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Response to reviewer 2, Mikko Äijälä  

 
We thank Dr. Äijälä for carefully reviewing our manuscript and providing very useful comments 

and suggestions, which improved our manuscript. Below we address each comment point by point. 

For clarity we have marked the reviewer comment in blue, our answers in black, and changes to the 5 

manuscript in red. Page and line numbers (in black) in our replies refer to the clean revised 

manuscript (without tracked changes), and green line/page numbers refer to this response. 

 

Summary 

Sini Isokääntä and co-authors present a comparison of dimensionality-reductive techniques for mass 10 

spectral data analysis, applied to a data set of car exhaust + a-pinene aging experiment in a reaction 

chamber. The data, collected by a PTR-MS and an AMS, was factorized and clustered using 5 

different techniques. The authors present and discuss their analysis procedures and interpretation of 

results from mathematical and physicochemical viewpoints. For the PTR-MS data, all five 

techniques produce comparable results, yielding 4 to 5 interpretable factors (or clusters). This is a 15 

very important result considering the novelty of applying these methods to PTR-MS and similar 

mass spectral data of gas phase. For AMS data, only PMF and NMF yielded results that could be 

compared – PCA, EFA and PAM struggled with the particle data set. Although applied to data from 

a single experiment, the comparisons presented and the discussion on analysis techniques convey 

general messages for many similar analyses that abound in atmospheric science. 20 

 

The manuscript is clearly of interest to AMT readers, and touches the important topic of 

computational analysis of complex, large mass spectrometric data sets and advanced statistical 

methods of data analysis. Despite the evident need, a very limited amount of reviews of advanced 

statistical methods for this type of complex, physicochemical analyses is available, so I see the 25 

authors’ contribution as extremely welcome to the field. The manuscript is well and clearly written 

and structured. With some exceptions, detailed in specific comments, the data, analysis techniques 

and experimental setup is adequately described. I recommend the paper for publication in AMT 

after addressing the following comments. 

 30 

Major comments 

The authors generally do a good job of introducing and describing their methods, but I would call 

for discussion on the physicochemical objectives or purpose of the statistical techniques used in this 

study. Obviously it is about more than reducing the size or dimensions of the data, which is the 

single common feature of all these SDRTs. However, some of these methods are rather similar (e.g. 35 

PMF vs NNMF) while some aren’t (e.g. PAM vs factorization methods). Generally, a data analyst 

should choose a proper tool for the job, depending on the goal. Here it seems the methods are just 

applied on the data, seemingly without stating beforehand e.g. the difference in categorizing or 

classifying variables using PAM, studying the main explanative components of variability or doing 

latent feature extraction by exploratory factorization. Many of these differences are later casually 40 

mentioned, but I suggest an effort to further summarize these fundamental differences, and 

conversely, some of the close similarities could be made in the introduction and conclusions of the 

paper. 

 

We have now summarized and added discussion of the used SDRTs to a new section in the 45 

manuscript (section 4.4.), where we aimed to discuss the objectives and purposes of these 

techniques in more concise manner than mentioning these properties throughout the manuscript. 

 

4.4 Summary of the SDRTs used in this study 
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The methods tested in this study have many similarities and many, fundamental or computational, 

differences between them. Though in literature, they are many times applied to similar problems. In 

this section we will summarize some of these properties. 

EFA has a fundamental difference to the other methods as it is by definition a measurement model 

of a latent variable, i.e. the factor, (Osborne, 2014) whereas the other methods are basically 5 

describing the measured data with linear combinations of measured variables. The latent variables 

in EFA, i.e. the factors, cannot be directly measured, but instead, they are seen through the 

relationships they initiate in a set of Y variables, which are measured. In the other methods, in turn, 

the factors, components or clusters are calculated directly from the measured variables Y (Rencher 

and Christensen, 2012; Osborne, 2014). 10 

The approach to data reduction in PCA is to create one or more summarizing variables from a larger 

set of measured variables by retaining as much as possible of the variation present in the original 

data set (e.g. Jolliffe, 2002). This is done by using a linear combination of a set of variables. The 

created summarizing variables are called components. The main idea of the PCA is to figure out 

how to optimize this process: the optimal number of components, the optimal choice of measured 15 

variables for each component, and the optimal weights when calculating the component scores. 

The objective of cluster analysis is to divide the observations into homogeneous and distinct groups 

(Rencher and Christensen, 2012). Cluster analysis is a method where the aim is to discover 

unknown groups in the data, which are not known in advance. The goal of the clustering algorithm 

is to partition the observations into homogeneous groups by using some measure of similarity (or 20 

dissimilarity), such that the within-group similarities are large compared to the between-group 

similarities. The choice of the similarity measure can have a large effect on the result. One property 

of cluster analysis is that it will always calculate clusters, even if there is no strong similarity 

present between the variables in the data (Wu, 2012). This should be noted when interpreting the 

results, especially if the user has no a priori information about the number of clusters.  25 

NMF and PMF provide an alternative approach to the decomposition assuming that the data and the 

components are non-negative (Paatero and Tapper, 1994; Lee and Seung, 1999). Thus, all the 

features learned via NMF and PMF are additive; that is, they are adding together strictly positive 

features. PCA and EFA tend to group both positively correlated and negatively correlated 

components together, as they are only looking for the correlations of variables (except SVD-PCA, 30 

which can be applied to the data matrix directly). On the other hand, NMF and PMF, by constricting 

W and H to positive values, find patterns with the same direction of correlation. Thus, NMF and 

PMF work well for modelling non-negative data with positive correlations. However, if the interest 

is not only in the positive effects, then PCA and EFA can provide more information of for the 

investigated system. Cluster analysis is suitable for classifying observations based on certain 35 

criteria. The researcher can measure certain aspects of a group and divide them into specific 

categories using cluster analysis. However, this method is not suitable for data with variables which 

should show contributions from multiple factors/components (e.g. strongly fragmented signals in 

AMS data). 

Factorization methods, including those used in this paper, operate on the fundamental assumption 40 

that the factor profiles (here factor mass spectra) are constant over the investigated period. Often, 

this has been interpreted in a way that chemical processes occurring in a chamber experiment or the 

atmosphere violate this assumption. However, this interpretation is based on a too narrow definition 

of what a factor represents. A factor can be seen as a direct (emission) source of compounds which 
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changes its contribution to the whole signal (e.g. primary emissions from biomass burning as a fire 

develops and then dies). But a factor can also be interpreted as a group of compounds showing the 

same temporal behavior. If this group is released together as an emission or if the compounds are 

formed in the same ratio by some chemical process should not matter. In the latter case, it is 

important how wide the group is selected, i.e. if we group products of processes together for which 5 

the contribution changes with time. This means, choosing the optimal number of factors becomes 

even more important when chemical processes are occurring. EFA and PCA account for the 

chemistry happening in chamber measurements with negative loadings, as described above. Same 

factor can contain educts and products of a chemical process (e.g. oxidation), with the difference 

that their loadings are negative and positive, respectively.  10 

Taking account of everything above, the most important thing to consider when selecting the SDRT 

is the interpretation. What are the features the researcher wants to deduct from the data, what are the 

properties of the data and how the data can answer the research questions. As we have shown in the 

results section, the methods provide quite similar reconstructions of the time series, but the 

interpretation of the steps leading to these are quite different. For example, comparing EFA factor 15 

FE4 in Fig. 3a and PMF factor FP4 in Fig. 7a reconstructions, they seem to show the same 

procedure but the first one includes both positive and negative effects and the second one consists 

only of positive effects. 

 

Secondly: algorithmic methods are often discussed plenty in these types of reviews, but some of the 20 

equally significant, but less obvious issues include, among others: data pre-processing (e.g. scaling 

and weighting), metrics (e.g. for quality evaluation and similarity), and error models. Mostly, the 

authors cover these topics well enough, but some major questions surrounding e.g. the non-standard 

PMF error model the authors used and preprocessing of data for PCA/EFA are raised. See specific 

comments on the details. 25 

 

In our manuscript we did use the standard AMS error model for PMF, and we understand that this 

was clearly not emphasized enough in the manuscript as our error description was misunderstood. 

The main point using the standard AMS error was indeed to show how “reference” error works for 

PMF when compared to others. We have addressed this issue in detail in the specific comments (see 30 

our reply to comment “p.7.l.26” in page 10) and modified the manuscript accordingly. We have also 

now named the “Poisson style error” to “standard AMS error” to emphasize this. 

 

We have also clarified the data preprocessing steps for EFA and PCA as suggested, see our replies 

to specific comments “p.5.l.30” and “p.6.l.14” in pages 6 and 8, respectively. 35 

 

Finally, most factorization methods, including those used in this paper, assume constant factor 

profiles, i.e. that chemical reactions do not take place. This is fundamentally at odds with the 

approach of using them to model data of reaction chamber chemistry. In practice, the methods can 

work despite this (as is shown in this work), but this fundamental violation of basic assumptions 40 

should be explicitly stated and discussed. 

 

The assumption of constant factor profiles is indeed a very important one for PMF (and NMF). The 

idea that chemistry in the atmosphere/chamber violates this assumption is however a misconception 

stemming from a too narrow definition of what a factor represents. A factor can be seen as a direct 45 

(emission) source of compounds which changes its contribution to the whole signal (e.g. primary 

emissions from biomass burning as a fire develops and then dies). But a factor can also be 

interpreted as a group of compounds showing the same temporal behavior. If this group is released 
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together as an emission or if the compounds are formed in the same ratio by some chemical process 

should not matter. In the latter case, it is important how wide the group is selected, i.e. if we group 

products of processes together for which the contribution changes with time.  

As an example, consider a data set of gas phase measurements in the atmosphere. There is a mix of 

precursors and let there be OH and O3 chemistry during the day and NO3 and O3 chemistry at 5 

night. All of these reactions can form Highly Oxygenated Material (HOM) among other 

compounds. The ratio of the reaction pathways (and thus the observed HOM composition) will 

depend on the ambient conditions (e.g. O3 and NOx concentration, irradiation). If we do not 

constrain the PMF analysis, we will find more than one HOM-type factor (i.e. a daytime and a 

night-time factor). Each of these factors then has a constant profile, only the contribution to the data 10 

set changes with time, i.e., the time series of the night-time factor will be close to 0 during the day 

and vice versa for the day-time factor. As there is no strict criterion for the correct number of 

factors, it is important that the scientist analyzing such a data set compares solutions with different 

number of factors and uses additional information (such as other measurements). 

We also could perform a “rolling window” style PMF (looking at a short period of the data set at a 15 

time (e.g an hour) and then shifting this window by e.g. 10 min). If we set the number of factors to 

only find 1 HOM type factor in the whole data set, this factor would have a different factor profile 

during the day and at night. But this behavior was created by the choice of the scientist to have a 

certain number of factors.  

In the analysis presented in our manuscript, we did not use any such assumption about the type of 20 

factors we were expecting or even their number. Rather we inspected the solutions for multiple 

factor numbers and chose the number of factors based on the presented criteria and the 

interpretability, i.e., we first ran the analysis and then interpreted the results. We have now stated 

the assumptions for constant factor profiles in the new section 4.4 with further discussion. See reply 

to the first major comment in pages 1 and 2. 25 

 

Specific comments: 

p.2.l.2.: “…sharp change at the beginning of experiments, e.g., switching on UV-lights) may 

present additional challenges, as PMF was originally developed for field measurement data sets 

where real changes in factors are expected to be much slower than e.g. the noise in the data.”. In my 30 

understanding PMF is not assuming anything about order of measurement points or rates of change 

in loadings – please provide a reference or expanded rationale for this line of thinking! 

 

Indeed, PMF does not make any (mathematical) assumptions of the order of measurement points or 

rates of change. However, most of the PMF applications, so far, have been with ambient 35 

measurement data where, for most part of the data, the instrument noise is indeed more rapidly 

changing than the actual observed concentrations, which must be also assumed e.g. in the study by 

Ulbrich et al. (2009), where the AMS error scheme was introduced. We have now reworded the 

referred sentence to clarify that: 

 40 

page 3, lines 5-8 

[…] The special conditions in lab experiments (sharp change at the beginning of experiments, e.g., 

switching on UV-lights) present an additional test scenario, as PMF has been mostly used for field 

measurement data sets where the main focus is often in the long-term trends and real changes in 

factors are often expected to be more subtle, than e.g. the variations in the noise in the data. […] 45 

 

We also adjusted section 4.1.5 accordingly, please see reply to comment (“p.17.l.25”) in page 15. 

 

p.2.l.14. “In our study we chose a set of SDRTs having fundamental differences.” Aside from data 

reduction or simplification, the objective of SDRTs differ. Often, clustering is applied to classify or 50 
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categorize non-correlated variables, whereas factor analysis aims to uncover latent features the 

combination of which would best explain the variation in data. Can the authors please comment on 

their objective of the analysis outside of reduction of data size) of the use of SDRTs for this type of 

analysis? Especially regarding clustering. 

 5 

We have added a new section 4.4 to the manuscript to include more discussion of the fundamental 

differences and objectives the various SDRTs might have. Please see our answer to the major 

comment in the beginning of this reply. 

 

p.2.l.16: “On the other hand, clustering might be more suitable for a more simplified or preliminary 10 

approach, or when the chemical compounds in the data are already known.” It is not trivial to 

envision a case where clustering would be preferable, even as a preliminary approach – please 

expand on this reasoning or provide an example. 

 

Please see our reply to specific comment “p.10.l.5.” in page 13 for added examples. We modified 15 

the referred sentence to 

 

section 1, page 3, lines 19-21 

[…] On the other hand, clustering might be more suitable for a more simplified or preliminary 

approach (as it is computationally less demanding), or when the chemical compounds in the data are 20 

already known or if strict division between variables is preferred. […] 

 

p.3. : Please describe the PTR-MS and the SP-AMS in some more detail here. Specifically their 

mass analyzer resolution (C/HR/L –ToF), as this strongly affects mass analysis and type of data. 

 25 

Both of these instruments are extensively described in Kari et al. (2019) and in the references given 

there. However, we added the requested details of the mass analyzer resolutions shortly to the 

manuscript along with the other details requested by reviewer#1; 

 

section 2, page 4 lines 13-22 30 

[…] Detailed setup, calibration procedure and data analysis of the used high resolution PTR-MS 

have been explicitly presented in Kari et al., (2019b). In the campaign, the high mass resolution of 

the instrument (>5000) enabled the determination of the elemental compositions of measured 

VOCs. The instrumental setting was intended to minimize the fragmentation of most compounds, so 

the quantitation of the VOCs was possible. The chemical composition of the particle phase of the 35 

formed SOA was monitored with a soot particle high resolution aerosol mass spectrometer (SP-

AMS, Aerodyne Research Inc., USA, hereafter referred to only as AMS, Onasch et al., 2012). In 

brief, the SP-AMS was operated at 5 min saving cycles, switching between the electron ionization 

(EI) mode and SP mode. In EI mode, the V-mode mass spectra were processed to determine the 

aerosol mass concentration and size distribution. The mass resolution in this mode reaches ~2000. 40 

The SP-mode mass spectra were used to obtain black carbon concentration. As the used chamber 

was a collapsible bag, the volume of the chamber decreased over time due to the air taken by the 

instruments. […] 

 

p.3.l.9.: A note. As the authors state, if one does not account for mass spectra baseline, this may 45 

give rise to “background factors” or cause variables to get polluted or mixed (depending on 

instrument resolution). While theoretically these could be separated by factor analysis, in practice 

their presence in data hinders the analysis, often notably. For hard clustering, this effect of may 

even more problematic. Can you give an order of magnitude estimate of this effect? Can you 
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separate baseline factors / clusters in some cases? What is their fraction of total explained 

variability? 

 

We were not able to separate, or at least qualitatively justify that the background factor, e.g. FE4 

from EFA applied to the gas-phase data, would indeed be pure instrument and/or chamber 5 

background, as this factor also included ions related to the car exhaust, thus being slightly mixed.  

The lack of identified compounds for our gas phase measurements hinders the detailed analysis and 

identification of possible background factors. In principle, by adding more factors, we might be able 

to find one or more background factors, but as we would not have been able to identify those 

explicitly, we did not apply this approach here but rather acknowledged the possible uncertainty in 10 

our factors. Therefore, also quantifying this effect here is impossible.  

 

p.3.l.18.: This type of truncation correction is likely detrimental to analysis and should be avoided 

in statistical analysis (especially factor analysis, as it creates an artificial, non-random, variability 

component). If only few points had this problem, would it not be preferable to omit them? 15 

 

The number of observations which needed to be elevated to small positive values was not large, and 

so was the number of time points Removal of one negative value from one variable would require 

the removal of the complete row, and as the negative values occur in a few variables, but not at the 

same time point, this would remove a significant amount of the data. The small negative values in 20 

the data are in cases when the concentration of the compound was in practice zero, but the 

application of the baseline correction caused them to be very small negative numbers instead. We 

acknowledge the possibility of increased uncertainty due to this kind of procedure, but due to the 

very small size of the AMS data set, omitting the negative data points was not possible. PMF can be 

actually applied to some extent even with the existence of some negative values, but the NMF 25 

algorithm we used, does not allow the input of any negative values. In addition, also for PMF the 

data should be positive by definition and without extensive inspection of the source code of the 

PMF Evaluation tool we do not know how the software handles the negative numbers. Thus, to give 

all SDRTs the same data as an input, we replaced the negative values. To acknowledge this issue 

for the AMS data more clearly, we modified the end of the section 4.2.5 (please also note that this 30 

section has now been modified to include the 2-factor solution from PMF instead of the 4-factor 

one)  

 

page 24 lines 17-23 

[…] This, on the other hand, assigns different emphasis between the matrices, possibly causing 35 

NMF to use more effort to reconstruct the data matrix with factor time series. However, the reader 

should keep in mind that for detailed chemical analysis of such a small data set, especially with 

PMF, the downweighing is advisable. In addition, the replacement of very small negative numbers 

with very small positive numbers is not mandatory for PMF, as it can run containing a few negative 

values. However, we did the replacement here, as the NMF algorithm used here, does require 40 

strictly positive input data. Acquiring a balance between statistically good results and realistic 

factors might be challenging, and to achieve more robust results, testing different error schemes 

may be beneficial, especially for a data set with such a small size.  […] 

 

p.5.l.30: “[…]where X includes the analysed variables (centred and scaled by their standard 45 

deviations)” In their examination of errors in PCA (and PMF) in environmental applications Paatero 

and Hopke (2003) strongly advice against “autoscaling”: 

“5.1. Do not autoscale noisy variables in PCA 

In PCA, it is customary to scale columns of X so that in the scaled matrix, all of the 

columns have the 50 
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same variance. This procedure means that the sum of the two components of the 

variance (signal and noise) is constant over all variables. It follows that for the 

weakest variables, having the smallest amount of signal, the noise variance is much 

larger than for the strong variables. This behavior is in severe conflict with the 

recommendations found in this work: the exaggerated noise in a few noisy variables 5 

will cause the small principal components to be undetectable in the analysis and will 

increase the noise in other principal components. The recommendation is clear: “do 

not auto-scale noisy variables in PCA modeling” […] 

Is this type of scaling also done in here? Please reflect and add some discussion on the issue of error 

model in PCA. Perhaps recommend the readers to note this for future analyses? 10 

 

The sentence to which the reviewer is referring, explains how the scores (factor time series) are 

usually calculated. However, in the end of the paragraph, we say “the scores are calculated without 

standardizing the data matrix to achieve more interpretable component time series”.  

 15 

However, we assume the paper from Paatero and Hopke means if the data matrix X is scaled before 

applying PCA (or inside the algorithm). We used 2 variations of PCA, EVD-PCA, which uses 

eigenvalue decomposition into the correlation matrix (calculated from unscaled X, though centering 

for example, would not have an effect on the correlations), and SVD-PCA, which uses singular 

value decomposition into the data matrix X or the correlation matrix. Thus, no scaling, whatsoever, 20 

was applied when using EVD-PCA (which produced interpretable results shown in the manuscript). 

We also tested SVD-PCA, and applied it to the scaled data matrix, as this was the recommendation 

given for the algorithm we used. The SVD-PCA results were only shown in the supplement as they 

were not interpretable. However, as the reviewer explains, this might affect negatively into the 

results and is contradicting to the recommendations given by Paatero and Hopke (2003). Therefore, 25 

we now also looked into the SVD-PCA applied to the unscaled data matrix X, but those results did 

not show any improvement. We added one example of this to the supplementary material (see 

section S4.1 Figure S13) and modified sections 4.1.2 and S4.1 accordingly. We modified sections 

3.1.1 and 3.1.2 to emphasize that no scaling was applied to the data for EVD-PCA at any point and 

explain scaling/not scaling situation for SVD-PCA.  30 

 

section 3.1.1 

page 5 lines 23-25 

[...] It should be noted, however, that Eq. (1)  describes the theory behind the PCA model, not the 

actual calculation process, which is described below. Thus, for example, centering of variables is 35 

not required. […] 

page 5 lines 29-31 

[…] In our study we applied EVD-PCA to the correlation matrix (calculated from the unscaled data 

matrix) and SVD-PCA was applied to the data matrix without and with the scaling (centered and 

scaled by their standard deviations). In addition, the acquired […] 40 

 

section 3.1.2, page 7 lines 6-8 

[…] As for the PCA explained in the previous section, Eq. (4) here describes the form of an EFA 

model based on literature, not the direct calculation in the algorithm. Thus, no scaling (what e.g. the 

subtraction of the mean 𝑦̅1 from 𝒚𝟏 in Eq. (4) essentially is) is applied here.  […] 45 

 

section 4.1.2, page 16 lines 10-14 

[…] SVD-PCA (when applied to the scaled data matrix) was not able to separate α-pinene as its 

own component, but instead created two factors which were dominated by the unreacted α-pinene 

and its fragments (see Fig. S12 in SI section S4.1). In addition, the unrotated solution included a 50 
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large number of negative loadings, which complicated the interpretation of the components. No 

improvement was achieved when SVD-PCA was applied to the data matrix without any scaling 

(see. Fig. S13). […] 

 

section S4.1, page 6 lines 14-17 5 

[…] components from SVD-PCA (applied to the scaled data matrix) and the unrotated component 

time series and original loadings (scaled eigenvalues) are shown in Fig. S12 with 4 components. 

The unrotated results from SVD-PCA when applied to the unscaled data matrix are shown in Fig. 

S13, and Fig. S14 shows the original loading values for the Oblimin rotated EVD-PCA with 4-

components. […] 10 

 

p.5.l.24. : While potentially simplifying the chemical interpretation of factors, rotating the variables 

in a direction where ions are more separated between the factors, does this not equally degrade the 

time series interpretability (loadings’ time series get more similar)? 

 15 

In PCA and EFA the rotation is applied to the loading matrix only, as the loading’s time series are 

calculated after adjusting the actual loading values. This means in principle, that also the time series 

get more “different/separated” meaning rotation does not degrade, but in contrast even increase, the 

time series interpretability. In general, as pointed out, rotations potentially simplify the chemical 

interpretation of the factors, but they might decrease the overall fit, as the rotation is applied after 20 

the solution has reached the optimal value for the condition to be minimized. 

 

p.6.l.14.: Same question on EFA error model as for PCA above, as PCA and EFA are very similar 

methods. Please discuss error weighting and accounting signal-to-noise (Paatero and Hopke, 2003). 

 25 

Please see also our replies above (“p.5.l.30” and “p.5.l.24”). Regarding the error weighing. In EFA 

(or in PCA) no kind of weighing is applied based on measurement error as it is done in PMF. We 

now noticed from our formulation for EFA, that we use the term “the error term 𝜀1”, which might 

cause misunderstanding. The term in question is not the error in the same sense as for PMF (which 

needs the error matrix), but a residual error arising from the model fit. We renamed it to “the 30 

residual term 𝜀1” to avoid further confusion. 

 

Regarding the signal-to-noise, please see our reply to comment “p.7.l.21” in page 9. 

 

p.6.l.6.: Does the limit of 0.3 apply to AMS data as well? This means any m/z signal explaining 35 

under 0.3 ug/m3 was set to zero? How many variables does this affect – I would imagine it is a very 

large fraction? How does this truncation affect mass (signal) conservation in data? 

 

After applying PCA to the correlation matrix, the acquired eigenvectors were scaled by the square 

root of the eigenvalues (see page 5, lines xx-xx) to acquire similar loading values compared to EFA. 40 

The limit of 0.3 given here, was applied to those loading values, which are (and should be in most 

cases) between -1 and 1. It does not mean that signals explaining less than 0.3 µm/m3 are set to 

zero, but that the contribution of a variable into that specific factor is very small, and when setting 

the loading value to 0 for that factor, we enhance the separation between the factors. The limit of 

0.3 for the absolute value of the loadings is widely applied in literature, and was thus selected (e.g. 45 

Field, 2013, Izquierdo et al., 2014). We adjusted the paragraph and references to justify our 

selection of the limit 0.3: 

 

section 3.1.1, page 6 lines 26-29 
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[…] Very small loading values (absolute value less than 0.3) are suppressed to zero to enhance the 

separation of ions between the components. The limit of 0.3 was selected, as this is often given as a 

reference value for insignificant loadings (see. e.g. Field, 2013; Izquierdo et al., 2014).  […] 

 

Regarding the mass signal conservation. As for EFA and PCA the factor scores can be calculated in 5 

various ways, and as the loading values can be negative, EFA and PCA do not conserve the original 

mass signal in that sense, but instead aim to conserve as much information (i.e. we could calculate 

how much of the correlations are preserved with different number of factors) from the original data 

as possible. Even though there are no practical obstacles to back-calculate the original signal from 

the obtained loadings and scores (which are calculated with the loadings), it does not make sense in 10 

a similar manner as for NMF and PMF, where the “scores” and “loadings” are optimized at the 

same time inside the algorithm. Due to this, the concentration of the factors between these methods 

is not fully comparable, but this is not an issue in this type of analysis. 

 

p.7.l.15 On the error model of st.dev / sqrt(n): as written in the text, st.dev reflects the changes in 15 

the concentrations of compounds in the chamber, during the experiment, and not measurement 

uncertainty (or counting statistics error of the instrument) in a repetition measurement? How does 

dividing it by (square root of) data series length make it a more relevant error metric? Please 

explain. Also: Why not use the standard error model computed by the AMS analysis software 

(Squirrel/Pika; e.g. Ulbrich et al., 2009)? 20 

 

The PMF model was first introduced by using the standard deviations as an error metric, see 

Paatero and Tapper, (1994). The error metric applied here (st.dev / sqrt(n)) is commonly called 

“standard error”. It takes into account that deductions from measurement with less observation 

contain more uncertainty. As the standard deviation may be high in this type of data (containing the 25 

step change at the onset of photochemistry), it may be a too conservative estimate for uncertainty in 

PMF analysis. Accounting for the number of observations gives a more reasonable estimate for total 

uncertainty. We clarified this in section 3.1.3: 

 

page 8 lines 8-11 30 

[…] But as a reference, the standard error of the mean (the standard deviations of the ion traces 

divided by the square root of the number of observations, i.e., length of the ion time series) was 

used as an error for both PTR-MS and AMS data. It considers that measurements with less 

observations contain more uncertainty. These error values are constant for each ion throughout the 

time series […] 35 

 

We did use the “standard” AMS error in our study (named Poisson-like error). For more details see 

our reply to comment (“p.7.l.26”) in page 10. 

 

p.7.l.21. (and in the supplementary referred): In calculation of the signal-to-noise-ratio (SNR), you 40 

identified weak and bad variables (defined by their low SNR). However in contrast to usual practice 

(in PMF), you do not down-weight these signals. Especially since you are using a custom (not 

thoroughly validated) error model, I would listen by the advice, Paatero and Hopke (2003): 

“Regarding weak/bad variables, the main result of this work is that even a small 

amount of overweighting is quite harmful and should be avoided. In contrast, 45 

moderate downweighting, by a factor of 2 or 3, never hurts much and sometimes is 

useful. Thus, it is recommended to routinely downweight all weak variables by a 

factor of 2 or 3. This practice will act as insurance and protect against occasions 

when the error level of some variables has been underestimated resulting in a risk of 

overweighting such variables. Regarding bad variables (where hardly any signal is 50 
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visible from the noise), the recommendation is that such variables be entirely omitted 

from the model.” 

The reasoning for not down-weighting only states that low SNR data has high noise-to-signal rate, 

which is only stating the evident, and not very useful. Also, the small number of variables is not 

really a good excuse to deviate from the practice (without at least some sensitivity analysis). While 5 

I agree the overall error from not doing this properly is likely smallish (for PMF), I recommend you 

acknowledge the issue and cite this ”best practice”, the Paatero and Hopke (2003) recommendation, 

for the readers – not to proliferate a deficient data pre-processing practice. 

 

We have added more justification for omitting the downweighing. Please also see our reply to 10 

Reviewer#1 comment (“page22 line 20”) 

 

section 3.1.3, page 8 line 27 – page 9 line 2 

 […] . In contrast to the suggested best practice (Paatero and Hopke, 2003), we did not 

downweighed any ions in our data sets. This approach was used in order to give each SDRT an 15 

equal starting point for the analysis, as e.g. for NMF or PCA similar downweighing is not possible, 

as we do not have any error estimates to calculate the signal-to-noise ratios in similar manner.  

However, to avoid misguiding the reader to omit recommended data pre-processing practice for 

PMF, we also tested PMF with downweighing. This, as expected, did not change our results 

significantly, but we acknowledge it should be indeed applied if aiming for a more detailed 20 

chemical interpretation of the PMF factors. […] 

 

section S2.3, page 5, lines 1-5  

[…] However, no removal or downweighing of the variables was applied in the results presented in 

the main manuscript, as for the weak ions the error values were already in the range of the ion 25 

signal itself, and for the bad variables the error was usually way above the signal throughout the ion 

time series. In addition, the number of weak or bad ions for both AMS and PTR-MS data were 

rather small. To justify our decision, we did run the PMF analysis with the downweighing. This, as 

expected, did not change our results or interpretation, and thus those results are omitted. […] 

 30 

Regarding the AMS error, see our reply to the next comment (to comment “p.7.l.26”). 

 

p.7.l.26., also Figure S4 (should be: “S7”?). The standard AMS error model is composed of a 

minimum (Gaussian) error (Ulbrich et al., 2009), related to electrical background noise of the 

instrument (background at zero signal) plus a counting statistics uncertainty that follows the Poisson 35 

distribution (error is proportional to the square root of signal intensity; Allan et al., 2003). This 

model seems different from the ones used in this paper. Please comment on this, and why you chose 

not to directly use the approach of Allan et al and Ulbrich et al. (2009), readily available from the 

AMS analysis software. 

From the plot S4 (should be “S7”?) “PMF error schemes” it seems the constant error scheme 40 

(“Static error”) overestimates error, especially for low concentrations, and the counting statistics 

(Poisson) error seems negligible (underestimated), even for the most abundant aerosol ion, at m/z 

44, at highest concentrations. Please double check and report the error calculations here against 

what you get from the “Squirrel” AMS analysis software. 

Why was the “signal following error” not used/tested for the AMS, since it seems to work for PTR-45 

MS? 

 

We did use the standard AMS error model, as mentioned in our reply to major comment in page 3 

line 27. We have now modified the manuscript accordingly to avoid this misunderstanding. In 

addition, we renamed the “Poisson style error” to “standard AMS error” to emphasize this. 50 
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Section 3.1.3, page 8 lines 17-25 

[…] For AMS, we also applied a standard error that is frequently used by the AMS community. The 

standard AMS error consists of the minimum error related to the duty cycle of the instrument and 

the counting statistics following the Poisson distribution (Allan et al., 2003; Ulbrich et al., 2009). 

Shortly, the standard AMS error for signal I can be formulated as 5 

𝑰𝒆𝒓𝒓 = 𝛼√
𝐼𝑂+𝐼𝐶

𝑡𝑠
,                                                                                                                                 (9) 

where 𝛼 is an empirically determined constant (here α = 1.2, generated by the AMS analysis 

software PIKA, http://cires1.colorado.edu/jimenez-

group/ToFAMSResources/ToFSoftware/index.html, last visit on 9.9.2019), 𝐼𝑂 and 𝐼𝐶 are the raw 

signal of the ion of particle beam (ions s-1) for the chopper at open and closed position, respectively, 10 

and 𝑡𝑠 is the sampling time at a particular m/z channel (s). […]  

The signal following error was indeed tested for AMS data, but the results were omitted as they did 

not show any clear improvement and were rather similar to those acquired with the standard AMS 

error and thus would have lengthened the manuscript unnecessarily. We now mention this in the 

manuscript section 4.2.4: 15 

 

page 23 lines 29-31 

[…] The signal following error, used for PTR-MS, was also tested for particle phase data. However, 

as this type of error showed very similar behaviour as a time series as the Standard AMS error, and 

produced very similar outcome, those results are omitted from this manuscript. […] 20 

 

p.8. l.6.: How much does the Q (or Q/Q exp ratio) increase with these fpeak values? 

 

Figure 1 below show the Q/Qexp for PTR-MS data with the 5-factor solution with static error (left) 

and signal following error (right). The change with fpeak is rather small, as seen from the figures. 25 

The actual factorization also does not change (for PTR-MS) with different fpeak, indicating the 5-

factor solution is quite robust. 

 

 
 30 
Figure 1 Q/Qexp for PTR-MS data with the 5-factor solution with static error (left) and signal following error (right). 

 

p.9.l.10.: How do you interpret the negative loadings in EFA and PCA? Why were these solutions 

deemed physically sound, if they feature negative mass loadings? 

http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html
http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/index.html
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These negative loadings refer to the feature of EFA and PCA that the factor loadings can be 

negative. Negative factor loading may have different interpretations. It may indicate that the 

compound has a decreasing effect on the factor, i.e. it acts as a sink for the compounds with positive 

loading in the same factor. In chamber experiments, negative loading may also refer to decreasing 5 

concentration of the compound within chemical reactions. For example, a compound that can be 

rather easily oxidized, or forms in the later state of the experiment, might get negative loading in a 

factor, that mostly contains later generation products. An example of this is benzene (detected as 

C6H7+), assigned to FE1. When inspecting the original loading values, it has a negative loading in 

FE1 (identified as later/slowly forming products), and a positive loading in FE4 (identified as 10 

precursors from car exhaust/background). As benzene originates from the car exhaust, it contributes 

positively to FE4. However, as it oxidizes over the course of the experiment (thus it has a 

decreasing concentration), it contributes negatively to FE1, which mostly includes those later 

generation products. 

 15 

We understand our approach does indeed conceal some additional information EFA/PCA can 

provide, but as we did not have enough detailed information of the measured compounds (e.g. the 

sum formulas were not identified for all compounds), the interpretation of the negative loadings 

separately, for the most part, was not possible. We added more clarification about this in the end of 

section 3.1.5, and also discuss this property of EFA/PCA in the new section 4.4 (see pages 1-3 in 20 

this reply).  

 

section 3.1.5, page 10 lines 9-19 

[…] However, this type of approach conceals the information of the negative factor loadings in 

EFA and PCA (which are included in the calculation of factor/component time series as weights), 25 

but instead visualizes the general contribution of an ion to a factor. Negative factor loadings may 

have different interpretations. It may indicate that the compound has decreasing effect on the factor, 

i.e. it acts as a sink for the compounds with positive loading in the same factor. In chamber 

experiments, negative loading may also refer to decreasing concentration of the compound 

participating in chemical reactions if it acts as a precursor for other compounds in the same factor. 30 

One example of this is benzene (C6H6), observed with PTR-MS. When inspecting the original 

loading values from EFA, for example, it has negative loading in FE1 (identified as later/slowly 

forming products), and positive loading in FE4 (identified as precursors from car 

exhaust/background). As benzene originates from the car exhaust, it contributes positively to FE4. 

However, as it oxidizes over the course of the experiment (thus has decreasing concentration), it has 35 

a strong correlation with oxidation products but appears negative in FE1, which mostly includes 

those later generation products. […] 

 

p.10.l.5.: “Depending on the aim of the study 5 and the type of the data, this property of cluster 

analysis may be considered either as an advantage or disadvantage.”. This is an important point in 40 

this paper overall, as is the difference between hard vs soft divisions of variables. Please elaborate, 

and e.g. give the reader some examples of data analysis of objectives where cluster analysis would 

be at an advantage or disadvantage. 

 

Obvious disadvantage is in cases where one compound affects multiple factors by physical or 45 

chemical definition. Then clustering loses information by forcing the compounds on only one 

cluster. For example, when identifying pollution sources, black carbon can be emitted from both 

wood burning emissions and traffic. There, clustering might not be the best approach. On the other 

hand, computational time (as shown also in this study) is one clear advantage for PAM or hard 
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division techniques in general, especially when analyzing very long ambient data sets. Hard 

division techniques have also been shown to work efficiently when distinguishing between different 

coffee types (i.e. strict separation between clusters is needed), as shown by hierarchical clustering 

by Sánchez-López et al. (2014). 

 5 

We added few examples to section 3.2.1, page 11 lines 15-21 

[…] One obvious advantage of cluster analysis (or hard division techniques in general) is 

computational time, especially if analyzing long ambient data sets. For laboratory measurements, 

this most likely is not an issue. Hard division techniques have also been shown to work efficiently 

for VOC measurements when distinguishing between different coffee types (espresso capsules), 10 

where strict separation between clusters is needed, as shown in Sánchez-López et al., (2014). For 

source apportionments studies, where one variable might originate from multiple sources, cluster 

analysis using hard division technique is probably not as suitable as softer division techniques, 

which can assign one variable to multiple sources/factors. […] 

 15 

p.10., Section 3.3.: As you state, interpretability is key. Chemical interpretability is discussed in a 

concise way. However, in addition to chemical interpretation, looking at loading time series is an 

important indicator. Do the time series reflect the kind reaction kinetics (in experiment chamber) 

and take place in reasonable timescales? This relates to e.g. Fig.13. 

Comparing e.g. the PMF results in Figs. 13, S26, S27 – only the rank 3 Poisson-model (Fig S26-c) 20 

solutions’ loadings (and factor 3 in Fig 13d) behave in a realistic way. The others anti-correlate 

highly, usually signaling they are over-resolved (unrealistically split) and usually then less 

components should be used. See for example f1 andf2 in Fig 13-a: correlation is undoubtedly close 

to -1 and the dynamics do not make sense – this simply seems like a bad factorization solution. 

 25 

Following the suggestion regarding the PMF solution for AMS in comments below (see reply to 

comment “p.21., Section 4.2.4” in page 15) we now present a 2-factor solution in the PMF results. 

The figure below shows the evolution of the two PMF factors and α-pinene. In the chamber, we 

assume a steady-state OH concentration of 107 molecules/cm3, and the reaction rate constant OH-α-

pinene of 52.3×10−12 cm3 molecule−1 s−1, it is very likely to get α-pinene consumed (25ppb) in a 30 

time scale of half an hour. If we assume a mass yield of a-pinene SOA of 30% in this study (Kari et 

al., 2019), the consumed α-pinene (about 140 µg m-3) can be transformed to a SOA mass 

concentration of 52 µg m-3, This is consistent with what is observed in the figure. Thus, we can 

assume the time series from the SDRTs used in this study reflect the reaction kinetics in the 

chamber and the processes take place on reasonable timescales. 35 

 

 
Figure 2 Two-factor solution for particle-phase data from PMF (fpeak = 0) with the injected α-pinene. 
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p.13, Section 4.: the factor profile figures (Figs 3 through 7) are really difficult to read this way! 

Please separate each factor to its own sub-plot, similar to Figure 12-b. Maybe put the fractional 

plots to supplementary material? 

Figure 1, Figure 2. Please highlight in these figure factor numbers (e.g. a larger dot?) that were 

selected according to the evaluation metrics. 5 

In all figures, for quick reference, please state if it is gas or particle (or AMS vs PTR-MS) data. 

 

Figures 1, 2 and 11 are now modified as suggested, RSS in Figure 2 and 11 is changed to more 

NMF related metric as suggested by Reviewer #1. Captions in each figure were adjusted to include 

the information of the data (AMS or PTR-MS), and we added factor description (those in table 1 & 10 

2) to the figures in the manuscript (when applicable), as requested by the reviewer#1. 

 

With the factor contribution figures, we looked for a way of displaying the factor/compound 

“compositions” in a way allowing direct comparison of the different methods. Normalizing the 

factor contribution for each ion was chosen to avoid the very different weighting methods in NMF 15 

and PMF between the factorization matrices and also to be able to show EFA/PCA/PAM results in 

a similar manner. We now added figures with the factor mass spectra in separate panels in the SI 

material for easier comparison (section S5, renamed to “Contrast angle and factor spectra 

comparison”, Figures S20, S21), and pointed them out in the manuscript: 

 20 

section 4.1.6 

page xx, lines xx-xx 

[…] Table 1 summarizes the acquired results from different SDRTs for the gas phase composition 

data measured with PTR-MS, and Figs. S20 and S21 in SI section S5 show separate factor 

contributions for each of the SDRTs. […] 25 

 

p.14. Section 4.1.2.: The difficulty to interpret PCA (negative) highlights that PCA separates 

principal components of variability, whether positive or negative, which can not [necessarily] 

directly be interpreted as physical [concentration] components of the system – the variability could 

be equally connected to losses of signal due to it chemically reacting away. Again, this ties to the 30 

objective of the analysis and should be discussed more clearly. 

 

Please see our reply to specific comment (“p.9.l.10”) in page 12. In addition, see our reply to the 

major comment in the beginning of this reply (we have now included a new section 4.4, to the 

manuscript with more discussion of the objectives or the analyses). 35 

 

p.17.l.25. “This is caused by the used error scheme, where errors are larger for the fast changes in 

the data (Fig. S4b).“ I am very confused. Is this “feature” intentional? This also relates to the 

question of p.7.l.15. Is the variability of ion concentration in chamber is indeed used as a metric for 

measurement uncertainty (even when scaled by sqrt(n)?. This seems a peculiar, to say the least, a 40 

very un-orthodox way to do error modeling in PMF. It could explain why PMF does surprisingly 

poorly compared to the other models for AMS data. 

Importantly, please include a comparison of your error models versus “the standard” error model in-

build in AMS data analysis software(s) (Squirrel / Pika / PET) and list the differences between the 

standard practice (see e.g. Allan et al., 2003; Ulbrich et al., 2009; Zhang et al., 2011) and your data 45 

pre-processing procedure. 

 

We did use the “standard” AMS error in our study (named Poisson-like error). For more details see 

our reply to comment (“p.7.l.26”) in page 10. 
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In principle the feature of having larger errors for fast changes is intentional, as if we would have 

ambient data, such large variations most likely would be considered as instrument malfunctions 

(“spikes” in the data), thus applying a larger error for those data points is reasonable. Our aim using 

the “signal following error” was indeed to use an error scheme, that could also be used for ambient 

measurements. In addition, for ambient data we are not that interested in the brief period with rapid 5 

and fast changes, as long as the new values after these changes are captured well by PMF. However, 

in chamber measurements this type of changes can be relatively large (as in this study) and should 

be assessed in a different way. We wanted to test two very different error schemes here to 

investigate how this affects to the results. The static error stays constant over time, thus giving equal 

weight to time points whereas the signal following error assumes those fast changes are not so 10 

important. For example, if we would be interested in long term changes in ambient measurements, 

signal following error would be the choice. We have now reworded the corresponding part in 

section 4.1.5 to be consistent: 

 

page 19, lines 17-24 15 

[…] This is caused by the used error scheme, where errors are larger for the fast changes in the data 

(Fig. S4b). In ambient data not measured at instant proximity of strong emission sources, for which 

PMF is often used, this type of error is beneficial as there the fast changes are more likely to be 

noise or instrument malfunctions (excluding, for example, sudden primary emission plumes), and 

we are more interested of the long-term changes instead. For laboratory data, where large changes 20 

are often caused by rapid changes in actual experimental conditions, e.g. due to injecting α-pinene 

or turning the UV lights on, the static type of error is most likely preferable. Usage of the static 

error scheme helps to avoid overcorrecting intentional (large) changes in experimental conditions 

and confusing them with real variation taking place during the experiment and typically being much 

less pronounced. […] 25 

 

p.21., Section 4.2.4.: I would have inspected the 2 factor solution, is it had percentage-wise the 

largest decrease in Q/Qexp. Usually it is also good practice to start from lower number that you can 

certainly interpret and continue to higher numbers. This could explain also why EFA and PAM 

suggest 2 factors (clusters). Please show these 2 factor (cluster) solutions (in the supplementary 30 

material). 

The analysis on the error scheme issues seems correct. 

I have to disagree on the interpretability of the PMF solutions presented here. This solution seems a 

mathematical one rather than physically meaningful. See also comment to p.10., Section 3.3., 

Figure 13 etc. The time series indicate over-splitting of factors (extreme anti-correlation of f1,f2,f3) 35 

and the most of spectral profiles have extreme positive correlation (extreme high similarity by 

visual inspection). I don’t really see many interpretable features in Figure 13. Mainly the HOA 

spectrum in Fig 13b, LV(f1,f2,f3)/SV(f4) split in 13 c&d. 

 

Regarding EFA and PCA. We would not trust the number of factors – tests here, as the data from 40 

particle phase measurement has more variables than time points, which creates significant 

calculational issues (see e.g. page 21 lines 19-24) for the eigenvalue decomposition used with PCA 

and for the EFA algorithms due to the issues with the correlation matrix. We can still run EFA and 

PCA, but in both cases some smoothing is applied inside the algorithms due to the non-positive-

definite correlation matrix. Solutions with 2 factors/clusters were already shown in Figs. S24 and 45 

S26/S27. The PCA solution with 2 components was omitted, as it was almost identical to the EFA 

solution thus bringing no new information to the manuscript.  

 

We do agree with the reviewer about the interpretability of the presented PMF solution. We have 

conducted PMF on the entire experiment dataset (compare to only one day experiment in this 50 
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study), which produced four meaningful factors (see Figure 3 below). The 4-factor solution is nicely 

consistent with those in NMF (Sec. 4.2.3). HOA (hydrocarbon OA) was dominated by the 

prominent CnHC2n-1 and CnHC2n+1 family ions and appeared as primary emission in the 

experiments that included the vehicle, the αP_SOA_SVOOA and αP_SOA_LVOOA factors are 

present only in the pure a-pinene SOA experiments. The mixed_LVOOA factor appears in both 5 

mixed car exhaust and α-pinene SOA experiments. The four factors are physically and chemically 

meaningful. However, in this study, measurement data of only one day (i.e. one chamber 

experiment) was included for the analysis. This clearly caused issues for PMF, and as suggested by 

the reviewer, a two-factor solution may be preferable for this subset of data. Hence, we have now 

changed the AMS PMF results in the main manuscript to the 2-factor solution and added the results 10 

with 4 factors to the SI. The factors from 2-factor solution can be interpreted as SVOOA and 

LVOOA.  
 
 

 15 
Figure 3 The mass profiles and time series of a 4-factor solution of PMF analysis on the entire experiment (Kari et al., 

2019) 

The results from PMF with particle phase data were modified, and the sections 4.2.5, 5 and the 

corresponding SI material, abstract and figures were modified accordingly. 

 20 

corrected section 4.2.4  

The Q/Qexp for the two error schemes are shown in Fig. 11b. Neither of the error schemes show a 

clear inflection point. Examples of behaviour of the errors as a time series are shown in Fig. S7 (SI 

Sect. S2.2). With the standard AMS error, the Q/Qexp values do not reach 1 (with 10 factors Q/Qexp = 

1.76) whereas with the static error the values decrease below 1 for 7 factors. The solutions with 2-5 25 

factors were inspected, and the 2-factor solution (Fig. 13) is presented here as the most interpretable 

one (summarized in Table 2). The primary OA factor, separated by NMF (Fig. 12, FN2) was only 

found if using 4 factors and the static error scheme in PMF (see SI Sect. S6.2, Fig. S31a-b). 

However, interpretation of the time series for that solution was found to be very difficult due to the 

extreme anticorrelation between the time series, and thus the 2-factor solution was selected. The 30 

two factors were interpreted as SVOOA and LVOOA. In addition, the largest relative decrease in 

the Q/Qexp was observed with the 2-factor solution.  
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The residuals for the standard AMS error were smaller, as shown in Fig. 14. This agrees with the 

analysis of the gas phase data set, where the residual for the signal following error (which has a 

similar profile in time as the standard AMS error) were generally smaller compared to the static 

error. 

The signal following error, used for PTR-MS, was also tested for particle phase data. However, as 5 

this type of error showed very similar behaviour as a time series as the standard AMS error, and 

produced very similar outcome, those results are omitted from this manuscript. 

 

corrected section 4.2.5 

Table 2 summarizes the acquired results from NMF and PMF for the particle phase composition 10 

data measured with AMS. PAM was not able to separate distinct clusters due to the inability of 

clustering techniques to classify an ion into multiple clusters. Comparing the relative factor spectra 

and fraction of signal from NMF and PMF with the static error (Figs. 12b and 13b), the distribution 

of ions is similar between the LVOOA in the PMF solution and  the mixed LVOOA factor in the 

NMF solution, and also similar between the SVOOA in the PMF solution and the αP-SOA factor 15 

(integrated- αP-SOA-SVOOA and αP-SOA-LVOOA factors). When inspecting the individual ion 

time series in the original AMS data, most of them have rather “smooth” behaviour, similar to the 

factors acquired from NMF. It seems, that PMF gives more weight to the background ions (with 

very small concentration) which do not have that clear structure in their time series, thus including 

more of their behaviour in the final factors, if the number of factors in PMF is increased from 2 (see 20 

SI Sect. S6.2 Figs. S30-S32). Residuals from NMF reconstruction (with 4 factors) were over ten 

orders of magnitudes smaller (for NMF between -1.3∙10-13 and 7.1∙10-14) than those from PMF 

(between -0.06 and 0.13 for the 2-factor solution with standard AMS error, see Fig. 14), indicating 

better reconstruction of the data with NMF. Most likely PMF struggles with the small data set, thus 

not being able to recover all the factors found by NMF and construct reasonable time series for 25 

those factors (see 4-factor solution in Fig. S31), whereas NMF does not seem to be affected by the 

data size. In addition, the weighing between the factorization matrices between NMF and PMF is 

different not only due to the error matrix that is given as a weight in PMF, but also because of the 

different solving algorithms for each method. This, on the other hand, assigns different emphasis 

between the matrices, possibly causing NMF to use more effort to reconstruct the data matrix with 30 

factor time series. However, the reader should keep in mind that for detailed chemical analysis of 

such data set, especially with PMF, downweighing is advisable. In addition, the replacement of very 

small negative numbers with very small positive numbers is not mandatory for PMF, as it can run 

with a few negative values into some extent. However, we did the replacement here, as the NMF 

algorithm used here, does require strictly positive input data. Acquiring a balance between 35 

statistically good results and realistic factors might be challenging, and to achieve more robust 

results, testing different error schemes may be beneficial, especially for a data set with such small 

size.  

abstract page 1 lines 23-24 

[…] For the particle phase measurements, four factors were discovered with NMF: one primary 40 

factor, a mixed LVOOA factor, and two α-pinene SOA derived factors. PMF was able to separate 

two factors: SVOOA and LVOOA. […] 

 

section 5  

page 26 line 32 – page 27 line 1 45 
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[…] From the particle phase data, NMF was able to separate four factors, whereas PMF separated 

two. […] 

page 27 lines 3-5 

[…] EFA and PCA had computational constraints due to the small data size acquired from the AMS 

and could not to be applied. In addition, PMF also faced assumedly computational issues with the 5 

small particle phase data set, thus not being able to reasonably separate the HOA factor. […] 

Technical corrections: 

p.3.l.4.: PTR generally refers to the ionization reaction and not the instrument, Please use PTR-MS 

or similar, common acronym. 

 10 

We corrected PTR to PTR-MS in the manuscript and supplement and in all figures. 

 

p.7.l.30. ts here is sampling time per m/z channel, when scanning (Allan et al., 2003), not to be 

confused with the total sampling time of the instrument, so please add this clarification. 

 15 

We have now clarified this in the manuscript. Please see our reply to specific comment (“p.7.l.26”) 

in page 10. 

 

p.21.l.13.: Please add a reference to m/z 57 and 59 link to HOA. 

Supplementary material: please check figure numbering is in numerical order. Similarly to main 20 

part figures, please add if data is PTR—MS or AMS. 

 

We added the reference that was missing (Zhang et al., 2005), corrected one other reference (Hoyle 

et al, 2011 to National Research Council, 1991) and corrected the numbering of the figures and 

indicate in each figure caption the type of data presented. 25 

 

section 4.2.3, page 23 line 5 

[…] contains marker ions associated with HOA (e.g. m/z 57, Zhang et al., 2005) condensed again in 

a cooler chamber […] 

 30 

 

REFERENCES 

Field, A.: Discovering Statistics using SPSS, 4 ed., SAGE, London, 2013. 

Izquierdo, I., Olea, J., and Abad, F. J.: Exploratory factor analysis in validation studies: uses and 

recommendations, Psicothema, 26, 395-400, 10.7334/psicothema2013.349, 2014. 35 

Sánchez-López, J. A., Zimmermann, R., and Yeretzian, C.: Insight into the time-resolved extraction 

of aroma compounds during espresso coffee preparation: online monitoring by PTR-ToF-

MS., Anal Chem, 86, 11696-11704, 2014. 

Zhang, Q., Alfarra, M. R., Worsnop, D. R., Allan, J. D., Coe, H., Canagaratna, M. R., and Jimenez, 

J. L.: Deconvolution and quantification of hydrocarbon-like and oxygenated organic 40 

aerosols based on aerosol mass spectrometry, Environ Sci Technol, 39, 4938-4952, 

10.1021/es048568l, 2005. 

 

references 

Allan, J.D., J.L. Jimenez, H. Coe, K.N. Bower, P.I. Williams, and D.R. Worsnop, Quantitative 45 

Sampling Using an Aerodyne Aerosol Mass Spectrometer. Part 1: Techniques of Data Interpretation 

and Error Analysis, Journal of Geophysical Research- Atmospheres, Vol. 108, No. D3, 4090, 

doi:10.1029/2002JD002358, 2003. (NB! Includes corrigendum) 



19 

 

I.M. Ulbrich, M.R. Canagaratna, Q. Zhang, D.R. Worsnop, and J.L. Jimenez. Interpretation of 

Organic Components from Positive Matrix Factorization of Aerosol Mass Spectrometric Data. 

Atmospheric Chemistry and Physics , 9(9), 2891-2918, 2009. 

P. Paatero and P. K. Hopke, “Discarding or Downweighting High-Noise Variables in Factor 

Analytic Models,” Analytical Chimica Acta. Vol. 490, No. 1-2, 2003, pp. 277-289. 5 

http://dx.doi.org/10.1016/S0003-2670(02)01643-4 

Q. Zhang, J.L. Jimenez, M.R. Canagaratna, I.M. Ulbrich, S.N. Ng, D.R. Worsnop, and Y. Sun. 

Understanding Atmospheric Organic Aerosols via Factor Analysis of Aerosol Mass Spectrometry: a 

Review. Analytical and Bioanalytical Chemistry, 401, 3045-3067, DOI:10.1007/s00216-011-5355-

y, 2011. 10 

 

 


