
AMT paper supplementary: 

The following analysis is motivated by the large continuum optical depth observed in the high-

wavenumber window at 1 μm in the 18 September Langley-derived best estimate of the continuum 

(Figure 7 in the main text). Here, it is supposed that there is a wavenumber-dependent offset 𝑎(𝜈) 

to the irradiance I observed by the spectrometer, such that: 

(S1)  𝐼′(𝜈) = 𝑎(𝜈) 𝐼(𝜈) 

The Beer-Bouguer-Lambert law gives the irradiance observed by the spectrometer on the ground as 

a function of the incoming solar irradiance I0, the airmass factor 𝑚 = cos(𝜃), where 𝜃 is the solar 

zenith angle, and the atmospheric column-integrated optical depth 𝜏.  

(S2)  𝐼 = 𝐼0 exp(−𝑚 𝜏) 

and 

(S3)  𝐼′ = 𝐼0 exp(−𝑚 𝜏′) 

Inverting both of these equations (i.e. Eq. (1) in the main manuscript): 

(S4) ln 𝐼 = ln 𝐼0 − 𝑚 𝜏  

(S5) ln 𝐼′ = ln 𝐼0 − 𝑚 𝜏′ 

Solving for 𝜏, substituting 𝐼′ = 𝑎 𝐼 and then taking the residual 𝜏 − 𝜏′ = Δ𝜏 i.e. the change in 

observed optical depth Δ𝜏 with the substitution I -> I’: 

(S6) 𝑚𝜏 = ln 𝐼0 − ln 𝐼   

(S7) 𝑚𝜏′ =  ln 𝐼0 − ln 𝑎𝐼  =  ln 𝐼0 − (ln 𝐼 + ln 𝑎)   

Then: 

(S8) 𝑚(𝜏 −  𝜏′) = ln 𝐼0 − ln 𝐼 − ln 𝐼0 + ln 𝐼 + ln 𝑎  

(S9)  Δ𝜏 =
ln 𝑎

𝑚
 

Assuming a = 1.1 (i.e. 𝐼′ is a factor of 10% larger than 𝐼), then for an observation taken at an airmass 

of ~1.5 the optical depth correction is ~ 0.06, which is a very large change considering a typical 

continuum optical depth in the windows is ~0.03. This has a potentially large impact on 

measurements using the radiative closure method. 

However, in the Langley method, observations are taken at multiple airmasses. Any offset would 

therefore need to affect the gradient of the Langley slope, i.e. change each observation differently, 

in a way which propagates through to the logarithmic space in which a Langley plot is taken. 

The Langley-derived optical depth 𝜏 is the gradient of the straight line: 

(S10) ln 𝐼 = ln 𝐼0 − 𝑚 𝜏 

With multiple observations, this is computed using the ordinary least squares method; the gradient 

in which has the general form (dropping the subscript of the summation i on each variable):  

(S11)   𝛽1 =
𝑛Σ𝑥𝑦−Σ𝑥Σ𝑦

𝑛 Σ𝑥2−(Σ𝑥)2
 



Again, the offset 𝜏′ − 𝜏 =  −Δ𝜏 is the target of interest here. Taking S10 as a linear equation of the 

form y = ax + b and substituting (S10) into (S11): 

(S12) 𝜏 =
𝑛Σ (m ln 𝐼)−Σ𝑚 Σ(ln 𝐼) 

𝑛 Σ𝑚2−(Σ𝑚)2
  

(S13) 𝜏′ =
𝑛Σ (m ln 𝑎𝐼)−Σ𝑚 Σ(ln 𝑎𝐼) 

𝑛 Σ𝑚2−(Σ𝑚)2
  

 =
(𝑛Σ(𝑚 ln 𝐼)+𝑛 Σ(𝑚 ln 𝑎)) −Σ𝑚 Σ(ln 𝑎)−Σ𝑚 Σ(ln 𝐼) 

𝑛 Σ𝑚2−(Σ𝑚)2
 

Then subtracting 𝜏′ from 𝜏:  

 

(S14) Δ𝜏 =
𝑛Σ (m ln 𝐼)−Σ𝑚 Σ(ln 𝐼) −𝑛Σ(𝑚 ln 𝐼)−𝑛Σ(𝑚 ln 𝑎)+ Σ𝑚 Σ(ln 𝑎)+Σ𝑚 Σ(ln 𝐼) 

𝑛 Σ𝑚2−(Σ𝑚)2
 

 

Several of these terms then cancel, leaving: 

(S15) Δ𝜏 =
− 𝑛Σ(𝑚 ln 𝑎)+Σ𝑚 Σ(ln 𝑎)

𝑛 Σ𝑚2−(Σ𝑚)2
 

Assuming that the adjustment factor is angle independent, i.e. the correction does not change at all 

with airmass allows us to take ln 𝑎 out of the summation over m, as it is constant. Additionally, the 

summation over ln 𝑎 simply gives 𝑛 ln 𝑎. Therefore: 

(S16) Δ𝜏 =
−(𝑛 ln 𝑎) Σ𝑚+Σ𝑚 (𝑛 ln 𝑎)

𝑛 Σ𝑚2−(Σ𝑚)2
 = 0 

So in the case where a is independent of angle, there is no change in the observed optical depth. 

This means that any correction to the calibration has no impact on the Langley result (as expected), 

even taking into the account the log scaling (in fact it is this log scaling that allows it to be 

independent of the calibration; if it was not for this shift the terms would not cancel).  

In practice however, a is not completely independent of angle, as our calibration includes angular 

dependence (see Gardiner et al. (2012)). A change in calibration therefore will have an effect, 

although the effect will be rather small since it only takes into account the relative change with angle 

brought about by shifting the calibration factor.  

This can be calculated numerically just using the ratios of the observed irradiances (or the ratios of 

the calibration functions at each angle). Figure S1 shows the case for two assumptions about the 

extrapolation of the mirror reflectance from the region in which there is data (4000-6600 cm-1) to 

the regions 2000-4000 and 6600-10000 cm-1 in which there is no data. a therefore is the difference 

in observed irradiance arising from using each of these calibration methods. Here a varies from 

~1.07 at low airmass to ~1.09 at high airmass.  



 

Figure S1: Mirror reflection correction as a function of wavenumber. The red line shows the mirror 

reflectivity correction used in this work (extrapolating through the observed data), while the blue 

line shows an alternative mirror reflectivity correction (using the maximum/minimum values). 

 

Figure S2: Optical depth residual for a change in mirror reflectance extrapolation (see Figure S1). 

Given the optical depth in the centre of the windows at 10000 cm-1 and 12000 cm-1 in the Langley 

observations is about 0.10, for an angular dependence to explain all of this contribution (fitting the 

assumption that the continuum in these windows is close to zero), there would need to be some 

large, unexplained deviations with angle. Assuming a varies linearly with airmass, the angular 

dependence would have to account for a doubling of signal in this case. This is extremely unlikely to 

be the case, particularly since there is only one mirror in our optical setup which has this angular 

dependence. Therefore, we do not believe that the large optical depth observed in the 1 μm window 

can be explained via an issue with the mirror reflectivity calibration of our instrument. Additionally, 

the agreement between the Langley and closure data (Figure 8) indicates that our calibration is 

robust, since such a calibration issue would affect the closure method significantly but have little 

effect on a Langley analysis. 

It was speculated that there may be some issues arising from the phase correction, as discussed in 

Section 2. For any such calibration issue to have a significant effect on the Langley-derived spectrum, 

such an effect would need to vary in time across the course of a day. Additionally, such an issue 



would need to have a strong wavenumber dependence in order to explain the spurious results at 

~10000 cm-1, but have less of an effect at lower wavenumbers. Figure S3 shows the phase correction 

with respect to time and wavenumber for 18 September 2008.  

 

 

Figure S3: Phase correction calibration with wavenumber for 18 September 2008. The colour bar 

shows time of day; darker colours indicate earlier times (and higher solar zenith angles). 

 

It is clear from Figure S3 that the correction changes markedly with both time and wavenumber. In 

principle, the phase correction should bring the output spectrum closer to the true value. However, 

any uncertainty in the phase angle (the cosine of which is the phase correction in this case) will have 

an effect on the optical depth. Figures S4 and S5 show the change in derived optical depth for a 

percentage systematic offset on the phase angle (S4) and for a fixed systematic offset in radians to 

the phase angle (S5).  

 

Figure S4: Optical depth offset for a systematic percentage change in phase angle. 



 

Figure S5: Optical depth offset caused by an absolute systematic change in the phase angle.  

These Figures show that the effect on the Langley-derived optical depth is much more significant 

where there are uncertainties in the phase correction at higher wavenumbers. Interestingly, the 

pattern is different for a percentage, rather than an absolute offset. This is because of the phase 

angle itself, which at ~3000 cm-1 is offset by a factor of 2π over the course of the day (see Figure S6). 

This has no effect on the phase correction by itself, but a percentage perturbation to the phase angle 

results in a significantly different effect on the calibration depending on time of day, causing the 

large optical depth offset observed in Figure S4.  

 

Figure S6: Phase angle used in the phase correction for the observations of 18 September 2008.  

We believe that a combination of these factors, as explained in Section 2 of the paper, and the 

potential for a larger aerosol effect than measured by the Microtops sunphotometer may lead to an 

underestimate of the uncertainty at wavenumbers beyond ~7000 cm-1. We do not have a means of 

calculating the magnitude of this uncertainty. Therefore, motivated by the lack of laboratory 

observations of the water vapour continuum at these wavenumbers, and potential 

inaccuracy/unreliability of our measurements, we restrict the analysis of our data to the 4, 2.1 and 

1.6 µm windows. The introduction of field calibration capability that provided regular monitoring of 

the calibration across the spectral range would help resolve this issue in future measurements. 


