
Responses to Reviewers 

 
This document includes our responses to the reviewers’ comments and suggestions for the 
manuscript [doi:10.5194/amt-2019-409]: “A Machine Learning-Based Cloud Detection and 
Thermodynamic Phase Classification Algorithm using Passive Spectral Observations”. 
 
 
We thank all the reviewers for their helpful suggestions and comments. We hope the revisions are 
found responsive and appropriate, and that the revised manuscript will be deemed acceptable for 
publication in the Atmospheric Measurement Techniques. 
 

Our responses to the general comments and suggestions from the reviewers (Reviewer #1: Blue; 
Reviewer #2: Green; Reviewer #3: Orange) are listed below (response in black): 
 

General Responses: 

R1: The authors describe a machine learning (ML) based approach to first detect clouds and second 
to assign cloud thermodynamic phase (liquid versus ice). The ML algorithm is trained using 
CALIOP detected liquid and ice clouds but is limited to the most straightforward single phase and 
single layer cloud configurations (or multilayer with the same phase), thus mixed phase and multi-
layered clouds of different phases are not included in this study. The approach is tested against 
existing MODIS Collection 6 (C6) and MODIS/VIIRS continuity products (both the cloud mask 
and cloud phase). The ML approach is shown to improve the phase characterization over the 
existing MODIS and MODIS/VIIRS continuity algorithms, with greater improvements over 
certain surface types including snow and ice. Cloud characterization efforts from satellite remote 
sensing platforms are increasingly utilizing ML algorithms and this paper is timely and a useful 
exploration of the potential of ML for passive cloud imagery characterization. Parts of the 
methodology are not as well detailed as need be and the results need to be placed into a broader 
context. After addressing the comments below and suggestions for straightforward revisions, this 
paper would be a nice addition to the literature. 
 
Response: We appreciate the insightful comments from the first reviewer (R1). We also noticed 
that some details, in particular the training/validating dataset selection and model configurations 
are not well described in the original version. Therefore, in the revised version, we provided more 
details of the method and results. Please check the new Tables 2-5, and corresponding responses 
to R1.6, R1.8, and R2.18. 
 
R2: This paper applies a machine learning (ML) approach to the problem of cloud detection and 
thermodynamic phase assignment from passive satellite measurements. This is potentially 
significant considering the challenges noted in the manuscript with the traditional methods 
currently being employed and the rapidly increasing interest in using ML for satellite analyses of 
clouds. The ML approach evaluates a number of models that are tested and evaluated using various 
combinations of passive sensor radiances and ancillary data products as inputs while CALIOP data 
are used to define the reference labels for cloud occurrence and phase. Two models are selected 
for evaluation, one that employs solar and infrared radiances (daytime) and one that employs only 



infrared radiances (all day). The view angle, latitude, longitude and the surface skin temperature 
were found to be the most important ancillary data needed. In addition, the models are trained for 
7 surface types. The two models are found to perform reasonably well and performance metrics 
generally exceed the current approaches employed on MODIS and VIIRS by the MODIS Science 
Team. However, the significance of the results are difficult to gauge for a variety of reasons. For 
example, the ML and current (referred to as traditional in the manuscript) approaches are designed 
much differently with regards to the targeted clouds, atmospheric correction, scene type 
dependencies and other factors. With respect to the clouds, the ML model development excludes 
the most difficult clouds which are pervasive over the Earth. In particular, clouds in polluted 
environments, broken clouds and single-layer and multi-layer ice overlapping water clouds are 
screened out of the training and validation dataset. The rationale for taking this approach is not 
well described. Part of the evaluation of the ML method against current methods with respect to 
CALIPSO (figs 6-9) could perhaps be considered an apples to apples comparison in that the same 
pixels are being evaluated. But, considering that the ML approach was developed using a particular 
subset of (screened) data while the current approaches were designed for application over a much 
wider range of conditions is possibly unfair, and the comparison are potentially misleading. I wish 
the authors had taken a more globally applicable ML approach to the problem. It seems to me that 
at best the results suggest that ML methods can perhaps perform at least as well as the current non-
ML methods and that these can be developed for application to other satellites much easier (and 
cheaper). Despite all of these issues, the study is a reasonable initial step, the results are clearly 
presented and the manuscript is grammatically clean. Therefore, I find that the manuscript could 
be published after some revision. In particular, I recommend that the authors clarify the rationale 
for the approach, clarify the significance of the results, and temper suggestions regarding the 
potential for ML to improve the accuracies of global cloud analyses since in my view this is not 
adequately demonstrated here given the heavily restricted dataset that is used. 
 

Response: We appreciate the insightful comments from the second reviewer (R2). We agree with 
the major concern from R2 that the current training/validation results could be problematic or 
cannot represent global clouds considering a large fraction of “mixed phase”, “inhomogeneous”, 
or “aerosol contaminated” clouds are excluded. To address this concern and other related questions 
and comments, we made necessary modifications and gave more explanations in the revised 
manuscript and response. Please find our detailed responses below, in particular responses to R1.6, 
R1.8, R1.11, R1.12, R2.4, R2.17, R2.18, R2.23, and R2.27. 
 

R3: Comments from Dr. Luca Bugliaro. 

Dear Authors, 

I appreciate your work very much and think that this is a valuable contribution to remote sensing. 
Nevertheless, I think that you also should mention two of our papers in this same journal since 
they use similar methods of machine learning to perform cloud detection and cloud property 
derivation. In particular, they also use measurements of the CALIOP lidar as a reference and 
collocate them with passive observations. 
  
Could also check references therein for papers with similar topics. 
Strandgren, J., Bugliaro, L., Sehnke, F., and Schröder, L.: Cirrus cloud retrieval with 



MSG/SEVIRI using artificial neural networks, Atmos. Meas. Tech., 10, 3547–3573, 
https://doi.org/10.5194/amt-10-3547-2017, 2017. 
Kox, S., Bugliaro, L., and Ostler, A.: Retrieval of cirrus cloud optical thickness and top altitude 
from geostationary remote sensing, Atmos. Meas. Tech., 7, 3233–3246, 
https://doi.org/10.5194/amt-7-3233-2014, 2014. 
 

Response: The two papers match the topic perfectly and should be included in the reference list. 
We appreciate the comments and suggestions from Dr. Luca Bugliaro. 
 

Detailed Responses 
 
R1.1: Abstract: I found it to be a bit too detailed and meandering. Would suggest tightening it up 
and focusing on the main points rather than the details. 
 
Response: Done. We removed some details about the accuracy rates for the two RF models in 
cloud mask and phase detections. 
 

R1.2: Line 59: ‘having radiometric stability issues’ is colloquial and not specific enough to be 
useful. 
 
Response: Done. We replaced “radiometric stability issues” with “calibration drifts”. 
 

R1.3: Lines 79-80: There are two issues here that need to be raised and appear elsewhere. First 
issue, is this even true? There are many Bayesian methods in the literature that assign uncertainties 
as a part of the retrieval methodology. Furthermore, using the look up table methodology of 
MODIS C6, the reported uncertainties for the optical properties appear to be quite useful and 
rooted in physics. I don’t know about uncertainties regarding phase so this could be a different 
issue. For the cloud mask, the raw Q values are quite useful for an estimate of cloud detection 
uncertainty. Second issue, calling one set of algorithms ‘traditional’ is confusing at best. Machine 
Learning (ML) research dates back to the 1950s and outdates many satellite retrieval algorithm 
approaches that are currently used. Wording along the lines of “in contrast to most operational and 
research methods,” and similar changes elsewhere, will help make your points clearer. Then you 
could stick to “ML” as a separate algorithm branch. 
 
Response: The reviewer is quite correct that quantitative uncertainty datasets now accompany the 
retrieval of continuous variables, e.g., MODIS cloud optical properties. And as the reviewer points 
out, the MODIS CLDMSK cloud detection algorithm reports a continuous “clear sky confidence” 
or “Q value”, ranging from 0 to 1, for each pixel. Therefore, we decided to remove this statement. 
We have also made additional modifications to the rest of the manuscript. For the second 
suggestion, we agree with the reviewer. “Traditional” could lead to unnecessary confusion. 
Therefore, we changed the word “traditional” to “hand-tuned” throughout the manuscript.  
 



R1.4: Lines 138-139: Now the random forest (RF) model is mentioned and apparently it has a 
proven record, yet is “not traditional”? The “author classification” of algorithms needs to be 
reworked throughout the paper. 
 
Response: We have changed the word “traditional” to “hand-tuned”. See our previous response. 
 
R1.5: Lines 233-234: Need to be more explicit as to what “the fix” was to the thermodynamic 
phase algorithm. 
 
Response: We found that our initial phase algorithm implemented in CLDPROP Version 1.0, 
which is based on the MOD06 Collection 6/6.1 optical property phase algorithm with some 
modification, omitted a key cold cloud sanity check that led to spurious liquid cloud decisions at 
the edge of ice clouds. This in turn caused spuriously large liquid cloud fractions and a 
discontinuity in ice cloud effective radius retrieval statistics. We subsequently implemented a new 
cold cloud sanity check and reprocessed CLDPROP to Version 1.1. More details about this fix and 
its impacts can be found in the Product Version 1.1 Change Summary section (Section 1.4) of the 
CLDPROP User’s Guide  
(https://atmosphere-
imager.gsfc.nasa.gov/sites/default/files/ModAtmo/EOSSNPPCloudOpticalPropertyContinuityPr
oductUserGuidev11.pdf) available on the Atmosphere Discipline Team website 
(https://atmosphere-imager.gsfc.nasa.gov/). However, following the second reviewer’s comment, 
we believe this detail is irrelevant to this paper and have decided to remove this statement from 
Lines 233-234. 
 
R1.6: Section 4.2: This is a long paragraph with a lot of information and should be make clearer 
than currently written. First recommendation: it would be very helpful to list the pixel count and 
relative percentages of each of the cloud/no cloud, aerosol/no aerosol, phase and cloud 
configuration categories that are kept for ML training or are discarded, and should be denoted 
clearly. It took me a while to figure out that some multilayer clouds are included but only for the 
same phases. How many multilayer clouds of the same phase occur relative to multiple phases? 
Second recommendation: say more clearly up front what is in the ML training rather than what is 
tossed out. Then follow with detail of what is tossed out. It is really hard to keep track of what 
goes into the sausage. First additional comment: why not attempt to address the ambiguous/mixed 
phase categories? Some advances in detection and characterization could be made with these types 
using ML. Do you have plans to do this in follow-on work? Second additional comment: why only 
use clouds with at least five consecutive labels that are the same? Doesn’t this limit the number of 
cases greatly? Also doesn’t this bias the ML training to larger-scale cloud behavior even though 
the classification is (presumably) done on a pixel-by-pixel basis? Small scale clouds might behave 
differently (with respect to phase sensitivity) than large scale clouds. Third additional comment: 
why are cloud structures in the ITCZ any more “complicated” than other geographical regions? 
What makes a cloud structure “complex”? 
 

Response:  We appreciate the very insightful comments and suggestions. Accordingly, we made 
necessary modifications in Section 4.2 as listed below: 
 



• First, we added a new table (Table 2) that gives more details about the sample. In this table, 
it is clear how we select highly reliable datasets by using CALIOP L2 products. For all 
surface types, approximately 39.3% of all collocated VIIRS 750m pixels are selected for 
training and testing, while 1/3 of all VIIRS pixels are excluded because of aerosol 
contamination (e.g., column 532nm AOD > 0.05). 
 

• Second, we reorganized the paragraph by mentioning that only aerosol-free, homogenous 
clear, and homogenous single-phase cloudy pixels are included in the training/validation 
datasets. Also, we give clear definitions of “aerosol-free”, “homogenous”, and “single-
phase cloud” in the text and in Table 2.  
 
We should note that the performance of ML models is strongly dependent on the quality 
of the training dataset. In this study, the two RF models are trained and tested with simple 
yet highly confident samples collected from 2013 to 2016, with the expectation that the RF 
models will capture the key spectral features from these simple samples more efficiently. 
Of course, it is then not surprising that the two models perform well when comparing with 
CALIOP using similar simple samples from 2017. However, we note that many current 
operational/research-level phase algorithms, including the MYD06 and CLDPROP optical 
property phase (OP-Phase) algorithms considered in this study, were also tuned (often by 
hand) with CALIOP using data filtering strategies similar to those employed here (see, e.g., 
Baum et al., 2012; Marchant et al., 2016). The better performance of the RF models 
compared with the operational algorithms, even if only for these simple cases, highlights 
the advanced capabilities of ML approaches over human tuning to more efficiently identify 
and effectively utilize spectral information content. 
 
That said, the reviewer raises an important point regarding more complicated cloud scenes. 
For example, we expect that the RF models may recognize signals from both ice and liquid 
clouds in overlapping cases when the upper layer cloud is not optically thick in the relevant 
spectral channels. Of course, this is also the case for current operational phase algorithms 
(e.g., MYD06, CLDPROP) for which tuning/testing also did not include complicated cloud 
scenes. Nevertheless, we expect that the classification probabilities that are the output of 
the RF models can provide important information. For instance, we find that, for simple 
cases (i.e., homogeneous clear or single-phase cloudy), the probability distributions from 
the RF all-day model have strong peaks (see Figure 10 a, b, and c in the revised manuscript) 
close to either 0 or 1. However, for more complicated cases, such as ice over liquid cloud 
(panel d), the liquid and ice probabilities are more broadly distributed, indicating that the 
RF all-day model may recognize signals from both liquid and ice and therefore provides 
ambiguous results. Ambiguous liquid/ice probabilities could be used to define a third, 
“unknown” phase category, following MYD06 and CLDPROP convention, and also 
provide a useful quality assurance metric for the downstream cloud optical property 
retrievals. We also would like to point the reviewer to a manuscript that is relevant to the 
discussion here: Marchant et al. (2020), currently in review, gives a more detailed 
discussion on MYD06 multilayer cloud detection and the impact on phase detection. We 
have added this discussion in Section 4.4 and Section 5. 

 



 
Figure: Clear, liquid, and ice probability distribution functions of the RF all-day model for four lidar pixel categories: 
(a) CALIOP clear, (b) CALIOP liquid water cloud, (c) CALIOP ice cloud, and (d) CALIOP multiple phases. The 
multiple phase pixels (d) are not used in model training/validation. 
 
New Reference added: 
Marchant, B., Platnick, S., Meyer, K., and Wind, G.: Evaluation of the Aqua MODIS Collection 6.1 multilayer cloud 
detection algorithm through comparisons with CloudSat CPR and CALIPSO CALIOP products, Atmos. Meas. Tech. 
Discuss., https://doi.org/10.5194/amt-2019-448, in review, 2020. 
 

• Finally, we mentioned that for some regions, such as the ITCZ, the sample selection rates 
are low because of the complicated cloud structures. For example, clouds always have very 
complicated vertical structures (such as multiple layers with difference thermodynamic 
phases) and strong horizontal heterogeneity due to convection. We modified our previous 
statement for clarity. 

 
R1.7: Lines 346-353: Is this a description of other experiments tried that are not shown in figures 
or tables? Or is this paragraph part of the methodology? 
 
Response: For the daytime model, we also tried different input combinations. Another table (Table 
4) with all of the details are included in the revised version. 
 
R1.8: Lines 401-405: It would be really helpful to report what total percentage of all pixels 
considered these represent. The crux of the matter: does ML greatly help for a large percentage of 
cloudy pixels, or does it help for a small percentage of cloudy pixels? Also, in figures 6-9 showing 
the true versus false positive rates, it would greatly enhance the presentation of the results by 
including percentages for each subpanel of the total number of pixels considered. 
 
Response: We agree. In the cloud mask and cloud thermodynamic phase TPR-FPR plots (Figs. 6-
9), we have added the total number of pixels for the corresponding surface types. Moreover, we 
have added the following text and a new table (Table 5) to Section 4.5.2 to demonstrate the 
importance of “unknown phase” category for each cloud phase product: 
 
“It is also important to note that the number of pixels used for cloud phase TPR-FPR comparisons 
in Figures 8 and 9 are different for products that have “unknown phase” categories, namely, 
MYD06 IR-Phase, MYD06 OP-Phase, and CLDPROP OP-Phase. As shown in Table 5, the 
MYD06 IR-Phase has a relatively large “unknown phase” phase fraction (15% for all surface 



types and 34% for snow/ice) in comparison to the OP-Phase products from both MYD06 and 
CLDPROP, which have 2~3% “unknown phase” fraction approximately”. 
 
R1.9: Lines 418-423: There is a disconnect between this discussion and the earlier discussion on 
lines 308-310. How are inhomogeneous clouds being considered when earlier the authors state that 
they are “discarded”? These may be different issues but it is worth making clearer how 
inhomogeneous clouds are (or are not) considered and dealt with in this study. 
 
Response: This comment is related to R1.6. Please see our response above. 
 
R1.10: Lines 456-457: “A few hours” doesn’t really mean anything scientifically. And without 
describing what is calculated and on what kind of computing platform, this also doesn’t convey 
any information. 
 
Response: Please see our response to R1.11. 
 
R1.11: Lines 457-459: While not written directly in this way, reading between the lines written by 
the authors, one could deduce that ML approaches could render instrument calibration efforts and 
algorithm continuity efforts pointless and irrelevant. Will ML have the potential to address 
discontinuous satellite observational records by a thorough and accurate labeling of training data 
for a ML algorithm? I don’t think this is what you intended to say, but it does raise the point – can 
ML methods be used in lieu of a properly calibrated and characterized satellite instrument? Same 
point applies to lines 467-468. 
 
Response: For the first question, we believe that instrument calibration efforts and algorithm 
continuity efforts are very important. Instead, our main point is that ML approaches have the 
potential to streamline algorithm tuning and/or threshold selection processes that often occur in 
response to instrument calibration changes or when porting to other instruments. With non-ML 
methods, such tuning and/or threshold selection processes need to be done manually, which is a 
time-consuming effort. We have modified the text in response to the reviewer’s comments. 
 
 “With hand-tuned methods, adjustment is always required in the case of calibration changes, 
algorithm porting to another similar instrument, or changes in solar/viewing geometries and 
surface conditions. Manual adjustments can be time-consuming (e.g., months or years), whereas 
the two RF models used in this study were trained and tested for 7 surface types and using different 
input variables in 3 hours (on an HPC Platform using 32 Intel Xeon Gold 6126 Processors @ 2.60 
GHz).  More important, manual algorithm adjustment may not provide the best continuity between 
two instruments. For example, although the MODIS CLDPROP OP-Phase and VIIRS CLDPROP 
OP-Phase are designed for climate record continuity purpose, cloud thermodynamic phases from 
the two products are different by up to 4% for all surface pixels, and by up to 10% over surfaces 
covered by snow/ice (see Figure 8 light blue and light green dots). Further investigation is 
necessary to understand if, using ML approaches, a better climate record continuity will be 
achieved with a uniform training dataset.” 
 
For the reviewer’s second question, it is likely true that a properly trained ML algorithm can still 
achieve a high level of skill in the presence of calibration errors if (a) calibration errors are 



relatively small and spectrally/spatially uncorrelated in such a way that physically-relevant signals 
are not masked by the errors/correlations, and (b) the instrument is radiometrically stable or 
radiometric changes are monitored/corrected on orbit (which gets back to our main point above). 
Confirmation of both assumptions requires a dedicated and robust on orbit instrument 
characterization effort. 
 
R1.12: Lines 470-478: Regarding the use of CALIOP for labeling, one could make the argument 
that CALIOP is a distinctly different observation and should in fact see something different than a 
VIS/SWIR observation (e.g., MODIS and VIIRS). Doesn’t CALIOP labeling essentially “force” 
MODIS and VIIRS to observe like a lidar even though they do not contain the same physical 
sensitivity to clouds as the lidar? Will differences in instrument sensitivity (e.g., CALIOP vs. 
VIIRS) to a given cloud ultimately lead to poorer performing ML algorithms because one is made 
to “look like” the other? It is an interesting question to consider. For some clouds, the lidar and 
passive spectrometer could provide a lot of valuable complementary information, and that is 
basically “thrown out” in a ML algorithm when one is forced to behave like the other. 
 
Response: We agree with the reviewer’s comment regarding different sensitivities between 
MODIS/VIIRS and CALIOP. This in fact is the reason why we only train the models with simple, 
single-phase samples for which we expect agreement between the passive and active sensors. This 
allows the models to learn the spectral signatures of liquid and ice clouds separately. For more 
complicated cases, i.e., horizontally/vertically heterogeneous and/or multilayer pixels, we then let 
the models make their own decisions regarding what phase makes the most radiative sense given 
the observations. Further discussion can be found in our response to R1.6. 
 
R1.13: Lines 489-490: not sure what is meant by “screening process” 
 
Response: We modified our statement to “to check if the training dataset collection process 
introduces”. 
 
R1.14: Lines 518-519: why is it more impractical to consider aerosol and cloud together? 
 
Response: Adding complexity to the RF (or other ML) model requires more overhead, such as 
memory at run-time, computational resources, etc. It could be a potential (but not critical) problem 
when implementing in an operational algorithm production environment, where there often are 
limitations on such resources (e.g., caps on memory usage). That said, we decided to remove this 
statement because there are ways to mitigate these technical issues given sufficient resources. 
 
R2.1: Line 23: Strongly suggest something like this: “It is shown using a conservative screening 
process that excludes the most challenging cloudy pixels for passive remote sensing… 
 
Response: Done. 
 
R2.2: Line 35: ‘will’ need further attention 
 
Response: Corrected. 
 



R2.3: Line 62: Zhou reference may need updating 
 
Response: We removed this reference since this paper is not submitted. 
 
R2.4: Line 79-80: This statement is too vague and possibly misleading. How is the uncertainty 
assessment more difficult for a cloud classification derived with the traditional methods vs the ML 
approach? It is true that in a Bayesian context, uncertainties in satellite retrievals associated with 
inversion are easy to extract, but these do not include uncertainties w.r.t ground truth data due to 
simplifying assumptions in the forward models and a host of other factors. Please elaborate to 
clarify and support your contention. 
 
Response: We agree with the reviewer’s point. Quantitative uncertainties are available for 
Bayesian methods, and are frequently used in retrievals of continuous variables, e.g., cloud-top 
height, cloud optical thickness, etc. Furthermore, in the MODIS CLDMSK cloud detection 
algorithm, a continuous “clear sky confidence” or “Q value”, ranging from 0 to 1, is provided for 
each pixel. Therefore, we decided to remove this statement. Please also see our response to 
comment: R1.3. 
 
R2.5: Line 195: should be Sayer et al 2017? 
 
Response: Corrected. 
 
R2.6: Line 221-223: not clear what you mean here. 
 
Response: Thanks for pointing it out. We removed this statement from this paragraph. 
 
 
R2.7: Line 231-234. Not sure what the relevance of this update is to the paper unless you used the 
older version. If this is the case, then you’ll need to elaborate on the impact of the deficient version 
1.0 algorithm on this study. 
 
Response: We agree with the reviewer. We removed this statement because it is irrelevant to this 
paper. Please also see our response to R1.5. 
 
R2.8: Line 249. Not sure what GOES-16/17 have to do with anything. Suggest ‘which is now 
applied to VIIRS.’ 
 
Response: Done. 
 
R2.9: Line 301-311: This is an important section with no rationalization for the decisions made to 
create the training/validation datasets. You should explain why each of these decisions were made 
and justified. 
 
R2.10: Line 316: define complicated. 
 



Response (2.9 and 2.10): Thanks for the suggestions. Both are highly relevant to comments from 
the first reviewer R1.6 and R1.12. We gave a very comprehensive response and made necessary 
modifications. 
 
R2.11: Line 327: describe how the tuning and optimization were achieved. 
 
Response: The remainder of Section 4.3 gives a brief introduction of the tuning and optimization. 
However, to make our point more clearly, we have added the following statement to the revised 
text: “In this study, we tested six groups of input variables for each RF model. The set of model 
input variables with a relatively high accuracy score and low memory/computing requirement will 
be selected.” 
 
R2.12: Line 334: It would be useful to elaborate on possible reasons for the importance of 
geolocation as an input and the lack of importance for Ts. Why use Ts instead of Tclr computed 
at TOA? Wouldn’t the latter be more consistent with the traditional approaches? 
 
Response: As shown in Table 3, we found that both geolocation and Ts are important in the RF 
all-day model. es is less important likely because it is correlated to surface type and geolocation. 
Here we use Ts instead of Tclr because the calculation of Tclr requires more input (e.g., 
temperature/humidity profiles), and a RT model, which introduces more uncertainty and requires 
more computational resources.  
 
R2.13: Line 346: Not clear what you mean by similar tests. Consider elaborating further. 
 
Response: We modified the “similar tests” to “similar input variable tests”.  For the daytime model, 
we also tried 6 different input combinations. We added another table (Table 4) in the revised 
version.  
 
 
R2.14: Line 348: change to ‘IR bands used in the all-day model’ 
 
Response: Corrected. 
 
R2.15: Line 353: Consider tabulating the daytime results similar to table 2. I think this would be 
useful. 
 
Response: Done. 
 
R2.16: Line 378 and further: Figs 6-9 are fine but it would help the reader better understand the 
comparisons if these data could also be tabulated (unless of course you don’t think that they are 
significant enough to further illuminate) 
 
Response: We agree with the reviewer. To make the figures easier to understand, we have added 
the total number of pixels for each surface type to the corresponding plot. Moreover, we have 
inserted a detailed description of “unknown phase” category and a new table (Table 5) in Section 
4.5.2 to demonstrate the importance of “unknown phase” category for each cloud phase product. 



 
R2.17: Line 387-389: Is this any surprise considering that you have eliminated the most difficult 
clouds? 
 
Response: As mentioned at the beginning of this section (Section 4.4), we emphasized that the 
comparisons (shown in Figures 6-9) are also based on “aerosol-free”, “homogeneous”, “single-
phase” pixels. It is not a big surprise considering that these simple cases are used in model training 
and testing (see Tables 3 and 4). However, we were surprised by the performance of the RF all-
day model. Although only 3 IR window bands are used, the TPR-FPR points from the RF all-day 
model looks much better than the current MODIS MYD06 IR-Phase, and are comparable to the 
OP-Phase that uses more spectral information from shortwave bands. 
 
R2.18: Lines 406-412: the results in figures 8 and 9 are not very clear or well described. In a 
relative sense, which algorithms are overdetecting or underdetecting ice and water clouds and 
why? 
 
Response: For cloud phase classification, we arbitrarily define ice clouds and liquid water clouds 
as “positive” and “negative” events, respectively. Therefore, a low TPR indicates underestimation 
of ice cloud fraction, while a high FPR indicates a large fraction of liquid water cloud samples are 
identified as ice cloud. It is found that for snow/ice and barren regions, many non-ML models have 
much lower accuracy rates than for ocean and grassland surfaces. Possible reasons include strong 
surface reflection, low surface cloud contrast, relatively less training samples and high solar zenith 
angles (for snow/ice surface). 
 
To address the reviewer’s questions, we have added the following statement to Section 4.5.2: 
“A low TPR indicates underestimation of ice cloud fraction, while a high FPR indicates a large 
fraction of liquid water cloud samples are identified as ice cloud.” 
“Overall, the performance of the hand-tuned algorithms decreases significantly over snow/ice or 
barren surfaces. For example, the TPR-FPR plot shows that over daytime snow/ice surface (Figure 
8 g), the MODIS CLDPROP OP-Phase and MODIS MYD06 IR-Phase frequently predict liquid 
water cloud as ice cloud. Similar to the daytime plot, the MYD06 IR-Phase also shows a high FPR 
rate over snow/ice surface, indicating an overestimated (underestimated) ice (liquid water) cloud 
fraction. Possible reasons include strong surface reflection, low surface cloud contrast, relatively 
less training samples and high solar zenith angles. However, the two RF models work fairly well 
and show consistent accuracy rates across all surface types.” 
 
R2.19: Line 450: change to something like this “The above results indicate that for the screened 
data considered here, the two RF models have better and more consistent performance over 
different regions and surface types in comparison with the MODIS and VIIRS products suggesting 
the potential to improve the overall performance in more global operational applications. 
 
Response: Done. We appreciate the reviewer’s suggestion. 
 
R2.20: Line 457: It is good to drive home the point regarding the ease and cost savings of applying 
ML vs the traditional approaches which took years to develop. ‘a few hours’ seems vague tho. 
Consider elaborating further. 



 
Response: Good point! We reorganized the structure of this paragraph by including necessary 
information on the “labor comparison” between ML and non-ML methods. Please also see our 
response to R1.11 for more details.  
 
R2.21: Line 459-462: Do they really use similar input? The channel complements are different, so 
if this in any way affects the phase determination, then what you are saying could be unfair and 
misleading since the two methods were not designed for continuity. 
 
Response: We modified the statement to “For example, although the MODIS CLDPROP OP-
Phase and VIIRS CLDPROP OP-Phase are designed for climate record continuity purpose, cloud 
thermodynamic phases from the two products are different by up to 4% for all surface pixels, and 
by up to 10% over surfaces covered by snow/ice (see Figure 8 light blue and light green dots).” 
 
R2.22: Line 465: In this section it should be emphasized again that a screened dataset is used to 
train and test the ML methods that excludes the more difficult pixels for passive sensor methods. 
While the ML methods appear to offer some advantages, the higher accuracies found here 
compared to the traditional approaches may not be representative of those found when applied to 
a more inclusive dataset. 
 
Response: We agree with the reviewer, though we note that the traditional approaches considered 
in this study, particularly the MYD06 and CLDPROP OP-Phase algorithms, were themselves 
tuned off of CALIOP data using similar single-phase data screening (see Marchant et al., 2016), 
and thus may also suffer degraded performance in complex scenes. In the revised version, we have 
added a new paragraph and a new figure to demonstrate the performance of the RF all-day model 
with CALIOP detected multi-phase scenes. We find that probabilities could be more informative 
than using a single “label”. It is obvious that for complicated samples, ice/liquid cloud probabilities 
from the RF model are more broadly distributed, resulting in a reduced peak at either 0 or 1. 
However, further investigation is required to understand how to quantitatively use these 
probabilities in complex cases. Please also see our response to R1.6. 
 
R2.23: Lines 474-478: This is also vague and won’t make much sense to most readers. What is the 
objective for your passive determination? Consider elaborating further on the definition and 
applications for cloud phase (cloud top or radiative), and the relative sensitivities of passive vs 
active. Maybe then it would be more clear what you mean when you say that a multi-layer clouds 
category could help. 
 
Response: We agree with the reviewer. In this section, our intent is to mention the limitations of 
using CALIOP data only for the collection of “simple” cases. Therefore, we modified this 
paragraph as: 
 
“The RF models learn spectral structures of cloud/clear pixels according to the reference labels. 
As a consequence, the present model performance relies heavily on the quality of CALIOP Level-
2 data. It is already known that the lidar signal has limitations in detecting the bottom of an 
optically thick cloud or lower level clouds underneath an opaque cloud [Sassen and Cho, 1992]. 
Some complicated multiple-phase scenes may be misidentified as simple single-phase scenes due 



to the penetration limit of CALIOP (e.g., the uppermost ice cloud optical thickness greater than 
3). Using combined CALIOP and CloudSat data as reference in the future could be a better way 
to improve the training/validation datasets [Marchant et al., 2020]. However, as noted in that 
study, CloudSat observations cannot be used without careful filtering since a multilayer scene that 
is radiatively indistinct from the upper level cloud layer is not necessarily consistent with 
multilayer detection detected from a cloud radar.” 
  
R2.24: Lines 489-490. The screening process almost certainly impacts the comparisons with the 
traditional methods which were not developed with a similar screening process. Please make sure 
that you address this somewhere in the manuscript. 
 
Response: The non-ML approaches considered in this study, particularly the MYD06 and 
CLDPROP OP-Phase algorithms, use a similar data screening (see Marchant et al., 2016), and 
thus may also suffer degraded performance in complex scenes. It is very hard to quantitatively 
estimate to what extent the screening process could impact those non-ML methods. However, in 
the revised version, we provided more details about the data selection strategy in Section 4.2 plus 
two new Tables (2 and 5). 
 
R2.25: Line 518: why is this more impractical? It actually seems necessary. 
 
Response: Adding complexity to the RF (or other ML) model requires more overhead, such as 
memory at run-time, computational resources, etc. It could be a potential (but not critical) problem 
when implementing in an operational algorithm production environment, where there often are 
limitations on such resources (e.g., caps on memory usage). That said, we decided to remove this 
statement because there are ways to mitigate these technical issues given sufficient resources. 
 
R2.26: Line 534: using the collocated CALIOP products in 2017 and excluding the more difficult 
pixels associated with polluted, broken and mixed-phase cloud conditions. 
 
Response: Corrected. 
 
R2.27: Line 553: should read “ : : :phase detections in a limited set of conditions. 
 
Response: We understand the reviewer’s concern. Instead of simply adding “in a limited set of 
conditions” here, we updated this paragraph to: 
“In this study, we have demonstrated the advantages of using ML-based (specifically, RF) models 
in cloud masking and thermodynamic phase detection. In contrast with hand-tuned methods, the 
RF models can be efficiently trained and tested for different surface types and using different input 
variables. Meanwhile, for aerosol-free, homogeneous samples, the two RF models show better and 
more consistent performance over different regions and surface types in comparison with existing 
VIIRS and MODIS datasets. For more complicated scenes, RF probabilities are more informative 
than binary mask/phase designations. However, further investigation is required to understand 
how to use probabilities more quantitatively.” 
 
R2.28: Line 555: consider changing ‘a few hours’ to ‘considerably more efficiently’ ?? 
 



Response: Done. 
 
R2.29: Line 562 and 563: change ‘can’ to ‘could’ 
 
Response: Done. 
 
R2.30: Line 564: Suggest adding this at the end: It remains as future work to determine how such 
an approach might lead to improved consistency in cloud properties derived from different satellite 
remote sensors. 
 
Response: Done. 
 
R2.31: Line 607: reformat with last name first or change reference on line 150. 
 
Response: Done. 
 
R2.32: Line 651: reformat with last name first or change reference on line 121 
 
Response: Done. 
 
R2.33: Line 829: Why is MODIS CLDPROP not shown in figure 12? 
 
Response: For legibility reasons, we decided to limit the number of line plots in the figure. The 
MODIS CLDPROP curves are not included because their locations and structures are quite similar 
to the VIIRS products. 



 

 1 

 A Machine Learning-Based Cloud Detection and Thermodynamic 1 

Phase Classification Algorithm using Passive Spectral Observations 2 

Chenxi Wang1,2, Steven Platnick2, Kerry Meyer2, Zhibo Zhang3, Yaping Zhou1,2 3 

 4 

1Joint Center for Earth Systems Technology, University of Maryland Baltimore County, 5 

Baltimore, MD, USA 6 

2Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, USA. 7 

3Department of Physics, University of Maryland Baltimore County, Baltimore, MD, USA. 8 

  9 

Deleted: 2NASA10 



 

 2 

Abstract 11 

We trained two Random Forest (RF) machine-learning models for cloud mask and cloud 12 

thermodynamic phase detection using spectral observations from VIIRS on Suomi NPP (SNPP). 13 

Observations from CALIOP were carefully selected to provide reference labels. The two RF 14 

models were trained for all-day and daytime-only conditions using a 4-year collocated 15 

VIIRS/CALIOP dataset from 2013 to 2016. Due to the orbit difference, the collocated CALIOP 16 

and SNPP VIIRS training samples cover a broad viewing zenith angle range, which is a great 17 

benefit to overall model performance. The all-day model uses 3 VIIRS infrared (IR) bands (8.6, 18 

11, and 12 µm) and the daytime model uses 5 Near-IR (NIR) and Shortwave-IR (SWIR) bands 19 

(0.86, 1.24, 1.38, 1.64 and 2.25 µm) together with the 3 IR bands to detect clear, liquid water, and 20 

ice cloud pixels. Up to 7 surface types, namely, ocean/water, forest, cropland, grassland, snow/ice, 21 

barren/desert, and shrubland, were considered separately to enhance performance for both models. 22 

Detection of cloudy pixels and thermodynamic phase with the two RF models were compared 23 

against collocated CALIOP products from 2017. It is shown that, with a conservative screening 24 

process that excludes the most challenging cloudy pixels for passive remote sensing,  the two RF 25 

models have high accuracy rates in comparison with the CALIOP reference for both cloud 26 

detection and thermodynamic phase. Other existing SNPP VIIRS and Aqua MODIS cloud mask 27 

and phase products are also evaluated, with results showing that the two RF models and the 28 

MODIS MYD06 optical property phase product are the top 3 algorithms with respect to lidar 29 

observations during the daytime. During the nighttime, the RF all-day model works best for both 30 

cloud detection and phase, in particular for pixels over snow/ice surfaces. The present RF models 31 

can be extended to other similar passive instruments if training samples can be collected from 32 
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CALIOP or other lidars. However, the quality of reference labels and potential sampling issues 41 

that may impact model performance would need further attention. 42 

1. Introduction 43 

Detection and classification (DC) of atmospheric constituents using satellite observations is 44 

often a critical initial step in many remote sensing algorithms. For example, a prerequisite for cloud 45 

optical and microphysical property retrievals is identifying the presence of clouds, i.e., a 46 

clear/cloudy classification [Frey et al., 2008; Heidinger et al., 2012]. Additionally, characteristics 47 

such as cloud thermodynamic phase are needed as they can strongly impact the 48 

scattering/absorption properties of cloud droplets/particles [Pavolonis et al., 2005; Platnick et al., 49 

2017]. Similarly, current operational aerosol algorithms can only retrieve aerosol optical depth 50 

(AOD) for “non-cloudy” pixels since even slight cloud contamination can result in erroneously 51 

high retrieved AOD [Remer et al., 2005]. Therefore, errors in detecting and classifying 52 

atmospheric components can significantly impact downstream retrieval products and scientific 53 

analyses.  54 

There are many examples of hand-tuned DC algorithms designed for satellite instruments. For 55 

example, the Moderate Resolution Imaging Spectroradiometer (MODIS) has algorithms 56 

developed for cloud masking [Frey et al., 2008; Ackerman et al., 2008], cloud thermodynamic 57 

phase [Baum et al., 2012; Marchant et al., 2016], aerosol type [Levy et al., 2013; Sayer et al., 58 

2014], and snow coverage over land surfaces [Hall and Riggs, 2016]. Decision trees or voting 59 

schemes involving multiple thresholds are typically used in these hand-tuned algorithms. The 60 

decision tree branches, tests, and thresholds are often determined empirically after a tedious hand 61 

tuning/testing process based on the developer’s experience and access to validation datasets. 62 

Further, the branches and thresholds are often very sensitive to the specific instrument (e.g., 63 
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spectral band pass, calibration, noise characteristics, view/solar geometry sampling). Therefore, 67 

an obvious weakness of these hand-tuned methods is that it is challenging and time consuming to 68 

develop algorithms across multiple instruments and to maintain performance for individual 69 

instruments that may have noticeable calibration drifts. Meanwhile, a well-designed hand-tuned 70 

method may have remarkable performance in a specific region and season yet have significant 71 

biases when applied globally and/or annually [Cho et al., 2009; Liu et al., 2010]. Additional 72 

complexities arise when DC problems become more non-linear across large spatial and temporal 73 

scales, and more variables need to be considered. It is difficult to develop and apply a single or a 74 

few decision trees to complicated non-linear problems that are controlled by dozens or more 75 

variables. As expected, a single decision tree can grow very deep and tend to have a highly 76 

irregular structure in order to consider a large number of features (variables) simultaneously, 77 

leading to a significant overfitting effect (i.e., an over-constrained training that makes predictions 78 

too close to the training dataset but fails to predict future observations reliably). For example, 79 

MODIS provides an all-day cloud phase product based only on infrared (IR) observations 80 

(hereafter referred to as IR-Phase [Baum et al., 2012]). Although it can be expected that the tests 81 

and thresholds should vary with satellite viewing geometry [Maddux et al., 2010], full 82 

consideration of viewing geometries, together with the variations of many other factors such as 83 

surface emission, geolocation, and cloud properties, is very challenging based on manual tuning. 84 

As a consequence, it is found that the liquid water and ice cloud fractions from the IR-Phase 85 

product exhibit noticeable view zenith angle (VZA) dependency (see Figure 12). This is an 86 

undesirable but unavoidable artifact since cloud phase statistics should be independent from 87 

solar/viewing geometry. Such VZA dependencies may strongly affect similar products from 88 
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geostationary imagers because of the fixed VZA-geolocation mapping. Similar artifacts may also 95 

impact aerosol type and retrieval products [Wu et al., 2016]. 96 

In contrast to hand-tuned methods, Machine Learning (ML) based DC algorithms are designed 97 

to autonomously find information (e.g., patterns of spectral, spatial, and/or time series) in one or 98 

more given datasets and learn hidden signatures of different objects. An obvious advantage of ML 99 

models is that the training process is efficient and highly flexible. Manually defined thresholds or 100 

matching conditions to expected spectral patterns are no longer needed. Recently, ML models have 101 

been utilized in a wide variety of cloud/aerosol related applications, such as cloud detection 102 

[Thampi et al., 2017], cirrus detection and optical property retrievals [Kox et al., 2014; Strandgren 103 

et al., 2017], surface-level PM2.5 concentration estimation [Hu et al., 2017], and automatic ship-104 

track detections [Yuan et al., 2019]. In this paper, we developed two ML-based DC algorithms for 105 

detecting cloud and cloud thermodynamic phase for different local times (i.e., daytime and 106 

nighttime) with observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) on 107 

Suomi NPP (SNPP). The ML models are trained with collocated observations from SNPP VIIRS 108 

and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), with CALIOP data used as the 109 

reference. In Section 2, we give a brief discussion of the ML models. Data generated for model 110 

training and validation will be introduced in Section 3. Details of the model training and evaluation 111 

are shown in Section 4. Section 5 discusses the advantages and potential limitations of the present 112 

ML models. Conclusions are given in Section 6. 113 

2. Hand-tuned DC methods and Machine Learning Models 114 

2.1 Hand-tuned DC methods 115 

All DC algorithms with remote sensing observations are based on the underlying physics of 116 

the spectral, spatial, and/or temporal structures of specified objects. In hand-tuned DC algorithms, 117 
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all the physical rules and structures have to be explicitly defined as various tests and thresholds. 126 

For example, the MODIS MOD35/MYD35 cloud mask algorithm uses more than 20 tests with 127 

visible/near-infrared (VNIR), shortwave-infrared (SWIR), and infrared (IR) observations [Frey et 128 

al., 2008] that are carefully designed to consider numerous scenarios, including different surface 129 

types (e.g., ocean, land, desert, snow, etc.) and local times (day/night). Similar algorithms are 130 

designed for aerosol type and cloud thermodynamic phase classifications. As an example, Figure 131 

1 illustrates spectral patterns of 5 typical daytime oceanic scenes (pixel types) observed by SNPP 132 

VIIRS. The spectral pattern of each of the 5 scenes, namely, clear sky, liquid water cloud, ice 133 

cloud, dust, and smoke, is averaged by using more than 1,000 pixels with the same type. It is clear 134 

that the 5 scenes are different in either reflectance ratios between a given VNIR/SWIR band and 135 

the 0.86 µm band, or brightness temperature differences (BTD) between two IR window bands 136 

(Figure 1). Consequently, such spectral features are frequently used to differentiate pixel types in 137 

DC algorithms. In addition to spectral patterns, simple methods are developed to take into account 138 

spatial information. For example, it is found that cloud reflectance usually has larger spatial 139 

variability than aerosols [Martins et al., 2002] and clear sky pixels [Platnick et al., 2017]. 140 

Therefore, spatial variabilities of VNIR and SWIR reflectance bands are used to differentiate 141 

clouds from non-cloudy pixels in the current MODIS clear sky restoral (CSR) algorithm [Platnick 142 

et al., 2017] and Dark Target aerosol retrieval algorithm [Levy et al., 2013]. 143 

2.2 Machine learning models 144 

Different from the hand-tuned DC methods, ML algorithms are developed to autonomously 145 

learn the hidden spectral/spatial/temporal patterns of different objects. Consequently, manually 146 

defined thresholds or matching conditions to expected patterns are no longer needed. In image 147 

recognition applications, numerous ML algorithms [e.g., Joachims 1998; Breiman 1999; 148 
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Dietterich 2000] were developed in late 1990s for independent pixels using a single or small 152 

number of decision trees. Ho [1998] and many other studies have demonstrated that, although 153 

these single or small number of decision trees can always provide maximum prediction accuracies 154 

in training processes, significant overfitting effects cannot be avoided. Tremendous efforts have 155 

been made to overcome the dilemma between maintenance of prediction accuracy and avoiding 156 

overfitting. Among these, the Random Forest (RF) and Gradient Boosting (GB) algorithm 157 

[Breiman 1999; Dietterich 2000; Friedman 2001] provide a framework of using a large number of 158 

decision trees (ensemble) but a subset of features in each tree to achieve optimization in the 159 

performance. It has been demonstrated that the ensemble-based algorithms can largely correct 160 

mistakes made by individual trees [Ji and Ma, 1997; Tumer and Ghosh, 1996; Latinne et al., 2001] 161 

and avoid overfitting [Freund et al., 2001]. Currently, the RF and GB algorithms are frequently 162 

used in non-linear classification and regression problems. For example, RF models have been used 163 

in several cloud/aerosol remote sensing applications, such as differentiating cloudy from clear 164 

footprints for the Clouds and the Earth’s Radiation Energy System (CERES) instrument [Thampi 165 

et al., 2017], estimating surface-level PM2.5 concentrations [Hu et al., 2017], and detecting low 166 

clouds with the Advanced Baseline Imager (ABI) on the recent Geostationary Operational 167 

Environmental Satellites (GOES) [Haynes et al., 2019].  In our study, we also choose the RF model 168 

based on its proven record in earth science applications. 169 

In the RF model, a final prediction is made based on majority vote computed from probability 170 

(Pi) of each class (ith): 171 

!! = "!#!
∑ ""#""#$
"#%

,       (1) 172 
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where m is the total number of classes, Ni and Nj are the number of trees that predict the ith and jth 178 

classes, and wi and wj are weightings for the ith and jth classes, respectively. If all trees are equally 179 

weighted, w for each individual class is equal to 1. The two most important parameters for tuning 180 

the RF algorithm are the number of decision trees (NTree) and the maximum tree depth (NDepth). 181 

However, an optimal definition of these two parameters is still an open question [Latinne et al., 182 

2001]. Larger NTree and NDepth provides more accurate predictions at the cost of significantly 183 

increased computational resources. For many cases, larger NDepth may cause overfitting effects 184 

[Oshiro et al., 2012; Scornet, 2018]. Generally, the two parameters have to be large enough to let 185 

the decision trees have a relatively wide diversity and capture the hidden patterns. However, for 186 

practical purposes, the two parameters have to be small enough to prevent the models from 187 

overfitting and to reduce computing burden [Latinne et al., 2001; Scornet 2018].  188 

In this study, we adopt a widely applied RF algorithm in the Scikit-learn Machine Learning 189 

package [Pedregosa et al., 2011]. We train two RF models for object DC using SNPP VIIRS 190 

spectral observations at two observational times: an all-day RF model using three VIIRS thermal 191 

IR observations (hereafter referred to as the RF all-day model) and a daytime-only RF model that 192 

uses both VNIR/SWIR and thermal IR observations (hereafter the RF daytime model). The models 193 

are trained to detect clear sky, liquid water cloud, and ice cloud pixels with single pixel level 194 

information. Parameters of the two RF models will be tuned and tested carefully to achieve the 195 

best accuracy and to avoid the overfitting effect. Details will be discussed in Section 4. 196 

3. Data 197 

3.1 Reference label of pixels 198 

Space-borne active sensors, such as CALIOP onboard CALIPSO [Winker et al., 2013], the 199 

Cloud-Aerosol Transport System (CATS) [McGill et al., 2015] onboard the International Space 200 
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Station (ISS), and CPR on board CloudSat [Stephens et al., 2002], are frequently used to evaluate 208 

the performance of hand-tuned cloud/aerosol DC and property retrieval algorithms designed for 209 

passive sensors [Stubenrauch et al., 2013; Wang et al., 2019]. CALIPSO, a key member of the 210 

Afternoon Constellation of satellites (A-Train) until its exit on 13 September 2018 to join CloudSat 211 

in a lower orbit, began providing profiling observations of the atmosphere in 2006 [Winker et al., 212 

2013]. The CALIPSO lidar CALIOP operates at wavelengths of 532 nm and 1064 nm, measuring 213 

backscattering profiles at a 30-meter vertical and 333 m along-track resolution. CALIOP also 214 

measures the perpendicular and parallel signals at 532 nm, along with the depolarization ratio at 215 

532 nm that is frequently used in cloud phase discrimination algorithms because of its strong 216 

particle shape dependence. The CALIOP Version 4 Level 2 1 km/5km Layer product is used to 217 

provide reference cloud phase labels in both model training and validation stages. 218 

While the CATS lidar and the CloudSat radar CPR also provide profiling information, both 219 

have limitations that preclude their use here. CATS had a relatively short life time (from January 220 

2015 to October 2017), and its low inclination angle (51°) orbit aboard the ISS excludes sampling 221 

of high-latitude regions [Noel et al., 2018]. CloudSat CPR observes reflectivity profiles at 94-GHz, 222 

which are more sensitive to optically thicker clouds consisting of large particles but are blind to 223 

aerosols and optically thin clouds. CloudSat also has difficulty in detecting clouds near the surface 224 

due to the surface clutter effect [Tanelli et al., 2008]. Therefore, only CALIOP data are used to 225 

provide reference cloud phase labels in this study. 226 

3.2 RF model input 227 

It should be pointed out that ML models use similar input datasets as hand-tuned methods. The 228 

input variables (features) and reference labels of the present RF models are carefully selected based 229 

on prior physical knowledge of the spectral characteristics of each object. 230 
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VIIRS on SNPP and the NOAA-20+ series provides spectral observations from 0.4 to 12 µm 239 

at sub-kilometer spatial resolutions [Lee et al., 2006]. Specifically, VIIRS has 16 moderate 240 

resolution bands (M band) and 5 higher resolution imagery bands (I band) at 750 m and 375 m 241 

nadir resolutions, respectively. The spectral capabilities of VIIRS allow for extracting abundant 242 

information on the surface and atmospheric components, such as clouds [Ackerman et al., 2019] 243 

and aerosols [Sayer et al., 2017]. It is also worth noting that VIIRS utilizes an on-board detector 244 

aggregation scheme that minimizes pixel size growth in the across-track direction towards swath 245 

edge [Cao et al., 2013]. As an example, although the VIIRS M-bands and MODIS 1 km bands 246 

have similar nadir spatial resolutions, the VIIRS across-track pixel size increases to roughly 247 

1.625 km at scan edge, which is much smaller than a MODIS pixel size of roughly 4.9 km at scan 248 

edge [Justice et al., 2011]. Another obvious advantage of using SNPP VIIRS rather than Aqua 249 

MODIS data is that, due to the CALIPSO and SNPP orbit differences, the training samples cover 250 

a broader viewing zenith angle range, which is a great benefit to overall model performance. 251 

Consequently, Level-1B M-band observations from the SNPP VIIRS are used here. 252 

Ancillary data, including the surface skin temperature, spectral surface emissivity, surface 253 

types, and snow/ice coverage, are important in cloud DC related remote sensing applications [Frey 254 

et al., 2008; Wolters et al., 2008; Baum et al., 2012] and cloud/aerosol retrievals [Levy et al., 2013; 255 

Wang et al., 2014; 2016a; 2016b; Meyer et al., 2016; Platnick et al., 2017]. The inst1_2d_asm_Nx 256 

product (version 5.12.4) from the Modern-Era Retrospective Analysis for Research and 257 

Applications, Version 2 (MERRA-2) [Gelaro et al., 2017] is utilized to provide the hourly 258 

instantaneous surface skin temperature and 10-meter surface wind speed. The UW-Madison 259 

baseline fit land surface emissivity database [Seemann et al., 2008] and the Terra/Aqua MODIS 260 

combined Land surface product (MCD12C1 [Sulla-Menashe and Friedl 2018]) are used to provide 261 
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monthly mean land surface emissivities for the mid-wave to thermal IR bands (3.6 ~ 14.3 µm) and 267 

surface white sky albedo for the VNIR bands (0.4 ~ 2.3 µm), respectively, at a 0.05´0.05° spatial 268 

resolution. Surface types and snow/sea ice coverage data are from the International Geosphere-269 

Biosphere Programme (IGBP) and daily Near-real-time Ice and Snow Extent (NISE) data [Brodzik 270 

and Stewart, 2016], respectively. 271 

3.3 Clear and cloud phase classifications from existing VIIRS and MODIS products 272 

Since the present RF models are trained with SNPP VIIRS observations, the first priority of 273 

this study is evaluating and comparing the trained RF models with CALIOP and the existing VIIRS 274 

cloud products. However, existing cloud mask and phase products from Aqua MODIS are still 275 

used as a reference in this work. 276 

The Aqua MODIS and SNPP VIIRS CLDMSK (cloud mask) and CLDPROP (cloud top and 277 

optical properties) [Ackerman et al., 2019] products represent NASA’s effort to establish a long-278 

term consistent cloud climate data record, including cloud detection and thermodynamic phase, 279 

across the MODIS and VIIRS observational records. While the CLDMSK (version 1.0) and 280 

CLDPROP (version 1.1) algorithms share heritage with the standard Collection 6.1 MODIS cloud 281 

mask (MYD35) and cloud top and optical properties (MYD06) algorithms, the algorithms use only 282 

a subset of bands common to both sensors to minimize differences in instrument spectral 283 

information content. 284 

The CLDMSK and MYD35 algorithms use a variety of band combinations and thresholds 285 

depending on cloud and surface types [Frey et al., 2008; Ackerman et al., 2008]. Meanwhile, the 286 

algorithms use different approaches for daytime (i.e., solar zenith angle less than 85°) and 287 

nighttime pixels. In the CLDMSK and MYD35 algorithms, pixels are categorized into four 288 
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categories, namely confident clear, probably clear, probably cloudy, and cloudy. The CLDPROP 300 

and MYD06 algorithms separate cloudy and probably cloudy pixels into liquid water, ice, and 301 

unknown phase categories. Specifically, the MYD06 product includes two cloud phase algorithms: 302 

an IR-Phase algorithm [Baum et al., 2012] that uses observations in four MODIS IR bands for 303 

daytime and nighttime phase classification (hereafter referred to as the MYD06 IR-Phase), and a 304 

daytime-only algorithm designed for the cloud optical properties retrievals [Marchant et al., 2016; 305 

Platnick et al., 2017] that uses VNIR/SWIR and IR observations (hereafter referred to as the 306 

MYD06 OP-Phase). A notable change for the VIIRS/MODIS CLDPROP algorithm with respect 307 

to the standard MODIS MYD06 algorithm is the replacement of the MYD06 IR-Phase by a NOAA 308 

operational algorithm originally developed for Clouds from AVHRR-Extended (CLAVR-x) 309 

[Heidinger et al., 2012] and now applied to VIIRS. This algorithm is used to provide cloud top 310 

properties, including thermodynamic phase (hereafter CLDPROP CT-Phase), in the absence of the 311 

MODIS CO2 IR gas absorption bands. IR bands are primarily used in the CLDPROP CT-Phase 312 

algorithm, while complementary SWIR bands are used when available. The MYD06 OP-Phase 313 

algorithm, applied to daytime pixels only, is included with only minor alteration (related to cloud 314 

top properties changes) in the VIIRS/MODIS CLDPROP product (hereafter referred to as the 315 

CLDPROP OP-Phase). 316 

Although the MYD06 and CLDPROP OP-Phase products are developed for “cloudy” and 317 

“probably cloudy” pixels from the MYD35 and CLDMSK products, a Clear Sky Restoral (CSR) 318 

algorithm [Platnick et al., 2017] is implemented to remove “false cloudy” pixels from the clear-319 

sky conservative MYD35 and CLDMSK products. Specifically, the CSR uses a set of spectral and 320 

spatial reflectance variability tests to remove dust, smoke, and strong sunglint pixels that are 321 

erroneously identified as “cloudy” or “probably cloudy” by the MYD35 and CLDMSK products 322 
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[Platnick et al., 2017]. One should keep in mind that the CSR algorithm is only applied for the 325 

optical property retrievals. Thus, the MYD35 and CLDMSK, and consequently the MYD06 IR-326 

Phase and CLDPROP CT-Phase, may have “false cloudy” pixels in comparison with CALIOP, 327 

while the impact on the MYD06 and CLDPROP OP-Phase is reduced due to the CSR algorithm. 328 

The cloud mask and thermodynamic phase products used in this study are summarized in Table 1. 329 

4. Model training and validation 330 

Here we discuss the training of the all-day and daytime RF models for different surface types. 331 

Both shortwave (SW) and IR observations will be used in the daytime models while only IR 332 

observations will be used in the all-day models. ML model performance is strongly dependent on 333 

the quality of training samples. In this study, the two RF models are trained and tested with simple 334 

yet highly confident samples (Section 4.2). With this training strategy, the RF models are expected 335 

to capture the key spectral features from the pure samples efficiently. As discussed in Section 4.4, 336 

we conducted a model validation that evaluates performance of the two models for simple cases. 337 

Furthermore, an analysis of probability distributions from the RF all-day model is conducted to 338 

demonstrate that the RF models have capability to recognize spectral features from more than one 339 

category when atmospheric columns are more complicated. 340 

4.1 Surface Types 341 

RF models are trained for different surface types, defined here by the Collection 6 (C6) MODIS 342 

annual IGBP surface type product (MCD12C1), to improve model performance over a single 343 

general model for all surface types. Although the MCD12C1 product includes up to 18 surface 344 

types, for this work we attempt to reduce the total number of surface types by combining surface 345 

types with similar spectral white sky albedos and emissivities, as suggested by Thampi et al. 346 

[2017]. An annual global IGBP surface type map and surface albedo data from the MODIS 347 
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MCD12C1 [Sulla-Menashe and Friedl 2018] and a UW-Madison monthly global land surface 348 

emissivity database [Seemann et al., 2008] are used to generate the climatology of land surface 349 

white-sky albedo and IR emissivity spectra. The UW-Madison database is derived using input 350 

from the MODIS operational land surface emissivity product MOD11 [Wan et al., 2004] at six 351 

wavelengths located at 3.8, 3.9, 4.0, 8.6, 11, and 12 µm.  A baseline fit method is applied to fill 352 

the spectral gaps and provides a more comprehensive IR emissivity dataset at 10 wavelengths from 353 

3.6 to 14.3 micron for global land surface with a 0.05° spatial resolution [Seemann et al., 2008]. 354 

The MODIS MCD12C1 product also provides a white-sky albedo dataset at 0.47, 0.56, 0.66, 0.86, 355 

1.24, 1.64, and 2.13 µm with a 0.05° spatial resolution [Sulla-Menashe and Friedl 2018]. The 356 

means and standard deviations of surface emissivity and white-sky albedo spectra are shown in 357 

Figures 2 a) and 3 a), respectively, for 16 different land surface types generated from the UW-358 

Madison and MCD12C1 data in 2015. Land surface types with similar IR emissivity and SW 359 

white-sky albedo spectra are grouped to reduce to the total number of land surface types to 6 360 

(forest, cropland, grassland, snow/ice, barren/desert, and shrubland), as shown in Figures 2 (b-f) 361 

and 3 (b-f). Figure 4 shows an example map of the reduced global surface type data generated 362 

from the MCD12C1 product for 2015. 363 

4.2 Generating Training/Validation Datasets 364 

The training and validation data are obtained from a 5-year (2013-2017) SNPP VIIRS and 365 

CALIOP collocated dataset. The collected dataset is generated with a collocation algorithm that 366 

fully considers the spatial differences between the two instruments and parallax effects, as 367 

described in Holz et al. [2008]. The SNPP VIIRS data include L1B calibrated reflectance and 368 

brightness temperatures, and the CALIOP data include the L2 1km/5km cloud and aerosol layer 369 

products. Although more than 332 million VIIRS 750m pixels are collocated with CALIOP 370 
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observations, 130.6 million of these pixels (39.3%) that include only aerosol-free, homogeneous, 377 

clear (39.1 million) or single-phase cloud (49.7 million liquid and 41.8 million ice) pixels are used 378 

in our training/validation process. Unless otherwise specified, “aerosol-free” is defined as those 379 

pixels having collocated CALIOP 5km column 532 nm aerosol optical depth less than 0.05, 380 

“homogeneous” is defined as those pixels for which the collocated CALIOP 1km and 5km 381 

products have the same pixel labels, and “single-phase cloud” is defined as those pixels for which 382 

the collocated CALIOP 1km and 5km products indicate the same thermodynamic phase for all 383 

identified cloud layers. More details are given in Table 2.  384 

A strict three-step quality control process is applied to collect samples for the 385 

training/validation process. First, VIIRS 750 m pixels that are potentially contaminated by aerosol 386 

are excluded using a threshold of 0.05 column AOD at 532 nm from the CALIOP L2 5 km aerosol 387 

layer product. Second, each aerosol-free pixel is labelled by one of four categories, namely, “clear 388 

sky” and “liquid-water cloud”, “ice cloud”, and “ambiguous” with the CALIOP L2 1km/5km layer 389 

product. The “ambiguous” pixels, including uncertain/unknown cloud phases from CALIOP 390 

and/or overlapping objects belonging to different types (e.g., cirrus over liquid), are discarded. 391 

Third, horizontally inhomogeneous pixels, determined when the CALIOP 1km label changes 392 

within 5 consecutive VIIRS pixels, or pixels with inconsistent CALIOP 1km and 5km labels, are 393 

discarded. Figure 5 shows the global distributions of the 5-year collocated clear (first row) and 394 

cloudy pixels (second row) before and after applying the three-step quality control. Globally, 50% 395 

of all clear pixels are excluded due to contamination of broken-cloud and/or aerosol. In particular, 396 

a large fraction of clear pixels in central Africa, India, and southern China (Figure 5c) are excluded 397 

due to relatively large aerosol optical thicknesses in those regions. About 40% of global cloudy 398 

pixels (Figure 5f) are excluded due to cloud heterogeneity and aerosol contamination. The 399 
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minimum selection rate (~20%) can be found in some particular regions, such as the Inter Tropical 415 

Convergence Zone (ITCZ), where clouds have complicated horizontal/vertical structures due to 416 

strong convections (i.e., clouds are highly heterogeneous in both the horizontal and vertical 417 

dimensions). The remaining data are separated into a training/testing population that consists of 418 

32.4, 41.2 and 34.9 million pixels for clear sky, liquid water cloud, and ice cloud from years 2013-419 

2016, respectively, and a validation dataset that consists of 6.9, 8.5 and 7.0 million pixels of clear-420 

sky, liquid water cloud, ice cloud, respectively from year 2017.  421 

4.3 RF model training and configuration 422 

RF model performance is determined by both its inputs (spectral or other information) and its 423 

configuration (NTree and NDepth). Therefore, extensive testing must be conducted to find the optimal 424 

inputs and configuration. The 4-year collocated VIIRS-CALIOP dataset from 2013 to 2016 after 425 

quality control (see Section 4.2) is used for both training (75%) and testing (25%) purposes. The 426 

testing set, also known as cross-validation set, is used to tune and optimize the RF model 427 

parameters. Here we define an accuracy score to evaluate the overall model performance. The 428 

accuracy score is the ratio of pixels (samples) where both the CALIOP and RF model have the 429 

same categories to total pixels. In this study, we tested six groups of input variables for each RF 430 

model. The set of model input variables with a relatively high accuracy score and low 431 

memory/computing requirement will be selected. 432 

Table 3 provides accuracy scores of the IR-based all-day model trained and tested with 433 

different inputs. It shows that with a fixed RF model configuration (NTree = 150 and NDepth = 15), 434 

the RF all-day model with input #4 and #6 have the best overall accuracy scores for all surface 435 

types. Generally, by including surface skin temperature (Ts) and geolocation (i.e., latitude and 436 

longitude), the accuracy scores for all surface types increase by 2-3%. The surface emissivity 437 
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vector es is less important, likely because this information is highly correlated to surface type and 449 

geolocation. In this study, input #4 is selected mainly because with similar performance, it requires 450 

less memory and computing resources, and it is quite possible that more uncertainty is introduced 451 

with the use of a surface emissivity vector es from another retrieval product. 452 

A set of model configurations (NTree and NDepth) are also tested based on the selected input #4. 453 

While the number of trees and the maximum depth of individual trees are important determinants 454 

for RF model performance, the overall accuracy scores for all surface types are less sensitive to 455 

these two model parameters when more than 100 trees and 10 maximum tree depths are used (not 456 

shown here). Therefore, we trained the RF all-day models with input #4 and the model 457 

configuration used in Table 3, i.e., NTree = 150 and NDepth= 15. 458 

Similar input variable tests for the RF daytime model (IR plus NIR and SWIR observations) 459 

showed that the optimal input includes reflectances in the 0.86, 1.24, 1.38, 1.64 and 2.25µm bands, 460 

BTs in the same 3 IR bands used in the all-day model, geolocation, and solar/satellite viewing 461 

zenith angles (See Table 4). The same model configuration used in the all-day model, e.g., 150 462 

trees with the maximum depth 15, is used in the daytime model. The accuracy scores of the RF 463 

daytime model are higher than the RF all-day model by 2-3% over almost all surface types except 464 

high-latitude regions covered by snow and ice, where the daytime model accuracy score is higher 465 

by up to 6% than the all-day model due to the inclusion of the 1.38, 1.64 and 2.25µm SWIR bands. 466 

4.4 Evaluating the RF Models 467 

The trained RF all-day and daytime models are validated using collocated CALIOP data in 468 

2017. Existing VIIRS cloud products CLDMSK and CLDPROP (see Table 1) are included for 469 

direct comparison with the RF models and CALIOP reference. Several other products, such as the 470 
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MODIS CLDMSK and CLDPROP and standard MYD35 and MYD06, are also included for 474 

comparison although they could be different from the RF models due to other non-algorithm 475 

reasons, such as the VZA and pixel size differences mentioned before. 476 

4.5.1 Cloud mask 477 

Cloud mask from the two RF models and VIIRS/MODIS products are first compared with 478 

CALIOP lidar observations. For the two models, a cloudy pixel indicates a predicted label “liquid” 479 

or “ice”. Here we define cloudy and clear pixels as “positive” and “negative” events, respectively. 480 

A true positive rate (TPR) and false positive rate (FPR) can then be used to evaluate model 481 

performance. The TPR and FPR are defined as: 482 

TPR = %&
%&'(#,      (2) 483 

FPR = (&
(&'%#,      (3) 484 

where TP (True Positive) and TN (True Negative) are the number of lidar-labeled “cloudy” and 485 

“clear” pixels, respectively, that are correctly detected by the models; whereas FN (False Negative) 486 

and FP (False Positive) are the number of lidar-labeled “cloudy” and “clear” pixels incorrectly 487 

identified by the models. Therefore, TPR, also called model sensitivity, indicates the fraction of 488 

all positive events (i.e., lidar cloudy pixels) that are correctly detected by the models. Similarly, 489 

FPR, also called false alarm rate, indicates the fraction of all negative events (i.e., lidar clear pixels) 490 

that are incorrectly detected as positive (cloudy). TPR and FPR are two critical parameters in 491 

model evaluation. A perfect model is associated with a high TPR (close to 1) and a low FPR (close 492 

to 0). 493 

Figure 6 shows daytime cloud mask TPR-FPR plots from the two RF models and the other 494 

products listed in Table 1. Globally, all products agree well with lidar observations (Figure 6a). 495 
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The overall TPRs are higher than 0.94 and FPRs are lower than 0.08. The RF daytime model (red 496 

circle), with a TPR of 0.97 and an FPR of 0.05, is slightly better than the RF all-day model (yellow 497 

circle) and other products. Figure 6b-6h show comparisons over different surface types. It is clear 498 

that the RF daytime model has a robust performance for all surface types. The MODIS MYD35 499 

cloud mask algorithm (black circle) performs best over ocean but has a relatively high FPR (0.22) 500 

over forest and low TPR over snow/ice and barren (0.85) regions. As mentioned in Section 3, the 501 

“false cloudy” pixels from MYD35 and CLDMSK may increase the FPRs correspondingly.  502 

The RF all-day model works fairly well and is comparable to other products for all surface 503 

types regardless of the fact that it only uses three IR window channels from VIIRS while all other 504 

products in the daytime models use VNIR observations. Nighttime (SZA > 85°) cloud mask 505 

comparisons are shown in Figure 7. The overall performances of all operational products decrease 506 

in particular for snow/ice regions. For example, the VIIRS/MODIS CLDMSK products over 507 

snow/ice surface have large fractions of missing “cloudy” pixels (e.g., TPRs < 0.7) and false alarm 508 

rates (FPRs > 0.2) over snow/ice surface. The decrease is more likely explained by the lack of 509 

SWIR bands and the small cloud-snow/ice surface temperature contrast during the nighttime of 510 

summer polar regions. However, the RF all-day model has the best performance for nighttime 511 

pixels, indicating the strong capability of ML based algorithm in capturing hidden spectral features 512 

and optimizing dynamic thresholds of clear and cloudy pixels. 513 

4.5.2 Cloud thermodynamic phase 514 

The RF cloud thermodynamic phase products are also compared with CALIOP lidar and 515 

existing VIIRS and MODIS products. For consistent nomenclature, we arbitrarily define ice clouds 516 

and liquid water clouds as “positive” and “negative” events, respectively. A low TPR indicates 517 

underestimation of ice cloud fraction, while a high FPR indicates a large fraction of liquid water 518 
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cloud samples are identified as ice cloud. To focus on cloud thermodynamic phase classification, 520 

pixels detected as “clear” by either the lidar reference labels or by the RF models and existing 521 

products are excluded. The OP-Phase from both MYD06 and CLDPROP, and the IR-Phase from 522 

MYD06, have an “unknown phase” category, which is not included in the TPR-FPR analysis. 523 

Figure 8 shows daytime cloud phase TPR-FPR plots from the two RF models and the 524 

MODIS/VIIIRS products. The two RF models and the MODIS MYD06 OP-Phase are the top 3 525 

phase algorithms for all surface types. The MODIS MYD06 IR-Phase, MODIS/VIIRS CLDPROP 526 

OP-Phase, and CT-Phase have either relatively lower TPRs or higher FPRs over particular surface 527 

types, such as shrubland, snow/ice, and barren regions. Comparisons between nighttime phase 528 

algorithms are shown in Figure 9. For nighttime clouds, the RF all-day model works better than 529 

both CT-Phase and IR-Phase algorithms for all surface types. Overall, the performance of the 530 

hand-tuned algorithms decreases significantly over snow/ice or barren surfaces. For example, the 531 

TPR-FPR plot shows that over daytime snow/ice surface (Figure 8 g), the MODIS CLDPROP OP-532 

Phase and MODIS MYD06 IR-Phase frequently predict liquid water cloud as ice cloud. Similar to 533 

the daytime plot, the MYD06 IR-Phase also shows a high FPR rate over snow/ice surface, 534 

indicating an overestimated (underestimated) ice (liquid water) cloud fraction. Possible reasons 535 

include strong surface reflection, low surface cloud contrast, relatively less training samples and 536 

high solar zenith angles. However, the two RF models work fairly well and show consistent 537 

accuracy rates across all surface types.  538 

It is also important to note that the number of pixels used for cloud phase TPR-FPR 539 

comparisons in Figures 8 and 9 are different for products that have “unknown phase” categories, 540 

namely, MYD06 IR-Phase, MYD06 OP-Phase, and CLDPROP OP-Phase. As shown in Table 5, 541 

the MYD06 IR-Phase has a relatively large “unknown phase” phase fraction (15% for all surface 542 
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types and 34% for snow/ice) in comparison to the OP-Phase products from both MYD06 and 545 

CLDPROP, which have 2~3% “unknown phase” fraction approximately. 546 

As discussed in Section 2.2, recall that the RF model predicted pixel type is derived by setting 547 

thresholds on the probabilities for each classification type, e.g., an ice phase decision is reached if 548 

the probability of ice is greater than the probabilities of liquid and clear. Figure 10 shows the 549 

probability distribution functions of the RF all-day model for four scene types as determined by 550 

collocated CALIOP, namely, (a) clear, (b) liquid, (c) ice, and (d) multi-layer clouds with different 551 

thermodynamic phases (e.g., ice over liquid). As expected, for the first three types, which are 552 

included in the training/validation processes, the probability distributions have strong peaks close 553 

to either 0 or 1. For the multiple phase cases (panel d), the liquid and ice probabilities are more 554 

broadly distributed, indicating that the model may recognize signals from both liquid and ice and 555 

therefore provide ambiguous phase results. More nuanced thresholds can therefore be applied to 556 

the probabilities, for instance to create an “unknown” phase category following MYD06 and 557 

CLDPROP convention [Marchant et al., 2016] that can indicate complicated cloud scenes. 558 

Furthermore, the probabilities themselves can provide a useful quality assurance metric for 559 

downstream cloud property retrievals that often must make an assumption on cloud phase. 560 

Nevertheless, assigning an appropriate phase for downstream imager-based cloud property 561 

retrievals is difficult for complex, multilayer cloud scenes, as such an assignment often depends 562 

on the optical/microphysical properties and vertical distribution of the cloud layers in the scene 563 

[Marchant et al., 2020]. Further investigation is necessary to understand how to use the RF phase 564 

probabilities more quantitatively in complicated cases. 565 

Figure 11 shows monthly mean daytime cloud and phase fractions from the VIIRS CLDMSK 566 

and CLDPROP OP-Phase products (top row), and those from the RF daytime model (second row), 567 
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in January 2017. For the cloud mask comparison, cloud fractions (CF) from the two products have 568 

similar spatial patterns, while it is also clear that the VIIRS CLDMSK CFs are higher over tropical 569 

oceans by approximately 10% and lower over land by 5% (Figure 11 c). This is consistent with 570 

the cloud mask TPR-FPR analysis shown in Figure 6. Over the tropical ocean, the VIIRS 571 

CLDMSK is more “cloudy”, probably due to a fraction of sunglint pixels that are detected as liquid 572 

clouds, leading to a large FPR rate. Another reason for the relatively large cloud fraction (or liquid 573 

water cloud fraction) difference is that in regions covered by “broken” cumulus clouds, and or 574 

clouds with more complicated structures, the inherent viewing geometry differences in the training 575 

datasets may adversely affect the performance of the RF models. For example, CALIOP, with a 576 

nadir viewing geometry may observe clear gaps between two small cloud pieces, while VIIRS, 577 

with an oblique viewing angle, detects broken liquid clouds nearby or high clouds along its long 578 

line-of sight. Comparison between the VIIRS product and the RF daytime model shows more ice 579 

clouds from the RF daytime models over land, which is consistent with the cloud phase TPR-FPR 580 

plots as shown in Figure 8. The RF daytime model may have better performance due to the 581 

consideration of surface type. However, it is also important to notice that due to the lack of 582 

“aerosol” types in current training, in central Africa, the RF models may misidentify elevated 583 

smoke as ice cloudy pixels. For most land surface types except snow/ice, the CLDPROP OP-Phase 584 

has lower TPR rates than the RF daytime models by 0.1, in comparison with the CALIOP. 585 

In addition to the higher CFs over low latitude ocean from the VIIRS CLDMSK product, more 586 

pronounced CF (liquid) differences can be found in northeast and northwest China. Cloud 587 

differences in the two regions are spatially correlated with locations that have heavy aerosol 588 

loadings or snow coverage. For example, heavy aerosol loadings due to pollution in Northeast 589 

China, and a wide land snow coverage in Northwest China are frequently observed in the winter. 590 
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The VIIRS CLDMSK may identify pixels with white surface and heavy aerosol loadings as 592 

“cloudy”. Some of these pixels are expected to be restored to clear-sky category in the CLDPROP 593 

OP-Phase product (Figure 11 f and i). As evidence, Figure 12 shows comparisons between the 594 

VIIRS products and the RF daytime model in July 2017. The large cloud (liquid) fraction 595 

differences over North China vanish in the summer. This indicates that the RF models might be 596 

able to handle complicated (or unexpected) surface type and strong aerosol events better than the 597 

hand-tuned VIIRS algorithm. However, further investigation is required to understand the 598 

performances of both the VIIRS products and the RF models.  599 

5. Discussion 600 

In this Section, we will review the strengths and potential limitations and weaknesses of the 601 

RF models. 602 

5.1 Advantages 603 

The above results show that, for the screened clear/cloudy samples, the two RF models have 604 

better and more consistent performance over different regions and surface types in comparison 605 

with the MODIS and VIIRS products, suggesting the potential to improve the overall performance 606 

in more global operational applications. In addition to better performance, it is convenient and 607 

efficient to apply the present RF models or other similar ML-based models to other instruments 608 

similar to VIIRS, such as the geostationary imagers Advanced Himawari Imager (AHI) on 609 

Himawari-8/9, the ABI on GOES-16/17, and the Spinning Enhanced Visible and Infrared Imager 610 

(SEVIRI) on Meteosat Second Generation, as long as reliable reference pixel labels are available. 611 

With hand-tuned methods, adjustment is always required in the case of calibration changes, 612 

algorithm porting to another similar instrument, or changes in solar/viewing geometries and 613 

surface conditions. Manual adjustments can be time-consuming (e.g., months or years), whereas 614 
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the two RF models used in this study were trained and tested for 7 surface types and using different 621 

input variables in 3 hours (on an HPC Platform using 32 Intel Xeon Gold 6126 Processors @ 2.60 622 

GHz).  More important, manual algorithm adjustment may not provide the best continuity between 623 

two instruments. For example, although the MODIS CLDPROP OP-Phase and VIIRS CLDPROP 624 

OP-Phase are designed for climate record continuity purpose, cloud thermodynamic phases from 625 

the two products are different by up to 4% for all surface pixels, and by up to 10% over surfaces 626 

covered by snow/ice (see Figure 8 light blue and light green dots). Further investigation is 627 

necessary to understand if, using ML approaches, a better climate record continuity will be 628 

achieved with a uniform training dataset. Besides providing a discrete category for each pixel, the 629 

RF models provide an ensemble of predictions and probabilities of individual categories, which 630 

are useful diagnostic variables in evaluating models in complicated scenarios. 631 

5.2 Limitations and possible caveats 632 

Although the evaluation demonstrates that the current RF models are highly consistent with 633 

CALIOP, the models may suffer some artifacts due to the quality of the training data and due to 634 

sampling issues. 635 

5.2.1 Quality of the training/validation data 636 

The RF models learn spectral structures of cloud/clear pixels according to the reference labels. 637 

As a consequence, the present model performance relies heavily on the quality of CALIOP Level-638 

2 data. It is already known that the lidar signal has limitations in detecting the bottom of an 639 

optically thick cloud or lower level clouds underneath an opaque cloud [Sassen and Cho, 1992]. 640 

Some complicated multiple-phase scenes may be misidentified as simple single-phase scenes due 641 

to the penetration limit of CALIOP (e.g., the uppermost ice cloud optical thickness greater than 3). 642 

Using combined CALIOP and CloudSat data as reference in the future could be a better way to 643 
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improve the training/validation datasets [Marchant et al., 2020]. However, as noted in that study, 665 

CloudSat observations cannot be used without careful filtering since a multilayer scene that is 666 

radiatively indistinct from the upper level cloud layer is not necessarily consistent with multilayer 667 

detection detected from a cloud radar. 668 

Additional uncertainties may come from the inconsistency in view angles between the 669 

collocated CALIOP labels and VIIRS spectral observations. For instance, CALIOP always has a 670 

quasi-nadir viewing angle (e.g., 3°) whereas the collocated VIIRS observations have a wide VZA 671 

range (e.g., 0° to 50°). A wide VIIRS VZA range in the training dataset improves model 672 

performance, especially for predicting VIIRS pixels with large VZAs. However, the difference 673 

between the CALIOP and VIIRS viewing geometry could create undesirable artifacts in the 674 

training process. As shown in Figure 11, in the descending areas of the Hadley cell over low-675 

latitude ocean, where marine boundary layer clouds are dominant, there are relatively large CF 676 

differences between the CLDMSK and the RF models. A reason for the large liquid cloud fraction 677 

differences is that the quality of training datasets decreases in regions covered by “broken” 678 

cumulus clouds, and or clouds with more complicated structures. Further investigation is required 679 

to check if the training dataset collection process introduces sampling bias into the training dataset.  680 

5.2.2 Sampling issue 681 

Uneven sampling may also influence the training of RF models. Figure 13 shows the cloud 682 

fraction as a function of viewing geometry. Quasi-constant fractions of both liquid and ice clouds 683 

are found for all operational products and the RF models when VZAs are smaller than 45°, except 684 

the MODIS MYD06 IR-Phase, which has a strong VZA dependency. However, liquid (ice) cloud 685 

fractions from the two RF models increase (decrease) rapidly at high VZAs (greater than 50°), 686 

which is likely caused by the sampling issue. A significant fraction of the training data (greater 687 
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than 98%) is located in the region with VZA less than 50° (see the gray dashed distributions in 691 

Figure 13). It is difficult to mitigate this issue using collocated VIIRS-CALIOP data or 692 

observations from other similar instruments in the training process. One possible way is using 693 

model-generated synthetic training data and labels with reliable radiative transfer models. Results 694 

from the RF daytime model are not shown in Figure 13 since they are highly consistent with the 695 

RF all-day model. 696 

5.2.3 Labeling strategy 697 

For RF or other ML models, each pixel’s classification is determined by prediction 698 

probabilities (P) of all potential types. Here we selected a regular strategy that labels a pixel using 699 

the class with the highest probability (see Eq. 1). This strategy is logical for problems with two 700 

categories (e.g., cloud mask only). For problems including 3 or more classes, however, the present 701 

strategy is not the only way to label pixels. For example, a pixel is labeled as “clear” if Pclear is 702 

larger than both Pliquid and Pice according to the current labeling strategy. It is also possible that, 703 

for the same pixel (less than 0.5% for the two RF models), Pclear is lower than the sum of Pliquid 704 

and Pice, making a “cloudy” label more appropriate. For the cloud mask and phase problem 705 

discussed in this paper, in addition to pixel labels, users must be aware of probabilities of the three 706 

types. Another possible way to avoid the ambiguous labeling is using two RF models, one for 707 

cloud masking and one for phase, such that a “clear” or “cloudy” label is given first by the cloud 708 

mask model, while a corresponding “liquid” or “ice” label is assigned to “cloudy” pixels in the 709 

cloud phase model. However, two RF models double the training process and require more 710 

computing resources in operational applications.  711 

6. Conclusions 712 
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Two Machine-Learning Random Forest (RF) models were trained to provide pixel types (i.e., 718 

clear, liquid water cloud, and ice cloud) using VIIRS 750-meter spectral observations. A daytime 719 

model that uses NIR, SWIR, and IR bands and an all-day model that only uses IR bands were 720 

trained separately. In the training processes, reference pixel labels are from collocated CALIOP 721 

Level 2 1 km cloud layer and 5 km aerosol layer products from 2013 to 2016. Careful tests were 722 

conducted to optimize model input and configuration. The two RF models were trained for 7 723 

different surface types (i.e., ocean/water, forest, cropland, grassland, snow/ice, barren/desert, and 724 

shrubland) to improve model performance. In addition to geolocation and solar/satellite geometry 725 

information, we found that using 5 NIR and SWIR bands (0.86, 1.24, 1.38, 1.64 and 2.25 µm) and 726 

three IR bands (8.6, 11, and 12µm) in the daytime RF model and using the three IR bands and 727 

surface temperatures in the all-day RF model achieved great performances for all surface types. 728 

The cloud mask and thermodynamic phase classifications from the two RF models were 729 

validated using the selected aerosol-free, homogeneous samples in 2017. For daytime cloud mask 730 

comparisons over all surface types, the RF daytime model, with a high TPR (0.93 and higher) and 731 

low FPR (0.07 and lower), performs best among all models evaluated, including MODIS MYD35 732 

and MODIS/VIIRS CLDMSK products. The RF all-day model works fairly well and is 733 

comparable to other products for all surface types, even in daytime when all other products use 734 

shortwave observations and it does not. For the nighttime cloud mask, the RF all-day model has 735 

the best performance over all products, demonstrating the strong capability of ML-based 736 

algorithms for capturing hidden spectral features of clear and cloudy pixels. All nighttime products 737 

perform slightly weaker at snow/ice regions. The decline is likely explained by the lack of SWIR 738 

bands and the small thermal contrast between the clouds and the surface during the summer 739 
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nighttime in polar regions. In this case, the ML-based algorithms are not able to compensate for 742 

the missing physical signatures.  743 

For the daytime cloud thermodynamic phase comparison, we showed that the two RF models 744 

are comparable with the MODIS MYD06 OP-Phase product, and are among the top 3 phase 745 

algorithms for all surface types. The MODIS MYD06 IR-Phase, VIIRS/MODIS CLDPROP OP-746 

Phase, and CT-Phase have either relatively lower TPRs or higher FPRs over certain surface types, 747 

such as shrubland, snow/ice, and barren regions. For nighttime clouds, the RF all-day model works 748 

better than both CLDPROP CT-Phase and MYD06 IR-Phase for all surface types. 749 

In this study, we have demonstrated the advantages of using ML-based (specifically, RF) 750 

models in cloud masking and thermodynamic phase detection. In contrast with hand-tuned 751 

methods, the RF models can be efficiently trained and tested for different surface types and using 752 

different input variables. Meanwhile, for aerosol-free, homogeneous samples, the two RF models 753 

show better and more consistent performance over different regions and surface types in 754 

comparison with existing VIIRS and MODIS datasets. For more complicated scenes, RF 755 

probabilities are more informative than binary mask/phase designations. However, further 756 

investigation is required to understand how to use probabilities more quantitatively. 757 

In the future, more spectral bands and/or spatial patterns can be used to improve pixel 758 

classification skills, such as including more pixel types (e.g., dust and smoke). It is convenient to 759 

apply RF models or other similar ML-based models to other instruments similar to VIIRS with the 760 

help of active instruments. Most importantly, cloud mask and thermodynamic phase products from 761 

well-trained RF models could be used to train other instruments in the absence of active sensors. 762 

For example, the current RF model based VIIRS cloud mask/phase data could be used as reference 763 

to train ML-based models for other instruments, such as MODIS, ABI/AHI, SEVIRI, and airborne 764 
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instruments. It remains as future work to determine how such an approach might lead to improved 773 

consistency in cloud properties derived from different satellite imagers. 774 

It is also important to emphasize that the model performance is highly reliant on the quality of 775 

the training samples and reference labels. For example, in this study, more than 98% of the training 776 

data have a VZA less than 50°, leading to more uncertain cloud phase fractions at large VZAs. 777 

Using synthetic training data generated with reliable radiative transfer models could be a possible 778 

way to mitigate this artifact. 779 
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Table 1. Existing VIIRS and MODIS cloud mask and phase products used for comparison. Note 1021 
that MYD35 and MYD06 are the standard MODIS Aqua products, and CLDMSK and CLDPROP 1022 
are the MODIS Aqua and VIIRS common algorithm continuity products. 1023 
 1024 

Instrument Cloud Mask Cloud Phase 

MODIS 
MYD35 V6.1 MYD06 IR-Phase V6.1 

MYD06 OP-Phase V6.1 

CLDMSK V1.0 CLDPROP CT-Phase V1.0 
CLDPROP OP-Phase V1.1 

VIIRS CLDMSK V1.0 CLDPROP CT-Phase V1.0 
CLDPROP OP-Phase V1.1 

 1025 
  1026 
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Table 2: Data collection strategies and the number of pixels for all surface types. 1027 
 1028 

# of VIIRS 

750m pixels 

(million) 

Condition Ocean Forest Cropland Grass Barren Shrub Snow/Ice Total 

All collocation None 219.7 18.7 8.7 17.5 17.1 13.6 37.4 332.7 

Aerosol Free 

CALIOP Aerosol 

5km column AOD < 

0.05 

142.6 13.0 3.7 10.0 10.5 9.3 34.3 223.2 

Clear 
Aerosol Free, 

Cloud 1km Layer = 

0 

17.7 2.5 1.5 1.8 2.9 3.1 13.1 42.5 

Clear 
(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Layer = 0 

15.2 2.3 1.5 1.7 2.7 3.0 12.7 39.1 

Cloudy 

Aerosol Free, 

Cloud 1km Layer > 

0 

124.9 10.5 2.1 8.1 7.7 6.2 21.2 180.7 

Cloudy 

(homogeneous) 

Aerosol Free, 

Cloud 1km/5km 

Layer > 0 

115.5 9.5 1.8 7.4 6.6 5.3 15.8 162.0 

Single Phase 

Cloud 

Aerosol Free, 

Cloud 1km Liquid 

or Ice Phase 

65.1 4.4 1.0 4.0 3.4 2.4 13.5 93.7 

Single Phase 
Cloud 

(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Liquid or Ice 
Phase 

64.2 4.3 0.9 3.9 3.3 2.3 12.7 91.5 

Liquid Phase 
Cloud 

(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Liquid Phase 
40.5 1.8 0.3 1.7 1.3 1.0 3.2 49.7 

Ice Phase 
Cloud 

(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Ice Phase 
23.7 2.5 0.6 2.2 2.0 1.3 9.5 41.8 

 1029 
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Table 3: Accuracy scores of RF all-day models based on testing pixels with different inputs and a 1032 
fixed model configuration (N_Trees = 150 and Max_TreeDepths = 15). 1033 

# 
Input 

Model Input Ocean Forest Shrubland Crop Grassland Barren Snow/Ice 
All 

Surface* 

1 
BT8.6, BT11, BT12, 

and VZA 
90.3 89.9 88.7 88.4 88.2 88.0 87.4 89.4 

2 
BT8.6, BT11, BT12, 

VZA, and 
Lat/Lon 

92.1 90.1 89.8 90.7 89.5 90.1 88.0 90.9 

3 
BT8.6, BT11, BT12, 

VZA, and TS 
93.1 90.9 89.9 91.4 90.2 90.3 88.5 91.7 

4 
BT8.6, BT11, BT12, 

VZA, Lat/Lon, 
and TS 

93.2 91.7 90.0 91.8 91.2 90.8 88.9 92.0 

5 
BT8.6, BT11, BT12, 
VZA, TS, and eS 

93.2 91.4 89.8 91.4 90.4 90.4 88.8 91.9 

6 
BT8.6, BT11, BT12, 

VZA, Lat/Lon, 
TS, and eS 

93.2 91.8 90.1 91.8 91.3 90.6 88.9 92.0 

*The all-surface accuracy scores are weighted by pixel numbers of individual surface types.  1034 
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Table 4: Accuracy scores of RF daytime models based on testing pixels with different inputs and 1131 
a fixed model configuration (N_Trees = 150 and Max_TreeDepths = 15). 1132 

# 
Input 

Model Input Ocean Forest Shrubland Crop Grassland Barren Snow/Ice 
All 

Surface* 

1 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 
R2.25, VZA, and 

SZA  

95.47 93.71 93.25 93.86 92.82 94.04 94.94 94.97 

2 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 
R2.25, VZA, SZA, 

and RAA 

95.47 93.72 93.22 93.84 92.81 94.02 94.94 94.97 

3 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 
R2.25, Lat/Lon, 
VZA, and SZA 

95.47 93.74 93.36 93.95 92.95 94.16 94.95 94.99 

4 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 

R2.25, R1.24, 
Lat/Lon, VZA and 

SZA 

95.51 93.73 93.47 93.93 92.98 94.21 95.05 95.04 

5 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 

R2.25, Ts, Lat/Lon, 
VZA, SZA, and 

RAA 

95.45 93.77 93.36 93.93 92.92 94.21 94.95 94.98 

6 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 
R2.25, R0.48, R0.67, 
R1.24, VZA, and 

SZA 

95.51 93.90 93.54 94.11 93.07 94.38 95.17 95.09 

*The all-surface accuracy scores are weighted by pixel numbers of individual surface types.  1133 
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Table 5: Fractions of the 2017 validation samples that have determined phases (i.e., liquid water 1134 
or ice) in different surface types. 1135 
 1136 

Determined Phase (%) Ocean Forest Shrubland Crop Grassland Barren Snow/Ice All 

MODIS MYD06 IR-Phase 89 75 74 80 79 75 66 85 

MODIS MYD06 OP-Phase 97 99 97 98 99 95 92 97 

MODIS CLDPROP OP-Phase 98 99 98 99 99 97 99 98 

VIIRS CLDPROP OP-Phase 98 99 97 99 98 96 99 98 

  1137 
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 1138 

Figure 1. Spectral patterns of the five different pixel types (averaged over 1,000 pixels for each 1139 
type). For each plot, an apex indicates reflectance ratio between a given VNIR/SWIR band and 1140 
the 0.86-µm band, and the spread is filled by false RGB composite (Red: 0.74-µm reflectance; 1141 
Green: 8.5-11µm brightness temperature difference (BTD); Blue: 11-12µm BTD). The spectral 1142 
patterns are used in the machine learning algorithms. 1143 
  1144 
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 1145 

Figure 2. Climatology of the spectral surface emissivity data from the UW-Madison baseline fit 1146 
land surface emissivity database [Seemann et al., 2008] for different IGBP surface types. Error 1147 
bars indicate the emissivity standard deviations at given wavelengths. 1148 
  1149 
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 1150 
Figure 3. Climatology of the spectral surface white sky surface albedo data from MCD12C1 [Sulla-1151 
Menashe and Friedl 2018] for different IGBP surface types. Error bars indicate the albedo standard 1152 
deviations at given wavelengths. 1153 
  1154 
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 1155 

Figure 4. A global map of the seven reduced surface types chosen for the RF model training.  1156 
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 1158 
Figure 5. Global distributions of the of clear and cloudy pixels from collocated VIIRS and CALIOP 1159 
data from 2013 to 2017. Panels a) and d) show the total clear and cloudy pixel counts, respectively. 1160 
Panels b) and d) show the pixel counts after applying the quality control. The corresponding 1161 
selection ratios are shown in panels c) and f).  1162 
  1163 
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 1164 

Figure 6. False Positive Rate (FPR) versus True Positive Rate (TPR) plots of daytime cloud mask 1165 
from the two RF models and operational algorithms. Collocated CALIOP Level 2 products in 2017 1166 
are used as reference. Global comparisons are shown in panel (a), while panels (b) through (h) 1167 
show comparisons for difference surface types. The total pixel number is shown in each panel. 1168 
  1169 
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 1171 

Figure 7. Similar to Figure 6, but for nighttime cloud mask comparisons. The total pixel number 1172 
is shown in each panel. 1173 
  1174 
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 1176 

Figure 8. Similar to Figure 6, but for daytime cloud thermodynamic phase comparisons. The total 1177 
pixel number is shown in each panel. Note that for specific products, the total pixel numbers are 1178 
less because of the exclusion of “unknown phase” category (see text for more details).  1179 
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 1182 

Figure 9. Similar to Figure 6, but for nighttime cloud thermodynamic phase comparisons. The total 1183 
pixel number is shown in each panel. Note that for specific products, the total pixel numbers are 1184 
less because of the exclusion of “unknown phase” category (see text for more details). 1185 
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 1188 
Figure 10. Normalized density functions of the clear (blue), liquid water cloud (red), and ice cloud 1189 
(green) probabilities from the RF all-day model in four CALIOP detected aerosol-free scenes: (a) 1190 
clear, (b) homogenous liquid, (c) homogenous ice, and (d) multi-layer cloud with different 1191 
thermodynamic phases. 1192 
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 1194 

Figure 11. Comparisons between one-month daytime cloud mask and thermodynamic phase 1195 
products from the VIIRS CLDMSK and CLDPROP OP-Phase (top row) and the RF daytime 1196 
model (second row), and their differences (VIIRS – RF daytime, bottom row) in January, 2017. 1197 
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 1200 

Figure 12. Similar to Figure 11, but for comparisons in July, 2017. 1201 
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 1205 

Figure 13. Liquid water (a) and ice (b) cloud fractions as a function of viewing zenith angle from 1206 
the one-month daytime cloud mask/phase products in January 2017. The gray dashed curve is the 1207 
probability density function of the 4-year VIIRS/CALIOP training samples (2013-2016). 1208 
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