
1 

 

An intercomparison of CH3O2 measurements by Fluorescence Assay 

by Gas Expansion and Cavity Ring–Down Spectroscopy within 

HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) 

Lavinia Onel1, Alexander Brennan1, Michele Gianella2, James Hooper1, Nicole Ng2, Gus Hancock2, Lisa 

Whalley1,3, Paul W. Seakins1,3, Grant A. D. Ritchie2, Dwayne E. Heard1,3 5 

1 School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK 
2 Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, OX1 3QZ, UK 
3 National Centre for Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK 

Correspondence to: Lavinia Onel (chmlo@leeds.ac.uk); Paul Seakins (p.w.seakins@leeds.ac.uk); Grant Ritchie 

(grant.ritchie@chem.ox.ac.uk); Dwayne Heard (d.e.heard@leeds.ac.uk) 10 

Abstract 

Simultaneous measurements of CH3O2 radical concentrations have been performed using two different methods in the Leeds 

HIRAC (Highly Instrumented Reactor for Atmospheric Chemistry) chamber at 295 K and in 80 mbar of a mixture of 3:1 He:O2 

and 100 mbar or 1000 mbar of synthetic air. The first detection method consisted of the indirect detection of CH3O2 using the 

conversion of CH3O2 into CH3O by excess NO with subsequent detection of CH3O by fluorescence assay by gas expansion 15 

(FAGE). The FAGE instrument was calibrated for CH3O2 in two ways. In the first method, a known concentration of CH3O2 

was generated using the 185 nm photolysis of water vapour in synthetic air at atmospheric pressure followed by the conversion 

of the generated OH radicals to CH3O2 by reaction with CH4/O2. This calibration can be used for experiments performed in 

HIRAC at 1000 mbar in air. In the second method, calibration was achieved by generating a near steady-state of CH3O2 and 

then switching off the photolysis lamps within HIRAC and monitoring the subsequent decay of CH3O2 which was controlled 20 

via its self-reaction, and analysing the decay using second order kinetics. This calibration could be used for experiments 

performed at all pressures. In the second detection method, CH3O2 has been measured directly using Cavity Ring-Down 

Spectroscopy (CRDS) using the absorption at 7487.98 cm-1 in the A  X (12) band with the optical path along the ~1.4 m 

chamber diameter. Analysis of the second-order kinetic decays of CH3O2 by self-reaction monitored by CRDS has been used 

for the determination of the CH3O2 absorption cross section at 7487.98 cm-1, both at 100 mbar of air and at 80 mbar of a 3:1 25 

He:O2 mixture, from which CH3O2 = (1.49  0.19) × 10-20 cm2 molecule-1 was determined for both pressures. The absorption 

spectrum of CH3O2 between 7486 and 7491 cm-1 did not change shape when the total pressure was increased to 1000 mbar, 

from which we determined that CH3O2 is independent of pressure over the pressure range 100–1000 mbar in air. CH3O2 was 

generated in HIRAC using either the photolysis of Cl2 with UV black lamps in the presence of CH4 and O2 or the photolysis 

of acetone at 254 nm in the presence of O2. At 1000 mbar of synthetic air the correlation plot of [CH3O2]FAGE against 30 

[CH3O2]CRDS gave a gradient of 1.09 ± 0.06. At 100 mbar of synthetic air the gradient of the FAGE – CRDS correlation plot 

had a gradient of 0.95 ± 0.02 and at 80 mbar of 3:1 He:O2 mixture the correlation plot gradient was 1.03 ± 0.05. These results 

provide a validation of the FAGE method to determine concentrations of CH3O2. 

1 Introduction 

Methyl peroxy (CH3O2) radicals are important intermediates during atmospheric oxidation (Orlando and Tyndall, 2012) and 35 

combustion chemistry (Zador et al., 2011), and are produced mainly by the oxidation of CH4 and larger hydrocarbons followed 

by the termolecular reaction between the CH3 radical, O2 and a third body (Reaction R1). 

 

CH3 + O2 + M  CH3O2 + M       (R1) 
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In environments influenced by anthropogenic NOx emissions, CH3O2 predominantly reacts with NO to produce NO2 and CH3O 

(Reaction R2). 

 

CH3O2 + NO  CH3O + NO2       (R2) 5 

 

CH3O subsequently reacts with O2 (Reaction R3) to generate HO2, which in turn oxidises another NO molecule to NO2 

(Reaction R4). The subsequent photolysis of NO2 leads to the formation of tropospheric ozone, an important constituent of 

photochemical smog. 

 10 

CH3O + O2  CH2O + HO2       (R3) 

HO2 + NO  OH + NO2        (R4) 

 

In remote, clean environments, i.e. under low NOx levels, CH3O2 is significantly removed by its self-reaction (Reaction R5) 

and the cross-reactions with HO2 and other organic peroxy radicals (RO2) (Tyndall et al., 2001). 15 

 

CH3O2 + CH3O2  CH3OH + CH2O + O2      (R5a) 

 CH3O2 + CH3O2  CH3O + CH3O + O2      (R5b) 

 

Recently the reaction of CH3O2 with OH was measured to be fast (Fittschen, 2019) and provides an additional loss route 20 

for CH3O2 under low NOx conditions (Fittschen et al., 2014; Assaf et al., 2017). As CH3O2 is formed by the oxidation of CH4, 

one of the most abundant tropospheric trace gases, as well as by the oxidation of other volatile organic compounds, it is 

predicted by numerical models to be the most abundant RO2 species in the atmosphere. Although CH3O2 has not (yet) been 

selectively measured in the atmosphere, its concentration has been estimated using atmospheric models to peak at ~107 – 108 

molecule cm-3 during the daytime (Whalley et al., 2010; Whalley et al., 2011; Whalley et al., 2018). 25 

At present, CH3O2 is not measured selectively in the atmosphere by any direct or indirect method. The sum of HO2 and all 

RO2 species, [HO2] + ∑ [RO
2,i

]i , and separately, the sum of RO2, ∑ [RO
2,i

]i , have been measured in the atmosphere using a 

range of indirect methods. Onel et al. (2017a) presents an overview of these methods, such as the peroxy radical chemical 

amplifier (PERCA) (Cantrell et al., 1984; Hernandez et al., 2001; Green et al., 2006; Miyazaki et al., 2010; Wood et al., 2017), 

ROx chemical conversion – CIMS (chemical ionisation mass spectrometry) (ROxMAS) (Hanke et al., 2002) and ROx chemical 30 

conversion – LIF (laser induced fluorescence) (ROxLIF) (Fuchs et al., 2008; Whalley et al., 2013). ROxLIF uses LIF detection 

of OH at low pressure, known as fluorescence assay by gas expansion (FAGE) and has been employed for partially speciated 

RO2 detection, distinguishing between the sum of alkene, aromatic and long-chain alkane-derived RO2 radicals and the sum 

of short-chain alkane-derived RO2 radicals (Whalley et al., 2013; Whalley et al., 2018). 

Many of the early laboratory studies of the CH3O2 radical reactions employed UV-absorption spectroscopy to monitor the 35 

B  X band centred around 240 nm, that is common to alkyl RO2 species (Wallington et al., 1992; Tyndall et al., 2001). The 

similarity of the broad featureless UV-absorption spectra of RO2 radicals made it challenging to distinguish between the 

individual RO2 species, particularly in a mixture (Orlando and Tyndall, 2012). The sensitivity of UV-absorption spectroscopy 

is quite low, for example a minimum detectable absorption of 5 × 10-3, corresponding to 4 × 1012 molecule cm-3 CH3O2 was 

reported (Sander and Watson, 1980). The A  X electronic transition of RO2 in the near IR (NIR) displays more structured 40 

spectra than the UV region, allowing a selective identification of RO2 radicals. However the A  X transition is weaker than 

the B  X transition and multipass arrangements have been used to improve the detection sensitivity. A step-scan Fourier 
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Transform Infrared spectrometer (Huang et al., 2007) operated using a multipass White cell has been used to detect a number 

of RO2 species, including CH3O2, with a typical minimum detectable absorbance of ~ 1 × 10-4, corresponding to a limit of 

detection (LOD) of ~ 1 × 1013 molecule cm-3 for most RO2 species studied. The use of cavity ring-down spectroscopy (CRDS) 

further improves the sensitivity of the RO2 detection due to the significantly longer pathlengths that can be realized and to the 

coupling of high performance NIR lasers, detectors and optical components. For example, an absorbance detection limit of 5 

less than 1 × 10-6 has been obtained by using cavity mirrors of a maximum reflectivity of 99.995% (Atkinson and Spillman, 

2002). 

The CRDS technique has been used under both ambient and jet-cooled conditions to provide insight into the molecular 

structure of CH3O2 and more complex RO2, and to selectively measure [RO2] in the laboratory (Sharp et al., 2008; Kline and 

Miller, 2014; Pushkarsky et al., 2000; Farago et al., 2013; Atkinson and Spillman, 2002; Sprague et al., 2013). Good agreement 10 

has been found between the experimental spectrum of CH3O2 in the range between ~7200–8600 cm-1 (~1.18–1.40 m) 

measured using pulsed CRDS at typically 200 mbar of N2:O2 = 1.5:1.0 and theoretical predictions (Chung et al., 2007; Sharp 

et al., 2008). The origin band of the A  X transition has been located at 7382.8 cm-1 and a value of 2.7 × 10-20 cm2 molecule-1 

has been estimated for the absorption cross section at this wavenumber (Pushkarsky et al., 2000; Chung et al., 2007). A weaker 

absorption band has been found at 7488 cm-1 and assigned to a transition involving the methyl torsion (12) (Pushkarsky et al., 15 

2000; Chung et al., 2007). By using the CH3O2 spectrum measured by Pushkarsky et al. (2000) from 7300–7700 cm-1, which 

covers both the origin band and the band involving the methyl torsional mode, a value of ca. 1.0 × 10-20 cm2 molecule-1 is 

estimated for the maximum cross section for the 12 transition, max(12). A few years later, (Atkinson and Spillman, 2002) 

measured max(12) = (1.5  0.8) × 10-20 cm2 molecule-1 at 27 mbar N2:O2 = 4:1 using continuous-wave (cw) CRDS. Very 

recent cw-CRDS studies reported max(12) = 2.2 × 10-20 cm2 molecule-1 at 67 mbar of a He + O2 mixture (Fittschen, 2019) and 20 

no dependence of max(12) on pressure over the range from 67 to 133 mbar (Farago et al., 2013). 

Recently we have developed a new method for the selective and sensitive detection of CH3O2 using the conversion of 

CH3O2 to CH3O with excess NO followed by CH3O detection by FAGE with laser excitation at ca. 298 nm (Onel et al., 2017b). 

The LOD for the method whilst sampling from atmospheric pressure is ~ 4.0 × 108 molecule cm-3 for a signal-to-noise ratio of 

2 and 5 min averaging time; the LOD is reduced to ~ 1.0 × 108 molecule cm-3 by averaging over 1 hour. Therefore, the method 25 

has potential to be used in the measurement of atmospheric levels of CH3O2 in clean environments where [CH3O2] has been 

calculated to be a few 108 molecule cm-3 (Whalley et al., 2010; Whalley et al., 2011). As LIF is not an absolute method of 

detection, FAGE instruments require calibration. Two methods of calibration for CH3O2 have been used (Onel et al., 2017b): 

the 184.9 nm photolysis of water vapour in the presence of excess CH4 and the kinetics of the second-order decay of CH3O2 

via its self–reaction observed in the Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC). Good agreement was 30 

found, i.e. the calibration factors obtained using the two methods had overlapping error limits at the 1 level.  

However, radicals are difficult to detect accurately and, particularly as FAGE is not an absolute and direct method, may be 

subject to systematic errors and, hence require validation using complementary methods. Recently we intercompared 

measurements of HO2 concentrations by the indirect FAGE method and the direct and absolute CRDS method within HIRAC, 

and demonstrated good agreement, within 10% and 16% at 150 mbar and 1000 mbar, respectively (Onel et al., 2017b), which 35 

validates the FAGE method for HO2. In this work, CH3O2 measurements by FAGE and CRDS within HIRAC are 

intercompared at 80 mbar for a mixture of 3:1 He:O2 and at 100 mbar and 1000 mbar for air. 
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2 Experimental 

2.1 CH3O2 generation in HIRAC 

The HIRAC chamber (Glowacki et al., 2007) is constructed from 304 stainless steel and has an internal volume of ~2.25 m3, 

the contents of which are homogenised by four mixing fans. Eight 50 mm diameter quartz tubes are mounted radially inside 

the chamber and extend along its ~2 m length. Each of the eight tubes house a UV lamp that is used to initiate chemical 5 

reactions. The lamps can be changed to different wavelength outputs depending on the chemical precursors to be used. The 

FAGE instrument is connected to the HIRAC chamber through an ISO-K160 flange with an O-ring compression fitting to 

allow the inlet distance from the wall of the chamber to be varied. The 380 mm long inlet allows the instrument to sample well 

away from the inner walls of the HIRAC chamber and avoid chemical processes at the metal surface. Because the FAGE 

system removes gas from the HIRAC chamber, a constant flow of synthetic air is introduced into the chamber to maintain a 10 

constant pressure. The CRDS setup is described in Sect. 2.3. 

The experiments were conducted inside the HIRAC chamber at 295 K using three different pressure / gas mixtures. The 

first used 80 mbar total pressure of helium (BOC, >99.99 %) and oxygen (BOC, >99.999 %) in the ratio of He:O2 = 3:1. The 

second and third mixtures both used synthetic air obtained by mixing oxygen with nitrogen (BOC, > 99.998 %) in the ratio 

N2:O2 = 4:1 at 100 and 1000 mbar total pressure, respectively. CH3O2 was generated in the chamber by photolysing one of two 15 

precursor gas mixtures. The first CH3O2 precursor system was a mixture of Cl2 (Sigma Aldrich,  99.5 %) and CH4 (BOC, CP 

grade, 99.5 %), where the Cl2 was photolysed at ~365 nm (Phillips, TL-D36W/BLB,  = 350–400 nm) to generate CH3O2 via 

the reactions: 

 

Cl2 + hv (365 nm)  Cl + Cl       (R6) 20 

CH4 + Cl  CH3 + HCl        (R7) 

CH3 + O2 + M  CH3O2 + M       (R1) 

 

Typical reagent concentrations were [CH4] = 1.2–2.5 × 1016 molecule cm-3 and [Cl2] = 1.1–5.5 × 1015 molecule cm-3. The 

second method used the photolysis of acetone (Sigma Aldrich, HPLC grade,  99.9 %) at 254 nm (GE G55T8/OH 7G) to 25 

produce CH3O2 via (R9) and (R10) followed by (R1): 

 

(CH3)2CO + hv (254 nm)  2CH3 + CO      (R8) 

 (CH3)2CO + hv (254 nm)  CH3 + CH3CO      (R9) 

 30 

Typical initial concentrations were [(CH3)2CO] = 8.8 × 1014 molecule cm-3. In the FAGE calibration experiments using the 

kinetic decays [Cl2]0 = 1.1 × 1014 molecule cm-3 with CH4 at one of two concentrations: 2.5 × 1016 molecule cm-3 and 

2.5 × 1017 molecule cm-3. In the kinetic experiments performed to determine the absorption cross section of CH3O2 at 

7487.98 cm-1, [Cl2]0 = 1.1 × 1014 molecule cm-3 and [CH4]0 = 2.5 × 1016 molecule cm-3 at 80 mbar He:O2 = 3:1 and [Cl2]0 = 

1.0 × 1015 molecule cm-3 and [CH4]0 = 2.4 × 1016 molecule cm-3 at 100 mbar N2:O2 = 4:1.  35 

 

2.2 FAGE instrument and calibration for CH3O2 

The FAGE instrument in HIRAC has been described in detail previously (Winiberg et al., 2015; Onel et al., 2017a; Onel et 

al., 2017b). The instrument has a ~ 1 m long black anodised aluminium sampling tube with an inner diameter of 50 mm. The 

interior of the tube is held at a low pressure of 3.3 mbar and draws sample gas in through a 1 mm diameter pinhole mounted 40 

on one end of the tube at a rate of ~5 SLM. Two fluorescence cells are integrated into the tube, the centre of the first cell is 
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~300 mm from the pinhole, and the centre of the second cell is a further ~300 mm downstream, followed by a line of tubing 

that is connected to a rotary backed roots blower pump system (Leybold Trivac D40B and Ruvac WAU 251). The first cell is 

used to detect OH radicals but is not relevant to this work and is not discussed further, whereas the second cell is used for the 

CH3O2 measurements detailed here. High purity NO (BOC, N2.5 nitric oxide) is injected at 2.5 sccm using a mass flow 

controller (Brooks 5850S) into the centre of the gas flow ~25 mm prior to the second cell to convert CH3O2 radicals into CH3O. 5 

Pulsed laser light at 297.79 nm is directed through the cell and propagates perpendicular to the gas flow and is used to excite 

the 𝐴2𝐴1(𝜈3
′ = 3) ← 𝑋2𝐸(𝜈3

′′ = 0)  transition of CH3O. The off resonant, red shifted fluorescence (320-430 nm) from 

CH3O (A) is subsequently detected by a microchannel plate photomultiplier (Photek PMT325) using photon counting. 

Measurements are made at an excitation wavelength of 297.79 + 2.5 nm in order to determine the laser background, which is 

subtracted to leave only signal due to CH3O fluorescence. 10 

The FAGE technique is not absolute and therefore determination of the calibration factor, CCH3O2
, is required, to convert 

the measured signal SCH3O2
, to the CH3O2 concentration: 

 

[CH
3
O2]=

SCH3O2

CCH3O2

         (1) 

 15 

2.2.1 Calibration at atmospheric pressure - H2O vapour photolysis in the presence of excess CH4 

This calibration procedure has been described in detail previously (Winiberg et al., 2015; Onel et al., 2017b), as such only 

important points are represented here. CH3O2 radicals were generated by photolysing water vapour in air (BOC, synthetic 

BTCA 178) at 184.9 nm to produce OH radicals, which then reacted with methane (BOC, CP grade, 99.5 %) to produce CH3O2: 

 20 

H2O + hv (185 nm)  OH + H       (R10) 

OH + CH4  CH3 + H2O        (R11) 

CH3 + O2 + M  CH3O2 + M       (R1) 

 

The subsequent air/radical mixture was then sampled by the FAGE instrument. The concentration of CH3O2 generated is given 25 

by: 

 

[CH3O2]=[OH]=[H2O] · σ · Φ · F · t      (2) 

 

where σ is the absorption cross section of water vapour at 184.9 nm, (7.22 ± 0.22) × 10-20 cm2 molecule-1 (Cantrell et al., 1997; 30 

Creasey et al., 2000), Φ is the photo-dissociation quantum yield of OH at 184.9 nm (unity), t is the residence time of the gas 

in the photolysis field, which is ~16.6 and ~8.3 ms at 20 and 40 SLM respectively, and F is the lamp flux at 184.9 nm. The 

product 𝐹 · 𝑡 is determined using chemical actinometry (Winiberg et al., 2015). The 184.9 nm photon flux, F, is proportional 

to the electrical current supplied to the photolysis lamp and is varied to produce a range of CH3O2 radical concentrations. A 

typical calibration plot of the FAGE LIF signal vs. generated [CH3O2] calculated using Eq. (2) is shown in the Supplementary 35 

Information (SI), Figure S1. An average of four calibrations gave CCH3O2
 = (8.03 ± 1.37) × 10-10 counts cm3 molecule-1 s-1 

mW-1 where the error represents the overall uncertainty (17%) calculated using the statistical error (7%) and the systematic 

error (16%) at 1 level (Onel et al., 2017b). 

 

 40 
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2.2.2 Calibration using kinetics of the CH3O2 temporal decay 

The calibration described in the previous section is only valid when FAGE is sampling at atmospheric pressure. However, 

when sampling from lower pressures, as described in Sect. 2.1, the FAGE cell pressure decreases (0.9 mbar sampling from 

100 mbar) and the calibration is no longer valid. An alternative calibration procedure using the kinetics of the CH3O2 self-

reaction inside the HIRAC chamber allowed the FAGE instrument to be calibrated under the same conditions of pressure as 5 

the intercomparison experiments, including at lower pressures. Table 1 shows the sensitivity factors, CCH3O2
, obtained for each 

set of chamber conditions. Radicals were generated in the chamber in the same manner as those described in Sect. 2.1. 

However, instead of measuring steady state radical concentrations, the lamps were switched off and on at ~120 s intervals to 

produce a series of second–order decays, typically 4 per experiment, in which CH3O2 undergoes loss via self-reaction: 

 10 

CH3O2 + CH3O2  CH3OH + CH2O + O2      (R5a) 

 CH3O2 + CH3O2  CH3O + CH3O + O2      (R5b) 

 

Assuming no wall loss for CH3O2, the kinetic decays can be described by the integrated second order rate equation: 

 15 

1

[CH3O2]
t

 = 
1

[CH3O2]
0

 + 2 · kobs · t       (3) 

 

where [CH3O2]t is the radical concentration at time t of the decay, [CH3O2]0 is the initial concentration at the time, t0, when the 

lamps are switched off, and kobs is the observed rate coefficient. The observed rate coefficient is larger than the second–order 

rate coefficient of just the CH3O2 recombination reaction (R5) as the methoxy radicals generated by channel R5.b react rapidly 20 

with oxygen present in large excess to produce HO2 (R3), which in turn reacts with CH3O2 (R12). 

 

 CH3O + O2  CH2O + HO2       (R3) 

 CH3O2 + HO2  0.9CH3OOH + 0.1CH2O + 0.1H2O + O2    (R12) 

 25 

This further reaction of CH3O2 with HO2 however does not stop the decay analysis, as in previous publications (Sander and 

Watson, 1980; Sander and Watson, 1981; McAdam et al., 1987; Kurylo and Wallington, 1987; Jenkin et al., 1988; Simon et 

al., 1990), being carried out with the assumption of second order kinetics. Modelling of the decay process with a variety of 

CH3O2 and HO2 concentrations after the lamps were switched off and following the establishment of steady state conditions 

showed that Eq. (3) was valid within experimental error. With the rate constant for the bimolecular process R5 taken from the 30 

IUPAC as 3.5 × 10-13 molecule-1 cm3 s-1 (Atkinson et al., 2006), a faster observed rate constant (defined by Eq. (3)) was 

obtained from the model with a value, 4.9 × 10-13 molecule-1 cm3 s-1 consistent with that recommended by IUPAC, (4.8 ± 0.6) 

× 10-13 molecule-1 cm3 s-1 (1 uncertainty; Atkinson et al., 2006). Substituting Eq. (1) into Eq. (3) allows the measured signal 

over the decay to be related to the instrument sensitivity by: 

 35 

1

(SCH3O2
)
t

 = 
1

(SCH3O2
)
0

 + 
2 · kobs · (t - t0)

CCH3O2

       (4) 

 

where (𝑆CH3O2
)𝑡  and (𝑆CH3O2

)0 are the FAGE signal at time t and t0 respectively. Taking the reciprocal of Eq. (4) gives:

 (SCH3O2
)
t
= (

1

(SCH3O2
)
0

 + 
2 · kobs · (t - t0)

CCH3O2

)

-1

      (5) 
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which is then used to fit to the experimental data with kobs fixed to the value recommended by IUPAC for 298 K, 4.8 × 10-13 

molecule-1 cm3 s-1. Figure 1 shows an example CH3O2 self-reaction decay trace obtained at 1000 mbar, where the red line 

shows the result of the fitting process. 

However, as the HIRAC chamber is constructed from steel, the potential for a loss of CH3O2 to the walls was investigated. 

By incorporating the wall loss as a first-order process Eq. (5) becomes: 5 

 

(SCH3O2
)
t
 = ((

1

(SCH3O2
)
0

 + 
2· kobs

kloss ·CCH3O2

)  × exp(kloss · (t - t0)) - (
2 · kobs

kloss ∙ CCH3O2

))

-1

  (6) 

 

Fitting Eqs. (5) and (6) to the experimental data is shown in Fig. 1. The extracted values for the sensitivity factor are the same 

for the fit without and with wall loss included: CCH3O2 = (1.17  0.04) × 10-9 counts cm3 molecule-1 s-1 mW-1 (statistical errors 10 

at 1 level). The close overlap of the fits without and with wall loss included and the negligible values extracted for kloss fitting 

Eq. (6) demonstrates that wall losses are very small and can be neglected. This is evidenced further by the lack of an observable 

radical gradient across the chamber diameter as shown in Fig. S4 in the Supplementary Information. 

 

 15 

 

Figure 1. An example of a second-order decay of the FAGE CH3O2 signal (normalized for laser power fluctuations) with 0.1 

second time resolution (black open circles) recorded at 295 K and a 1000 mbar air mixture. CH3O2 was generated using 

[Cl2] ~1.1 × 1014 molecule cm- 1 and [CH4] ~2.5 × 1016 molecule cm-3. At time zero (~400 s) the photolysis lamps were turned 

off to allow the radicals to decay. Fitting of Eq. (5) to the data (red line) gave 20 

CCH3O2 = (1.18  0.02) × 10-10 counts cm3 molecule-1 s-1 mW-1. A fit including the wall loss rate, kloss (Eq. (6), see text) is shown 

by the blue dashed line and gave CCH3O2 = (1.15  0.03) × 10-10 counts cm3 molecule-1 s-1 mW-1. The close overlap of the two 

fits shows the wall loss is insignificant and may be ignored. The CCH3O2 errors given above represent statistical uncertainties 

at 1 level. 

 25 
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Table 1. Average sensitivity factors for the FAGE instrument using the CH3O2 kinetic decay method under each chamber 

environment. Examples of these decays can be found in Figure 1 above and in the SI, Figures S2 and S3, and reported values 

are typically from an average of 8 decays. All the data were fitted using Eq. (5). The errors given in the table are overall 

uncertainties (13%) at 1 level. 

Chamber Conditions 
CCH3O2

 / counts cm3 molecule-1 s-1 mW-1 

80 mbar, He + O2 (3.83 ± 0.50) × 10-9 

100 mbar, Air (2.80 ± 0.37) × 10-9 

1000 mbar, Air (1.16 ± 0.15) × 10-9 

 5 

 

Table 1 shows the average sensitivity factors obtained fitting Eq. (5) to a typical number of 8 temporal decays of 𝑆CH3O2
under 

each of the chamber conditions, and example decay traces for the 80 and 100 mbar experiments can be found in the SI, Figs 

S2 and S3 respectively. These factors are used for their respective experimental conditions. For the 1000 mbar intercomparison 

experiments with CRDS, an average of the water vapour photolysis sensitivity factor at 1000 mbar, CCH3O2, H2O = (8.03 ± 1.37) 10 

× 10-10 counts cm3 molecule-1 s-1 mW-1, and the average sensitivity factor obtained from the kinetic decay, CCH3O2, kinetic = (1.16 

± 0.15) × 10-9 counts cm3 molecule-1 s-1 mW-1 (Table 1), is used, giving CCH3O2, av. = (9.81 ± 2.03) × 10-10 counts cm3 molecule-1 

s-1 mW-1. We make a brief comment regarding the difference in the sensitivity factors CCH3O2, H2O and CCH3O2, kinetic, for which 

the ratio is ~ 0.7, showing a ~30% difference, although the two calibration methods have overlapping error limits at 2 level. 

The kinetic method relies on the rate coefficient kobs for the CH3O2 self-reaction as recommended by IUPAC (Atkinson et al., 15 

2006), which has a quoted 2 uncertainty of 23%. In a separate paper we will present a detailed study of the kinetics of the 

CH3O2 self-reaction, and its temperature dependence, and report a revised rate coefficient for this reaction at 298 K. 

 

2.2.3 FAGE measurements of CH3O2 concentration gradient across the HIRAC diameter 

Measurement of radical gradients across the chamber diameter have been performed previously for HO2 radicals (Onel et al., 20 

2017a), where no gradient was observed until measuring <10 cm from the chamber wall where the signal began to decrease, 

ultimately by ~16 % at the point at which the FAGE sampling pinhole was level with the chamber walls. To investigate any 

similar gradient effects for CH3O2, a steady state concentration of CH3O2 was generated in the chamber at atmospheric pressure 

by photolysing O3 in the presence of air and methane: 

 25 

O3 + hv (254 nm)  O2 + O(1D)       (R12) 

  O(1D) + CH4  CH3 + OH       (R13) 

CH3 + O2 + M  CH3O2 + M       (R1) 

 

Ozone and methane were present in the chamber at ~2.5 × 1013 molecule cm-3 and 2.5 × 1017 molecule cm-3 respectively. The 30 

FAGE inlet was translated across the width of the chamber and the CH3O2 signal was observed to show no decrease within the 

~10% 1 statistical error of each measurement up until the point at which the pinhole was level with the chamber walls. 

Moving the instrument further backwards positioned the pinhole inside the ISO-K160 coupling flange and effectively ~4 cm 

behind the chamber walls where there is likely to be little air movement. This position is analogous to that of the CRDS mirrors, 

which are recessed into the chamber walls as they mount to the outside of the chamber (see Sect. 2.3). In this position a signal 35 
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drop of ~14 % was observed, within the statistical error margins of the measurements. A plot of the radical gradient is shown 

in the Supplementary Information, Figure S4. 

 

2.3 CRDS set-up 

The optical path of the CRDS spectrometer within the HIRAC chamber is shown in Fig. 2 and is the same spectrometer as 5 

used to probe HO2 across the chamber’s diameter, and which has been described previously (Onel et al., 2017a). 

 

 

 

Figure 2. Longitudinal (horizontal) section of the HIRAC chamber. The CRDS spectrometer probes the CH3O2 concentration 10 

as an average across the chamber’s diameter, while the FAGE instrument probes CH3O2 in the chamber at a single point close 

to the centre. 

 

 

The cavity is formed by two highly reflective 1 in. diameter mirrors (99.999 %, Layertec, curvature radius = 1 m) housed in 15 

custom built mounts that allow the mirrors to be tilted slightly whilst maintaining a gas-tight seal. The position of the mirror 

on the laser injection side is modulated along the cavity axis by a few microns using a piezoelectric transducer at ~10 Hz, with 

the overall distance between the two mirrors being ~1.4 m. Laser light of ~1.335 μm is generated by a distributed feedback 

(DFB) fibre pig-tailed diode laser (NTT Electronics, NLK1B5EAAA) held in a butterfly laser diode mount (Thorlabs 

LM14S2). The electrical current that drives the laser diode and thermoelectric cooler is generated by a Thorlabs ITC502 driver. 20 

The DFB is connected to an inline optical isolator (Thorlabs IO-H-1335APC), an acousto-optic modulator (AOM, Gooch & 

Housego Fibre-Q M040-0.5C8H-3-F2S) and a fibre collimator (Thorlabs CFC-8X-C). The laser light is then guided into the 

cavity by two silver mirrors (Thorlabs PF10-03-P01). On the detection side of the cavity, light leaking out of the mirror is 

directed onto another silver mirror that guides the light through a f = 30 mm focusing lens (Thorlabs LA1805-C) onto an 

InGaAs photodiode (Thorlabs DET10C/M) that is isolated from ambient light by a 1250 nm longpass filter (Thorlabs 25 

FELH1250). The photodiode signal is amplified (FEMTO DLPCA-200) and sent to a data acquisition unit (DAQ, National 

Instruments USB-6361) and to a custom-built comparator that acts as a trigger unit. The comparator compares the amplified 

photodiode signal with a manually adjustable threshold voltage, and upon reaching a preset threshold the AOM is switched 

off, stopping the injection of light into the cavity within tens of nanoseconds and initiating a ring-down event. The DAQ is 

simultaneously triggered and acquires the signal ring-down. The system resets after a set time (typically 5 ms) ready for the 30 
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next event. The acquired data are processed using a custom made LabView program that fits the ring-down events with an 

exponential function to extract the ring-down time, τ. The ring-down time can then be converted into the absorption coefficient, 

α: 

 

α = 
1

c
 × (1/τ - 1/τ0)        (7) 5 

 

where τ and τ0 are the ring-down time with and without CH3O2 radicals present, respectively, and c is the speed of light. τ0 

would be obtained in a typical experiment by recording ring-down events for ~ 1 minute before switching on the photolysis 

lamps in the chamber. As it is not possible to measure τ0 and τ simultaneously, the background was monitored regularly during 

each experiment by switching off the photolysis lamps and allowing the signal to return to the baseline. 10 

The CH3O2 absorption feature used in these measurements is a band associated with the 𝐴2𝐴′ ← 𝑋2𝐴" electronic transition 

centred around 7488 cm-1, and has been documented in previous work (Faragó et al., 2013, Atkinson and Spillman, 2002, 

Pushkarsky et al., 2000). There are interfering methane and water vapour lines in this region, and these together with the 

change in [CH3O2] during longer (≳ 5 min) scanning times did not allow us to generate a continuous, high resolution scan 

across the CH3O2 transition. Instead, as shown in Fig. 3, the absorption spectrum was mapped out as a series of point 15 

measurements at fixed wavelengths, normalised by the absorption at the optimum measurement point, 7487.98 cm-1 (rounded 

to 7488 cm-1 henceforth), where the absorption feature is sufficiently strong and furthest in wavelength from interfering 

methane absorption lines and where the CH3O2 cross section was determined (Sect. 3.2). Each data point in Fig. 3 was obtained 

by measuring the absorption coefficient, α7488 cm
-1, and the baseline (lamps on, then off) at 7488 cm-1 followed by measuring 

αCH3O2 and baseline at another wavelength on the absorption feature and then reverting to measuring at 7488 cm-1 again. This 20 

pattern was repeated multiple times for different wavelengths to build up an absorption feature, with all data points normalised 

to α7488 cm
-1 and then multiplied by the CH3O2 cross section at 7488 cm-1 (Sect. 3.2) to obtain the absorption spectrum shown 

in Fig. 3. The method was used to measure the CH3O2 absorption spectrum under each of the three experimental conditions 

detailed in Sect. 2.1: 80 mbar (He + O2) and 100 mbar and 1000 mbar of synthetic air. 

 25 

 

3 Results 

3.1 CH3O2 absorption spectrum and comparison with the literature 

Figure 3 shows that the relatively broad absorption feature obtained in this work in the range from ~7486 to 7491 cm-1 is 

almost the same at 80 mbar He:O2 = 3:1 and at 100 and 1000 mbar of synthetic air. As shown in Fig. 3, the spectrum found in 30 

this work agrees well with the general shape of the CH3O2 spectrum measured by Faragó et al. (2013) at 67 mbar He:O2 ~ 1:1 

but scaled to reflect the very recent update to the absolute absorption cross-section reported by Fittschen (2019) which gave 

7489 cm
-1 = 2.2 × 10-20 cm2 molecule-1. The peaks at the top of the spectral feature reported by Faragó et al. (2013) are not 

reproduced in this work owing to the method of generating the spectrum, which did not allow for a high resolution (Sect. 2.3), 

and a potential small difference in wavelength compared to  in the spectrum reported by Faragó et al. (2013). Previously 35 

Pushkarsky et al. (2000) measured the CH3O2 absorption spectrum over a larger wavenumber range (7300–7700 cm-1) where 

the 12 transition is located at 7488 cm-1 in agreement with this work. In addition, if the CH3O2 spectrum at 27 mbar N2:O2 = 

4:1 reported by Atkinson and Spillman (2002) were shifted by ~2 cm-1 toward higher wavenumbers compared to this work 

and the study of Faragó et al. (2013), the shape of the 12 band from Atkinson and Spillman is in agreement with the results 

shown in Fig. 3.  40 

The similarity of the results at 80 mbar He:O2 = 3:1 and at 100 and 1000 mbar of air reported in this work and their 

agreement with the previous measurements performed at relatively low pressures (Fittschen, 2019; Faragó et al., 2013; 
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Atkinson and Spillman, 2002; Pushkarsky et al., 2000) can be explained by an overlap of several individual absorption lines 

resulting in a spectral structure in the range from ~7486 to 7491 cm-1 with practically no pressure dependence observed between 

~30–1000 mbar. Therefore, it can be assumed that the absorption cross section at 7488 cm-1, (7488 cm-1), is the same under 

the conditions used in this work, i.e. at 80 mbar of He and O2 and at 100 and 1000 mbar of air. 

 5 

 

 
 

Figure 3. CH3O2 absorption spectrum at 295 K. The measured absorption spectrum scaled to the absolute cross section 

determined at 7488 cm-1 using the kinetics of the CH3O2 decay monitored using CRDS (Sect. 3.2 below). The black line 10 

represents the CH3O2 spectrum measured by Faragó et al. (2013) at 67 mbar He:O2 ~ 1:1 but with the absolute cross-section 

scaled to reflect the recent update reported by Fittschen (2019) giving 7489 cm
-1 = 2.2 × 10-20 cm2 molecule-1.  

 

3.2 Determination of the absorption cross section of CH3O2 at 7488 cm-1 

The kinetics of the CH3O2 temporal decay by its self-reaction (Reaction R5) were used to determine the absorption cross 15 

section of CH3O2 at 7488 cm-1, (7488 cm-1). CH3O2 radicals were generated by using CH4/Cl2/synthetic air mixtures (Sect. 

2.1) with the chamber UV lamps switched on to generate Cl atoms (R6). By extinguishing the UV lamps, CH3O2 radicals were 

removed by self-reaction and wall loss. Figure 4 shows an example of a kinetic decay obtained at 100 mbar N2:O2 = 4:1 using 

CRDS. The experimental data were fitted by using two functions described by Eqs. (8) and (9), which are closely related to 

Eqs. (4) and (5) used in the analysis of the CH3O2 decays measured using FAGE. Equation (8) assumes that the wall loss of 20 

CH3O2 is negligible and hence the removal of CH3O2 can be described by the integrated second–order rate law equation, 

leading to: 

  

αt = (
1

α0
 + 

2 ∙ kobs.(t - t0)

(7488 cm
-1

)
)

-1

,        (8) 

 25 

where t is the CH3O2 absorption coefficient at 7488 cm-1 and at time t, 0 is the absorption coefficient at time zero of the 

reaction when the lamps are switched off, t0, and kobs is the observed rate coefficient of the self-reaction at 298 K, kobs = (4.8  

0.6) × 10-13 cm3 molecule-1 s-1 (Atkinson et al., 2006). 

For completeness, Equation (9) includes the CH3O2 wall loss as a first-order process, leading to: 

 30 

https://doi.org/10.5194/amt-2019-405
Preprint. Discussion started: 14 November 2019
c© Author(s) 2019. CC BY 4.0 License.



12 

 

αt = ((
1

α0
 + 

2 ∙ kobs.

kloss ∙ (7488 cm
-1

)
)  × exp(kloss(t - t0)) - (

2 ∙ kobs.

kloss ∙ (7488 cm
-1

)
))

-1

,   (9) 

 

where kloss is the rate coefficient describing the CH3O2 wall loss (Onel et al., 2017a). 

Figure 4 shows that the fits given by Eqs. (8) and (9) to the data overlap over all of the temporal CH3O2 decay and the 

values of (7488 cm-1) extracted by the two fits are in a very good agreement: (1.47  0.07) × 10-20 cm2 molecule-1 (Eq. (8)) 5 

and (1.50  0.07) × 10-20 cm2 molecule-1 (Eq. (9)), where the quoted errors are statistical uncertainties. From fitting Eq. (8) to 

the temporal decays obtained at 100 mbar of synthetic air, an averaged value of (1.51  0.19) × 10-20 cm2 molecule-1 was 

obtained, where the error represents 1 overall uncertainty (13%). Fitting Eq. (8) to the data at 80 mbar He:O2 = 3:1 (Fig. S5), 

gave an average value of (7488 cm-1) = (1.46  0.17) × 10-20 cm2 molecule-1 (1 overall uncertainty), in very good agreement 

with the value at 100 mbar of air. The average of the results at 80 mbar He:O2 = 3:1 and 100 mbar of air, 1.49 × 10-20 cm2 10 

molecule-1, is in excellent agreement with the determination of Atkinson and Spillman (2002): max(12) = (1.5  0.8) × 10-20 

cm2 molecule-1 and consistent with the estimation of ~1.0 × 10-20 cm2 molecule-1 for max(12) obtained using the CH3O2 

spectrum reported by Pushkarsky et al. (2000). To enable a comparison at 7487.98 cm-1 with the very recent measurement of 

Fittschen (2019), who found 2.20 × 10-20 cm2 molecule-1 at 7489.16 cm-1, (7487.98 cm-1) = 1.49 × 10-20 cm2 molecule-1 

obtained in this work was multiplied by the (7489.16 cm-1):(7487.98 cm-1) ratio obtained by using the high resolution 15 

spectrum reported by Faragó et al. (2013) (Fig. 3). The obtained value, (7489.16 cm-1) = (1.9  0.3) × 10-20 cm2 molecule-1 is 

in reasonable agreement with the result of Fittschen (2019), (7489.16 cm-1) = 2.2 × 10-20 cm2 molecule-1. 

 

 

 20 

Figure 4. Second-order decay of the CH3O2 absorption coefficient at 7488 cm-1 monitored by CRDS. Experiment carried out 

at 295 K and 100 mbar of synthetic air; [CH4]0 = 2.4 × 1016 molecule cm-3 and [Cl2]0 = 1.0 × 1015 molecule cm-3. At time 2205 

s the photolysis lamps were turned off (time t0). Fitting Eq. (8) to the data (red line) gave (7488 cm-1) = (1.47  0.07) × 10-20 

cm2 molecule-1. A fit including the wall loss rate, kloss (Eq. (9)) is shown by the blue dashed line and resulted in (7488 cm-1) 

= (1.50  0.07) × 10-20 cm2 molecule-1. The error limits are statistical errors at 1 level. 25 

 

3.3 Determination of the CRDS limit of detection 

The CRDS limit of detection (LOD) has been computed using Allan-Werle deviation plots (Werle et al., 1993; Onel et al., 

2017a) obtained by continuously recording single ring-down events for 1–2 h after delivering either acetone or methane in 
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typical concentrations to the chamber filled with the bath gas (He:O2 = 3:1 at 80 mbar and synthetic air at 100 and 1000 mbar, 

respectively). The Allan-Werle deviation, σA(n) , is (1/√2) times the root-mean-square value of the difference between 

adjacent points and gives an estimate of the error, δα, between successively measured absorption coefficients for a given 

averaging size n. For a signal-to-noise ratio (S/N) of 2, the limit of detection for CH3O2 was determined as LODCH3O2 = 

(2min)/ CH3O2, where  CH3O2 = 1.49 × 10-20 cm2 molecule-1 is the CH3O2 cross section at 7488 cm-1, and is shown in Table 5 

2. The optimum CRDS sensitivity under all conditions is achieved averaging ~500 ring-down events, requiring ~77 s at an 

acquisition rate of 6.5 Hz on average, with an example shown in Fig. 5. 

 

Figure 5. An example of the Allan-Werle deviation plot of the absorption coefficient at 7488 cm-1 in the absence of CH3O2 

and the presence of a typical acetone concentration of 8.8 × 1014 molecule cm-3 at 1000 mbar against the number of ring-down 10 

events averaged, n. For S/N = 2 the minimum detectable absorption coefficient for a single ring-down measurement is 4.5 × 

10-10 cm-1, which decreases to a minimum of 2.89 × 10-11 cm-1 after n = 500 (requiring 77 s at an acquisition rate of 6.5 Hz). 

 

As the filter (FELH1250 Thorlabs, cut-off wavelength: 1250 nm) used to cut-off the laboratory visible light from the 

background of the CRDS measurements allowed some of the 254 nm light generated by the HIRAC lamps to be transmitted 15 

and then detected by the InGaAS photodiode detector, the CRDS sensitivity was worse in the experiments using 

acetone/O2/254 nm lamps as a source of CH3O2 compared to the experiments using Cl2/CH4/O2/UV black lamps to generate 

CH3O2. Therefore, separate Allan-Werle deviation plots were constructed using measurements of single ring-down events after 

filling HIRAC with the bath gas and turning the 254 nm lamps on. Then, the composite error, calculated as the sum in 

quadrature of δα obtained in the presence of acetone and δα determined in the absence of acetone but keeping the 254 nm 20 

lamps turned on, was used to determine the LOD of CRDS in the acetone/O2/254 nm experiments (Table 2). The composite 

LOD(acetone/O2/254 nm lamps) was on average ~55% greater than the LOD determined with the UV lamps off and in the 

absence of acetone, LOD(bath gas); and on average LOD(Cl2/CH4/O2/UV black lamps) was ~40% higher than LOD(bath gas)  

 

 25 
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Table 2. CRDS detection limits for CH3O2 calculated at 80 mbar He:O2 = 3:1 and 100 mbar and 1000 mbar of synthetic air 

for single ring-down measurements (t = 0.15 s), the optimum averaging time obtained from Allan-Werle deviation plot, topt. 

(77 s under all experimental conditions) and t = 60 s. 

 

Bath gas pHIRAC / 

mbar 

Reagent delivered 

to HIRAC 

LODCH3O2 / 109 molecule cm-3 

t = 0.15 s t = 60 s topt = 77 s. 

He:O2 = 3:1 80 acetonea 120 7.5 6.4 

Air 100 acetonea 133 8.6 6.8 

methaneb 78 6.0 5.4 

Air 1000 acetonea 147 7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               6.1 

a using the composite error calculated as the sum in quadrature of δα obtained using a typical concentration of acetone, 8.8 × 5 

1014 molecule cm-3, and δα determined in the absence of acetone but keeping the 254 nm lamps turned on during all 

measurement. 
b [CH4] = 2.4 × 1016 molecule cm-3. 

 

 10 

As the daytime concentrations of CH3O2 have been calculated using an atmospheric box-model to peak at ~107–108 

molecule cm-3 (Whalley et al., 2010; Whalley et al., 2011; Whalley et al., 2018), the current CRDS sensitivity is insufficient 

for the detection of ambient [CH3O2]. The typical concentrations of CH4 and acetone in ambient air are orders of magnitude 

lower than [CH4] and [(CH3)2CO] used in the HIRAC experiments. However, water vapour, which is present in the atmosphere 

in much larger concentrations (typically ~1017 molecule cm-3) than in HIRAC for these experiments (~ 1013 – 1014 molecule 15 

cm-3), will significantly absorb in this wavelength region and contribute towards the background of the measurements. The 

limits of detection shown in Table 2 allow for HIRAC measurements of [CH3O2] ⪎ 1010 molecule cm-3 in steady-state (where 

averaging times of ~60 s can be used) under all conditions used, and kinetic measurements of [CH3O2] ⪎ 1011 molecule cm-3 

with the present instrument resolution time (0.15 s) at 80 mbar He:O2 = 3:1 and 100 mbar of air. 

The CRDS sensitivity could be further improved by increasing the frequency of the ring–down events and using a cavity 20 

length above the current 1.4 m length. Although the origin band centred at 7388 cm-1 is about three times stronger than the 

methyl torsional band at 7488 cm-1 (Pushkarsky et al., 2000; Chung et al., 2007), the latter was targeted because absorption 

due to water vapour is between one and three orders of magnitude weaker there (assuming 1% v/v, atmospheric pressure) 

(Gordon et al., 2017). 

 25 

3.4 Intercomparison of CRDS and FAGE CH3O2 measurements 

All the intercomparison measurements have been performed at 7488 cm-1, where the CH3O2 cross section was determined 

using CRDS (Sect. 3.2). For the measurements at 80 mbar He:O2 (3:1) and 100 mbar N2:O2 (4:1), CH3O2 was generated either 

from the photolysis of acetone at 254 nm in the presence of O2 or from the photolysis of Cl2 using UV black lamps in the 

presence of CH4/O2. At 1000 mbar of synthetic air, the overlap of the methane absorption lines due to the pressure broadening 30 

resulted in a significant CH4 absorption over the range from 7486–7491 cm-1 in the background of the CH3O2 measurements. 

Therefore, all the measurements at 1000 mbar have been carried out using the photolysis of acetone/O2 at 254 nm. The data 

recorded by CRDS using acetone/O2 were more scattered than the CRDS data recorded using Cl2/CH4/O2 for the reasons 

discussed above (see Figs. 6a and 8a in comparison with Fig. 7a) and were the main contributors to the scatter on [CH3O2]CRDS 

in the correlation plots (Figs. 6b, 7b and 8b below). There was less signal noise present in the FAGE measurements, where the 35 

most significant source of noise is the shot noise (Poisson noise), which increases with the number of photons counted by the 

detector (Figs. 1, S2 and S3) and results in a scatter on the FAGE data growing with [CH3O2] in Figs 6a, 7a and 8a. 
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CH3O2 was generated over a range of concentrations, 2–26 × 1010 molecule cm-3 at 80 mbar of He + O2 mixture, 2–60 

× 1010 molecule cm-3 at 100 mbar of synthetic air and 2–30 × 1010 molecule cm-3 at 1000 mbar of synthetic air. The comparison 

involved both periods with lamps on where the concentration of CH3O2 was changing slowly, and where the lamps were turned 

off and the rapid decay of CH3O2 was observed. Figures 6a, 7a and 8a show examples of time-resolved CH3O2 concentrations 

where the lamps were turned on and off. CRDS absorption coefficients were converted into concentrations using the absorption 5 

cross section determined by studying the second-order recombination kinetics, (7488 cm-1) = (1.49  0.19) × 10-20 cm2 

molecule-1 (Sect. 3.2). The FAGE signals were converted into [CH3O2] using the sensitivity factor derived from the analysis 

of the temporal decays of CH3O2 at 80 mbar of He + O2 mixture and 100 mbar of air, (3.83  0.50) × 10-9 counts cm3 molecule-1 

s-1 mW-1 and (2.80  0.37) × 10-9 counts cm3 molecule-1 s-1 mW-1, respectively. The gradient of the correlation plot of the 

CH3O2 concentrations determined by FAGE (y-axis) and CRDS (x-axis) at 80 mbar of He + O2 (Fig. 6b) is 1.03 ± 0.05, showing 10 

an overall level of agreement within 3%. The gradient of the correlation plot of the CH3O2 concentrations determined by FAGE 

(y-axis) and CRDS (x-axis) at 100 mbar of air (Fig. 7b) is 0.95 ± 0.02, showing an overall level of agreement within 5%. 

At 1000 mbar of air, the FAGE signal observed in HIRAC could be calibrated in one of two ways, either via the photolysis 

of water vapour to generate OH followed by reaction with CH4 to form CH3O2, or via the kinetic analysis of second order 

temporal decays of CH3O2. The conversion of the FAGE signals into [CH3O2] at 1000 mbar air for the intercomparison with 15 

CRDS shown in Figs. 8a and 8b was based on the average of the results of the water vapour calibration method and the kinetic 

decay calibration method, which gives C̅CH3O2
 = (9.81  2.03) × 10-10 counts cm3 molecule-1 s-1 mW-1  (Sect. 2.2.2)). The 

gradient of the overall correlation plot (Fig. 8b) using C̅CH3O2
 is 1.09 ± 0.06, showing agreement to within 9%. Figure S6 in 

the Supplementary Information shows separately the two correlation plots obtained using the sensitivities from the two 

methods of calibration for FAGE: CCH3O2
 = (8.03 ± 1.37) × 10-10 counts cm3 molecule-1 s-1 mW-1 (water vapour calibration 20 

method) and CCH3O2
 = (1.16 ± 0.15) × 10-9 counts cm3 molecule-1 s-1 mW-1 (second order kinetic decay method). The gradients 

of the two linear fits are: 1.35 ± 0.07 (water vapour calibration) and 0.92 ± 0.05 (kinetic method of calibration). Therefore, a 

significantly better agreement (within 8%) was obtained by using the kinetic method for the calibration of FAGE compared 

with using the water vapour method for calibration of FAGE (35% agreement). Better agreement is expected when using the 

kinetic method to calibrate FAGE, as this is the same method used to determine the absorption cross section and hence calibrate 25 

of the CRDS method, and the intercomparison is not subject to any error in the rate coefficient, kobs for the CH3O2 self-reaction. 

We consider that the main contribution to the discrepancy in CCH3O2 values obtained by the two methods of calibration derives 

from an overestimation of the reported value of the observed rate coefficient for the CH3O2 self-reaction, kobs = (4.8 ± 0.6) × 

10-13 molecule-1 cm3 s-1 (1 error) at 298 K (Atkinson et al., 2006). In a subsequent paper we will report a revised kobs, which 

will bring into agreement the two methods of calibration. 30 
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Figure 6. (a) Comparison of CH3O2 measurement at 80 mbar He:O2 (3:1) where the lamps were turned on at t ~ 250 s for ~ 5 

min to generate CH3O2 and then turned off again. The measurement by FAGE is shown in red and the measurement by CRDS 

is plotted in black. CH3O2 radicals were generated using the 254 nm photolysis of (CH3)2CO (8.8 × 1014 molecule cm-3). The 5 

1 statistical errors generated by the data averaging are shown as grey (CRDS) and red (FAGE) shadows. (b) Correlation plot 

at 80 mbar He:O2 (3:1) combining the data obtained using acetone/O2/254 nm lamps with the data generated using 

Cl2/CH4/O2/UV black lamps. [CH3O2] measured by FAGE is plotted against [CH3O2] measured by CRDS. The linear fit to the 

data generates a gradient of 1.03 ± 0.05 and an intercept of (-1.7 ± 0.5) × 1010 molecule cm-3. The linear fits were generated 

using the orthogonal distance regression algorithm; fit errors at 2 level. In both panels [CH3O2]FAGE was determined using a 10 

calibration factor of 3.83 × 10-9 counts cm3 molecule-1 s-1 mW-1 and [CH3O2]CRDS was calculated using a cross section of 1.49 

× 10-20 cm2 molecule-1. Each point is an averaged value over 3 s. 

 

 

 15 

 

 

Figure 7. Comparison of CH3O2 measurement (a) and the correlation plot at 100 mbar N2:O2 (4:1) (b). In both figures 

[CH3O2]FAGE was computed using a calibration factor of 2.80 × 10-9 counts cm3 molecule-1 s-1 mW-1 and [CH3O2]CRDS was 

determined using a cross section of 1.49 × 10-20 cm2 molecule-1. Each point is an averaged value over 5 s. Figure (a) shows the 20 

measurement by FAGE (red) and the measurement by CRDS (black) where the CH3O2 radicals were generated by the 

photolysis of Cl2 (2.5 × 1015 molecule cm-3) in the presence of CH4 (2.4 × 1016 molecule cm-3) and O2. The UV black lamps 

were alternately switched on and off: the lamps were turned off at t ~ 40 s and then turned on at t ~ 250 s for ~ 5 min before 

being switched off again. The 1 statistical errors generated by the data averaging are shown as grey (CRDS) and red (FAGE) 

shadows. Figure (b) combines the data obtained using acetone/O2/254 nm lamps with the data generated using Cl2/CH4/O2/UV 25 

black lamps. [CH3O2] measured by FAGE is plotted versus [CH3O2] measured by CRDS. The linear fit to the data is obtained 

using the orthogonal distance regression algorithm and results in a gradient of 0.95 ± 0.02 and an intercept of 

(7.0 ± 0.4) × 109 molecule cm-3; fit errors given at 2 level. 

 

 30 
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Figure 8. (a) Comparison of CH3O2 measurement at 1000 mbar of synthetic air where the lamps were turned off at t ~ 40 s 

and then on at t ~ 200 s for ~ 2 min before being switched off again. The measurement by FAGE is shown in red and the 

measurement by CRDS is plotted in black. CH3O2 radicals were generated using the 254 nm photolysis of (CH3)2CO (8.8 × 

1014 molecule cm-3). The 1 statistical errors generated by the data averaging are shown as grey (CRDS) and red (FAGE) 5 

shadows. (b) Correlation plot of all the data generated at 1000 mbar of air. [CH3O2] measured by FAGE is plotted against 

[CH3O2] measured by CRDS. The linear fit to the data is generated using the orthogonal distance regression algorithm and 

results in a gradient of 1.09 ± 0.06 and an intercept of (1.1 ± 0.3) × 1010 molecule cm-3; fit errors given at 2 level. In both 

panels [CH3O2]FAGE was determined using a calibration factor of 9.81 × 10-10 counts cm3 molecule-1 s-1 mW-1 and [CH3O2]CRDS 

was calculated using a cross section of 1.49 × 10-20 cm2 molecule-1. Each point is an averaged value over 5 s. 10 

 

4 Conclusions 

An intercomparison between the recently developed indirect method for the measurement of the CH3O2 radicals using 

Fluorescence Assay by Gas Expansion (FAGE) (Onel et al., 2017b) and the direct Cavity Ring-Down Spectroscopy (CRDS) 

method has been performed within the Leeds Highly Instrumented Reactor for Atmospheric Chemistry (HIRAC). CRDS 15 

detected CH3O2 by using the A  X (12) electronic transition at 7488 cm-1. The CH3O2 radical was generated from the 

photolysis of mixtures of either Cl2/CH4/O2 or acetone//O2 at room temperature and three total pressures, 80 mbar of He:O2 = 

3:1 and 100 and 1000 mbar of N2:O2 = 4:1, and was measured simultaneously using the two methods. 

At all pressures FAGE was calibrated using the kinetics of the CH3O2 second-order decay by self–reaction. At 1000 mbar 

the conventional 185 nm photolysis of water vapour in the presence of excess of CH4 and O2 was used to calibrate FAGE in 20 

addition to the kinetic method. The two calibration methods have overlapping error limits at 2 level (34% for the water vapour 

photolysis method and 26% for the kinetic method) as it has been found previously (Onel et al., 2017b). The difference between 

CCH3O2
(water vapour method) and CCH3O2

(kinetic method) has been discussed in detail previously (Onel et al., 2017b). In the 

case of HO2, a very good agreement (difference within 8%) between CHO2
(water vapour method) and CHO2

(kinetic method) 

was obtained previously (Onel et al., 2017a; Winiberg et al., 2015), which suggests that the production of OH and HO2 from 25 

the photolysis of water vapour in air can be quantified robustly. We consider it unlikely that there is a significant error in the 

fraction of OH which is converted to CH3O2 upon the addition of methane. We consider instead that the discrepancy between 

the two calibration methods is due to an overestimation of the reported value of kobs for the CH3O2 self-reaction (Atkinson et 

al., 2006); the two methods of calibrations agree if kobs is reduced by 25–30%, which is close to the reported 2 uncertainty in 

the rate coefficient (Atkinson et al., 2006). The average value of the sensitivity factor obtained from the two calibration 30 

methods, C̅CH3O2
 = (9.81  2.03) × 10-10 counts cm3 molecule-1 s-1 mW-1, corresponds to a limit of detection (LOD) for CH3O2 

of 1.18 × 108 molecule cm-3 for a S/N of 2 and 60 s averaging period. The FAGE sensitivity factor increased by ~3 times by 

decreasing the pressure in the FAGE detection cell (from 3.3 to 0.9 mbar corresponding to a total HIRAC pressure of 1000 

and 100 or 80 mbar, respectively).  

 

https://doi.org/10.5194/amt-2019-405
Preprint. Discussion started: 14 November 2019
c© Author(s) 2019. CC BY 4.0 License.



18 

 

The CH3O2 absorption cross section at 7488 cm-1 at 100 mbar of air and 80 mbar of He:O2 = 3:1 was determined using the 

kinetics of the CH3O2 second–order decays: CH3O2 = (1.49  0.19) × 10-20 cm2 molecule-1. No change in the shape of the 

CH3O2 spectrum with pressure was found from the reduced pressures (100 mbar of air and 80 mbar of He:O2 = 3:1) to 1000 

mbar of air, showing that  CH3O2 is almost independent of pressure. For a time averaging of 60 s the calculated CRDS LOD 

using the Allan-Werle deviation plots and  CH3O2 is around 8 × 109 molecule cm-3 using acetone/O2/254 nm at all operating 5 

pressures and 6 × 109 molecule cm-3 using CH4/Cl2/black lamps at the reduced pressures. 

The FAGE–CRDS intercomparison used measurements of CH3O2 under steady-state conditions (photolysis lamps on) as 

well as rapid decays in [CH3O2] (lamps switched off) to cover large concentration ranges: 2–26 × 1010 molecule cm-3 at 80 

mbar of He + O2 mixture, 2–60 × 1010 molecule cm-3 at 100 mbar of air and 2–30 × 1010 molecule cm-3 at 1000 mbar of air. A 

good agreement between [CH3O2]FAGE and [CH3O2]CRDS was obtained under all conditions as shown by the gradient of the 10 

correlation plots: 1.03 ± 0.05 at 80 mbar He/O2, 0.95 ± 0.02 at 100 mbar air and 1.09 ± 0.06 at 1000 mbar air (using an average 

of the sensitivity factors for the two FAGE calibration methods). The study provides a validation for the indirect FAGE method 

for CH3O2 measurements, in agreement with the previous FAGE validation for HO2 measurements (Onel et al., 2017a). 

 

Data availability. Data presented in this study are available from the authors upon request (chmlo@leeds.ac.uk and 15 

d.e.heard@leeds.ac.uk). 
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