidate models including interactions among
predictors and including quadratic terms of each variable, and then stepwise elimination using the
stepAIC function in the MASS package of R was employed to find the model with the lowest AIC
(Akaike’s Information Criterion).

5. Suggest expanding on the point made in Section 3.5 (Lines 253-254) to explain in what ways laboratory
conditions over-simplify real-world conditions. This observation has been demonstrated in other studies [1, 2] and
it could be valuable to highlight the challenges that may be associated with laboratory calibrations of sensors for
this particular application.

This aspect also caught the attention of Reviewer #1. We will thus revise the text, in part with advice
from Dr. Nick Martin, National Physics Laboratories, London on this topic. In addition we will em-
phasize that testing in the temperature and moisture conditions in the range from –40 ◦C to 0 ◦C is not
easy in a laboratory environment.

Please see our response to the same point of Reviewer #1.

6. Could the authors provide additional detail on the potential or likelihood for confounding pollutants, in par-
ticular carbon monoxide (Section 2.2)? For example, are there any towns nearby where emissions from wintertime
heating may be a concern, or did any major wildfires occur in the area throughout the deployment period?

We will add to the text that the study site is in such a remote site that winter time heating negligible,
certainly not what one would expect from an urbanized area. However, wildfire influences in summer
time (from fires in forests far to the south of our site and on the south side of the Brooks Range)
may produce high CO levels that would lead to apparent high CH4 mole fractions. We will add an
extra analysis of an episode where smoke from a wild fire south of the Brooks Range mountains was
present at Toolik Field Station according to our own records, and compare that period with the period
immediately before the smoke arrived. We can also compare from similar weeks in the year before
and year after when the fire occurred.

We have written records from the smell of smoke from wildfires south of the Brooks Range that
affected the measurements on 26 June 2015. Thus, we carried out a case study analysis for that day and
show the day of interest (white background) with the day before and the day after (gray background):
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As an insert we plotted the histograms of the difference between the two TGS-derived CH4 mole
fractions and the ANN fit. Then, we carried out the same analyses for four other cases: (1) three days
before the wildfire event, and (2–4) the same date one, two and three years later:
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The general impression is that the TGS-derived CH4 mole fractions are roughly 0.03µmol mol−1

reduced by the increased carbon monoxide mole fractions and other air pollutions during the second
part of the day. The mean differences ± standard deviations are given in the left part of each panel.
This offset does not differ between TGS #1 and TGS #2, but it should be considered a coincidence
that using Eq. (2) that was parameterized with data from TGS #1 performs better with TGS #2 in all
comparison case studies. The variability of the difference also appears to be slightly larger (±0.025 to
±0.027 on 26 June 2015 vs. ±0.014 in all four comparisons).

Thus, in the text we added the following information (lines 221–228 [230–237]):
Because of the absence of local sources of carbon monoxide and other air pollutants to which the TGS
2600 sensor is also sensitive besides CH4, we investigated a special case when smoke and haze from
wildfires south of the Books Range polluted the air in the TFS area on 26 June 2015 and compared
the performance of both TGS sensors during that day with conditions three days before that event,
and on the same date in the following three years. The net effect of increased air pollutants was
an apparent small decrease of the CH4 mole fractions calculated via Eq. (2) by approximately –
0.03µmol mol−1. At the same time the variability of the residuals increased from typically ±0.014
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to ±0.027µmol mol−1 (24-hour averages). Thus, the influence of the wildfire smoke was of the same
order of magnitude as the difference between TGS-derived CH4 mole fractions and the reference
instrument on most other days of the year (see Figs. 5–8).

7. Is there any concern that the temperature/humidity sensor described in Section 2.2 might itself experience
any issues with drift or aging over such a long field deployment?

Any sensor might be subject to drifting and aging. What we can do in our revisions is to compare our
dedicated temperature and relative humidity sensor with the reference sensor of the long-term weather
station at the same site.

The HMP45AC sensor that we used for the long-term temperature and relative humidity measurements
has a sensor head that can be exchanged against a calibrated one to avoid long-term drifts in the
measurements. We exchanged the head every ca. 3 years to minimise long-term drift errors of our
temperature and relative humidity measurements. We added this information to the corresponding text
(lines 87–89 [91–92]:
The factory-calibrated HMP45AC sensor head was exchanged against a newly calibrated one every
ca. 3 years to minimize long-term drift effects in temperature and relative humidity measurements (J.
Laundre, pers. comm.).

We initially thought that a comparison with the temperature and relative humidity sensors of the long-
term weather station at TFS (roughly 0.5 km to the north-east) would be the way to go, and hence our
Final Author Response (in gray above). But when comparing the data we realized that the microcli-
matic difference between TFS close to Toolik Lake and our inland site at some distance from the lake
shore and at higher elevation in the wet tundra show important seasonal trends that rather look like real
differences, and thus do not really allow to test for drifts. Thus, having replaced the calibrated sensor
head every ca. 3 years is probably the best we could do to minimize concerns about sensor drift.

8. Line 38: add an ‘s’, “assessment of low-cost sensor[s]” 9. Line 66: delete ‘e.g.,’, “in an area like e.g., the
arctic” 10. Line 246-247: change the color of the red text to black 11. Line 254: delete ‘it’, “as it would be required”

These minor changes will be applied as suggested.

Done.

References
[1] Castell, N., Dauge, F., Schneider, P., Vogt, M., Lerner, U., Fishbain, B., . . . Bartonova, A. (2017). Can

commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environment
International, 99, 293-302.
[2] Piedrahita, R., Xiang, Y., Masson, N., Ortega, J., Collier, A., Jiang, Y., . . . Shang, L. (2014). The next gene-
ration of low-cost personal air quality sensors for quantitative exposure monitoring. Atmospheric Measurement
Techniques Discussions, 7(2), 2425- 2457.

Thanks for these references which were incorporated in the text.

11



Long-term reliability of the Figaro TGS 2600 solid-state methane
sensor under low Arctic conditions at Toolik lake

:::::::
Lake, Alaska

Werner Eugster1, James Laundre2, Jon Eugster3,4, and George W. Kling5

1ETH Zurich, Department of Environmental Systems Science, Institute of Agricultural Sciences, Universitätstrasse 2, 8092
Zurich, Switzerland
2The Ecosystem Center, Marine Biology Laboratory, Woods Hole, MA 02543, USA
3University of Zurich, Institute of Mathematics, Winterthurerstrasse 190, 8057 Zurich, Switzerland
4now at: School of Mathematics, The University of Edinburgh
5University of Michigan, Department of Ecology & Evolutionary Biology, Ann Arbor, MI 48109-1085, USA

Correspondence: Werner Eugster (eugsterw@ethz.ch)

Abstract. The TGS 2600 was the first low-cost solid state sensor that shows a weak response to ambient levels of CH4 (e.g.,

range ≈1.8–2.7 ppm
::::::::::
µmol mol−1). Here we present an empirical function to correct the TGS 2600 signal for temperature and

(absolute) humidity effects and address the long-term reliability of two identical sensors deployed from 2012 to 2018. We

assess the performance of the sensors at 30-minute resolution and aggregated to weekly medians. Over the entire period the

agreement between TGS-derived and reference CH4 concentrations
::::
mole

::::::::
fractions

:
measured by a high-precision Los Gatos5

Research instrument was R2 = 0.42, with better results during summer (R2 = 0.65 in summer 2012). Using absolute instead

of relative humidity for the correction of the TGS 2600 sensor signals reduced the typical deviation from the reference to less

than ±0.1 ppm
::::::::::
µmol mol−1 over the full range of temperatures from –41 °C to 27 °C. At weekly resolution the two sensors

showed a downward drift of signal voltages indicating that after 10–13 years a TGS 2600 may have reached its end of life.

While the true trend in CH4 concentrations
::::
mole

::::::::
fractions measured by the high-quality reference instrument was 10.1 ppb10

::::::::::
nmol mol−1 yr−1 (2012–2018), part of the downward trend in sensor signal (ca. 40–60%) may be due to the increase in CH4

concentration
::::
mole

:::::::
fraction, because the sensor voltage decreases with increasing CH4 concentration

::::
mole

::::::
fraction. Weekly

median diel cycles tend to agree surprisingly well between the TGS 2600 and reference measurements during the snow-free

season, but in winter the agreement is lower. We suggest developing separate functions for deducing CH4 concentrations
::::
mole

:::::::
fractions

:
from TGS 2600 measurements under cold and warm conditions. We conclude that the TGS 2600 sensor can provide15

data of research-grade quality if it is adequately calibrated and placed in a suitable environment where cross-sensitivities to

gases other than CH4 is
:::
are of no concern.

Keywords: Toolik lake
::::
Lake, Northern Alaska, Methane, Trace gas sensor, SnO2 sensor, Leak detector.

1 Introduction

Low-cost trace gas sensors open new deployment opportunities for environmental observations. Still, their long-term perfor-20

mance in real-world applications is largely unknown, and thus, scientific research with such low-cost sensors is challenged with
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a high risk of failure and questionable data quality. Hence low-cost sensors are only considered as a complementary source

of information on air quality (e.g. Lewis et al., 2018)
:::::::::::::::::::::::::::::::::::
(e.g. Lewis et al., 2018; Castell et al., 2017). Here we report on a six-year

:::::::::
seven-year (2012–2018) deployment of two low-cost Figaro TGS 2600 methane (CH4) sensors during summer and winter

conditions in the relatively harsh low Arctic climate of northern Alaska to explore the long-term stability and reliability of CH425

concentration
::::
mole

:::::::
fraction

:
estimates. The sensors were previously deployed over Toolik lake

::::
Lake during the ice-free season

2011 (Eugster and Kling, 2012), where similar values between TGS-derived and reference CH4 concentrations
::::
mole

::::::::
fractions

were only found if measurements were integrated over at least 6 hours, or if they were aggregated to mean diel cycles over the

season. Other studies have deployed the same sensor type in complex rural and urban environments along the Colorado Front

Range (Collier-Oxandale et al., 2018), in an oil and gas production region (Greeley, Colorado; Casey et al., 2019), and in urban30

South Los Angeles (Shamasunder et al., 2018). An application on an unmanned aerial vehicle, however, did not successfully

detect CH4 hotspots (Falabella et al., 2018). These are all pioneering studies, but mostly restricted to a few days to months of

measurements. Thus, our study is the first long-term comparison of high-precision measurements to those from CH4 sensitive,

low-cost sensors under challenging climatic conditions.

Typically, new sensors are first calibrated under controlled conditions in a laboratory environment. Extensive calibration tests35

with a similar low-cost sensor (Figaro TGS2611-E00) from the same manufacturer as our TGS 2600 have been carried out by

van den Bossche et al. (2017). Despite the care taken in their calibration effort, the residual CH4 concentration
::::
mole

:::::::
fraction

after calibration was still on the order of ±1.7 ppm
::::::::::
µmol mol−1, which is acceptable for chamber flux measurements, e.g.

over water (as e.g., done by Duc et al., 2019), but not sufficient to measure ambient atmospheric concentrations
::::
mole

:::::::
fractions,

which are of the same order of magnitude as the calibration uncertainty. The issue of important differences between laboratory40

assessments of low-cost sensor
:::::
sensors

:
and their real-world performance is well known and typically relates to different data

correction and calibration approaches in real-world than laboratory applications (Lewis et al., 2018). Hence we decided to

use outdoor measurements obtained over a wide range of temperatures and relative humidity – the major cross-sensitivities

experienced by such sensors – and derive a calibration function via parameter extraction using this data set. Our goals were

thus to (1) establish a statistical calibration function from field measured conditions that can also be used in different contexts to45

linearize the TGS 2600 sensor signal (which then can still be fine-tuned with a two-point calibration in a specific application);

(2) assess the reliability of the TGS 2600 low-cost sensor under winter and summer conditions in the Arctic over seven years of

continuous deployment; and (3) explore potential improvements for sensor data processing, which includes (3a) wind effects

that are neglected in laboratory environments, and (3b) artificial neural networks (ANN) to find out whether results can be

improved over standard statistical regression methods for calibration of the sensor.50

2 Material and methods

2.1 Study site

Field measurements were carried out at the Toolik wet sedge site (TWE, 68°37′27.62′′ N, 149°36′08.10′′ W, 728.14 m ele-

vation, WGS 84 datum) where seasonal eddy covariance flux measurements were carried out during the summer seasons of
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2010–2015 and partially during winters starting in 2014 until 15 June 2016, with the continuation as a meteorological station55

until present. The site is a wetland that is a local source of CH4 with a flux rate that is roughly one order of magnitude stronger

than adjacent Toolik lake
::::
Lake, where the Eugster and Kling (2012) study was performed. The site is a wet graminoid tundra

dominated by sedge species, namely cotton grass (Eriophorum angustifolium) and Carex aquatilis (Walker and Everett, 1991).

2.2 Instrumentation and measurements

Two Figaro TGS 2600 sensors (Figaro, 2005b, a)
:::::::::::::::
(Figaro, 2005a, b) that were already deployed over Toolik lake

::::
Lake

:
(TOL)60

during the ice-free season 2011 (Eugster and Kling, 2012) were installed at the TWE site in late June 2012 (Fig. 1).
::::::
Sensor

::
#1

::
is

:::
the

:::::::
primary

::::::
sensor

::::
used

:::
in

:::
this

::::::
study,

:::::::
whereas

::::::
sensor

::
#2

::::
was

::::
only

:::::
used

::
as

::
a
:::::::
replicate

:::
to

:::::::
simplify

::::::::
assessing

::::::::
potential

:::::::
problems

:::::
with

::::::
sensor

:::
#1.

:::::::
Because

:::
no

::::
such

:::::::::
problems

::::::::
occurred,

:::
we

::::
will

:::::
focus

::::
only

:::
on

:::
the

::::::
results

::::::::
obtained

::::
with

::::::
sensor

:::
#1

:::::
except

:::
for

:::::::
Section

::::
3.2,

:::::
where

:::
we

:::::
used

::::
both

:::::::
sensors

::
to

:::::
assess

:::::
their

:::::::::::
performance

::
at

::::::
weekly

::::
time

::::::::::
resolution. The TGS 2600

is a high-sensitivity solid-state sensor for the detection of air contaminants (Figaro, 2005a). It is sensitive to methane at low65

concentrations
::::
mole

:::::::
fractions, but also to hydrogen, carbon monoxide, iso-butane, and ethanol. It is the only low-cost solid-

state sensor that we are aware of for which the manufacturer indicates a sensitivity to methane even under ambient (≈2 ppm)

methane concentrations
:::::::::::
µmol mol−1)

:::::::
methane

::::
mole

::::::::
fractions, whereas most other sensors are only sensitive at concentrations

::::
mole

::::::::
fractions that exceed ambient levels by at least one or two orders of magnitude. This high sensitivity to low methane

concentrations
::::
mole

::::::::
fractions comes at the expense that no specific molecular filter prevents the other components to reach the70

sensor surface. Thus, our considerations made here assume that deployment is made in an area like e.g., the Arctic where levels

of carbon monoxide, iso-butane, ethanol and hydrogen are rather constant and do not vary as strongly as does methane, so that

the sensor signal can be interpreted as a first approximation as a methane concentration
::::
mole

:::::::
fraction signal. For additional

details on the TGS 2600 sensor the reader is referred to Eugster and Kling (2012).

The TWE site receives line power from the Toolik Field Station (TFS) power generator. During the snow and ice-free75

summer season (typically late June to mid-August) measurements are almost interruption free, but during the cold season

(typically September to late May) longer power interruptions limit the winter data coverage. Nevertheless, this is the first

study that provides low-cost sensor methane concentration
::::
mole

::::::
fraction

:
measurements over a temperature range from Arctic

winter temperatures of –41
:
°C and to a relatively balmy 27 °C during short periods of the Arctic summer. Reference CH4

concentrations
:::
dry

:::::
mole

:::::::
fractions

:
were measured by a Fast Methane Analyzer (FMA, Los Gatos Research, Inc., San Jose,80

CA, USA; years 2012–2016) which was replace
:::::::
replaced by a Fast Greenhouse Gas Analyzer for combined CH4/CO2/H2O

concentration
::
dry

:::::
mole

:::::::
fraction measurements (FGGA, Los Gatos Research, Inc., San Jose, CA, U.S.A.; since 2016). Until

18 June 2016 the CH4 concentrations
::::
mole

:::::::
fractions

:
were calculated as 1-minute averages from the raw eddy covariance flux

data files. We report all gas concentrations in mixing ratios by volume (ppm or ppb dry mole fractions )
::::
mole

:::::::
fractions

:::
in

::::::::::
µmol mol−1

::
or

:::::::::::
nmol mol−1. The FMA and FGGA sampling rate was set to 20 Hz, and the flow rate of sample air was ca.85

20 L min−1. After the termination of eddy covariance flux measurements, the FGGA measurements were continued with the

instrument’s internal pump (flow rate ca. 0.65 L min−1) with 1 Hz raw data sampling. In addition to digital recording, the

CH4 signal was converted to an analog voltage that was recorded on a CR23X data logger (Campbell Scientific Inc. [CSI],
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Logan, UT, USA). The same data logger also recorded air temperature and relative humidity (HMP45AC, CSI), wind speed

and wind direction (034B Windset, MetOne, Grants Pass, OR, USA), plus ancillary meteorological and soil variables not used90

in this study.
:::
The

::::::::::::::
factory-calibrated

::::::::::
HMP45AC

:::::
sensor

:::::
head

:::
was

:::::::::
exchanged

::::::
against

::
a
:::::
newly

:::::::::
calibrated

:::
one

:::::
every

::
ca.

::
3
:::::
years

::
to

::::::::
minimize

::::::::
long-term

::::
drift

::::::
effects

::
in

::::::::::
temperature

:::
and

:::::::
relative

::::::::
humidity

::::::::::::
measurements

::
(J.

::::::::
Laundre,

::::
pers.

::::::::
comm.). Sensors were

measured every 5 seconds and 1-minute averages were stored on the logger. These data were then screened for outliers and

instrumental errors and failures, and 30-minute averages were calculated for the present analysis.

::::
Both

:::::
FMA

:::
and

::::
the

::::
later

::::::
FGGA

::::::::
analysers

::::
were

:::::
used

:::
for

::::
eddy

::::::::::
covariance

::::::::::
applications,

::::
and

::::
thus

:::
the

::::::::::
instruments

:::::
were

:::
not95

::::::::
calibrated

::
as

:::::::::
frequently

:::
as

::
is

::::
done

:::
in

::::::::::
applications

:::
for

:::
the

::::::
Global

:::::::::::
Atmosphere

::::::
Watch

:::::::
network

::::::::::::
(WMO, 2001)

:
.
::::
Both

:::::::
sensors

::::
were

:::::
more

:::::::
accurate

::::
than

:::
the

:::::::
available

:::::::::
calibration

:::::
CH4 :::::

gases
::
at

::::
TFS.

::
In

:::::
2015

:::
for

:::
the

:::
first

::::
time

::
it
::::
was

:::::::
possible

::
to

:::
use

:
a
:::::::

NOAA

:::::::
reference

::::
gas

:::::::
cylinder

:::::::::::
(#CB09827)

::
to

::::::::
fine-tune

:::
the

::::::
FGGA.

::::
This

::::
was

::::::::
typically

::::
done

:::
in

:::
the

::::
early

::::::::
summer

::::::
season

:::::
when

::::
field

::::::::
personnel

::::::
arrived

::
at

::::
TFS

::::
(late

:::::
May).

:

Because the TGS 2600 sensors only show a weak response to CH4, but are highly sensitive to temperature and humidity, a100

LinPicco A05 Basic sensor (IST Innovative Sensor Technology, Wattwil, Switzerland) was added next to the TGS 2600 (see

Fig. 1). The A05 is a capacitive humidity module that also has a Pt1000 platinum 1 kΩ thermistor on board to measure ambient

temperature. The relative humidity output by the A05 is a linearized voltage in the range 0–5 V, and the Pt1000 thermistor was

measured in three-wire half bridge mode using an excitation voltage of 4.897 V.

2.3 Calculations105

:::::
Before

::::::::
analyses

:::
the

::::
data

:::::
were

::::::::
processed

:::
in

:::
the

::::::::
following

:::::
way:

:::
(1)

:::::::
outliers

::::
were

:::::::::
removed;

:::
(2)

::::::
relative

:::::::::
humidities

::::::::
> 105%

::::::::
(accuracy

::
of

:::::::::
capacitive

::::::::
humidity

:::::::
sensors)

:::::
were

:::::::
deleted;

:::
(3)

::::::::
reference

::::
CH4:::::

mole
::::::::
fractions

:::::::
obtained

:::::
from

:::
the

::::::
FGGA

::::::
(since

:::::
2016)

::::
were

::::::
filtered

:::::
based

:::
on

:::
hard

::::::::::
boundaries

::
of

::::::::::::
house-keeping

:::::::
variables

::::::::
available

:::
for

::::::
quality

::::::
control.

::::
For

::
the

:::::
latter

:::
we

::::
used

:::
the

::::::::
following

::::
hard

:::::::::
boundaries

:::
for

:::::::
filtering:

:::
(a)

::::::
sample

:::
cell

:::::::
pressure

::::
had

::
to

::
be

::
in

:::
the

:::::
range

:::::::::::
130–143 Torr;

:::
(b)

:::
the

::::::::::::::::
instrument-specific

::::::::
ringdown

::::
time

::
of

:::
the

::::
laser

:::
for

::::
CH4 ::::::::::::

measurements
:::
had

::
to

::
be

::
in
:::
the

:::::
range

:::::::::
13–17 ms.

:::
The

::::::::
accepted

::::::::
reference

::::
CH4::::

mole
::::::::
fractions110

::::
were

::::
thus

::
all

::::::::
measured

:::
in

:::
the

::::::
narrow

:::::
range

::
of

:::
cell

::::::::
pressures

::::::::
between

:::::
139.7

:::
and

:::::::::
140.3 Torr

:::
and

::::
laser

:::::::::
ringdown

:::::
times

:::::::
between

:::::
14.02

:::
and

::::::::
14.94 ms,

::::::
which

::::::::
indicates

::::
best

::::::::::
performance

:::
of

:::
the

:::::::
analyser.

::::::
Before

:::::
2016

::::::
(FMA

::::::::::
instrument)

::::
these

:::::::::::::
house-keeping

:::::::
variables

:::::
were

:::
not

::::::::
recorded.

The basic principle of operation of the TGS 2600 sensor was described in detail by Eugster and Kling (2012). The methane

sensing mechanisms of different active materials used in solid state sensors was described by Aghagoli and Ardyanian (2018).115

The TGS 2600 uses a SnO2 micro crystal surface (Figaro, 2005b). Whereas the manufacturer defines the sensor signal as

Rs/R0, the ratio of the electrical resistance Rs of the heated sensor material surface normalized over its resistance R0 in

the air under absence of CH4, Hu et al. (2016) define the sensor signal as the ratio between Rs and Rg , the resistance of

the surface in pure gas of interest (here CH4). In all cases, considerations of technical sensor information is made for high

concentrations
::::
mole

::::::::
fractions of CH4 (e.g., 200 ppm

:::::::::::
µmol mol−1)

:
for a SnO2 surface according to Hu et al. (2016), not for120

ambient concentrations
::::
mole

:::::::
fractions

:
in the typical range 1.7–4 ppm

::::::::::
µmol mol−1

:
(or less). Hence, some adaptations are

always necessary because present-day sensors are not yet designed for such low concentrations
::::
mole

::::::::
fractions. In order to
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simplify calculations compared to what we presented in Eugster and Kling (2012) – which closely followed the technical

information provided by the manufacturer (Figaro, 2005b, a)
:::::::::::::::
(Figaro, 2005a, b) – we define the sensor signal as Sc =Rs/R0,

but with R0 arbitrarily set to the resistance observed when the sensor delivers V0 = 0.8 V output at Vc = 5.0 V supply voltage.125

The highest voltages measured at TWE were 0.7501 and 0.7683 V from sensors #1 and #2, respectively (which theoretically

corresponds to the lowest CH4 concentrations
::::
mole

::::::::
fractions). With these assumptions the sensor signal Sc can easily be

approximated as a function of the inverse of the measured TGS signal voltage Vs,

Sc =
RS

R0
≈ 0.952381 · 1

Vs
− 0.1904762 . (1)

The full derivation is130

Rs

R0
=

Vc ·RL

Vs
−RL

Vc ·RL

V0
−RL

=

Vc ·RL −Vs ·RL

Vs
Vc ·RL −Vs ·RL

V0

=

=
V0 (Vc −Vs)RL

Vs (Vc −V0)RL
=
V0 (Vc −Vs)

Vs (Vc −V0)
=

=
V0

Vc −V0

(
Vc
Vs

− 1

)
=

1

Vs
· Vc ·V0
Vc −V0

− V0
Vc −V0

.

Here RL is the load resistor over which Vs is measured (see Figaro (2005a) or Eugster and Kling (2012), for more details),

but which can be eliminated in this algebraic simplification.135

To compute absolute humidity, we used the Magnus equation to estimate saturation vapor pressure esat (in hPa) at ambient

temperature Ta (in °C),

esat = 6.107 · 10a·Ta/(b+Ta) ,

with coefficients a = 7.5 and b = 235.0 for Ta ≥ 0 °C, and a = 9.5 and b = 265.5 for Ta < 0 °C.

Actual vapor pressure e (hPa) was then determined as140

e= esat ·
rH

100%
,

with relative humidity rH in percent, and converted to absolute humidity ρv (kg m−3) with

ρv =
e

Ta + 273.15
· p

p− e
· 100

Rv
≈ 0.217 · e

Ta + 273.15
,

with p atmospheric pressure (hPa), and Rv the gas constant for water vapor (461.53 J kg−1 K−1).

2.4 Statistical analyses145

Statistical analyses were performed with R version 3.5.2 (R Core Team, 2018). Trend analyses were performed for both trend

in CH4 concentration
::::
mole

:::::::
fraction and drift of TGS 2600 measurements using the Mann-Kendall trend test implemented in
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the rkt package that is based on Marchetto et al. (2013). The annual linear trend (or drift) was calculated using the robust

Theil-Sen estimator Akritas et al. (1995)
:::::::::::::::::
(Akritas et al., 1995) using weekly median values, and the significance of the trend

(or drift) was assessed using Kendall’s Tau parameter. All trend and drift estimates were significant at p < 0.05. The highest150

two-sided p-value of the presented results was p = 0.000054 and thus no detailed information on p-values is given when

statistical significance of trends or drift is mentioned in the following.

For assessing the quality of the proposed calculation of CH4 concentrations
::::
mole

::::::::
fractions

:
from TGS 2600 sensors we

inspected weekly aggregated data using four key indicators:

Bias – the mean of the difference of each 30-min averaged pair of CH4 concentrations in ppm
::::
mole

::::::::
fractions

::
in

::::::::::
µmol mol−1,155

CH4,TGS – CH4,ref;

Stability – the bias expressed as a percent deviation from the reference CH4 concentration
::::
mole

:::::::
fraction, (CH4,TGS –

CH4,ref)/CH4,ref·100%;

Variability – the mean relative deviation of the 95% confidence interval (CI) observed with the TGS 2600 sensor from the

corresponding 95% CI of the CH4 reference measurements (in percent), (CI95%,TGS / CI95%,ref – 1) ·100%;160

Correlation of median diel cycles – Pearman’s product-moment correlation coefficient between hourly-aggregated median

diel cycles of CH4 measured by the TGS 2600 and reference instruments.

In addition to conventional linear model (least square method) fits we used an artificial neural network
::::
ANN

:
approach. This

was performed in Python 3.7.1 using MLPRegressor from sklearn.neural_network version 0.20.2 (Pedregosa et al., 2011). We

used a network with four hidden layers of size 500, 100, 50 and 5, respectively, and an adaptive learning rate. Learning was165

done with the data obtained during the calibration period from first measurements until 31 March 2017 and the remaining

data (1 April 2017 to 31 December 2018)
:::::::::
2014–2016,

:::::::
whereas

:::
the

:::::::::
remaining

:::::
years

:::::::::
2012–2013

::::
and

:::::::::
2017–2018

:
were used for

validation.

3 Results and discussion

CH4 concentrations
::::
mole

::::::::
fractions estimated from TGS 2600 measurements during the cold seasons differed strongly from the170

reference measurements when the Eugster and Kling (2012) approach was used (not shown); that approach translated the infor-

mation from the technical specifications of the TGS 2600 sensor (Figaro, 2005b, a)
:::::::::::::::
(Figaro, 2005a, b) to outdoor applications.

With temperatures above freezing the agreement with the CH4 reference measurements was within ±0.1 ppm
::::::::::
µmol mol−1

(Fig. 2), but not so during cold conditions (Ta
::
Ta:< 0 °C). The differences between TGS estimates and CH4 reference were

largest with the Eugster and Kling (2012) approach when relative humidity was between 50 and 90% (Fig. 3a). When convert-175

ing relative humidity to absolute humidity, the results became satisfactory for higher absolute humidity values> 0.004 kg m−3

(Fig. 3b).
:::::
Using

:::::::
absolute

::::::::
humidity

::
in

:::::
place

::
of

::::::
relative

::::::::
humidity

:::
for

:::
the

:::::::::
correction

::
of

:::
the

::::
TGS

:::::
2600

:::
was

:::::::
already

::::::::
attempted

:::
by

::::::::::::::::::::::::
Collier-Oxandale et al. (2018)

:
,
:::::
which

:::::::
contrasts

::::
with

:::
the

:::::::::::::
manufacturer’s

:::::::::
suggestion

::::::::::::
(Figaro, 2005a)

:
. Because absolute humidity

> 0.004 kg m−3 is only possible at temperatures > 0 °C it appears quite obvious that temperature and humidity corrections

of solid state sensors most likely do not relate to relative humidity(which is a ratio and not a physical variable of atmospheric180
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water content), but to either actual vapor pressure (in hPa) or absolute humidity (in kg m−3). In all tested models absolute

humidity performed marginally better than vapor pressure
::
or

::::::
mixing

::::
ratio

:
(measured by R2,

:
; not shown), hence we suggest the

following model and parameterization to estimate CH4 concentrations in ppm
::::
mole

::::::::
fractions

::
in

::::::::::
µmol mol−1

:
from TGS 2600

signal voltage measurements:

CH4 = 1.425 + 0.12Sc + 0.375/Sc − 0.0065Ta + (2)185

+53.3ρv + 0.0022Sc ·Ta − 0.0017Ta/Sc +

+4.9Sc · ρv − 67.4ρv/Sc− 0.39Sc ·Ta · ρv
+1.15Ta · ρv/Sc ,

with Sc the dimensionless sensor signal (see Eq. 1), Ta ambient air temperature in °C, and ρv absolute humidity in kg m−3. The

parameter estimates were derived from the entire dataset 2012–2018 for TGS sensor #1 (Table 1, “entire period”). For other190

sensors the result from Eq. (2) can be considered as a linearized signal that can be fine-tuned with a sensor-specific two-point

calibration as suggested in Section 3.4 of Eugster and Kling (2012).

:::
The

:::::
linear

::::::
model

::
in
::::

Eq.
:::
(2)

::::
was

:::::::
derived

::::
from

::
a
::::
suite

:::
of

::::::::
candidate

:::::::
models

::::::::
including

::::::::::
interactions

::::::
among

:::::::::
predictors

::::
and

::::::::
including

::::::::
quadratic

:::::
terms

::
of

::::
each

::::::::
variable,

:::
and

::::
then

::::::::
stepwise

::::::::::
elimination

:::::
using

:::
the

:::::::
stepAIC

:::::::
function

::
in
:::

the
:::::::

MASS
:::::::
package

::
of

::
R

:::
was

:::::::::
employed

::
to

:::
find

:::
the

::::::
model

::::
with

:::
the

::::::
lowest

::::
AIC

::::::::
(Akaike’s

::::::::::
Information

:::::::::
Criterion).

::::::
Unless

::::::::
explicitly

::::::::::
mentioned,

:::
we195

:::::::
analysed

::::
CH4:::::

mole
:::::::
fractions

::::::::
computed

::::
with

:::
Eq.

:::
(2)

:::::
using

:::
the

:::::::::
parameters

:::::::
obtained

:::::
from

::
all

::::
data

::::::::
measured

:::
by

::::
TGS

::::
2600

::::::
sensor

:::
#1.

::::
Only

::
in

:::
the

::::::
direct

:::::::::
comparison

:::::
with

:::
the

:::::
ANN

:::::::
(Section

::::
3.1)

:::
did

:::
we

::::::::
determine

:::
an

:::::::::
additional

::::::::
parameter

:::
set

:::::
using

:::
the

:::::
same

:::::::::
calibration

:::::
period

::
as

:::
the

:::::
ANN

::::
used

:::::::
(Section

:::::
2.4),

::
so

:::
that

::
a
:::::
direct

::::::::::
comparison

::
of

::::::::::
performance

::
in
:::::::::
validation

::::
was

:::::::
possible.

:

:
If
:::::::
ambient

::::::::::
temperature

:::::::::
influences

:::
the

:::::
signal

:::
of

:::
the

::::
TGS

:::::
2600

::
in

::::
such

:
a
::::
way

::
as

::::::::
expected

:::::
from

:::
the

:::::::
technical

:::::::::::::
documentation

::::::::::::::
(Figaro, 2005a, b)

:
,
::::
then

::::
wind

:::::
speed

:::::
could

:::
be

:
a
:::::
third

:::::
factor

:::::::::
influencing

:::
the

:::::::::
conversion

:::::
from

::::
TGS

:::::
2600

:::::
sensor

:::::::
voltages

:::
to

::::
CH4200

::::
mole

::::::::
fractions.

:::
To

:::::::::
investigate

::::
this

::::::::
additional

::::::
factor,

:::
we

::::::::
produced

::
a
::::
heat

::::
loss

::::::
model,

::::::::
assuming

::::
that

:::
the

::::::
sensor

:::::::::
correction

::
is

:::::
related

:::
to

:::
the

::::::
cooling

:::
of

:::
the

::::::
heated

::::::
surface

:::
of

:::
the

::::
solid

:::::
state

::::::
sensor,

:::::
which

::::
has

:
a
:::::::
nominal

:::::::
surface

::::::::::
temperature

:::
Ts ::

=
::::::
400 °C

:::::::::::::::::::
(Falabella et al., 2018)

:::
that

:
is
:::
the

::::::
typical

::::::::
operation

::::::::::
temperature

::
of

:::::::::::
SnO2-Ni2O3::::::

sensors
::::::::::::::
(Hu et al., 2016)

:
.
:::
Our

::::::::
candidate

::::::
model

::
for

::::
heat

::::
loss

::::
(HL

::
in

:::
W)

:::
was

:

HL∼ ξ ·u2 · (Ts −Ta) · (ρd ·Cd + ρv ·Cv) ,
:::::::::::::::::::::::::::::::::::

(3)205

::::
with

:
u
:::::
mean

::::::::
horizontal

:::::
wind

:::::
speed

:::
(m

::::
s−1),

:::
Ts :::

and
::
Ta::::::

sensor
::::::
surface

::::
and

::::::
ambient

:::
air

::::::::::
temperature

::::
(K),

::::::::::
respectively,

:::
ρd ::::::

density

::
of

:::
dry

:::
air

:::
(kg

:::::
m−3),

:::
ρv :::::::

absolute
::::::::
humidity

:::
(kg

::::::
m−3),

:::
and

:::
Cd:::

and
:::
Cv::::

heat
:::::::
capacity

:::
of

:::
dry

:::
air

:::
and

:::::
water

::::::
vapor,

::::::::::
respectively

::
(J

::::
kg−1

:::::
K−1).

::::
The

::::::
scaling

:::::::::
coefficient

::
ξ
::
is

:
a
::::
best

::
fit

::::::
model

::::::::
parameter

::::::
(units:

:::::
s m).

:::
The

::::::::::
assumption

:::::
made

::::
here

::::
was

:::
that

:::
the

:::::
wind

:::::
speed

::::::
governs

:::
the

:::::
eddy

:::::::::
diffusivity

::
of

::::
heat

:::::::::
transported

:::::
along

:::
the

::::::::::
temperature

:::::::
gradient

:::::::
between

:::
the

::::::
sensor

::::::
surface

::::
and

:::::::
ambient

:::
air,

:::
and

:::
the

:::::::
moisture

:::::::::
correction

::
is

::::
only

:::::::::
associated

::::
with

:::
the

:::
fact

::::
that

:::::
water

:::::
vapor

:::
has

:
a
::::::
higher

::::
heat

:::::::
capacity

:::::
(1859

:
J
:::::
kg−1

:::::
K−1)210

:::
than

::::
dry

::
air

:::::::
(1005.5

:
J
:::::
kg−1

:::::
K−1),

:::
and

::::::
hence

:::
the

:::
heat

::::::::
capacity

::
of

:::::
moist

::
air

::::::::
increases

::::::::::
accordingly

::::
with

:::
ρv .

:
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3.1 Performance of the TGS 2600 sensor at 30-minute resolution

Using Eq. (2) yields satisfying agreement with 30-minute averaged data under both typical low Arctic summer and winter

conditions (Fig. 4) with an overall R2 of 0.42
::::
0.424

:
(Table 1).

::::
When

::::::
testing

:::
the

:::::
linear

::::::
model

::::::::
approach

:::::
(Eq. 2)

:::::
more

:::::::::
rigorously

::
by

:::::::
splitting

::::
the

::::::::
available

::::
data

::::
into

:
a
::::::::::
calibration

:::::
period

::::::
(years

:::::::::::
2014–2016)

:::
and

::
a
:::::::::
validation

::::::
period

:::::
(years

::::::::::
2012–2013

::::
and215

::::::::::
2017–2018),

:::::
some

:::::::::
limitations

:::
can

:::
be

:::::
seen,

::
in

::::::::
particular

:::::
under

::::
cold

:::::::::
conditions

:::::
where

:::::
none

::
of

:::
the

::::::::::
approaches

:::::::::
performed

::::
very

:::
well

:::
in

::
the

:::::::::
validation

::::::
period.

::::
The

::::
ANN

::::
had

:
a
:::::
more

:::::::
balanced

:::::::::::
performance

:::::::
between

:::::::::
calibration

::::
and

::::::::
validation

::::::
period,

::::::::
although

:
it
:::::::::
performed

::::::
slightly

::::
less

::::
well

:::::
under

:::::
warm

:::::::::
conditions

:::::
(Ta ≥:::::

0◦C).
:

A detailed inspection of four representative seven-week time periods at full 30-minute resolution is shown in Figures 5–8.

Typical summer conditions at the beginning of this study (Fig. 5) and towards the end of the analyzed period (Fig. 6) indicate220

that the short-term agreement (R2 = 0.65
::::
0.653, Fig. 5) is better when the TGS sensor was still relatively new than at age seven

(R2 = 0.38
::::
0.381, Fig. 6), but the variability decreased

:::::::::
(improved)

:
from –42% to –9% with no relevant difference in bias and

stability (0.01ppm
::::::::::
µmol mol−1 and 0.4% vs. 0.00 ppm

::::::::::
µmol mol−1

:
and 0.0%, respectively). In winter the timing of most

events is correctly captured (Fig. 7) with a R2 of 0.45
:::::
0.445, but the dynamics are not satisfactorily captured by the TGS sensor,

indicated by a 59% underestimation of the 95% CI during this mid-winter period. The transition from warm to cold season225

(Fig. 8) shows a mixture of days, where the regular diel cycle, which is typical for the warm season, is still adequately captured,

but the dynamics of periods with air temperature <0
:
°C (see Fig. 4) when CH4 concentrations

::::
mole

:::::::
fractions

:
tend to be highest

as in winter (Fig. 7), are not adequately captured. Still, with a R2 of 0.51
::::
0.512

:
(Fig. 8) more than 50% of the variance observed

in the 30-minute averaged CH4 reference measurements is captured by the low-cost TGS 2600 sensor.

:::::::
Because

::
of

:::
the

:::::::
absence

::
of

::::
local

:::::::
sources

::
of

::::::
carbon

:::::::::
monoxide

:::
and

:::::
other

:::
air

::::::::
pollutants

::
to

::::::
which

:::
the

::::
TGS

::::
2600

::::::
sensor

::
is

::::
also230

:::::::
sensitive

::::::
besides

:::::
CH4,

:::
we

::::::::::
investigated

:
a
::::::
special

::::
case

:::::
when

::::::
smoke

:::
and

::::
haze

:::::
from

:::::::
wildfires

:::::
south

::
of

:::
the

::::::
Books

::::::
Range

:::::::
polluted

::
the

:::
air

::
in

:::
the

::::
TFS

::::
area

:::
on

::
26

:::::
June

::::
2015

::::
and

::::::::
compared

:::
the

:::::::::::
performance

::
of

::::
both

::::
TGS

:::::::
sensors

::::::
during

:::
that

::::
day

::::
with

:::::::::
conditions

::::
three

::::
days

::::::
before

:::
that

:::::
event,

::::
and

::
on

:::
the

:::::
same

:::
date

:::
in

::
the

:::::::::
following

::::
three

:::::
years.

::::
The

:::
net

:::::
effect

::
of

::::::::
increased

::
air

:::::::::
pollutants

:::
was

:::
an

:::::::
apparent

:::::
small

:::::::
decrease

::
of

:::
the

::::
CH4::::

mole
::::::::
fractions

::::::::
calculated

:::
via

:::
Eq.

:::
(2)

::
by

::::::::::::
approximately

::::::::::::::::
–0.03µmol mol−1.

::
At

:::
the

:::::
same

::::
time

::
the

:::::::::
variability

::
of

:::
the

::::::::
residuals

::::::::
increased

::::
from

::::::::
typically

::::::
±0.014

::
to

:::::::::::::::::
±0.027µmol mol−1

:::::::
(24-hour

:::::::::
averages).

:::::
Thus,

:::
the

::::::::
influence235

::
of

:::
the

::::::
wildfire

::::::
smoke

::::
was

::
of

:::
the

::::
same

:::::
order

::
of

:::::::::
magnitude

:::
as

::
the

:::::::::
difference

:::::::
between

:::::::::::
TGS-derived

::::
CH4:::::

mole
:::::::
fractions

::::
and

:::
the

:::::::
reference

:::::::::
instrument

:::
on

::::
most

:::::
other

::::
days

::
of

:::
the

::::
year

::::
(see

::::
Figs.

:::::
5–8).

:

3.2 Performance of weekly aggregated data

The TGS 2600 is not expected to provide short-term accuracy comparable to high-quality instrumentation (see also Lewis et al.,

2018). However, Eugster and Kling (2012) argued that such measurements still may provide additional insights as compared to240

the passive samplers described by Godbout et al. (2006a, b), integrating over longer time frames. Thus, here we inspected the

performance of weekly aggregated estimates derived from the TGS 2600 in order to inspect drift of the two sensors and their

performance over the seven-year deployment period. Note, that in Eq. (2) we did not include a drift correction. Figure 9 shows

weekly medians of sensor signals, the
:::::::::
agreement

::::
with

:::
the

::::::::
reference

::::::
signal,

:::
and

:::
the

:
difference between the raw signals from
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both
::::
CH4 ::::

mole
::::::::
fractions

:::::::
obtained

::::
from

:::::
both

::::
TGS

::::
2600

:
sensors mounted at the same position (Fig. 1), and the agreement with245

the reference signal. The two TGS 2600 sensors (#1 and #2) showed a trend in their signals of –18.8 mV yr1 and –15.5 mV

yr−1, respectively (Fig. 9a,b). Thus, with typical signals on the order of 200–700 mV (Fig. 9a) the lowest (winter) readings

may no longer be measurable after 10–13 years of continuous operation, indicating the end of life of a TGS 2600.

Figure 10 shows the weekly median bias, variability, and the correlation between the weekly aggregated median diel cycle

of CH4 at hourly resolution between the TGS #1 measurements and the reference. Despite the trend of the sensor signal shown250

in Figure 9a,b both the bias and variability primarily show a seasonal pattern with a slightly negative bias (around –0.02

ppm
:::::::::
µmol mol−1) during peak growing season and a corresponding positive deviation in mid-winter when temperatures can

be well below –30 °C (Fig. 10a). The variability (Fig. 10b) shows the inverse pattern of the bias. If bias is expressed as the

relative bias (i.e., stability), the stability vs. variability plot (Fig. 11) shows points lying uniformly around the line of a –1:1

relationship (R2 = 0.67).
::::
This

:::::::
indicates

::::
that

::::
both

::::::::
variability

::::
and

:::::::
stability

:::
can

::
be

:::::::::
improved

:
at
:::
the

:::::
same

::::
time

:::::::
because

::::
there

::
is
:::
no255

::::::
tradeoff

::::::
visible

::
in

::::
Fig.

:::
11.

3.3 Linear trend and drift estimates

All linear trend estimates were statistically significant (see Section 2.4). However, our measurements started with warm-season

measurements only (2012–2014) that were successively expanded to include cold season measurements. Thus, all interpretation

of the trends and drifts presented here should be considered with caution given the long gaps in data due to technical challenges260

operating such equipment under adverse winter conditions. The CH4 concentration
::::
mole

:::::::
fraction trend observed with the high-

quality reference measurements was 10.1 ppb
::::::::::
nmol mol−1

:
yr−1. This is 2.5 times the trend observed from 2005–2011 by

NOAA (28.6 ± 0.9 ppb
::::::::::
nmol mol−1 or 4.09 ppb

::::::::::
nmol mol−1 yr−1; Hartmann et al. (2014); their Table 2.1), but of the same

order of magnitude reported by Nisbet et al. (2014) for 2013 (last year covered by that study) for latitudes north of the Tropic

of Cancer. Thus, this trend may be real and hence all trends seen in low-cost sensor signals are not necessarily solely an265

artefact of such sensors. It however remains a challenge to deduce the true trend in CH4 concentrations
::::
mole

::::::::
fractions over

longer time periods using such a low cost sensor because of drifting signals. Thus, we inspected the drift of the TGS 2600

derived concentration
::::
mole

:::::::
fraction with respect to the (true) CH4 trend observed with the high-quality reference instrument.

These drifts appear to be smaller than the true trend, but are still considerable: the bias of TGS-derived CH4 concentrations

::::
mole

::::::::
fractions drifted by 4–6 ppb

::::::::::
nmol mol−1 yr−1 (40–60% of actual trend) and variability drifted by –0.24% yr−1. They270

provide encouraging results suggesting that with occasional (infrequent) calibration against a high-quality standard, e.g. using

a traveling standard operating during a few good days with adequate coverage of the near-surface diel cycle of CH4, TGS

2600 measurements might be suitable for the monitoring of CH4 concentrations
::::
mole

::::::::
fractions also in other areas. As shown

in Figure 10c the correlation of median diel cycles between TGS estimates and CH4 reference is one of the weak points in the

current performance of the TGS 2600 sensors. Also, we observed a significant negative trend of the correlation coefficient of275

–0.051 yr−1 (Fig. 10c). However, the key finding is that the typical diel cycle during the warm season (air temperature > 0 °C)

disappears during winter conditions (Figs 4, 7) and thus separate transfer functions for warm and cold temperatures might be

9



a solution for future studies (Table 1). Our Eq. (2) is thus on purpose derived from the entire dataset to provide a starting point

for more elaborate fine-tuning in projects where this is desired.

3.4 Potential of using artificial neural networks280

Casey et al. (2019) found that artificial neural networks (ANNs) outperformed linear models in mitigating curvature and linear

trends in trace gas measurements when used with the same set of input variables during a three-month comparison period. To

inspect the potential of ANNs at our Arctic long-term dataset, we added the ANN results to Figures 5–8. In summer (Figures

5, 6) we did not find a substantial advantage of ANN over
::::::::
difference

:::::::
between

:::
an

:::::
ANN

::::
and the linear approach of Eq. (2)

in terms of root mean square error (RMSE) of the prediced
:
or

:::
R2

:::::::
between

::::::::
prediced

:::
and

:::::::::
measured CH4 concentrations

::::
mole285

:::::::
fractions

:
(Table 1). In particular

:::::
winter

:::::
with

:::::::::::
temperatures

:::::
below

:::::::
freezing, the ANN was unable to better reflect the skewed

distribution of diel variations of CH4 concentrations and tended to underestimate daytime minimum concentration without

aclear improvement of the fit to nocturnal peaks.
::::::::
performed

::::::
clearly

:::::
better

::
in

:::
the

:::::::::
validation

::::
than

:::
the

:::::
linear

::::::::
approach,

::::
but

::::
both

:::::::::
approaches

::::::::
remained

::::::::::::
unsatisfactory

::::::
(R2 <

::::
0.1),

::::::
despite

:::
the

::::
fact

::::
that

::::
both

::::::::::
approaches

::::
were

::::::
similar

:::
in

:::
the

:::::::::
calibration

::::::
period

:::::
(R2 ≈

::::
0.3,

::::
Table

:::
1).

:
290

::::::
During

:::
the

:::::
warm

::::::
period

:::
we

:::::
found

:::::
cases

:::::
where

::::
the

:::::
ANN

:::
was

:::::
much

::::::
better

::
in

::::::::
capturing

::
a

::::::
specific

:::::
daily

::::::
feature

:::
as

:::
e.g.

:::
on

::
11

::::
July

:::::
2012

:::::::
(Fig. 5a)

::::::
where

:::
the

::::
daily

:::::::::
minimum

::::
was

:::::
nicely

::::::::
captured

::
by

:::
the

:::::
ANN

::::
but

:::
the

:::::
linear

::::::
model

:::
was

::::::
much

:::
too

::::
low.

:::::::::::
Contrastingly,

::
in
:::::

2017
:::::::
(Fig. 6a)

:::::::
periods

:::::
could

::
be

::::::
found

:::::
where

:::
the

:::::
daily

::::::::
dynamics

::::
was

:::::::
correctly

::::::::
captured

:::
by

:::
the

:::::
ANN

:::
but

::
at

:::
too

:::
low

::::::
mixing

:::::
ratios

:::::
(e.g.

:::::
10–18

::::
July

:::::
2017,

:::::::
Fig. 6a).

:
It should be noted that at this latitude the sun does not set between 24

May and 20 July, thus nocturnal conditions are clearly different from conditions at lower latitudes such as the ones investigated295

by Casey et al. (2019). Similarly, the transition from warm to cold season (Fig. 8) does also not provide strong evidence of

improvements with an ANN that uses the same input variables as a linear model . However, in winter when the diel cycle

of all variables is less dominant than during the warm and transition seasons, the ANN approach is capable of producing a

more realistic
:::
was

::::::::::
challenging

::::
both

:::
the

:::::
linear

:::::
model

::::
and

:::::
ANN

::::::::
approach.

:::
We

::::
have

::::
only

:::::
used

:::
two

::::::::
variables,

:::
Ta::::

and
::::::::
humidity,

:::
that

::::::::
according

::
to
::::::::::::
manufacturer

:::::::::::
specifications

:::::::::::::::
(Figaro, 2005a, b)

::::::::
influence

:::
the

::::::::
TGS2600

::::::
sensor

:::::
signal.

:::
In

::::::
reality,

:::
the

::::
same

::::
two300

:::::::
variables

::::
also

::::::::
influence

:::
the CH4 estimate from TGS 2600 signals than the linear model approach (e.g., Fig. 7). This is not very

surprising as the prediction range of a linear model decreases linearly with the amplitude of the input variables (e.g., in absolute

humidity, which does not vary strongly at sub-zero temperatures), whereas an ANN does not have such linearity constraints.

:::::::::
production

::
in

:::::
water

:::::
logged

:::::::::::
ecosystems,

:::
and

::::
thus

::::::::
contribute

::
to

:::
the

::::
true

::::
CH4:::::

signal
::
in

:::::::
addition

::
to

:::
the

::::::::::::::
cross-sensitivity

:::::
which

:::
we

::
try

::
to

::::::
correct

::::
with

:::::::
Eq. (2).305

The drawback of ANNs is the difficulty in determining why the fit has become better than an empirical linear model fit. On

the other side, this could encourage future work to better understand the physical response of TGS sensors to cold environments.

In summary, we strongly recommend to focus on physical relationships, because it is unclear what scientific insights an ANN

fit could offer in addition to the technically nicer fits to data
::
An

:::::
ANN

::::
that

:::
can

:::::::
separate

:::
the

:::::
effect

::
of

:::::::
ambient

::::::::
variations

:::
of

::::
CH4

::::
mole

::::::::
fractions

::::
from

:::
the

:::::::
artefact

::
of

::::::::::::::
cross-sensitivity

::
of

::::
the

::::::::
TGS2600

::
to

:::
Ta::::

and
::::::::
humidity

::::
may

:::::::
however

::::::::::
outperform

:
a
::::::

linear310
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:::::
model

::::::::
approach

::
in

:::::
future

:::::::
studies,

::
if

::::
more

:::::::::
potentially

:::::::::
important

::::::
driving

:::::::
variables

:::
are

::::::::
included

::::
than

::::
only

:::::
those

:::::::
specified

:::
by

:::
the

:::::::::::
manufacturer

:::::::::::::::
(Figaro, 2005a, b).

3.5 Suggestions for future work

The residuals of Eq. (2) are homoscedastic both when plotted against
:::::::::::
inter-quartile

::::::
ranges

:::
and

:::::
95%

:::::::::
confidence

:::::::
intervals

:::
of

::::
each air temperature (Fig. 12a) or absolute humidity

:::
bin

:
(Fig. 12b) .

::
are

::::
very

::::::
similar

:::::
over

:
a
:::::
wide

:::::
range

::
of

::::::::::
temperature

::::
and315

::::::::
humidity,

:::
but

::::
tend

::
to

:::::::
become

::::
more

:::::::
variable

::
in

::::
bins

::::
with

::::
few

::::
data

::::
(i.e.,

::::::
lowest

:::
and

::::::
highest

::::::::::::
temperatures,

:::
and

:::::::
highest

:::::::
absolute

::::::::
humidities

::
in
::::
Fig.

::::
12). Deviations are generally constrained within ±0.1 ppm

::::::::::
µmol mol−1 or better, but with higher variability

at both temperature ends where data coverage is poor (gray bars at bottom of Fig. 12a) as temperatures < –30
:
°C were not

frequently covered due to technical problems with the measurement station, or at summer temperatures > 20 °C that are still

rather rare at this low Arctic latitude (Hobbie and Kling, 2014). A slightly different picture emerges for low absolute humidity:320

56% of measurements are at lower humidities than the saturation humidity at 0
:
°C (0.0049 kg m−3), thus the rather homgenous

variances at low humidity (Fig. 12b) indicate that humidity is not of concern at low temperatures, and future attempts for

improvements should rather focus on humidity > 0.01 kg m−3 and temperatures > 20
:
°C that are not normally found in the

Arctic.

:::::
Based

:::
on

:::::::
physical

::::::::::::
considerations

:::
one

::::::
might

::::::
expect

:::
that

:::::::
specific

::::::::
humidity

::
or

:::::
water

:::::
vapor

:::::::
mixing

::::
ratio

::::::
instead

::
of

::::::::
absolute325

:::::::
humidity

:::::
could

::::
lead

::
to

::::::
further

::::::::::::
improvements,

:::::::
because

:::::::
absolute

::::::::
humidity

:::
still

:::::::
depends

:::
on

::::::::::
temperature.

::::::::
However,

::::
our

::::
tests

::::
have

:::
not

:::::::
indicated

::
a
:::::::
relevant

::::
gain

::
of

::::::::::
information

::
or

::::::::
accuracy

::
of

:::::::::
prediction,

:::
but

:::::
future

:::::
work

::::::
should

::::
also

::
try

::
to
::::
find

:
a
::::::
better

:::::::
physical

::::::::
correction

::::::
model

::::
than

::
the

::::::
purely

::::::::
empirical

::::
one

::::
used

::::
here

:::::
based

::
on

:::::::::::
manufacturer

:::::::::::
information.

Another approach was taken by van den Bossche et al. (2017) who performed an in-depth laboratory calibration of the very

similar but less sensitive Figaro TGS 2611-E00 sensor (Figaro, 2013, the manufacturer only shows a response above 300 ppm CH4)330

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Figaro, 2013, the manufacturer only shows a response above 300µmol mol−1 CH4) at different temperatures and relative hu-

midity over a CH4 calibration range starting at ≈ 2ppm ambient concentration
:::::::::::
µmol mol−1

:::::::
ambient

:::::
mole

:::::::
fraction up to

10ppm
::::::::::
µmol mol−1

:
CH4. Despite the effort, the residual concentrations

::::
mole

:::::::
fractions

:
remained large (range of ca. –1.5ppm

::::::::::
µmol mol−1

:
to +1.1ppm

::::::::::
µmol mol−1) – too large for the application we present here. Our efforts to calibrate our TGS 2600

sensors in a laboratory climate chamber in a similar way was not satisfactory (Eugster, unpublished), hence our approach335

presented here to determine the sensor behavior from long-term outdoor measurements under real-world conditions. Con-

trastingly, Kneer et al. (2014) are convinced that “to be of use for advanced applications metal-oxide gas sensors need to be

carefully prepared and characterized in laboratory environments prior to deployment”. We however do not fully agree because

laboratory conditions simplify the real world too much, and it is
:::::
While

:::
this

::
is

::::::::::
theoretically

:::::::
correct,

:
it
:::::::
remains

:
difficult to carry

out laboratory treatments from –41
:
°C to 27 °C as it would be required for our Arctic site. The data we present indicate that340

most likely it is absolute humidity
:::
(or

::::::
specific

::::::::
humidity

:::
or

::::::
mixing

:::::
ratio), not relative humidity, that should be used for such

calibrations, which in principle should provide the best quality results if the relevant factors are known and can be included in

the calibration set-up.
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Using absolute humidity in place of relative humidity for the correction of the TGS 2600 was already attempted by Collier-Oxandale et al. (2018)

, which contrasts with the manufacturer’s suggestion Figaro (2005a)
:
It

:::::
would

:::
be

::::::::
desirable

:::
that

:::::::::::::
manufacturers

::::
carry

::::
out

::::
both345

::::::::
laboratory

::::
tests

::::
and

::::
field

:::::
trials

:::
and

:::::::
provide

:::
the

::::::::
necessary

:::::::::
correction

::::::::
functions

:::::::
together

::::
with

:::::::
sensors. However, as mentioned

above, relative humidity is not a physical entity and hence using actual vapor pressure or absolute humidity may indeed be a

better approach to understand the TGS 2600 sensor sensitivity to environmental conditions other that CH4 concentrations.
:::
due

::
to

::
the

:::::::
expense

::::
and

::::
time

:
it
:::::
takes

::
to

::::
carry

:::
out

::::
long

:::::
tests,

::
be

::
it

::
in

:::
the

::::::::
laboratory

::
or

::
in
:::
the

:::::
field,

:::
the

::::::
present

:::::::::::
development

::::
goes

::
in

:::
the

:::::::
direction

::
of

::::::::::
collocation

::::::
studies

:::::::::::::::::::
(Piedrahita et al., 2014)

::
en

:::::
route

::
to

::::::::::
certification

::
of

::::::
sensors

:::
(N.

:::::::
Martin,

::::
NPL,

::::
UK,

:::::
pers.

:::::::
comm.),350

::::::
similar

::
to

::::
what

:::
we

::::
have

::::
done

::
in
:::
the

::::::
Arctic.

:

The TGS 2600 sensor’s best performance is in applications where passive samplers would be another option (see also Eugster

and Kling, 2012). Contrastingly, using the TGS 2600 for short-term measurements (resolution of seconds to minutes) has not

yet led to satisfactory results (Kirsch, 2012; Falabella et al., 2018). In our dataset we found that adding wind speed to the

calculation
::::::::
empirical

:::::
linear model slightly improved the model fit during the warm season, but because no reliable continuous355

winter wind speed measurements were possible at the TWE site we did not include wind speed in our Eq. (2). However, this

may be a key component for understanding the variability of TGS 2600 measurements when flying an unmanned aerial vehicle

(UAV) where turbulent conditions may change within seconds to minutes. To address this additional factor, we produced a heat

loss model, assuming that the sensor correction is related to the cooling of the heated surface of the solid state sensor, which

has a nominal surface temperature Ts = 400°C (Falabella et al., 2018) that is the typical operation temperature of SnO2-Ni2O3360

sensors (Hu et al., 2016). Our candidate model for heat loss
::::
used

:::
the

::::
heat

:::
loss

::::::
model

:::::
given

::
in

:::
Eq. (HL in W) was

HL∼ ξ ·u2 · (Ts −Ta) · (ρd ·Cd + ρv ·Cv) ,

with umean horizontal wind speed (m s−1), Ts and Ta sensor surface and ambient air temperature (K), respectively, ρd density

of dry air (kg m−3), ρv absolute humidity (kg m−3), and Cd and Cv heat capacity of dry air and water vapor, respectively (J

kg−1 K−1). The scaling coefficient ξ is a best fit model parameter (units: s m). The assumption made here was that the wind365

speed governs the eddy diffusivity of heat transported along the temperature gradient between the sensor surface and ambient

air, and the moisture correction is only associated with the fact that water vapor has a higher heat capacity (1859 J kg−1

K−1) than dry air (1005.5 J kg−1 K−1), and hence the heat capacity of moist air increases accordingly with ρv .
:::
3). However,

although this approach is more mechanistic than Eq. (2), it’s
::
its

:
ability to predict CH4 concentration

::::
mole

:::::::
fraction

:
from TGS

2600 measurements was much worse than that of the empirical linear model and ANN approaches (Table 1). But in order370

to make further progress on improving the transfer function from TGS 2600 signals to defensible CH4 concentrations
::::
mole

:::::::
fractions

:
it will be essential to increase our understanding of the physical processes that influence such measurements. This is

not an easy task since there is a substantial proprietary knowledge that is unrevealed by the manufacturer. Newer, promising

developments are underway that work with a mixed potential sensor using tin doped indium oxide and platinum electrodes in

combination with yttria-stabilized zirconia electrolyte that show a logarithmic signal range of 0–10 mV for the range of 1–3375

ppm
::::::::::
µmol mol−1

:
CH4 of interest for ambient air studies (Sekhar et al., 2016). The basic principle that the active metal-oxide

is charged with O2 (or O2−), which then oxidizes CH4, seems to be similar to the SnO2-based TGS 2600; thus there is a
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good chance that our findings for the TGS 2600 are also useful for assessing the performance of newer solid-state sensors with

different active materials.

4 Conclusions380

We present the first long-term deployment of two identical TGS 2600 low-cost sensors that show a (weak) sensitivity to

ambient levels of CH4 (here: range 1.824–2.682 ppm
::::::::::
µmol mol−1

:
as measured by a high-quality Los Gatos Research reference

instrument). We suggest a new transfer function to correct the TGS 2600 signal for cross-sensitivity to ambient temperature

and humidity that also yields satisfactory results under cold climate (Arctic) conditions with temperatures down to –40 °C. This

was only possible by using absolute humidity and not relative humidity for the correction. With this correction determined over385

the entire 2012–2018 data period, the 30-minute average CH4 concentration
::::
mole

:::::::
fraction

:
could be derived from TGS 2600

measurements within ±0.1 ppm
::::::::::
µmol mol−1. The two completely different regimes of diel CH4 concentration

::::
mole

:::::::
fraction

variations during the cold season (typically with a snow cover and frozen surface waters) and the warm season (when plants are

active in the low Arctic) suggest that further improvements can be obtained by more specifically developing separate transfer

functions for cold and warm conditions. The use of an artificial neural network shows the potential for improvements in transfer390

functions under very cold conditions.

We consider the quality of TGS 2600 derived CH4 estimates adequate if aggregated over reasonable periods (e.g., days or

one week), but caution should be taken with application where short-term response is of key relevance (e.g., within seconds to

minutes required by mobile measurements with UAVs). The deterioration of the sensor signal over time indicates that a TGS

2600 operated under ambient conditions as in our deployment at a low Arctic site in northern Alaska (Toolik wet sedge site)395

has an estimated life time of ca. 10–13 years. Thus, there is a potential beyond preliminary studies if the TGS 2600 sensor

is adequately calibrated and placed in a suitable environment where cross-sensitivities to gases other than CH4 is
:::
are of no

concern.
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Figure 1. Two TGS 2600 trace gas sensors and the LinPicco A05 temperature and relative humidity sensor (a) inside the weather protection,

and (b) the mounting position of the TGS weather protection and reference CH4 gas inlets at the Toolik wet sedge eddy covariance flux site.
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Figure 2. Difference between TGS2600 and reference CH4 measurements (30-minute averages) as a function of air temperature when

using the Eugster and Kling (2012) conversion. Agreement was good when ambient temperature was above freezing. The horizontal color

bar shows the ±0.1 ppm
:::::::::
µmol mol−1

:
range around a perfect agreement. The green band shows the inter-quartile range of bin-averaged

differences (Figaro
::::
TGS

::::
2600 sensor #1), and dashed lines show the extent of the 95% confidence intervals. Gray bars at the bottom show

number of 30-minute averages in each bin. The scale bar (1000 hours) at right specifies their size.
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Figure 3. Difference between TGS2600 and reference CH4 measurements (30-minute averages) as a function of (a) relative humidity (in

%) and (b) absolute humidity (in kg m−3). The horizontal color bar shows the ±0.1 ppm
:::::::::
µmol mol−1

:
range around a perfect agreement.

The green band shows the inter-quartile range of bin-averaged differences (Figaro
::::
TGS

::::
2600 sensor #1), and dashed lines show the extent of

the 95% confidence intervals. Gray bars at the bottom show number of 30-minute averages in each bin. The scale bar (1000 hours) at right

specifies their size.

19



1.7

1.8

1.9

2.0

2.1

χ C
H

4 (
µm

ol
 m

ol
−1

)

−40

−20

0

20

A
ir 

Te
m

p 
(°

C
)

2012

1.7

1.8

1.9

2.0

2.1

χ C
H

4 (
µm

ol
 m

ol
−1

)

−40

−20

0

20

A
ir 

Te
m

p 
(°

C
)

2013

1.7

1.8

1.9

2.0

2.1

χ C
H

4 (
µm

ol
 m

ol
−1

)

−40

−20

0

20

A
ir 

Te
m

p 
(°

C
)

2014

1.7

1.8

1.9

2.0

2.1

χ C
H

4 (
µm

ol
 m

ol
−1

)

−40

−20

0

20

A
ir 

Te
m

p 
(°

C
)

2015

1.7

1.8

1.9

2.0

2.1

χ C
H

4 (
µm

ol
 m

ol
−1

)

−40

−20

0

20

A
ir 

Te
m

p 
(°

C
)

2016

1.7

1.8

1.9

2.0

2.1

χ C
H

4 (
µm

ol
 m

ol
−1

)

−40

−20

0

20

A
ir 

Te
m

p 
(°

C
)

2017

1.7

1.8

1.9

2.0

2.1

χ C
H

4 (
µm

ol
 m

ol
−1

)

−40

−20

0

20

A
ir 

Te
m

p 
(°

C
)

2018

01 Jan 01 Mar 01 May 01 Jul 01 Sep 01 Nov 01 Jan

χCH4
 reference

Air temperature
TGS 2600

Figure 4. Overview over annual courses of 30-minute averaged air temperature (green) and CH4 concentrations
:::
mole

:::::::
fractions

:
(blue and

red). Pale color bands show the daily inter-quartile range (50% of values between first and third quartile) of measurements from all years.

Solid lines show actual measurements. Red lines are the reference CH4 measurements, and blue lines show the CH4 concentration
::::
mole

::::::
fraction derived from TGS 2600 measurements

::::::
(sensor

::
#1). Actual measurements show 30-minute mean values.
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Figure 5. Timeseries (a) of TGS #1 derived CH4 during a 7-week snow- and ice-free period in the first year of the long-term deployment

(2012), (b) correlation with reference concentration
::::
mole

::::::
fraction, and (c) residuals (TGS 2600

::
all

:
– Reference) of 30-minute averaged

measurements. Thin solid lines in (a) show the result when all data are used with Eq. (2); reference concentration
:::
mole

::::::
fraction

:
is shown with

a red bold line; c/v shows an alternative fit from splitting the available data into a calibration and a validation part; and the dashed line shows

the performance of an artificial neural network (ANN) fit.
:::
This

:::::::
example

::::::
belongs

::
to

::
the

::::::::
validation

:::::
period

::
of

::
the

::::
TGS

::::
2600

:::
c/v

:::
and

::::
ANN

::::
fits.
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Figure 6. As in Figure 5 but with measurements from a 7-week snow- and ice-free period in 2017 at sensor age of seven years.
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This

:::::::
example

::::::
belongs

:
to
:::

the
::::::::
validation
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::
of

::
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2600

:::
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and
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ANN

:::
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Figure 7. As in Figure 5 but with measurements from a 7-week period in mid winter with temperatures plunging down to –40
:
°C. High CH4

concentrations
::::
mole

::::::
fractions

:
coincide with the coldest temperatures (see Fig. 4).

:::
This

:::::::
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::::::
belongs

::
to

:::
the

:::::::
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::
of

:::
the

::::
TGS

::::
2600

::
c/v

:::
and

:::::
ANN

:::
fits.
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Figure 8. As in Figure 5 but with measurements from a 7-week period during the transition from fall to early winter.
:::
This

:::::::
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::::::
belongs

:
to
:::
the

:::::::::
validation
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of
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::::
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::::
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and
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ANN
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Figure 9. (a) Weekly median sensor signals from both TGS 2600 sensors, (b) relative signal difference between the two TGS 2600 sensors

in percent of the signal measured with the primary sensor #1, and (c) CH4 derived with Eq. (2) for TGS sensor #1 and measured by the Los

Gatos Research reference instrument,
:::
and

:::
(c)

::::::
absolute

::::::::
difference

:::::::
between

:::
the

:::
two

::::
TGS

::::
2600

::::::
sensors.

:::
The

:::::
signals

::::
from

::::
both

::::::
sensors

::::
were

:::::::
converted

::
to

::::
CH4 ::::

using
:::::
Eq. (2)

:::::::::::
parameterized

::::
with

:::
data

::::
from

::::
TGS

:::::
sensor

:::
#1. Symbol size is proportional to relative data coverage.
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Figure 10. (a) Weekly median bias, (b) median variability, and (c) correlation between weekly median diel cycles of TGS 2600 sensor #1.
:
1

:::
and

::
the

::::::::
reference. Symbol size is proportional to relative data coverage.
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Figure 11. Variability and stability (relative bias) of weekly median TGS 2600 sensor #1 are inversely related and plot along the –1:1 line.

Symbol size is proportional to relative data coverage.
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Figure 12. Residuals of 30-minute averaged TGS 2600 vs. reference CH4 measurements as a function of (a) air temperature, and (b) absolute

humidity. Colored areas show the inter-quartile range (50% CI), bold lines show the median, and dashed lines show the bin-averaged 95%

confidence interval. Bin size was 1 °C and 0.0002 kg m−3, respectively. Gray bars at the bottom show number of 30-minute averages in each

bin; the scale bar (1000 hours) at right specifies their size.
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Table 1. Goodness of fit of TGS 2600
::::::
(sensor

::
#1)

:
derived CH4 concentrations

:::
mole

:::::::
fractions

:
(30-minute averages) obtained from a linear

model using air temperature and absolute humidity (Eq. 2), a heat loss model (Eq. 3), and an artificial neural network (ANN). For the

goodness of fit the coefficient of determination (R2) and the root mean square error of the residuals (RMSE) are reported for the overall

model and separately for warm and cold conditions. The parametrization of the linear model given in Eq. (2) used the entire period 2012–

2018. For a more rigorous model test, all three approaches were calibrated with the data measured in years 2014–2016, and the remaining

data (2012–2013 and 2017–2018) were used for validation.

Linear Model Heat Loss Model Artificial Neural Network

Entire period Calibration Validation Calibration Validation Calibration Validation

Overall

R2 0.42
:::::
0.424 0.45

::::
0.447 0.21

::::
0.207 0.17

::::
0.166 0.28

::::
0.284 0.51

::::
0.311 0.54

::::
0.282

RMSE (ppm
:::::::::
µmol mol−1) 0.03

:::::
0.030 0.03

::::
0.026 0.04

::::
0.041 0.03

::::
0.032 0.05

::::
0.046 0.03

::::
0.030 0.03

::::
0.043

Warm conditions (Ta ≥ 0 °C)

R2 0.48
:::::
0.476 0.52

::::
0.518 0.29

::::
0.288 0.18

::::
0.180 0.18

::::
0.181 0.56

::::
0.278 0.47

::::
0.265

RMSE (ppm
:::::::::
µmol mol−1) 0.03

:::::
0.027 0.03

::::
0.026 0.03

::::
0.032 0.03

::::
0.034 0.04

::::
0.039 0.03

::::
0.032 0.03

::::
0.036

Cold conditions (Ta < 0 °C)

R2 0.32
:::::
0.322 0.34

::::
0.345 0.03

::::
0.034 0.16

::::
0.157 0.05

::::
0.055 0.44

::::
0.314 0.37

::::
0.092

RMSE (ppm
:::::::::
µmol mol−1) 0.03

:::::
0.033 0.03

::::
0.027 0.05

::::
0.052 0.03

::::
0.031 0.05

::::
0.055 0.03

::::
0.028 0.03

::::
0.053
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