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Abstract. 

More than 300 non-dispersive infrared (NDIR) CO2 low-cost sensors labelled as LP8 were integrated into sensor units and 10 

evaluated for the purpose of long-term operation in the Carbosense CO2 sensor network in Switzerland. Prior to deployment, 

all sensors were calibrated in a pressure and climate chamber, and in ambient conditions co-located with a reference instrument. 

To investigate their long-term performance and to test different data processing strategies, 18 sensors were deployed at five 

locations equipped with a reference instrument after calibration. Their accuracy during 19 to 25 months deployment was 

between 8 to 12 ppm. This level of accuracy requires careful sensor calibration prior to deployment, continuous monitoring of 15 

the sensors, efficient data filtering, and a procedure to correct drifts and jumps in the sensor signal during operation. High 

relative humidity (> ~85%) impairs the LP8 measurements, and corresponding data filtering results in a significant loss during 

humid conditions. The LP8 sensors are not suitable for the detection of small regional gradients and long-term trends. However, 

with careful data processing, the sensors are able to resolve CO2 changes and differences with a magnitude larger than about 

30 ppm. Thereby, the sensor can resolve the site-specific CO2 signal at most locations in Switzerland. A low power network 20 

(LPN) using LoRaWAN allowed reliable data transmission with low energy consumption, and proved to be a key element of 

the Carbosense low-cost sensor network. 

1 Introduction 

The number of available low-cost sensor types for ambient trace gas observations has increased in recent years. Frequently, 

these sensors are combined with wireless data transfer capabilities to form a versatile measurement unit. Low-cost sensors for 25 

trace gas measurements are based on different working principles such as metal-oxide semiconductors, electrochemical cells 

or non-dispersive infrared detection (NDIR). For CO2, NDIR is the most common technique (Lewis, et al., 2018). Similarly to 

other instruments, knowledge of the sensors’ characteristics such as sensitivity, cross-sensitivity or aging is important for 

meaningful applications. Moreover, the raw sensor output must be converted into molar fraction of the target gas using a 

mathematical function. The mathematical models provided by the manufacturers are often not sufficient to meet the accuracy 30 

demands of trace gas measurements in outdoor conditions. Different approaches such as e.g. multilinear regression (Mueller, 

et al., 2017; Martin, et al., 2017; Spinelle, et al., 2017), random forest models (Bigi, et al., 2018; Zimmerman, et al., 2018), or 

artificial neural networks (Spinelle, et al., 2017) are investigated to derive better performing sensor models. However, thorough 

model validation that is adequate with respect to the foreseen application is necessary for this task, especially as many data-

driven models include parameters that were not shown to have a reproducible impact on the sensor signal. Some approaches 35 

also employ information in the model that is only valid in a statistical manner, such as for example similar pollutant 

concentrations at the sensor location and at the closest reference site during selected time periods (Mueller, et al., 2017; Kim, 

et al., 2018). The use of a standardized terminology for processing levels, as was recently proposed by Schneider et al., (2019), 

is recommended to clearly define the type of information a sensor model is based on. 
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The design of low-cost sensors usually relies on a less stable and less controlled measurement environment than high-end 

instruments. Therefore, the mathematical description of sensor behaviour must be flexible and robust enough to accommodate 

a wide range of operating conditions. Nevertheless, the accuracy level achieved by low-cost trace gas sensors is still 

significantly below that of high precision instruments. This may be acceptable in view of their lower costs if the achievable 

data quality remains suitable for a specific application. Usually, low-cost sensors have to be individually calibrated for 5 

achieving their best performance, and data processing is an essential element to obtain accurate measurements. This data 

processing includes filtering to eliminate and report outliers or data of reduced quality, and the detection of changes in sensor 

characteristics which require the adaptation of the model that converts the raw sensor output to molar fraction. 

Smart and dependable sensor integration is crucial for both high data quality and reliable and cost-efficient operation. A long-

lasting autonomous sensor deployment requires that the sensor unit has a low energy consumption, which depends on the 10 

energy consumption of the sensing device, the measurement frequency, the on-site data processing, and the method that is 

used for data transmission. The latter can be achieved using the LoRaWAN protocol (LoRa-Alliance, 2019), which offers data 

transmission with highly reduced energy consumption compared to mobile communication networks such as GSM, UMTS, 

LTE. 

Increasing the spatial coverage of a measurement network or reducing its costs by the operation of low-cost sensors is 15 

appealing. However, the number of long-term applications of low-cost sensors is still sparse (Mueller, et al., 2017; Shusterman, 

et al., 2016; Castell, et al., 2017; Popoola, et al., 2018). The total costs for the sensors, their calibration, deployment, data 

transmission, and data processing have to be in equilibrium with the information the sensors provide. Further technical and 

operational progress is required to enhance both the efficiency and the data quality of low-cost sensor networks and to 

eventually integrate more low-cost sensors into meaningful services. Examples of research activities in the field of lower-cost 20 

CO2 measurements and sensor networks are provided by Arzoumanian (2019) and Shusterman (2016). 

In this study we present the deployment of more than 250 low-cost CO2 sensors in Switzerland in the framework of the 

Carbosense project, which aims at assessing anthropogenic and natural CO2 fluxes in Switzerland through the combination of 

dense observations and high-resolution atmospheric transport modeling. The entire CO2 sensor network is formed by high-

precision instruments, intermediate precision instruments and low-cost sensors. The accuracy of the low-cost sensors is clearly 25 

outside the extended compatibility goal of 0.2 ppm for CO2 proposed within the activities of the World Meteorological 

Organization (WMO) Global Atmospheric Watch (Tans & Zellweger, 2014). However, these sensors are not intended to 

resolve small regional gradients and trends in atmospheric CO2. They should rather complement the high-precision 

measurements by providing information on short-term and local variations in CO2 in the order of several tens of ppm as 

expected near emission sources, e.g. in the city of Zurich, or due to CO2 accumulation when the boundary layer is shallow. 30 

This paper focuses on the calibration of the LP8 CO2 sensors, their operation within the Carbosense network, the sensor data 

processing, and the achieved data quality. Most of the findings and developments carried out by means of the Carbosense 

sensor network such as aspects of data transmission and data processing are generic and transferable to other low-cost trace 

gas sensor networks. 

2 Hardware and infrastructure 35 

2.1 Carbosense network 

The Carbosense CO2 sensor network covers the whole of Switzerland with a regional focus on the city of Zurich (Figure 1). It 

is formed by three classes of sensors: (i) seven high-precision laser spectrometers (Picarro G1301/G2302/G2401, CRDS), (ii) 

20 temperature stabilized, mains powered NDIR medium-cost sensors with active sampling and reference gas supply (SenseAir 

HPP (Hummelgard, et al., 2015)) and (iii) 300 nodes of battery-powered CO2 low-cost diffusive NDIR sensors (SenseAir 40 

LP8). The deployment of the first low-cost sensors started in July 2017, and the network has been continuously extended to 
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230 sensors by September 2019. The CO2 low-cost sensors are deployed at antenna locations of the telecommunication 

company Swisscom (4-150 m above ground), at meteorological measurement sites of the Federal Office of Meteorology and 

Climatology (MeteoSwiss) (10 m above ground), and at sites of the national air pollution monitoring network NABEL (5 m 

above ground). Within the city of Zurich, the sensors are also mounted on lamp or electricity poles (3-5 m above ground). The 

low-cost sensor network covers a wide altitude range from 200 to 2390 m a.s.l., various orographic conditions and landscape 5 

types (urban areas, agricultural lands, forests, mountain areas). This implies a wide range of environmental conditions during 

the operation of the sensors. The deployment of the HPPs started in August 2018 and instruments operate at 15 locations as of 

September 1, 2019. 

 

 10 
Figure 1: Carbosense sensor network as of September 13, 2019. Red dots depict LP8 sensor locations, yellow dots depict HPP sensor 
locations and blue dots depict locations of Picarro instruments. The cantons or administrative divisions of Zurich and Ticino are 
plotted and marked by ZH and TI. Geographic data used for creating the base map originates from http://www.diva-gis.org and 
https://www.swisstopo.admin.ch. 

 15 

2.2 CO2 low-cost sensor unit 

2.2.1 Integrated sensors 

The CO2 low-cost sensor units (dimensions: 110/80/65 mm) were engineered by Decentlab GmbH (Figure 2). A sensor unit 

comprises a SenseAir LP8 sensor (SenseAir, 2019), a Sensirion SHT21 sensor (Sensirion, 2019), a LoRaWAN communication 

module, a microprocessor, and two batteries for power supply. There is no active ventilation. The LP8 and SHT21 sensors are 20 

located close to the opening of the box to ensure fast response times. Dead volumes are kept as small as possible for the same 

reason. The LP8 sensor reports the infrared measurement (IR), a CO2 molar fraction based on factory calibration, temperature, 

and its status. The SHT21 sensor measures temperature and relative humidity (±0.3ºC, ±2% RH). The measurement frequency 

was set to 1 minute for all the sensors and the measurements are transmitted as 10 minute averages together with the last single 

measurement of the infrared and temperature values over Swisscom’s Low Power Network (LPN; based on LoRaWAN). 25 

However, during the first weeks of using the sensor units in spring 2017, only the last single values were transmitted for all 

the measurement types. Since the unit is not equipped with a pressure sensor, pressure has to be measured independently or 

has to be estimated from other information sources, which is possible with a small uncertainty of ±1 hPa as described in Section 

3.2. 
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(a) (b) 

  
 

Figure 2: (a) CO2 low-cost sensor unit and LP8 sensor (front). (b) Schematic view of the sensor unit. The LP8 and SHT21 sensors 
reside close to the opening of the sensor unit. The sensing area of the LP8 is indicated by a thick line. The volume around the sensors 
is minimized on three sides (left, back, right) by filling material. The board separates by its form the lower from the upper part of 5 
the unit. 

 

2.2.2 LP8 sensor 

Operating conditions of the LP8 sensor are specified by the manufacturer as 0-50°C, 0-85% RH and 0-2000 ppm CO2. The 

specifications in terms of accuracy are ±50 ppm / ±3% of reading (SenseAir, 2019), which is insufficient for applications in 10 

ambient air. The LP8 sensor provides a CO2 measurement based on the factory calibration, the sensor temperature and sensor 

status information. In addition, the LP8 infrared measurement (preprocessed by the sensor firmware) is accessible. It enables 

a calibration based on an extended mathematical sensor model that relates the infrared measurement to the CO2 mole fraction 

χCO2 in moist air. The parameters of the sensor model have to be determined during a calibration process. 

The LP8 is a non-dispersive infrared sensor and, thus, its working principle is based on the Beer-Lambert law. 15 

 

𝑙𝑙𝑙𝑙𝑙𝑙 �𝐼𝐼0
𝐼𝐼1
� = 𝜖𝜖𝜆𝜆 ∙ 𝑐𝑐 ∙ 𝑑𝑑 (1) 

I0 and I1 denote the emitted and detected light, c is the number density of the gas (in units of mol m-3), ϵλ is the molar 

attenuation coefficient (m2 mol-1), and d is the path length (m) of the beam of light through the cell. 

The number of moles of CO2 (nCO2) equals 20 

𝑛𝑛𝐶𝐶𝐶𝐶2 = 𝜒𝜒𝐶𝐶𝐶𝐶2 ∙
𝑝𝑝 ∙ 𝑉𝑉
𝑅𝑅 ∙ 𝑇𝑇

= 𝜒𝜒𝐶𝐶𝐶𝐶2 ∙ 𝑛𝑛𝑃𝑃0,𝑇𝑇0 ∙
𝑝𝑝 ∙ 𝑇𝑇0
𝑝𝑝0 ∙ 𝑇𝑇

 (2) 

with p, T and V denoting the pressure, temperature and volume of the gas, p0 = 1013.25 hPa and T0 = 273.15 K the standard 

pressure and temperature, R the universal gas constant (8.3145 J K-1 mol-1), and χCO2 the CO2 mole fraction in moist air. With 

the CO2 number density cCO2 = nCO2/V (mol m-3) and combining Eq. (1) and Eq. (2) yields 

𝜒𝜒𝐶𝐶𝐶𝐶2 ∙
𝑝𝑝 ∙ 𝑇𝑇0
𝑝𝑝0 ∙ 𝑇𝑇

=
𝑉𝑉

𝑛𝑛𝑃𝑃0,𝑇𝑇0 ∙ 𝜖𝜖𝜆𝜆 ∙ 𝑑𝑑
∙ �𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼0) − 𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼1)� (3) 25 

The volume V, the path length d and the molar attenuation coefficient ϵλ are unknown constants. Also the emitted light I0 

cannot directly be observed. It is expected to slightly change over time. In order to compensate for temperature effects (e.g. 

through effects on the optical filter or the detector), pressure effects (e.g. through pressure dependent spectral line broadening), 

and changes in the intensity of the emitted light (I0) or in the geometry of the light beam, Eq. (3) is expanded by additional 

terms as follows:  30 
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𝜒𝜒𝐶𝐶𝐶𝐶2 ∙
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𝐼𝐼1

3

𝑖𝑖=1

+ 𝑤𝑤1 ∙ �
𝑝𝑝 − 𝑝𝑝0
𝑝𝑝0

� + 𝑓𝑓(𝑡𝑡)
3

𝑖𝑖=1

 (4) 

These terms are empirically chosen with the objective to keep the model simple. The coefficients ki, ui, vi and wi are unknown 

and have to be determined by calibration. Temperature effects are described by a polynomial of up to third order, pressure 

effects by a linear model. The terms associated with the parameters vi are based on the transformation log(I1+e) = 

log(I1∙(1+e/I1)) = log(I1) + log(1+e/I1) ≈ log(I1) + e/I1 where e is a small impacting effect. 5 

 

The function f(t) accounts for possible temporal changes in light intensity I0 or changes in optical path length. For practical 

reasons, it was modeled as a step function with a temporal resolution of approximately 14 days during calibration. The variable 

T is the temperature provided by the LP8 sensor. Usually, atmospheric transport models use χCO2,dry as input. The CO2 dry air 

mole fraction χCO2,dry can be computed as χCO2 / (1- χH2O) with χH2O being the air mole fraction of water. This quantity is 10 

computed from T, RH (SHT21 sensor), and p. The used formula is given in the supplement. 

 

For each sensor, the coefficients of Eq. (4) are determined during initial calibration. The final calibrated model describes the 

CO2 mole fraction based on I1, T and p accounting for the ideal gas law and additional optical and thermal effects of the sensor. 

Some of the terms compensating for optical and thermal effects include I1. If I1 changes strongly, the respective compensations 15 

are not adequate anymore. Therefore, an additional simplified model is defined with only one term depending on I1. This model 

has a reduced capability to account for different environmental conditions but it is more robust against large changes in I1. 

𝜒𝜒𝐶𝐶𝐶𝐶2 ∙
𝑝𝑝 ∙ 𝑇𝑇0
𝑝𝑝0 ∙ 𝑇𝑇

= 𝑘𝑘0 + 𝑘𝑘1 ∙ 𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼1) + �𝑢𝑢𝑖𝑖 ∙ 𝑇𝑇𝑖𝑖 + 𝑤𝑤1 ∙ �
𝑝𝑝 − 𝑝𝑝0
𝑝𝑝0

� + 𝑓𝑓(𝑡𝑡)
3

𝑖𝑖=1

 (5) 

For each sensor and calibration, the coefficients of Eq. (4) and (5) are determined. 

The presented LP8 sensor model corresponds to level-2B in the terminology presented by Schneider et al., (2019). This means 20 

that, related to the sensor unit, internal and external information is employed but is limited to parameters that are appropriate 

for artifact correction and directly related to the measurement principle. 

Equations (4) and (5) do not include a term that is dependent on humidity although, from theory of spectroscopy, a certain 

impact of humidity on the detected light is likely. We did not find a parametrization with respect to RH that leads to clear 

improvements in CO2 accuracy compared to reference measurements. The water molar fraction might be more relevant than 25 

RH, but as temporal variation in this quantity is much smaller than in RH, we expect that a part of it is absorbed by f(t). 

Therefore, we did not further investigate this option. 

 

2.2.3 Data transmission over LPN 

The measurements of the sensor units are transmitted every 10 minutes over Swisscom’s low power network (LPN) to a central 30 

database hosted by Decentlab GmbH. Swisscom’s LPN is based on the LoRaWAN protocol (LoRa-Alliance, 2019), using 

chirp spread spectrum modulation in the frequency band between 863 and 870 MHz, and operating as a commercial service. 

LoRaWAN is a wireless network protocol focusing on an asymmetrically organized, energy efficient data transmission. Data 

can be transmitted as far as several tens of km in rural areas. 

In our case, the sensor units have a transmission rate of 10 minutes while the LP8 and SHT sensors operate at a sampling rate 35 

of 1 minute. Every transmitted message contains 33 bytes (14 numbers). The energy consumption of data transmission over 

LPN depends on the spreading factor (SF). Most sensor units in the Carbosense network operate on SF7. In this case, a sensor 

unit can independently operate for 5.1 years before the two batteries (alkaline, 1.5V, IEC: LR14) need to be replaced. Here, 

radio transmission requires 22% of the total energy used by the sensor unit. 
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2.3 Sensor calibration infrastructure 

2.3.1 Climate and pressure chambers 

Calibration data for the determination of the temperature and pressure dependencies of the LP8 sensors were obtained by 

placing the sensors in climate and pressure chambers. One climate chamber and one pressure chamber at Empa and one 5 

pressure chamber at METAS (Federal Institute for Metrology) were used for this task.  

In the climate chamber at Empa, the sensors were exposed to at least four 24 hours lasting temperature profiles uniformly 

decreasing from 50 to -5 °C at CO2 levels of 350, 450, 700 and 1000 ppm. In the pressure chamber at METAS, pressure levels 

were varied between 780 and 1050 hPa at CO2 levels of 420 and 900 ppm and at a temperature of 24 °C. In the pressure 

chamber at Empa, pressure levels were varied between 800 hPa and ambient pressure (approximately 960 hPa) at CO2 levels 10 

between 350 and 1000 ppm. The three chambers were not completely air tight, which required a continuous supply of air with 

a specific CO2 molar fraction, ventilation to ensure a uniform mixture of air within the chambers, and a pump for the pressure 

chamber. Picarro G1301/2401 instruments were connected to the chambers for providing CO2 reference values. Pressure was 

recorded by calibrated instruments (outside the climate chamber, inside the pressure chambers). 

2.3.2 High-precision CO2 measurement sites 15 

High-precision CO2 field measurements are performed at several locations in Switzerland. Those used in this project for sensor 

calibration, assessment of the sensors' long-term performance as well as for correcting the sensor drifts (see section 3.5) are 

listed in Table 1 and shown in Figure 1. The CO2 measurement facilities at sites BRM, GIMM and LAEG were initiated within 

the CarboCount project (Oney, et al., 2015; Berhanu, et al., 2016). Sites HAE, PAY and RIG belong to the Swiss National Air 

Pollution Monitoring Network, NABEL (Empa, 2018). The CO2 measurement infrastructure at DUE was specifically set up 20 

within the Carbosense project to provide an accurate reference for LP8 sensors during ambient calibration. The CO2 

measurement instruments were calibrated using working standards with traceability to the WMO-X2007 calibration scale 

(Zhao & Tans, 2006; Tans, et al., 2017). 

  

Table 1: High-precision CO2 measurements available for this study. The locations of the sites are shown in Figure 1. H denotes the 25 
altitude of the instrument, HI denotes the height above ground level of the inlet of the tube that connects to the high-precision 
instrument, and HS denotes the height above ground level of the LP8 sensors deployed at this site. 

Site name Code Latitude Longitude H HI HS Manu-
facturer Type Remark 

  [°] [°] [m] [m] [m]    
Beromuenster BRM 47.18959 8.17547 798 12.5 5 Picarro G2401 Rural 
Duebendorf DUE 47.40297 8.61347 432 2 1-2 Picarro G1301 Suburban 
Gimmiz GIMM 47.05345 7.24793 443 32 - Picarro G2301 Rural 
Haerkingen HAE 47.31187 7.82050 430 5 5 LI-COR LI-7000 Rural, next to a motorway 
Laegern LAEG 47.48196 8.39725 855 28.5 28.5 Picarro G2401 Rural, hilltop 
Payerne PAY 46.81308 6.94448 489 5 5 Picarro G2302 Rural 
Rigi-Seebodenalp RIG 47.06739 8.46333 1030 5 5 Picarro G2302 Rural, hillside 

 

2.4 Data storage infrastructure 

The raw data from the sensor units, after being transmitted via LPN to a Swisscom server, are forwarded via Internet to 30 

Decentlab where they are stored in an Influx database (InfluxDB, 2019) providing near real-time access to the data. Decentlab 

provides web based dashboards for data visualization as well as APIs for data access in various scripting languages. 
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Information about the sensor network such as deployment history, calibration runs, calibration parameters, observations from 

reference instruments, and processed sensor measurements is stored in a MySQL database hosted by Empa.  

3 Data processing 

3.1 Important issues for LP8 long-term measurements 

The deployment of a large number of LP8 sensors in this study revealed two issues that are important for ambient long-term 5 

measurements with this sensor type. First, the response characteristics of the LP8 infrared measurement can change over time, 

both steadily or abruptly. Sudden changes in the sensor response might be due to mechanical stress of the plastic housing under 

continuously varying environmental conditions. Second, the infrared measurements are susceptible to humidity exceeding a 

value of about 85%. This behaviour is common to all LP8 sensors but actual thresholds differ among individual sensors. 

Therefore, additional processing steps subsequent to the application of the calibration function are required to achieve a data 10 

set of sufficiently high accuracy and completeness (sections 3.3, 3.4, and 3.5). 

Several analyses that are presented in the following sections refer to the term deployment. We define deployment as the time 

period within which a specific sensor unit is placed at a particular outdoor location. A sensor unit can be used in several 

consecutive deployments. 

3.2 LP8 sensor calibration and application of the sensor model 15 

Each LP8 sensor was individually calibrated. For this purpose, each sensor unit was placed in the climate and pressure 

chambers for at least one complete calibration. Furthermore, each unit was operated under ambient conditions at site DUE 

until it was shipped for deployment in the Carbosense network. The sensors were run at DUE under ambient conditions in 

parallel with a Picarro instrument for a time period between several weeks and several months.  

Thus, an extensive data set of both chamber and ambient measurements was collected for each sensor unit to determine the 20 

calibration parameters of Eqs. (4) and (5). Filters that exclude conditions near condensation, large changes in IR measurements 

or in ambient CO2 were applied to this data set for optimal parameter estimation. The data filtering during calibration is more 

rigorous than the outlier detection applied to the sensors deployed in the Carbosense network (see chapter 3.4). A robust 

estimator (Huber loss function) was used for the parameter estimation to minimize the impact of large residuals (e.g. persons 

breathing near the sensors). The parameters of the LP8 sensor models are stored in the MySQL database. The sensor unit has 25 

to pass a new calibration cycle whenever the LP8 sensor is exchanged. 

Measurements from LP8 sensors deployed within the Carbosense network are processed by using Eq. (4) and Eq. (5) with the 

corresponding coefficients determined during the calibration phase yielding a first guess CO2 molar fraction CO2,CAL. Thereby, 

there are two parallel processing chains but besides the computation of CO2,CAL the further processing is performed equally 

(outlier detection, drift correction). The function f(t) in Eqs. (4) and (5) is replaced by a constant that equals the last value of 30 

this step function during calibration. 

The first guess CO2,CAL is subsequently corrected for sensor drifts as described in Section 3.5. Eqs. (4) and (5) require the 

pressure at the sensor location. This value is derived from 10 minute pressure measurements from the meteorological 

measurement network SwissMetNet operated by MeteoSwiss (Supplement Figure 2). A procedure was set up that estimates 

the vertical pressure gradient in Switzerland and horizontally interpolates the pressure reduced to sea level every 10 minutes. 35 

These values allow the computation of the pressure for any location and height above ground level with an uncertainty of about 

1 hPa. The accuracy of the pressure interpolation has been determined from a comparison to measurements at SwissMetNet 

sites performing a leave-one-out cross-validation. 

Results and flags of subsequent processing steps are stored in the MySQL database to guarantee full traceability and to support 

the comparison of different processing options. 40 
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3.3 Flagging for high relative humidity  

A relative humidity threshold RHtrsh was determined for every LP8 sensor based on the measurements from the ambient 

calibration performed at DUE. The purpose is to review the operation limits specified by the manufacturer and to develop a 

method for flagging the sensor measurements that may be impacted by humidity.  

First, the standard deviation of the CO2 residuals (difference between computed CO2 values of the sensors and CO2,moist 5 

measured by the Picarro) is computed in 2% RH intervals in a range of relatively dry conditions between 40 and 70% RH 

(resulting in 15 values in total), and the median of these values denoted as σres is determined. Second, the 95% quantile of the 

residuals is computed in 2% intervals from 0 to 100% RH. RHtrsh is then selected as the maximum interval for which the 95% 

quantile is smaller than 3 ∙ σres. The CO2 residuals and the computed RHtrsh values are exemplarily depicted for two sensors in 

Figure 3 (a) and (b). The operation limits for humidity indicated by the manufacturer (0-85% RH) concur with our results 10 

(Figure 3 (c)). All the RHtrsh values are stored in the database. 

Flagging the measurements of the deployed sensors by applying the criteria RH > RHtrsh results in a data set with very few 

outliers but, concurrently, a significant number of measurements is falsely rejected. In section 3.4 a more adaptive outlier 

detection algorithm is presented that does not rely on any reference measurements. The choice of the filtering approach depends 

on the intended use of the measurements and whether the number of undetected outliers or the number of falsely flagged 15 

outliers is more important.  

 

(a) (b) (c) 

   
Figure 3: (a) and (b) CO2 residuals (sensor minus reference; based on Eq. (4)) versus relative humidity during calibration at ambient 
conditions at the DUE site for sensor units 1062 and 1071. The vertical dashed line indicates RHtrsh, the other three lines depict the 
5%/50%/95% quantiles of the residuals in 2% RH intervals. (c) Overlaid histograms of RHtrsh for all the sensors (ALL), within the 20 
Carbosense network deployed sensors (DEPL) and at reference sites deployed sensors (REF). The indicated quantiles refer to the 
set of deployed sensors. 

 

3.4 Outlier detection 

We call an LP8 measurement an outlier when it cannot be related to the ambient CO2 molar fraction by means of the sensor 25 

models described by Eqs. (4) and (5). Outliers are primarily caused by relative humidity exceeding about 85% (see Figure 3). 

Under these conditions the light absorption within the measurement cell can be increased due to the presence of water droplets 

or condensation of water on the mirrors. Such conditions may last for periods between a few minutes and more than a day. 

The difficulty in detecting such events is that the signals in the LP8 IR and SHT21 RH time series do not follow a characteristic 

profile but exhibit significant variation depending on the actual progression of the meteorological conditions. The distinction 30 

between small humidity effects and a true increase in CO2 is not a simple task as the sensor measurements do not fully describe 
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the conditions in the measurement cell. In addition, temporary enhancements from closely located emission sources can 

unusually impact the CO2 measurements as well and should not be treated as outliers.  

The outlier detection algorithm was designed to rely entirely on the measurements from the sensor unit itself and to require no 

auxiliary information such as measurements from a reference instrument. It analyses and processes quantities derived from 

sensor observations that, under normal conditions, vary only slowly. The algorithm learns the sensor's usual behavior at its 5 

current location from data obtained during the particular deployment and flags unusual measurements. Prerequisites for the 

algorithm are that environmental conditions and their changes remain within certain limits and that stable relations exist 

between specific sensor quantities and environmental conditions.  Learning sensor behavior in the field is an important element 

for minimizing the required calibration time. 

Thus, the LP8 outlier detection algorithm is primarily based on the differences of consecutive log(IR) and temperature values 10 

plus statistical measures that are derived from a large number of IR measurements. The algorithm also reviews the relative 

humidity to enhance the robustness of the algorithm. The absolute values of IR and the corresponding values of CO2,CAL were 

not directly used as both are not stable over time due to drift or jumps and as they depend on CO2, temperature and pressure 

that are variable over time. 

First, the outlier detection algorithm requires the computation of several auxiliary quantities. Here, IR, T and RH denote the 15 

infrared measurement, the LP8 temperature and the SHT21 relative humidity. The subscripts M and L refer to the mean and 

the last single measurement in a 10 minute interval. Δt indicates the time between subsequent measurements transmitted to the 

database (subsequent measurements are only considered if the difference does not exceed 20 min). 

1. Difference in log(IR):     ΔIR,M(t) = log(IRM(t)) - log(IRM(t-Δt)) 

2. Difference in T:     ΔT,M(t) = T(t) - T(t-Δt) 20 

3. Mean RH of two measurements:   MRH(t) = ½ ∙ (RH(t) + RH(t-Δt)) 

4. Difference between single measurement and mean: γ(t) = log(IRL(t)) – log(IRM(t)))  

5. Variance of log(IRM(t)):    𝜎𝜎𝑀𝑀2 (𝑡𝑡) =  1
10
∙ 1
𝑛𝑛
∙ ∑ 𝛾𝛾(𝜏𝜏)2    𝜏𝜏 ∈ [𝑡𝑡 − 2ℎ… 𝑡𝑡 − 10𝑚𝑚𝑚𝑚𝑛𝑛] 

6. Noise in log(IRL):          

 𝐼𝐼𝑅𝑅𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼𝑅𝑅𝐿𝐿(𝜏𝜏)) − log (𝐼𝐼𝑅𝑅𝑀𝑀(𝜏𝜏))�   𝜏𝜏 ∈ 𝑇𝑇𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑑𝑑 25 

7. Median absolute deviation of the difference of consecutive log(IRM):     

 ∆𝐼𝐼𝑅𝑅𝑑𝑑𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛 = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼𝑅𝑅𝑀𝑀(𝜏𝜏)) − log (𝐼𝐼𝑅𝑅𝑀𝑀(𝜏𝜏 − ∆𝑡𝑡))�   𝜏𝜏 ∈ 𝑇𝑇𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛𝑑𝑑𝑑𝑑𝑛𝑛𝑛𝑛𝑑𝑑  

In item 5, n is the number of used γ(t) values and 10 is the number of single sensor measurements within a 10 minute interval. 

 

Second, based on the samples in relatively dry conditions (RH<80%), a quadratic function ΔIR,M = f(ΔT,M) is robustly determined 30 

which describes the normal change in log(IR) with a change in temperature. The corresponding residuals r for all samples are 

computed and, again based only on the dry samples, the median absolute deviation (MAD) is calculated (Figure 4). 

A measurement IR(ti) is flagged when |r(ti)| > 3∙MAD ∩ |ΔIR,M(ti)| > 3∙σM(ti) ∩ RH(ti) > 70% (value set according to Figure 3 

(c)). The positive flagged residuals are denoted as rflag,pos, the negative flagged residuals as rflag,neg. Starting from ti consecutive 

(for all the rflag,pos(ti)) or preceding (for all the rflag,neg(ti)) measurements are also flagged until RH drops below MRH(ti). In 35 

general, high relative humidity leads to decreased IR and, concurrently, increased CO2 values for the LP8 sensor. Concurrently, 

the sign of r(ti) determines the direction of backward or forward flagging of temporally adjacent measurements. 

In addition, two more quantities are determined based on rflag,pos: RHQ75 is the 75% quantile of the RH values and TDPQ25 is the 

25% quantile of the difference between T and the dew point (Td). 

Measurements are also flagged if (i) |γ(ti)| > 5∙IRnoise ∩ RH(ti) > 85%, (ii) |ΔIR,M(t)| > 5∙ΔIRlarge, (iii) RH > RHQ75, or (iv) T –Td 40 

< TDPQ25. Under (i), the first criterion is already fulfilled if two of seven |γ(ti)| adjacent to ti indicate increased noise.  
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(a) (b) 

  
Figure 4: (a) Differences of consecutive log(IR) values versus differences of LP8 temperatures. Positive outliers are coloured in red, 
negative outliers are coloured in green. The orange line depicts the quadratic fit of ΔLOG(IR) ~ ΔLP8_T. (b) Histogram of the 
residuals of ΔLOG(IR) with relation to the fitted curve. The vertical red lines depict ±3∙MAD. Positive outliers are in red, negative 
outliers are in green. Results from sensor unit 1010 deployed in Leibstadt are depicted. 

 5 

3.5 Drift correction 

IR measurements from LP8 sensors and the corresponding calibrated molar fractions CO2,CAL, corresponding to χCO2 in Eqs. 4 

and 5, are not stable in time. For sensors deployed in the field, this drift has to be corrected in order to compute unbiased CO2 

molar fractions. Since usually no reference measurement is available at the location of the LP8 sensor to determine the drift, a 

method was developed making use of specific weather conditions during which horizontal gradients in CO2 are small and 10 

linking the measurements of the LP8 sensor to those of the closest accurate instrument. The criterion of small horizontal 

gradients and a well-mixed planetary boundary layer is best met during situations of high wind speeds. 

The drift correction algorithm involves two consecutive steps: First, the identification of time periods Pslow when the sensor 

behavior is slowly evolving, and the drift can be corrected, and of periods Pfast when the behaviour changes abruptly. Second, 

the determination of the drift and its correction. 15 

For the first task, the identification of Pslow, the calibrated measurements CO2,CAL from the afternoon are analyzed because CO2 

molar fractions are most comparable from day to day in the afternoon when the planetary boundary layer is usually well mixed 

(Supplement Figure 1). 

The algorithm computes for each sensor and day td the following quantities from the calibrated measurements CO2,CAL: 

1. Qprev7d(td):  20% quantile of CO2,CAL(τ) where τ ϵ [t-7d…t-1d] ∩ τ ϵ [13:00-17:00 UTC] 20 

2. Qnext7d(td):  20% quantile of CO2,CAL(τ) where τ ϵ [t+1d…t+7d] ∩ τ ϵ [13:00-17:00 UTC] 

3. Qprev15d(td):  20% quantile of CO2,CAL(τ) where τ ϵ [t-15d…t-1d] ∩ τ ϵ [13:00-17:00 UTC] 

4. Qnext15d(td):  20% quantile of CO2,CAL(τ) where τ ϵ [t+1d…t+15d] ∩ τ ϵ [13:00-17:00 UTC] 

5. Q15d(td):   20% quantile of CO2,CAL(τ) where τ ϵ [t-7d…t+7d] ∩ τ ϵ [13:00-17:00 UTC] 

6. b15d (td):   slope of CO2,CAL(τ) where τ ϵ [t-7d…t+7d] ∩ τ ϵ [13:00-17:00 UTC] 25 

(Time in Switzerland refers to CET/CEST.)  

Further, an empiric threshold ΔQTRSH is computed as median(Qn7d – Qp7d) + 5∙MAD(Qn7d – Qp7d). Sensor behavior is considered 

unsteady (Pfast) if |Qnext7d(td) - Qprev7d(td)| > ΔQTRSH or if |b15d (td)| > 3 ppm/day ∩ |Qnext15d(td) - Qprev15d(td)| > 40 ppm. Drift 

correction is applied separately to the measurements of each sensor deployment and continuous time period Pslow. An example 

of the working principle of the algorithm is shown in Figure 5. 30 
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Figure 5: (a) Time series of Qd, Qprev7d, Qnext7d and Q15d for sensor unit 1012 deployed in Hallau (HLL). The red vertical lines depict 
days when |Qnext7d-Qprev7d| is larger than the threshold. Shaded periods indicate time periods with increased |b15d|. For comparison, 
the Q15d values for the reference sites DUE, PAY, RIG and HAE are shown. (b) Time series of Qnext7d-Qprev7d and Qnext1d-Qprev1d for 
the same sensor. The horizontal lines depict the threshold ΔQTRSH. 5 

 

 
Figure 6: Time series of ΔCO2 for all the sensors deployed in the canton of Zurich (Figure 1). The red dots depict the dates of the 
sensor adjustments. 

 10 

The actual drift correction is based on wind measurements from MeteoSwiss sites (Supplement Figure 2) and CO2 

measurements from the high-precision instruments deployed in the network (both 10 minute averages). The drift correction 

algorithm is applied to the calibrated measurements CO2,CAL from the sensors deployed in the Carbosense network.  

First, all the MeteoSwiss sites within a distance of 40 km from a sensor are selected. Time periods are identified when all the 

selected sites report for at least 90 minutes  15 

i. wind speed > 2 m/s, or 

ii. wind speed > 0.75 m/s ∩ median(wind speed at selected sites) > 3 m/s 

 

Time periods lasting longer than 4 hours are split into shorter intervals with a duration of about 2 hours each. Second, the most 

closely located CO2 reference is chosen (Figure 1). Its data is checked for completeness (number of measurements n ≥ 6) and 20 

variability (sd ≤ 4 ppm) within each windy period. Similarly, the sensor data is checked for completeness (n ≥ 6 ∩ SHT21 
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RH<RHtrsh) and variability (sd ≤ 15 ppm). Third, the CO2 offset ΔCO2(t) between the sensor's and the reference's median is 

computed for each windy period, and a continuous CO2 offset time series is derived by linear interpolation between these 

periods. Drift corrected sensor measurements are derived by adding the linearly interpolated ΔCO2(t) to the measurements 

CO2,CAL (Figure 6). 

For the data set presented in this study, we use only the high precision measurements from the sites DUE, PAY and GIMM 5 

for the adjustment of the LP8 sensors. This procedure allows quantifying the accuracy of the concept by means of the remaining 

reference sites. In fact, measurements from GIMM are only used to adjust LP8 sensors deployed in PAY. Thereby, co-located 

sensor and reference measurements are independent in this data set (see section 4.2). Obviously, three reference sites are not 

sufficient to accurately adjust all the LP8 sensors deployed in Switzerland as weather conditions often differ from region to 

region. Drift correction for a final and optimized LP8 data set will rely on measurements from all the reference sites and also 10 

from the HPP instruments (Figure 1).  

 

The assumption of spatially homogeneous CO2 mole fractions during strong wind events was tested by treating measurements 

from reference instruments in the same way as those from the LP8 sensors. Whenever an LP8 sensor would be corrected at 

sites BRM, LAEG, HAE and RIG relative to DUE or at site PAY relative to GIMM, the 10 minute CO2 molar fractions 15 

measured by the Picarro instruments at the two sites are compared. Not considered are RH and measurement completeness of 

the LP8 sensor. Figure 7 shows CO2 differences of measurements from sites LAEG (distance d=19 km; height difference 

Δh=423 m), RIG (d=39 km; Δh=598 m), BRM (d=41 km; Δh=366 m) and HAE (d=61 km; Δh=-2 m) with respect to DUE as 

well as CO2 differences of PAY (d=35 km; Δh = 57 m) with respect to GIMM. All these sites are located in or adjacent to the 

Swiss plateau (Figure 1 and Figure 7 (f)) and therefore have mostly similar weather conditions. The CO2 differences are 20 

depicted in two histograms placed on top of each other. The histograms in light grey shows all 10 minutes CO2 differences, 

while the histograms in dark grey only present those differences during windy conditions. The concept works well for 

background sites (LAEG, RIG, BRM) but has limitations for sites that are locally impacted by emissions (HAE is located next 

to a motorway). For all the site pairs, the differences of the CO2 measurements show a small bias (-2.1 – 0.8 ppm) and a scatter 

component (2.2 – 2.8 ppm at background sites, 6.0 ppm at the traffic site HAE). The RMSE of the differences amounts to 2.3 25 

to 3.6 ppm (background site) and 6.2 ppm (traffic site). The situation for HAE can be improved if the effect of local emissions 

is reduced and only measurements between 22:00 and 04:00 UTC (LT = UTC+01:00/02:00) and/or wind directions upward 

the motorway are selected (Supplement Figure 5). Obviously, that concurs with a reduction of the number of adjustment 

periods. For three sites in the city of Zurich that are located next to a busy road, sensor corrections are performed only during 

windy conditions in at night-time in order to reduce the effect of local traffic emissions. 30 
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(a) (b) (c) 

   
(d) (e) (f)  

  

 

Figure 7: CO2 differences of measurements at (a) LAEG, (b) RIG, (c) BRM and (d) HAE with respect to DUE and CO2 differences 
of measurements at (e) PAY with respect to GIMM. DIST denotes the distance between the two sites [km], H1 and H2 denote the 
altitudes of the two sites [m]. Q005 WP, Q050 WP, Q095 WP denote the 5%, 50% and 95% quantile of the CO2 differences in windy 
conditions, respectively. MAD WP and SD WP denote the median absolute deviation and standard deviation of the CO2 differences 
in windy conditions. RMSE WP denotes the RMSE of the CO2 molar fraction of the two sites in windy conditions. (f) Map of the 5 
locations of the reference sites, their 40 km perimeters and the names of geographic regions. SP: Swiss Plateau, ZH: Canton of 
Zurich. Geographic data used for creating the base map originates from http://www.diva-gis.org and 
https://www.swisstopo.admin.ch. 

 

3.6  Consistency check 10 

There are instances where the LP8 sensor drift cannot be corrected as frequently as required. This can be caused by extended 

meteorological situation with low wind speeds or by sensor related issues (e.g., unstable behavior, simultaneous wind and high 

relative humidity). Consequently, the difference between the computed and the true CO2 molar fraction may increase over 

time. In addition, the outlier detection algorithm can be less effective during prolonged time periods with no dry conditions.  

In order to identify such periods of suspicious or less accurate data, the measurements of individual sensors were checked for 15 

consistency with the more accurate measurements from HPP and Picarro instruments in a similar geographic setting. Although 

the true CO2 mole fractions at a given site are unknown, CO2 time series of sites within a particular region are expected to 

exhibit similarities, e.g. similar daily CO2 minima in the afternoon when the boundary layer is usually well mixed. 

For this purpose, all the locations of the Carbosense network were divided into three groups based on their region and the 

surrounding topography.  20 

All the sites in the Canton of Ticino (Figure 1) are part of group one as only two HPPs are operating in this region. The sites 

in the other regions of Switzerland are divided into two groups depending on whether they are located on a hilltop (group 3) 

or not (group 2). A hilltop location is defined by the following criteria: (i) The difference in altitude, i.e. the topography in a 
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2.5 km perimeter including the actual altitude of the mounted sensor, is larger than 300 m. (ii) More than 90% of the topography 

in a 2.5 km perimeter is at a lower altitude than it is at the sensor location. The second criterion is omitted if the difference in 

altitude exceeds 400 m. 

The CO2 molar fraction of the reference instruments and the HPPs are analyzed group by group. The 10 percent quantile of 

the preceding 24 hours is computed for each instrument/HPP every sixth hour (CO2,Q10%). Afterward, a band is derived 5 

(CO2,limits = median(CO2,Q10%) ± 2.0∙range(CO2,Q10%)) that indicates plausible daily minimum CO2 molar fractions. The 

preceding 24 hours of measurements from a sensor get flagged in case the sensor's daily CO2 minimum is outside the computed 

band. 

4 Results 

4.1 Sensor calibration 10 

The employed sensor model that is based on the Beer-Lambert law and is extended by an empirical parametrization can relate 

the sensor IR measurements and the ambient CO2 molar fraction in all relevant CO2, temperature and pressure conditions 

(Figure 8 (a), (b), (d), (e)). The sensor's factory calibration is intended for using the sensor in a narrower temperature range, 

like that encountered indoors, and does not include pressure information. Measurements based on the factory calibration are 

not as accurate as they can be under outdoor conditions when using an extended model such as described by Eq. (4) and (5) 15 

(Figure 8 (c)). The 1/IR-terms in Eq. (4) require that the sensor's IR measurement does not heavily drift or jump because in 

this case the error cannot be compensated by a simple offset. The data quality of sensors whose IR values significantly jumped 

during deployment (~ 300 ppm in CO2) is usually better when the simplified sensor model (Eq. (5)) without 1/IR-terms is 

applied (see Figure 12). Eq. (5) provides a less optimal fit under particular operating conditions (e.g., for high CO2 molar 

fractions) (compare with Figure 8 (a) and (b)). However, this is of minor importance for most locations. The CO2 molar fraction 20 

at locations which are not impacted by nearby emissions is usually within 380-550 ppm. Temperature effects cause by far the 

largest deviation of the sensor response from the ideal gas law (Figure 8 (c), (d), (f)). Pressure effects are of a much smaller 

magnitude (~ 0.1 ppm/hPa).  

 

 25 
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(a) (b) (c)  

   

 

(d) (e) (f)  

   

 

Figure 8: (a) Calibrated sensor measurements (Eq. 4) versus measurements from Picarro instruments exemplarily shown for sensor 
1060. The data set contains measurements from the climate and pressure chambers and ambient measurements. The band between 
the red dashed lines denotes a range of ±20 ppm.  (b) Same as in (a) but for Eq. (5). (c) Same as in (a) but for factory calibrated 
sensor measurements. Measurements outside the sensor specifications are depicted in gray and included for RMSE/correlation. (d) 
CO2 – LP8 T plot and (e) CO2 – P plot depicting the environmental conditions covered during calibration. Same data set as in (a). 5 
(e) LP8 IR measurements versus CO2 from the Picarro instruments. Same data set as in (a). 

 

As shown in Figure 9, the RMSE of the LP8 CO2 measurements with respect to the Picarro during chamber and ambient 

calibration is between 6.8 and 12.5 ppm when applying Eq. (4) and between 8.0 and 13.9 ppm when applying Eq. (5) for the 

deployed sensors. Data filtering during calibration is chosen to be very selective in order to optimally determine the sensor 10 

model parameters.  
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(a) (b) 

  
Figure 9: RMSE values of sensor calibration (a) using Eq. (4) and (b) using Eq. (5). Three histograms are overlaid: all calibrated 
sensors, sensors deployed in the Carbosense network (DEPL) and sensors at locations with a reference instrument (REF). The 
indicated quantiles refer to the set of deployed sensors. 

 

4.2 Drift correction and outlier detection 5 

The performance of the outlier detection and drift correction algorithms is presented together as both processing steps have to 

be applied for obtaining accurate CO2 measurements. The results shown in this section refer to sensor measurements in the 

period July 1, 2017 to September 1, 2019. 

Several sensor units are operated at sites equipped with a CO2 reference instrument (HAE: 5 sensor units; PAY: 5 sensor units; 

RIG: 5 sensor units; LAEG: 2 sensor units; BRM: one sensor unit) in order to test different calibration and processing options. 10 

Drift correction for the sensors in PAY relies on the CO2 measurements from GIMM and for the sensors in RIG, HAE, LAEG 

and BRM on the CO2 measurements from DUE (Figure 7). Thus, the sensor and reference instrument measurements are 

independent at these sites.  

A slightly modified data processing scheme was applied to the data from the 141 sensor units that were operated in DUE longer 

than until December 1, 2017. This additional data treatment provides the opportunity to assess the data quality for a larger set 15 

of sensors. The calibration data set for these sensors contains all data before December 1, 2017 and is applied to the 

measurements thereafter. The sensor data are processed as described in chapter 3 but drift is corrected by referring to 

measurements from sites LAEG and BRM instead of DUE (site LAEG being located closer to DUE is used when both 

instruments provide data). The accuracy of CO2 molar fraction from these sensors located in DUE can therefore be compared 

to that from sensors deployed in the Carbosense network. Among the sensors in DUE there are also those with a performance 20 

that is not sufficient for deployment and therefore they are held back in DUE. 

The comparison of the median difference between CO2 measurements from the sensors and from the reference instruments 

reveals that sensor drift can be adjusted over the long-term when the sensor measurements can regularly be referred to CO2 

predictions (Figure 10). The frequency of the required adjustments depends on the individual sensor as the change in sensor 

behavior and the corresponding drift are not evolving constantly. 25 
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Figure 10: Weekly median deviation of sensors operated in HAE, PAY, RIG, LAEG, BRM and DUE before (particular colors 
correspond to individual sensors as indicated in the legend) and after drift correction (grey). Note the different scales in the y-axis. 

 

By means of the sensors operating co-located with reference instruments the effect of different processing options can be 

assessed. This includes the employed sensor model (Eq. (4) or Eq. (5)), the applied outlier detection (no outlier detection, 5 

outlier detection based on RHtrsh or the algorithm presented in section 3.4) and the use of additional consistency checks. The 

sensor and reference measurements are compared for weekly periods by means of the root mean square error (RMSE) and the 

correlation (Figure 11 (a) and (b)). In addition, the fraction of valid measurements w.r.t. the total number of measurements in 

the database is indicated (Figure 11 (c)). It shows the effect of data filtering on the number of usable measurements. Scatter 

plots of the comparisons between the LP8 measurements and the measurements from the reference instruments at HAE, PAY, 10 

RIG, LAEG and BRM are shown in Figures 6 to 9 in the supplement. 

The median of the weekly RMSE of the sensor measurements with respect to the reference measurements at BRM, HAE, 

LAEG, PAY and RIG amounts to 10 ppm (25%/75% quantiles: 6.8/14.3 ppm). The accuracy of the measurements is not 

constant over time but has a dependency on the effectiveness of the outlier detection and drift correction algorithms, and 

thereby also on the prevailing weather conditions. The two described outlier detection algorithms differ in terms of the resulting 15 

RMSE values. A rigorous data filtering using RHtrsh leads to the best RMSE values. The outlier detection algorithm performs 

slightly worse in terms of the RMSE. Overall, it classifies a slightly larger number of measurements as valid than the filtering 

using RHtrsh. Differences in performance between the sensor models described by Eq. (4) and Eq. (5) are small for this set of 

sensors. The accuracy of the measurements can be further improved when they are validated against measurements from high-

precision instruments operated in the Carbosense network. This is shown for the combination of the outlier detection algorithm 20 

and the consistency check. Correlation between sensor and reference is about 0.9 on average. At sites RIG, LAEG and BRM 

the correlation coefficients are smaller due to smaller CO2 variations encountered at these locations (Supplement Figure 1). 
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(a) (b) (c) 

   
Figure 11: (a) Weekly RMSE values for all the sensors deployed at HAE, PAY, RIG, BRM/LAEG and DUE. For each site four 
versions are presented for the drift adjusted measurements: (i) no filtering applied, (ii) outlier detection based on sensor specific 
RHtrsh value, (iii) outlier detection algorithm, and (iv) outlier detection algorithm plus consistency check. The left bar with the same 
colour refers to Eq. (4), the right bar to Eq. (5). (b) Same as in (a) for the weekly correlation. (c) Same as in (a) for the weekly fraction 
of used data. Here, the fraction refers to the number of measurements transmitted to the database. 5 

 

The extended sensor model described in Eq. (4) is applicable for a wider range of environmental conditions (CO2, T, P) than 

the reduced version (Eq. 5). However, when the IR signal shows large changes (> |300| ppm expressed in molar fraction) as in 

the case of sensor unit SU 1314 deployed at HAE, the application of the simplified sensor model provides more accurate results 

(Figure 12).  10 

   

   
Figure 12: Comparison of sensor and reference CO2 measurements for SU 1314 deployed in HAE and SU 1100 and SU 1139 deployed 
in PAY. The sensor measurements depicted in the figures in the top row are based on the sensor model given by Eq. (4) and in the 
bottom row they are based on the sensor model given by Eq. (5). The sensor measurements are drift corrected, and the outlier 
detection algorithm was applied. Points in grey are outliers. 

 15 
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4.3 Differences between co-located sensors 

Co-located sensor units are an additional option to assess the sensor performance. They reveal how similarly two sensors 

behave when they encounter comparable environmental conditions. There are 12 locations where two sensor units operate in 

parallel but where no reference instrument is available (Figure 13 and Figure 6 of the supplement). Horizontal distance between 

the sensor unit pairs does not exceed 45 m. There are no close emission sources for cases with distance ≠ 0. The indicated 5 

RMSE refers to the difference of simultaneous measurements. The sensor pairs exhibit fairly good correlations at most 

locations. For the sensor pairs operated in HLL and BSCR there is better agreement when processing the measurements using 

the sensor model given by Eq. (5) instead of the model given by Eq. (4). The IR measurement of sensor unit 1012 changed 

significantly in January 2018, those of sensor unit 1120 changed significantly in March 2018. The difference between the 

processing models is small for the other sensor pairs.  10 
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Figure 13: Comparison of LP8 measurements (drift corrected, outlier detection algorithm) from co-located sensors (distance 
between sensors < 45 m). Points in grey are flagged as outliers. The header of the individual figures indicates the sensor pairs by the 
location name and the sensor unit ID as well as the sensor model. 

 

Eight sensor units were deployed in the Carbosense network and they were brought back to site DUE to review their 5 

performance due to sensor malfunctioning (e.g. LP8 sensor dropped out of the board) or suspicious CO2 measurements. For 

completeness, the comparison between the measurements from these sensors and from the Picarro instrument is shown in the 

supplement. 

 

4.4 Overall data coverage 10 

The Carbosense network consists of 230 LP8 sensors as of 1 September 2019. In total, there were 262 deployments in the 

period July 1, 2017 to September 1, 2019. Over 75% of the deployments lasted longer than one year and five lasted less than 

30 days. 

The data transmission over Swisscom's Low Power Network (LPN) works reliably. The 25%/50%/75% quantiles of the 

fraction of transmitted data for individual deployments at MeteoSwiss and NABEL locations and at locations within the city 15 

of Zurich amount to 88%/95%/98% (Figure 14 (a)). Performance is even better at Swisscom's transmitter locations (25% 

quantile: 98%). However, these are usually equipped with a LPN gateway and built at elevated locations. We cannot assess to 

which part of the data transmission process the data loss is attributed (transmission module used in the sensor unit, LPN 

infrastructure, LPN network coverage). The transmission module (Microchip RN2483) of several sensor units was found to 

have a reduced reliability at high temperatures (above about 30º C). 20 

A small number (~1%) of the transmitted LP8 measurements had a nonzero status flag, for instance, when temperature was 

below -8.5º C (LP8 specific threshold) or the sensor is malfunctioning. For a minor fraction of measurements a drift adjustment 

could not be performed as the sensor was assessed to be in an unstable phase. The outlier detection algorithm flags 23% of the 

measurements that were drift corrected. In combination with the consistency check 29% of the measurements are flagged. 

There is considerable variability in these fractions related to the individual sensor performance and the location. A clear 25 

relationship is evident between the fraction of outliers and the humidity conditions encountered at the deployment location 

(Figure 14 (b)). Overall, the median of usable measurements from all individual deployments amounts to 67%. There is a 

diurnal variation in the fraction of flagged measurements closely related to the diurnal variation in relative humidity (Figure 

15 (a)). The outlier detection algorithm has the advantage of retaining a larger number of measurements in conditions of high 

relative humidity compared to the method using RHtrsh (Figure 15 (b)). 30 
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(a) (b) 

  
Figure 14: (a) Analysis of measurement yield in the Carbosense network. Gray: Difference between expected and actual number of 
measurements in the database. Red: Measurements transmitted to the database with nonzero LP8 status (e.g., temperature below -
8.5º C, sensor malfunctioning). Cyan: Measurements with no drift adjustment (e.g. periods with unstable sensor behaviour). Orange: 
Measurements flagged by outlier detection. Light green: measurements that did not pass the consistency check. Dark green: Usable 5 
measurements. (b) Distribution of the measured relative humidity. Ten, fifty and ninety percent quantiles of RH. Ordering equally 
as in (a). 

 

(a) (b) 

  
Figure 15: Analysis of the results of measurement filtering referring to time of day (a) and relative humidity (b). Filtering is based 
on (i) a sensor specific RHtrsh value, (ii) the outlier detection algorithm (OutDet), and (iii) the outlier detection algorithm plus a 10 
consistency check (OutDet/CC). For the calculation of the fraction of flagged measurements, the number of measurements and flags 
of all deployments are summed. The numbers of measurements are depicted as red dots. 

 

4.5 Computation of the water volume fraction 

The conversion of wet CO2 to dry CO2 requires the water molar fraction χH2O. This value is computed for the sensor units 15 

based on the SHT21 T and RH measurements and the pressure that is interpolated for the specific location. The uncertainty in 

the estimation of χH2O and the corresponding uncertainty in the dry air mole fraction of CO2 can be assessed for a total of 55 

sensor units operated at MeteoSwiss SwissMetNet sites that are equipped with more accurate meteorological instruments. At 

those sites, χH2O has been computed from the sensor units and from reference T, RH and p measurements (Supplement Figures 

3 and 4). The agreement is best (±0.07%) when global radiance is low (<50 W/m2). In this case T and RH measured inside the 20 

box are representative for the outside conditions. Deviation is slightly worse (±0.15%) for higher global radiance. For the 

majority of the measurements, the conversion of wet CO2 to dry CO2 molar fraction is associated with an error below 1.2 ppm 

(assessment of deviation for an error ϵ = 0.2% and χCO2,wet = 600: χCO2,dry = χCO2,wet / (1-ϵ/100) =  600 ppm / (1-0.2/100)) = 601.2 

ppm). 
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5 Discussion and conclusions 

Calibration, drift correction and outlier detection are crucial elements for the operation of the LP8 sensors in a sensor network. 

Due to the number of employed sensors and the slight differences in their individual response characteristics the processing 

scheme has to be optimized in terms of accuracy, yield of usable measurements and processing efficiency. As the processing 5 

scheme consists of several independent elements each of them can be further improved in the future. 

 

The sensor calibration reveals the dependencies of the sensor signal on CO2, temperature and pressure. The mathematical 

sensor model has to account for a varying sensor response over time. Our approach is to use an extended model as long as the 

sensor behavior does not drift significantly. After large jumps in the IR signal, sensor measurements can be processed based 10 

on a simpler sensor model to optimize the measurement accuracy until the sensor is replaced. Moreover, the analysis of the 

data during calibration also shows the impact of environmental conditions, such as increased relative humidity (> 85  %), that 

are not be captured by the calibration model. It demonstrates the need of dedicated measurement filtering. 

 

We present two methods for the detection of outliers. The application of the two methods for individual sensors leads to a 15 

different number of flagged measurements and concurrently to different RMSE values. Flagging the measurements based on 

a conservative RH threshold results in most accurate results. The presented outlier detection algorithm that relies on no 

reference measurements is similarly powerful. The possibility to learn individual sensor characteristics in the field is an 

important feature to reduce calibration time. 

 20 

The response of the LP8 sensors is not stable over time and frequent adjustments are required. The performed correction during 

windy periods works well for the regions in and adjacent to the Swiss plateau (Figure 7). The method relies on a dense network 

of meteorological observations and high-precision CO2 measurements. Moreover, it strongly depends on the prevailing 

meteorology and, therefore, it is prone to a shortage of suitable adjustment periods. This situation could possibly be enhanced 

by using the results of an operational atmospheric transport model. Two aspects are expected to be improved by using such a 25 

model: (i) the identification of time periods when the CO2 molar fraction in the atmosphere is homogeneous and sensors and 

reference instruments can be related and (ii) the determination of the vertical CO2 gradient. Such an atmospheric transport 

model is currently under development at Empa and its applicability for the sensor network will be investigated. 

 

The data processing for sensors in the Swiss Plateau and especially in the region of Zurich (Figure 1) where the Carbosense 30 

network is most dense is operational. For these regions, the analysis of measurements from reference sites shows that drift 

correction within selected time periods works well. Results from atmospheric transport models will be required to achieve a 

similar data quality for the sensors located in the Swiss Alps. 

 

The LP8 sensor measures the CO2 molar fraction with an accuracy of about 10 ppm on average if the sensors are calibrated, 35 

continuously monitored and drift corrected during operation, and if the measurements are filtered. The resulting accuracy is 

not constant because it does not only depend on the sensor characteristics but also on the performance of the drift correction 

and outlier detection algorithms, and thereby on the prevailing weather conditions. The LP8 sensors are well capable to resolve 

differences in CO2 molar fraction exceeding 30 ppm (3∙σ, if the RMSE value computed in chapter 4.3 is taken for σ). CO2 

variations encountered at locations in Switzerland usually exceed this threshold (see Figure 1 of the supplement). Exceptions 40 

are high altitude locations such as Jungfraujoch (3580 m a.s.l.) (Sturm, et al., 2013). Near-surface CO2 signals depend on 
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anthropogenic emissions, the activity of the biosphere (uptake, respiration) and meteorology (boundary layer height, transport 

of CO2). LP8 sensors can resolve the site-specific CO2 signals for a wide range of locations, from elevated background sites 

to sites next to motorways (Figure 16). The sensors are not capable to detect small scale signals and long-term trends under 

outdoor conditions. 

 5 

(a) (b) (c) 

   
Figure 16: Comparison between LP8 and reference measurements. The LP8 measurements are outlier screened, drift corrected and 
checked for consistency. (a) Site HAE is located next to a motorway, (b) site PAY is located in a rural landscape, and (c) site RIG is 
an elevated background site. Points in grey are outliers. 

 

Data availability. 10 

Periodic data releases on the ICOS Carbon Portal are in preparation. Temperature and RH measurements from the sensor units 

of the period July 1, 2017 to October 1, 2019 are already available under https://doi.org/10.18160/RW69-MP2Y. 
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