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Abstract 10 

We trained two Random Forest (RF) machine-learning models for cloud mask and cloud 11 

thermodynamic phase detection using spectral observations from VIIRS on Suomi NPP (SNPP). 12 

Observations from CALIOP were carefully selected to provide reference labels. The two RF 13 

models were trained for all-day and daytime-only conditions using a 4-year collocated 14 

VIIRS/CALIOP dataset from 2013 to 2016. Due to the orbit difference, the collocated CALIOP 15 

and SNPP VIIRS training samples cover a broad viewing zenith angle range, which is a great 16 

benefit to overall model performance. The all-day model uses 3 VIIRS infrared (IR) bands (8.6, 17 

11, and 12 µm) and the daytime model uses 5 Near-IR (NIR) and Shortwave-IR (SWIR) bands 18 

(0.86, 1.24, 1.38, 1.64 and 2.25 µm) together with the 3 IR bands to detect clear, liquid water, and 19 

ice cloud pixels. Up to 7 surface types, namely, ocean/water, forest, cropland, grassland, snow/ice, 20 

barren/desert, and shrubland, were considered separately to enhance performance for both models. 21 

Detection of cloudy pixels and thermodynamic phase with the two RF models were compared 22 

against collocated CALIOP products from 2017. It is shown that, with a conservative screening 23 

process that excludes the most challenging cloudy pixels for passive remote sensing,  the two RF 24 

models have high accuracy rates in comparison with the CALIOP reference for both cloud 25 

detection and thermodynamic phase. Other existing SNPP VIIRS and Aqua MODIS cloud mask 26 

and phase products are also evaluated, with results showing that the two RF models and the 27 

MODIS MYD06 optical property phase product are the top 3 algorithms with respect to lidar 28 

observations during the daytime. During the nighttime, the RF all-day model works best for both 29 

cloud detection and phase, in particular for pixels over snow/ice surfaces. The present RF models 30 

can be extended to other similar passive instruments if training samples can be collected from 31 
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CALIOP or other lidars. However, the quality of reference labels and potential sampling issues 32 

that may impact model performance would need further attention. 33 

1. Introduction 34 

Detection and classification (DC) of atmospheric constituents using satellite observations is 35 

often a critical initial step in many remote sensing algorithms. For example, a prerequisite for cloud 36 

optical and microphysical property retrievals is identifying the presence of clouds, i.e., a 37 

clear/cloudy classification [Frey et al., 2008; Heidinger et al., 2012]. Additionally, characteristics 38 

such as cloud thermodynamic phase are needed as they can strongly impact the 39 

scattering/absorption properties of cloud droplets/particles [Pavolonis et al., 2005; Platnick et al., 40 

2017]. Similarly, current operational aerosol algorithms can only retrieve aerosol optical depth 41 

(AOD) for “non-cloudy” pixels since even slight cloud contamination can result in erroneously 42 

high retrieved AOD [Remer et al., 2005]. Therefore, errors in detecting and classifying 43 

atmospheric components can significantly impact downstream retrieval products and scientific 44 

analyses.  45 

There are many examples of hand-tuned DC algorithms designed for satellite instruments. For 46 

example, the Moderate Resolution Imaging Spectroradiometer (MODIS) has algorithms 47 

developed for cloud masking [Frey et al., 2008; Ackerman et al., 2008], cloud thermodynamic 48 

phase [Baum et al., 2012; Marchant et al., 2016], aerosol type [Levy et al., 2013; Sayer et al., 49 

2014], and snow coverage over land surfaces [Hall and Riggs, 2016]. Decision trees or voting 50 

schemes involving multiple thresholds are typically used in these hand-tuned algorithms. The 51 

decision tree branches, tests, and thresholds are often determined empirically after a tedious hand 52 

tuning/testing process based on the developer’s experience and access to validation datasets. 53 

Further, the branches and thresholds are often very sensitive to the specific instrument (e.g., 54 
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spectral band pass, calibration, noise characteristics, view/solar geometry sampling). Therefore, 55 

an obvious weakness of these hand-tuned methods is that it is challenging and time consuming to 56 

develop algorithms across multiple instruments and to maintain performance for individual 57 

instruments that may have noticeable calibration drifts. Meanwhile, a well-designed hand-tuned 58 

method may have remarkable performance in a specific region and season yet have significant 59 

biases when applied globally and/or annually [Cho et al., 2009; Liu et al., 2010]. Additional 60 

complexities arise when DC problems become more non-linear across large spatial and temporal 61 

scales, and more variables need to be considered. It is difficult to develop and apply a single or a 62 

few decision trees to complicated non-linear problems that are controlled by dozens or more 63 

variables. As expected, a single decision tree can grow very deep and tend to have a highly 64 

irregular structure in order to consider a large number of features (variables) simultaneously, 65 

leading to a significant overfitting effect (i.e., an over-constrained training that makes predictions 66 

too close to the training dataset but fails to predict future observations reliably). For example, 67 

MODIS provides an all-day cloud phase product based only on infrared (IR) observations 68 

(hereafter referred to as IR-Phase [Baum et al., 2012]). Although it can be expected that the tests 69 

and thresholds should vary with satellite viewing geometry [Maddux et al., 2010], full 70 

consideration of viewing geometries, together with the variations of many other factors such as 71 

surface emission, geolocation, and cloud properties, is very challenging based on manual tuning. 72 

As a consequence, it is found that the liquid water and ice cloud fractions from the IR-Phase 73 

product exhibit noticeable view zenith angle (VZA) dependency (see Figure 12). This is an 74 

undesirable but unavoidable artifact since cloud phase statistics should be independent from 75 

solar/viewing geometry. Such VZA dependencies may strongly affect similar products from 76 
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geostationary imagers because of the fixed VZA-geolocation mapping. Similar artifacts may also 77 

impact aerosol type and retrieval products [Wu et al., 2016]. 78 

In contrast to hand-tuned methods, Machine Learning (ML) based DC algorithms are designed 79 

to autonomously find information (e.g., patterns of spectral, spatial, and/or time series) in one or 80 

more given datasets and learn hidden signatures of different objects. An obvious advantage of ML 81 

models is that the training process is efficient and highly flexible. Manually defined thresholds or 82 

matching conditions to expected spectral patterns are no longer needed. Recently, ML models have 83 

been utilized in a wide variety of cloud/aerosol related applications, such as cloud detection 84 

[Thampi et al., 2017], cirrus detection and optical property retrievals [Kox et al., 2014; Strandgren 85 

et al., 2017], surface-level PM2.5 concentration estimation [Hu et al., 2017], and automatic ship-86 

track detections [Yuan et al., 2019]. In this paper, we developed two ML-based DC algorithms for 87 

detecting cloud and cloud thermodynamic phase for different local times (i.e., daytime and 88 

nighttime) with observations from the Visible Infrared Imaging Radiometer Suite (VIIRS) on 89 

Suomi NPP (SNPP). The ML models are trained with collocated observations from SNPP VIIRS 90 

and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), with CALIOP data used as the 91 

reference. In Section 2, we give a brief discussion of the ML models. Data generated for model 92 

training and validation will be introduced in Section 3. Details of the model training and evaluation 93 

are shown in Section 4. Section 5 discusses the advantages and potential limitations of the present 94 

ML models. Conclusions are given in Section 6. 95 

2. Hand-tuned DC methods and Machine Learning Models 96 

2.1 Hand-tuned DC methods 97 

All DC algorithms with remote sensing observations are based on the underlying physics of 98 

the spectral, spatial, and/or temporal structures of specified objects. In hand-tuned DC algorithms, 99 



 6 

all the physical rules and structures have to be explicitly defined as various tests and thresholds. 100 

For example, the MODIS MOD35/MYD35 cloud mask algorithm uses more than 20 tests with 101 

visible/near-infrared (VNIR), shortwave-infrared (SWIR), and infrared (IR) observations [Frey et 102 

al., 2008] that are carefully designed to consider numerous scenarios, including different surface 103 

types (e.g., ocean, land, desert, snow, etc.) and local times (day/night). Similar algorithms are 104 

designed for aerosol type and cloud thermodynamic phase classifications. As an example, Figure 105 

1 illustrates spectral patterns of 5 typical daytime oceanic scenes (pixel types) observed by SNPP 106 

VIIRS. The spectral pattern of each of the 5 scenes, namely, clear sky, liquid water cloud, ice 107 

cloud, dust, and smoke, is averaged by using more than 1,000 pixels with the same type. It is clear 108 

that the 5 scenes are different in either reflectance ratios between a given VNIR/SWIR band and 109 

the 0.86 µm band, or brightness temperature differences (BTD) between two IR window bands 110 

(Figure 1). Consequently, such spectral features are frequently used to differentiate pixel types in 111 

DC algorithms. In addition to spectral patterns, simple methods are developed to take into account 112 

spatial information. For example, it is found that cloud reflectance usually has larger spatial 113 

variability than aerosols [Martins et al., 2002] and clear sky pixels [Platnick et al., 2017]. 114 

Therefore, spatial variabilities of VNIR and SWIR reflectance bands are used to differentiate 115 

clouds from non-cloudy pixels in the current MODIS clear sky restoral (CSR) algorithm [Platnick 116 

et al., 2017] and Dark Target aerosol retrieval algorithm [Levy et al., 2013]. 117 

2.2 Machine learning models 118 

Different from the hand-tuned DC methods, ML algorithms are developed to autonomously 119 

learn the hidden spectral/spatial/temporal patterns of different objects. Consequently, manually 120 

defined thresholds or matching conditions to expected patterns are no longer needed. In image 121 

recognition applications, numerous ML algorithms [e.g., Joachims 1998; Breiman 1999; 122 
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Dietterich 2000] were developed in late 1990s for independent pixels using a single or small 123 

number of decision trees. Ho [1998] and many other studies have demonstrated that, although 124 

these single or small number of decision trees can always provide maximum prediction accuracies 125 

in training processes, significant overfitting effects cannot be avoided. Tremendous efforts have 126 

been made to overcome the dilemma between maintenance of prediction accuracy and avoiding 127 

overfitting. Among these, the Random Forest (RF) and Gradient Boosting (GB) algorithm 128 

[Breiman 1999; Dietterich 2000; Friedman 2001] provide a framework of using a large number of 129 

decision trees (ensemble) but a subset of features in each tree to achieve optimization in the 130 

performance. It has been demonstrated that the ensemble-based algorithms can largely correct 131 

mistakes made by individual trees [Ji and Ma, 1997; Tumer and Ghosh, 1996; Latinne et al., 2001] 132 

and avoid overfitting [Freund et al., 2001]. Currently, the RF and GB algorithms are frequently 133 

used in non-linear classification and regression problems. For example, RF models have been used 134 

in several cloud/aerosol remote sensing applications, such as differentiating cloudy from clear 135 

footprints for the Clouds and the Earth’s Radiation Energy System (CERES) instrument [Thampi 136 

et al., 2017], estimating surface-level PM2.5 concentrations [Hu et al., 2017], and detecting low 137 

clouds with the Advanced Baseline Imager (ABI) on the recent Geostationary Operational 138 

Environmental Satellites (GOES) [Haynes et al., 2019].  In our study, we also choose the RF model 139 

based on its proven record in earth science applications. 140 

In the RF model, a final prediction is made based on majority vote computed from probability 141 

(Pi) of each class (ith): 142 

𝑃! =
"!#!

∑ ""#"
"#$
"#%

,       (1) 143 
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where m is the total number of classes, Ni and Nj are the number of trees that predict the ith and jth 144 

classes, and wi and wj are weightings for the ith and jth classes, respectively. If all trees are equally 145 

weighted, w for each individual class is equal to 1. The two most important parameters for tuning 146 

the RF algorithm are the number of decision trees (NTree) and the maximum tree depth (NDepth). 147 

However, an optimal definition of these two parameters is still an open question [Latinne et al., 148 

2001]. Larger NTree and NDepth provides more accurate predictions at the cost of significantly 149 

increased computational resources. For many cases, larger NDepth may cause overfitting effects 150 

[Oshiro et al., 2012; Scornet, 2018]. Generally, the two parameters have to be large enough to let 151 

the decision trees have a relatively wide diversity and capture the hidden patterns. However, for 152 

practical purposes, the two parameters have to be small enough to prevent the models from 153 

overfitting and to reduce computing burden [Latinne et al., 2001; Scornet 2018].  154 

In this study, we adopt a widely applied RF algorithm in the Scikit-learn Machine Learning 155 

package [Pedregosa et al., 2011]. We train two RF models for object DC using SNPP VIIRS 156 

spectral observations at two observational times: an all-day RF model using three VIIRS thermal 157 

IR observations (hereafter referred to as the RF all-day model) and a daytime-only RF model that 158 

uses both VNIR/SWIR and thermal IR observations (hereafter the RF daytime model). The models 159 

are trained to detect clear sky, liquid water cloud, and ice cloud pixels with single pixel level 160 

information. Parameters of the two RF models will be tuned and tested carefully to achieve the 161 

best accuracy and to avoid the overfitting effect. Details will be discussed in Section 4. 162 

3. Data 163 

3.1 Reference label of pixels 164 

Space-borne active sensors, such as CALIOP onboard CALIPSO [Winker et al., 2013], the 165 

Cloud-Aerosol Transport System (CATS) [McGill et al., 2015] onboard the International Space 166 
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Station (ISS), and CPR on board CloudSat [Stephens et al., 2002], are frequently used to evaluate 167 

the performance of hand-tuned cloud/aerosol DC and property retrieval algorithms designed for 168 

passive sensors [Stubenrauch et al., 2013; Wang et al., 2019]. CALIPSO, a key member of the 169 

Afternoon Constellation of satellites (A-Train) until its exit on 13 September 2018 to join CloudSat 170 

in a lower orbit, began providing profiling observations of the atmosphere in 2006 [Winker et al., 171 

2013]. The CALIPSO lidar CALIOP operates at wavelengths of 532 nm and 1064 nm, measuring 172 

backscattering profiles at a 30-meter vertical and 333 m along-track resolution. CALIOP also 173 

measures the perpendicular and parallel signals at 532 nm, along with the depolarization ratio at 174 

532 nm that is frequently used in cloud phase discrimination algorithms because of its strong 175 

particle shape dependence. The CALIOP Version 4 Level 2 1 km/5km Layer product is used to 176 

provide reference cloud phase labels in both model training and validation stages. 177 

While the CATS lidar and the CloudSat radar CPR also provide profiling information, both 178 

have limitations that preclude their use here. CATS had a relatively short life time (from January 179 

2015 to October 2017), and its low inclination angle (51°) orbit aboard the ISS excludes sampling 180 

of high-latitude regions [Noel et al., 2018]. CloudSat CPR observes reflectivity profiles at 94-GHz, 181 

which are more sensitive to optically thicker clouds consisting of large particles but are blind to 182 

aerosols and optically thin clouds. CloudSat also has difficulty in detecting clouds near the surface 183 

due to the surface clutter effect [Tanelli et al., 2008]. Therefore, only CALIOP data are used to 184 

provide reference cloud phase labels in this study. 185 

3.2 RF model input 186 

It should be pointed out that ML models use similar input datasets as hand-tuned methods. The 187 

input variables (features) and reference labels of the present RF models are carefully selected based 188 

on prior physical knowledge of the spectral characteristics of each object. 189 
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VIIRS on SNPP and the NOAA-20+ series provides spectral observations from 0.4 to 12 µm 190 

at sub-kilometer spatial resolutions [Lee et al., 2006]. Specifically, VIIRS has 16 moderate 191 

resolution bands (M band) and 5 higher resolution imagery bands (I band) at 750 m and 375 m 192 

nadir resolutions, respectively. The spectral capabilities of VIIRS allow for extracting abundant 193 

information on the surface and atmospheric components, such as clouds [Ackerman et al., 2019] 194 

and aerosols [Sayer et al., 2017]. It is also worth noting that VIIRS utilizes an on-board detector 195 

aggregation scheme that minimizes pixel size growth in the across-track direction towards swath 196 

edge [Cao et al., 2013]. As an example, although the VIIRS M-bands and MODIS 1 km bands 197 

have similar nadir spatial resolutions, the VIIRS across-track pixel size increases to roughly 198 

1.625 km at scan edge, which is much smaller than a MODIS pixel size of roughly 4.9 km at scan 199 

edge [Justice et al., 2011]. Another obvious advantage of using SNPP VIIRS rather than Aqua 200 

MODIS data is that, due to the CALIPSO and SNPP orbit differences, the training samples cover 201 

a broader viewing zenith angle range, which is a great benefit to overall model performance. 202 

Consequently, Level-1B M-band observations from the SNPP VIIRS are used here. 203 

Ancillary data, including the surface skin temperature, spectral surface emissivity, surface 204 

types, and snow/ice coverage, are important in cloud DC related remote sensing applications [Frey 205 

et al., 2008; Wolters et al., 2008; Baum et al., 2012] and cloud/aerosol retrievals [Levy et al., 2013; 206 

Wang et al., 2014; 2016a; 2016b; Meyer et al., 2016; Platnick et al., 2017]. The inst1_2d_asm_Nx 207 

product (version 5.12.4) from the Modern-Era Retrospective Analysis for Research and 208 

Applications, Version 2 (MERRA-2) [Gelaro et al., 2017] is utilized to provide the hourly 209 

instantaneous surface skin temperature and 10-meter surface wind speed. The UW-Madison 210 

baseline fit land surface emissivity database [Seemann et al., 2008] and the Terra/Aqua MODIS 211 

combined Land surface product (MCD12C1 [Sulla-Menashe and Friedl 2018]) are used to provide 212 
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monthly mean land surface emissivities for the mid-wave to thermal IR bands (3.6 ~ 14.3 µm) and 213 

surface white sky albedo for the VNIR bands (0.4 ~ 2.3 µm), respectively, at a 0.05´0.05° spatial 214 

resolution. Surface types and snow/sea ice coverage data are from the International Geosphere-215 

Biosphere Programme (IGBP) and daily Near-real-time Ice and Snow Extent (NISE) data [Brodzik 216 

and Stewart, 2016], respectively. 217 

3.3 Clear and cloud phase classifications from existing VIIRS and MODIS products 218 

Since the present RF models are trained with SNPP VIIRS observations, the first priority of 219 

this study is evaluating and comparing the trained RF models with CALIOP and the existing VIIRS 220 

cloud products. However, existing cloud mask and phase products from Aqua MODIS are still 221 

used as a reference in this work. 222 

The Aqua MODIS and SNPP VIIRS CLDMSK (cloud mask) and CLDPROP (cloud top and 223 

optical properties) [Ackerman et al., 2019] products represent NASA’s effort to establish a long-224 

term consistent cloud climate data record, including cloud detection and thermodynamic phase, 225 

across the MODIS and VIIRS observational records. While the CLDMSK (version 1.0) and 226 

CLDPROP (version 1.1) algorithms share heritage with the standard Collection 6.1 MODIS cloud 227 

mask (MYD35) and cloud top and optical properties (MYD06) algorithms, the algorithms use only 228 

a subset of bands common to both sensors to minimize differences in instrument spectral 229 

information content. 230 

The CLDMSK and MYD35 algorithms use a variety of band combinations and thresholds 231 

depending on cloud and surface types [Frey et al., 2008; Ackerman et al., 2008]. Meanwhile, the 232 

algorithms use different approaches for daytime (i.e., solar zenith angle less than 85°) and 233 

nighttime pixels. In the CLDMSK and MYD35 algorithms, pixels are categorized into four 234 
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categories, namely confident clear, probably clear, probably cloudy, and cloudy. The CLDPROP 235 

and MYD06 algorithms separate cloudy and probably cloudy pixels into liquid water, ice, and 236 

unknown phase categories. Specifically, the MYD06 product includes two cloud phase algorithms: 237 

an IR-Phase algorithm [Baum et al., 2012] that uses observations in four MODIS IR bands for 238 

daytime and nighttime phase classification (hereafter referred to as the MYD06 IR-Phase), and a 239 

daytime-only algorithm designed for the cloud optical properties retrievals [Marchant et al., 2016; 240 

Platnick et al., 2017] that uses VNIR/SWIR and IR observations (hereafter referred to as the 241 

MYD06 OP-Phase). A notable change for the VIIRS/MODIS CLDPROP algorithm with respect 242 

to the standard MODIS MYD06 algorithm is the replacement of the MYD06 IR-Phase by a NOAA 243 

operational algorithm originally developed for Clouds from AVHRR-Extended (CLAVR-x) 244 

[Heidinger et al., 2012] and now applied to VIIRS. This algorithm is used to provide cloud top 245 

properties, including thermodynamic phase (hereafter CLDPROP CT-Phase), in the absence of the 246 

MODIS CO2 IR gas absorption bands. IR bands are primarily used in the CLDPROP CT-Phase 247 

algorithm, while complementary SWIR bands are used when available. The MYD06 OP-Phase 248 

algorithm, applied to daytime pixels only, is included with only minor alteration (related to cloud 249 

top properties changes) in the VIIRS/MODIS CLDPROP product (hereafter referred to as the 250 

CLDPROP OP-Phase). 251 

Although the MYD06 and CLDPROP OP-Phase products are developed for “cloudy” and 252 

“probably cloudy” pixels from the MYD35 and CLDMSK products, a Clear Sky Restoral (CSR) 253 

algorithm [Platnick et al., 2017] is implemented to remove “false cloudy” pixels from the clear-254 

sky conservative MYD35 and CLDMSK products. Specifically, the CSR uses a set of spectral and 255 

spatial reflectance variability tests to remove dust, smoke, and strong sunglint pixels that are 256 

erroneously identified as “cloudy” or “probably cloudy” by the MYD35 and CLDMSK products 257 
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[Platnick et al., 2017]. One should keep in mind that the CSR algorithm is only applied for the 258 

optical property retrievals. Thus, the MYD35 and CLDMSK, and consequently the MYD06 IR-259 

Phase and CLDPROP CT-Phase, may have “false cloudy” pixels in comparison with CALIOP, 260 

while the impact on the MYD06 and CLDPROP OP-Phase is reduced due to the CSR algorithm. 261 

The cloud mask and thermodynamic phase products used in this study are summarized in Table 1. 262 

4. Model training and validation 263 

Here we discuss the training of the all-day and daytime RF models for different surface types. 264 

Both shortwave (SW) and IR observations will be used in the daytime models while only IR 265 

observations will be used in the all-day models. ML model performance is strongly dependent on 266 

the quality of training samples. In this study, the two RF models are trained and tested with simple 267 

yet highly confident samples (Section 4.2). With this training strategy, the RF models are expected 268 

to capture the key spectral features from the pure samples efficiently. As discussed in Section 4.4, 269 

we conducted a model validation that evaluates performance of the two models for simple cases. 270 

Furthermore, an analysis of probability distributions from the RF all-day model is conducted to 271 

demonstrate that the RF models have capability to recognize spectral features from more than one 272 

category when atmospheric columns are more complicated. 273 

4.1 Surface Types 274 

RF models are trained for different surface types, defined here by the Collection 6 (C6) MODIS 275 

annual IGBP surface type product (MCD12C1), to improve model performance over a single 276 

general model for all surface types. Although the MCD12C1 product includes up to 18 surface 277 

types, for this work we attempt to reduce the total number of surface types by combining surface 278 

types with similar spectral white sky albedos and emissivities, as suggested by Thampi et al. 279 

[2017]. An annual global IGBP surface type map and surface albedo data from the MODIS 280 
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MCD12C1 [Sulla-Menashe and Friedl 2018] and a UW-Madison monthly global land surface 281 

emissivity database [Seemann et al., 2008] are used to generate the climatology of land surface 282 

white-sky albedo and IR emissivity spectra. The UW-Madison database is derived using input 283 

from the MODIS operational land surface emissivity product MOD11 [Wan et al., 2004] at six 284 

wavelengths located at 3.8, 3.9, 4.0, 8.6, 11, and 12 µm.  A baseline fit method is applied to fill 285 

the spectral gaps and provides a more comprehensive IR emissivity dataset at 10 wavelengths from 286 

3.6 to 14.3 micron for global land surface with a 0.05° spatial resolution [Seemann et al., 2008]. 287 

The MODIS MCD12C1 product also provides a white-sky albedo dataset at 0.47, 0.56, 0.66, 0.86, 288 

1.24, 1.64, and 2.13 µm with a 0.05° spatial resolution [Sulla-Menashe and Friedl 2018]. The 289 

means and standard deviations of surface emissivity and white-sky albedo spectra are shown in 290 

Figures 2 a) and 3 a), respectively, for 16 different land surface types generated from the UW-291 

Madison and MCD12C1 data in 2015. Land surface types with similar IR emissivity and SW 292 

white-sky albedo spectra are grouped to reduce to the total number of land surface types to 6 293 

(forest, cropland, grassland, snow/ice, barren/desert, and shrubland), as shown in Figures 2 (b-f) 294 

and 3 (b-f). Figure 4 shows an example map of the reduced global surface type data generated 295 

from the MCD12C1 product for 2015. 296 

4.2 Generating Training/Validation Datasets 297 

The training and validation data are obtained from a 5-year (2013-2017) SNPP VIIRS and 298 

CALIOP collocated dataset. The collected dataset is generated with a collocation algorithm that 299 

fully considers the spatial differences between the two instruments and parallax effects, as 300 

described in Holz et al. [2008]. The SNPP VIIRS data include L1B calibrated reflectance and 301 

brightness temperatures, and the CALIOP data include the L2 1km/5km cloud and aerosol layer 302 

products. Although more than 332 million VIIRS 750m pixels are collocated with CALIOP 303 
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observations, 130.6 million of these pixels (39.3%) that include only aerosol-free, homogeneous, 304 

clear (39.1 million) or single-phase cloud (49.7 million liquid and 41.8 million ice) pixels are used 305 

in our training/validation process. Unless otherwise specified, “aerosol-free” is defined as those 306 

pixels having collocated CALIOP 5km column 532 nm aerosol optical depth less than 0.05, 307 

“homogeneous” is defined as those pixels for which the collocated CALIOP 1km and 5km 308 

products have the same pixel labels, and “single-phase cloud” is defined as those pixels for which 309 

the collocated CALIOP 1km and 5km products indicate the same thermodynamic phase for all 310 

identified cloud layers. More details are given in Table 2.  311 

A strict three-step quality control process is applied to collect samples for the 312 

training/validation process. First, VIIRS 750 m pixels that are potentially contaminated by aerosol 313 

are excluded using a threshold of 0.05 column AOD at 532 nm from the CALIOP L2 5 km aerosol 314 

layer product. Second, each aerosol-free pixel is labelled by one of four categories, namely, “clear 315 

sky” and “liquid-water cloud”, “ice cloud”, and “ambiguous” with the CALIOP L2 1km/5km layer 316 

product. The “ambiguous” pixels, including uncertain/unknown cloud phases from CALIOP 317 

and/or overlapping objects belonging to different types (e.g., cirrus over liquid), are discarded. 318 

Third, horizontally inhomogeneous pixels, determined when the CALIOP 1km label changes 319 

within 5 consecutive VIIRS pixels, or pixels with inconsistent CALIOP 1km and 5km labels, are 320 

discarded. Figure 5 shows the global distributions of the 5-year collocated clear (first row) and 321 

cloudy pixels (second row) before and after applying the three-step quality control. Globally, 50% 322 

of all clear pixels are excluded due to contamination of broken-cloud and/or aerosol. In particular, 323 

a large fraction of clear pixels in central Africa, India, and southern China (Figure 5c) are excluded 324 

due to relatively large aerosol optical thicknesses in those regions. About 40% of global cloudy 325 

pixels (Figure 5f) are excluded due to cloud heterogeneity and aerosol contamination. The 326 
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minimum selection rate (~20%) can be found in some particular regions, such as the Inter Tropical 327 

Convergence Zone (ITCZ), where clouds have complicated horizontal/vertical structures due to 328 

strong convections (i.e., clouds are highly heterogeneous in both the horizontal and vertical 329 

dimensions). The remaining data are separated into a training/testing population that consists of 330 

32.4, 41.2 and 34.9 million pixels for clear sky, liquid water cloud, and ice cloud from years 2013-331 

2016, respectively, and a validation dataset that consists of 6.9, 8.5 and 7.0 million pixels of clear-332 

sky, liquid water cloud, ice cloud, respectively from year 2017.  333 

4.3 RF model training and configuration 334 

RF model performance is determined by both its inputs (spectral or other information) and its 335 

configuration (NTree and NDepth). Therefore, extensive testing must be conducted to find the optimal 336 

inputs and configuration. The 4-year collocated VIIRS-CALIOP dataset from 2013 to 2016 after 337 

quality control (see Section 4.2) is used for both training (75%) and testing (25%) purposes. The 338 

testing set, also known as cross-validation set, is used to tune and optimize the RF model 339 

parameters. Here we define an accuracy score to evaluate the overall model performance. The 340 

accuracy score is the ratio of pixels (samples) where both the CALIOP and RF model have the 341 

same categories to total pixels. In this study, we tested six groups of input variables for each RF 342 

model. The set of model input variables with a relatively high accuracy score and low 343 

memory/computing requirement will be selected. 344 

Table 3 provides accuracy scores of the IR-based all-day model trained and tested with 345 

different inputs. It shows that with a fixed RF model configuration (NTree = 150 and NDepth = 15), 346 

the RF all-day model with input #4 and #6 have the best overall accuracy scores for all surface 347 

types. Generally, by including surface skin temperature (Ts) and geolocation (i.e., latitude and 348 

longitude), the accuracy scores for all surface types increase by 2-3%. The surface emissivity 349 
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vector es is less important, likely because this information is highly correlated to surface type and 350 

geolocation. In this study, input #4 is selected mainly because with similar performance, it requires 351 

less memory and computing resources, and it is quite possible that more uncertainty is introduced 352 

with the use of a surface emissivity vector es from another retrieval product. 353 

A set of model configurations (NTree and NDepth) are also tested based on the selected input #4. 354 

While the number of trees and the maximum depth of individual trees are important determinants 355 

for RF model performance, the overall accuracy scores for all surface types are less sensitive to 356 

these two model parameters when more than 100 trees and 10 maximum tree depths are used (not 357 

shown here). Therefore, we trained the RF all-day models with input #4 and the model 358 

configuration used in Table 3, i.e., NTree = 150 and NDepth= 15. 359 

Similar input variable tests for the RF daytime model (IR plus NIR and SWIR observations) 360 

showed that the optimal input includes reflectances in the 0.86, 1.24, 1.38, 1.64 and 2.25µm bands, 361 

BTs in the same 3 IR bands used in the all-day model, geolocation, and solar/satellite viewing 362 

zenith angles (See Table 4). The same model configuration used in the all-day model, e.g., 150 363 

trees with the maximum depth 15, is used in the daytime model. The accuracy scores of the RF 364 

daytime model are higher than the RF all-day model by 2-3% over almost all surface types except 365 

high-latitude regions covered by snow and ice, where the daytime model accuracy score is higher 366 

by up to 6% than the all-day model due to the inclusion of the 1.38, 1.64 and 2.25µm SWIR bands. 367 

4.4 Evaluating the RF Models 368 

The trained RF all-day and daytime models are validated using collocated CALIOP data in 369 

2017. Existing VIIRS cloud products CLDMSK and CLDPROP (see Table 1) are included for 370 

direct comparison with the RF models and CALIOP reference. Several other products, such as the 371 
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MODIS CLDMSK and CLDPROP and standard MYD35 and MYD06, are also included for 372 

comparison although they could be different from the RF models due to other non-algorithm 373 

reasons, such as the VZA and pixel size differences mentioned before. 374 

4.5.1 Cloud mask 375 

Cloud mask from the two RF models and VIIRS/MODIS products are first compared with 376 

CALIOP lidar observations. For the two models, a cloudy pixel indicates a predicted label “liquid” 377 

or “ice”. Here we define cloudy and clear pixels as “positive” and “negative” events, respectively. 378 

A true positive rate (TPR) and false positive rate (FPR) can then be used to evaluate model 379 

performance. The TPR and FPR are defined as: 380 

TPR = %&
%&'(#

,      (2) 381 

FPR = (&
(&'%#

,      (3) 382 

where TP (True Positive) and TN (True Negative) are the number of lidar-labeled “cloudy” and 383 

“clear” pixels, respectively, that are correctly detected by the models; whereas FN (False Negative) 384 

and FP (False Positive) are the number of lidar-labeled “cloudy” and “clear” pixels incorrectly 385 

identified by the models. Therefore, TPR, also called model sensitivity, indicates the fraction of 386 

all positive events (i.e., lidar cloudy pixels) that are correctly detected by the models. Similarly, 387 

FPR, also called false alarm rate, indicates the fraction of all negative events (i.e., lidar clear pixels) 388 

that are incorrectly detected as positive (cloudy). TPR and FPR are two critical parameters in 389 

model evaluation. A perfect model is associated with a high TPR (close to 1) and a low FPR (close 390 

to 0). 391 

Figure 6 shows daytime cloud mask TPR-FPR plots from the two RF models and the other 392 

products listed in Table 1. Globally, all products agree well with lidar observations (Figure 6a). 393 
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The overall TPRs are higher than 0.94 and FPRs are lower than 0.08. The RF daytime model (red 394 

circle), with a TPR of 0.97 and an FPR of 0.05, is slightly better than the RF all-day model (yellow 395 

circle) and other products. Figure 6b-6h show comparisons over different surface types. It is clear 396 

that the RF daytime model has a robust performance for all surface types. The MODIS MYD35 397 

cloud mask algorithm (black circle) performs best over ocean but has a relatively high FPR (0.22) 398 

over forest and low TPR over snow/ice and barren (0.85) regions. As mentioned in Section 3, the 399 

“false cloudy” pixels from MYD35 and CLDMSK may increase the FPRs correspondingly.  400 

The RF all-day model works fairly well and is comparable to other products for all surface 401 

types regardless of the fact that it only uses three IR window channels from VIIRS while all other 402 

products in the daytime models use VNIR observations. Nighttime (SZA > 85°) cloud mask 403 

comparisons are shown in Figure 7. The overall performances of all operational products decrease 404 

in particular for snow/ice regions. For example, the VIIRS/MODIS CLDMSK products over 405 

snow/ice surface have large fractions of missing “cloudy” pixels (e.g., TPRs < 0.7) and false alarm 406 

rates (FPRs > 0.2) over snow/ice surface. The decrease is more likely explained by the lack of 407 

SWIR bands and the small cloud-snow/ice surface temperature contrast during the nighttime of 408 

summer polar regions. However, the RF all-day model has the best performance for nighttime 409 

pixels, indicating the strong capability of ML based algorithm in capturing hidden spectral features 410 

and optimizing dynamic thresholds of clear and cloudy pixels. 411 

4.5.2 Cloud thermodynamic phase 412 

The RF cloud thermodynamic phase products are also compared with CALIOP lidar and 413 

existing VIIRS and MODIS products. For consistent nomenclature, we arbitrarily define ice clouds 414 

and liquid water clouds as “positive” and “negative” events, respectively. A low TPR indicates 415 

underestimation of ice cloud fraction, while a high FPR indicates a large fraction of liquid water 416 
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cloud samples are identified as ice cloud. To focus on cloud thermodynamic phase classification, 417 

pixels detected as “clear” by either the lidar reference labels or by the RF models and existing 418 

products are excluded. The OP-Phase from both MYD06 and CLDPROP, and the IR-Phase from 419 

MYD06, have an “unknown phase” category, which is not included in the TPR-FPR analysis. 420 

Figure 8 shows daytime cloud phase TPR-FPR plots from the two RF models and the 421 

MODIS/VIIIRS products. The two RF models and the MODIS MYD06 OP-Phase are the top 3 422 

phase algorithms for all surface types. The MODIS MYD06 IR-Phase, MODIS/VIIRS CLDPROP 423 

OP-Phase, and CT-Phase have either relatively lower TPRs or higher FPRs over particular surface 424 

types, such as shrubland, snow/ice, and barren regions. Comparisons between nighttime phase 425 

algorithms are shown in Figure 9. For nighttime clouds, the RF all-day model works better than 426 

both CT-Phase and IR-Phase algorithms for all surface types. Overall, the performance of the 427 

hand-tuned algorithms decreases significantly over snow/ice or barren surfaces. For example, the 428 

TPR-FPR plot shows that over daytime snow/ice surface (Figure 8 g), the MODIS CLDPROP OP-429 

Phase and MODIS MYD06 IR-Phase frequently predict liquid water cloud as ice cloud. Similar to 430 

the daytime plot, the MYD06 IR-Phase also shows a high FPR rate over snow/ice surface, 431 

indicating an overestimated (underestimated) ice (liquid water) cloud fraction. Possible reasons 432 

include strong surface reflection, low surface cloud contrast, relatively less training samples and 433 

high solar zenith angles. However, the two RF models work fairly well and show consistent 434 

accuracy rates across all surface types.  435 

It is also important to note that the number of pixels used for cloud phase TPR-FPR 436 

comparisons in Figures 8 and 9 are different for products that have “unknown phase” categories, 437 

namely, MYD06 IR-Phase, MYD06 OP-Phase, and CLDPROP OP-Phase. As shown in Table 5, 438 

the MYD06 IR-Phase has a relatively large “unknown phase” phase fraction (15% for all surface 439 
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types and 34% for snow/ice) in comparison to the OP-Phase products from both MYD06 and 440 

CLDPROP, which have 2~3% “unknown phase” fraction approximately. 441 

As discussed in Section 2.2, recall that the RF model predicted pixel type is derived by setting 442 

thresholds on the probabilities for each classification type, e.g., an ice phase decision is reached if 443 

the probability of ice is greater than the probabilities of liquid and clear. Figure 10 shows the 444 

probability distribution functions of the RF all-day model for four scene types as determined by 445 

collocated CALIOP, namely, (a) clear, (b) liquid, (c) ice, and (d) multi-layer clouds with different 446 

thermodynamic phases (e.g., ice over liquid). As expected, for the first three types, which are 447 

included in the training/validation processes, the probability distributions have strong peaks close 448 

to either 0 or 1. For the multiple phase cases (panel d), the liquid and ice probabilities are more 449 

broadly distributed, indicating that the model may recognize signals from both liquid and ice and 450 

therefore provide ambiguous phase results. More nuanced thresholds can therefore be applied to 451 

the probabilities, for instance to create an “unknown” phase category following MYD06 and 452 

CLDPROP convention [Marchant et al., 2016] that can indicate complicated cloud scenes. 453 

Furthermore, the probabilities themselves can provide a useful quality assurance metric for 454 

downstream cloud property retrievals that often must make an assumption on cloud phase. 455 

Nevertheless, assigning an appropriate phase for downstream imager-based cloud property 456 

retrievals is difficult for complex, multilayer cloud scenes, as such an assignment often depends 457 

on the optical/microphysical properties and vertical distribution of the cloud layers in the scene 458 

[Marchant et al., 2020]. Further investigation is necessary to understand how to use the RF phase 459 

probabilities more quantitatively in complicated cases. 460 

Figure 11 shows monthly mean daytime cloud and phase fractions from the VIIRS CLDMSK 461 

and CLDPROP OP-Phase products (top row), and those from the RF daytime model (second row), 462 



 22 

in January 2017. For the cloud mask comparison, cloud fractions (CF) from the two products have 463 

similar spatial patterns, while it is also clear that the VIIRS CLDMSK CFs are higher over tropical 464 

oceans by approximately 10% and lower over land by 5% (Figure 11 c). This is consistent with 465 

the cloud mask TPR-FPR analysis shown in Figure 6. Over the tropical ocean, the VIIRS 466 

CLDMSK is more “cloudy”, probably due to a fraction of sunglint pixels that are detected as liquid 467 

clouds, leading to a large FPR rate. Another reason for the relatively large cloud fraction (or liquid 468 

water cloud fraction) difference is that in regions covered by “broken” cumulus clouds, and or 469 

clouds with more complicated structures, the inherent viewing geometry differences in the training 470 

datasets may adversely affect the performance of the RF models. For example, CALIOP, with a 471 

nadir viewing geometry may observe clear gaps between two small cloud pieces, while VIIRS, 472 

with an oblique viewing angle, detects broken liquid clouds nearby or high clouds along its long 473 

line-of sight. Comparison between the VIIRS product and the RF daytime model shows more ice 474 

clouds from the RF daytime models over land, which is consistent with the cloud phase TPR-FPR 475 

plots as shown in Figure 8. The RF daytime model may have better performance due to the 476 

consideration of surface type. However, it is also important to notice that due to the lack of 477 

“aerosol” types in current training, in central Africa, the RF models may misidentify elevated 478 

smoke as ice cloudy pixels. For most land surface types except snow/ice, the CLDPROP OP-Phase 479 

has lower TPR rates than the RF daytime models by 0.1, in comparison with the CALIOP. 480 

In addition to the higher CFs over low latitude ocean from the VIIRS CLDMSK product, more 481 

pronounced CF (liquid) differences can be found in northeast and northwest China. Cloud 482 

differences in the two regions are spatially correlated with locations that have heavy aerosol 483 

loadings or snow coverage. For example, heavy aerosol loadings due to pollution in Northeast 484 

China, and a wide land snow coverage in Northwest China are frequently observed in the winter. 485 



 23 

The VIIRS CLDMSK may identify pixels with white surface and heavy aerosol loadings as 486 

“cloudy”. Some of these pixels are expected to be restored to clear-sky category in the CLDPROP 487 

OP-Phase product (Figure 11 f and i). As evidence, Figure 12 shows comparisons between the 488 

VIIRS products and the RF daytime model in July 2017. The large cloud (liquid) fraction 489 

differences over North China vanish in the summer. This indicates that the RF models might be 490 

able to handle complicated (or unexpected) surface type and strong aerosol events better than the 491 

hand-tuned VIIRS algorithm. However, further investigation is required to understand the 492 

performances of both the VIIRS products and the RF models.  493 

5. Discussion 494 

In this Section, we will review the strengths and potential limitations and weaknesses of the 495 

RF models. 496 

5.1 Advantages 497 

The above results show that, for the screened clear/cloudy samples, the two RF models have 498 

better and more consistent performance over different regions and surface types in comparison 499 

with the MODIS and VIIRS products, suggesting the potential to improve the overall performance 500 

in more global operational applications. In addition to better performance, it is convenient and 501 

efficient to apply the present RF models or other similar ML-based models to other instruments 502 

similar to VIIRS, such as the geostationary imagers Advanced Himawari Imager (AHI) on 503 

Himawari-8/9, the ABI on GOES-16/17, and the Spinning Enhanced Visible and Infrared Imager 504 

(SEVIRI) on Meteosat Second Generation, as long as reliable reference pixel labels are available. 505 

With hand-tuned methods, adjustment is always required in the case of calibration changes, 506 

algorithm porting to another similar instrument, or changes in solar/viewing geometries and 507 

surface conditions. Manual adjustments can be time-consuming (e.g., months or years), whereas 508 
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the two RF models used in this study were trained and tested for 7 surface types and using different 509 

input variables in 3 hours (on an HPC Platform using 32 Intel Xeon Gold 6126 Processors @ 2.60 510 

GHz).  More important, manual algorithm adjustment may not provide the best continuity between 511 

two instruments. For example, although the MODIS CLDPROP OP-Phase and VIIRS CLDPROP 512 

OP-Phase are designed for climate record continuity purpose, cloud thermodynamic phases from 513 

the two products are different by up to 4% for all surface pixels, and by up to 10% over surfaces 514 

covered by snow/ice (see Figure 8 light blue and light green dots). Further investigation is 515 

necessary to understand if, using ML approaches, a better climate record continuity will be 516 

achieved with a uniform training dataset. Besides providing a discrete category for each pixel, the 517 

RF models provide an ensemble of predictions and probabilities of individual categories, which 518 

are useful diagnostic variables in evaluating models in complicated scenarios. 519 

5.2 Limitations and possible caveats 520 

Although the evaluation demonstrates that the current RF models are highly consistent with 521 

CALIOP, the models may suffer some artifacts due to the quality of the training data and due to 522 

sampling issues. 523 

5.2.1 Quality of the training/validation data 524 

The RF models learn spectral structures of cloud/clear pixels according to the reference labels. 525 

As a consequence, the present model performance relies heavily on the quality of CALIOP Level-526 

2 data. It is already known that the lidar signal has limitations in detecting the bottom of an 527 

optically thick cloud or lower level clouds underneath an opaque cloud [Sassen and Cho, 1992]. 528 

Some complicated multiple-phase scenes may be misidentified as simple single-phase scenes due 529 

to the penetration limit of CALIOP (e.g., the uppermost ice cloud optical thickness greater than 3). 530 

Using combined CALIOP and CloudSat data as reference in the future could be a better way to 531 
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improve the training/validation datasets [Marchant et al., 2020]. However, as noted in that study, 532 

CloudSat observations cannot be used without careful filtering since a multilayer scene that is 533 

radiatively indistinct from the upper level cloud layer is not necessarily consistent with multilayer 534 

detection detected from a cloud radar. 535 

Additional uncertainties may come from the inconsistency in view angles between the 536 

collocated CALIOP labels and VIIRS spectral observations. For instance, CALIOP always has a 537 

quasi-nadir viewing angle (e.g., 3°) whereas the collocated VIIRS observations have a wide VZA 538 

range (e.g., 0° to 50°). A wide VIIRS VZA range in the training dataset improves model 539 

performance, especially for predicting VIIRS pixels with large VZAs. However, the difference 540 

between the CALIOP and VIIRS viewing geometry could create undesirable artifacts in the 541 

training process. As shown in Figure 11, in the descending areas of the Hadley cell over low-542 

latitude ocean, where marine boundary layer clouds are dominant, there are relatively large CF 543 

differences between the CLDMSK and the RF models. A reason for the large liquid cloud fraction 544 

differences is that the quality of training datasets decreases in regions covered by “broken” 545 

cumulus clouds, and or clouds with more complicated structures. Further investigation is required 546 

to check if the training dataset collection process introduces sampling bias into the training dataset.  547 

5.2.2 Sampling issue 548 

Uneven sampling may also influence the training of RF models. Figure 13 shows the cloud 549 

fraction as a function of viewing geometry. Quasi-constant fractions of both liquid and ice clouds 550 

are found for all operational products and the RF models when VZAs are smaller than 45°, except 551 

the MODIS MYD06 IR-Phase, which has a strong VZA dependency. However, liquid (ice) cloud 552 

fractions from the two RF models increase (decrease) rapidly at high VZAs (greater than 50°), 553 

which is likely caused by the sampling issue. A significant fraction of the training data (greater 554 
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than 98%) is located in the region with VZA less than 50° (see the gray dashed distributions in 555 

Figure 13). It is difficult to mitigate this issue using collocated VIIRS-CALIOP data or 556 

observations from other similar instruments in the training process. One possible way is using 557 

model-generated synthetic training data and labels with reliable radiative transfer models. Results 558 

from the RF daytime model are not shown in Figure 13 since they are highly consistent with the 559 

RF all-day model. 560 

5.2.3 Labeling strategy 561 

For RF or other ML models, each pixel’s classification is determined by prediction 562 

probabilities (P) of all potential types. Here we selected a regular strategy that labels a pixel using 563 

the class with the highest probability (see Eq. 1). This strategy is logical for problems with two 564 

categories (e.g., cloud mask only). For problems including 3 or more classes, however, the present 565 

strategy is not the only way to label pixels. For example, a pixel is labeled as “clear” if Pclear is 566 

larger than both Pliquid and Pice according to the current labeling strategy. It is also possible that, 567 

for the same pixel (less than 0.5% for the two RF models), Pclear is lower than the sum of Pliquid 568 

and Pice, making a “cloudy” label more appropriate. For the cloud mask and phase problem 569 

discussed in this paper, in addition to pixel labels, users must be aware of probabilities of the three 570 

types. Another possible way to avoid the ambiguous labeling is using two RF models, one for 571 

cloud masking and one for phase, such that a “clear” or “cloudy” label is given first by the cloud 572 

mask model, while a corresponding “liquid” or “ice” label is assigned to “cloudy” pixels in the 573 

cloud phase model. However, two RF models double the training process and require more 574 

computing resources in operational applications.  575 

6. Conclusions 576 
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Two Machine-Learning Random Forest (RF) models were trained to provide pixel types (i.e., 577 

clear, liquid water cloud, and ice cloud) using VIIRS 750-meter spectral observations. A daytime 578 

model that uses NIR, SWIR, and IR bands and an all-day model that only uses IR bands were 579 

trained separately. In the training processes, reference pixel labels are from collocated CALIOP 580 

Level 2 1 km cloud layer and 5 km aerosol layer products from 2013 to 2016. Careful tests were 581 

conducted to optimize model input and configuration. The two RF models were trained for 7 582 

different surface types (i.e., ocean/water, forest, cropland, grassland, snow/ice, barren/desert, and 583 

shrubland) to improve model performance. In addition to geolocation and solar/satellite geometry 584 

information, we found that using 5 NIR and SWIR bands (0.86, 1.24, 1.38, 1.64 and 2.25 µm) and 585 

three IR bands (8.6, 11, and 12µm) in the daytime RF model and using the three IR bands and 586 

surface temperatures in the all-day RF model achieved great performances for all surface types. 587 

The cloud mask and thermodynamic phase classifications from the two RF models were 588 

validated using the selected aerosol-free, homogeneous samples in 2017. For daytime cloud mask 589 

comparisons over all surface types, the RF daytime model, with a high TPR (0.93 and higher) and 590 

low FPR (0.07 and lower), performs best among all models evaluated, including MODIS MYD35 591 

and MODIS/VIIRS CLDMSK products. The RF all-day model works fairly well and is 592 

comparable to other products for all surface types, even in daytime when all other products use 593 

shortwave observations and it does not. For the nighttime cloud mask, the RF all-day model has 594 

the best performance over all products, demonstrating the strong capability of ML-based 595 

algorithms for capturing hidden spectral features of clear and cloudy pixels. All nighttime products 596 

perform slightly weaker at snow/ice regions. The decline is likely explained by the lack of SWIR 597 

bands and the small thermal contrast between the clouds and the surface during the summer 598 
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nighttime in polar regions. In this case, the ML-based algorithms are not able to compensate for 599 

the missing physical signatures.  600 

For the daytime cloud thermodynamic phase comparison, we showed that the two RF models 601 

are comparable with the MODIS MYD06 OP-Phase product, and are among the top 3 phase 602 

algorithms for all surface types. The MODIS MYD06 IR-Phase, VIIRS/MODIS CLDPROP OP-603 

Phase, and CT-Phase have either relatively lower TPRs or higher FPRs over certain surface types, 604 

such as shrubland, snow/ice, and barren regions. For nighttime clouds, the RF all-day model works 605 

better than both CLDPROP CT-Phase and MYD06 IR-Phase for all surface types. 606 

In this study, we have demonstrated the advantages of using ML-based (specifically, RF) 607 

models in cloud masking and thermodynamic phase detection. In contrast with hand-tuned 608 

methods, the RF models can be efficiently trained and tested for different surface types and using 609 

different input variables. Meanwhile, for aerosol-free, homogeneous samples, the two RF models 610 

show better and more consistent performance over different regions and surface types in 611 

comparison with existing VIIRS and MODIS datasets. For more complicated scenes, RF 612 

probabilities are more informative than binary mask/phase designations. However, further 613 

investigation is required to understand how to use probabilities more quantitatively. 614 

In the future, more spectral bands and/or spatial patterns can be used to improve pixel 615 

classification skills, such as including more pixel types (e.g., dust and smoke). It is convenient to 616 

apply RF models or other similar ML-based models to other instruments similar to VIIRS with the 617 

help of active instruments. Most importantly, cloud mask and thermodynamic phase products from 618 

well-trained RF models could be used to train other instruments in the absence of active sensors. 619 

For example, the current RF model based VIIRS cloud mask/phase data could be used as reference 620 

to train ML-based models for other instruments, such as MODIS, ABI/AHI, SEVIRI, and airborne 621 
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instruments. It remains as future work to determine how such an approach might lead to improved 622 

consistency in cloud properties derived from different satellite imagers. 623 

It is also important to emphasize that the model performance is highly reliant on the quality of 624 

the training samples and reference labels. For example, in this study, more than 98% of the training 625 

data have a VZA less than 50°, leading to more uncertain cloud phase fractions at large VZAs. 626 

Using synthetic training data generated with reliable radiative transfer models could be a possible 627 

way to mitigate this artifact. 628 
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Table 1. Existing VIIRS and MODIS cloud mask and phase products used for comparison. Note 841 
that MYD35 and MYD06 are the standard MODIS Aqua products, and CLDMSK and CLDPROP 842 
are the MODIS Aqua and VIIRS common algorithm continuity products. 843 
 844 

Instrument Cloud Mask Cloud Phase 

MODIS 
MYD35 V6.1 MYD06 IR-Phase V6.1 

MYD06 OP-Phase V6.1 

CLDMSK V1.0 CLDPROP CT-Phase V1.0 
CLDPROP OP-Phase V1.1 

VIIRS CLDMSK V1.0 CLDPROP CT-Phase V1.0 
CLDPROP OP-Phase V1.1 

 845 
  846 
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Table 2: Data collection strategies and the number of pixels for all surface types. 847 
 848 

# of VIIRS 
750m pixels 

(million) 
Condition Ocean Forest Cropland Grass Barren Shrub Snow/Ice Total 

All collocation None 219.7 18.7 8.7 17.5 17.1 13.6 37.4 332.7 

Aerosol Free 
CALIOP Aerosol 

5km column AOD < 
0.05 

142.6 13.0 3.7 10.0 10.5 9.3 34.3 223.2 

Clear 
Aerosol Free, 

Cloud 1km Layer = 
0 

17.7 2.5 1.5 1.8 2.9 3.1 13.1 42.5 

Clear 
(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Layer = 0 
15.2 2.3 1.5 1.7 2.7 3.0 12.7 39.1 

Cloudy 
Aerosol Free, 

Cloud 1km Layer > 
0 

124.9 10.5 2.1 8.1 7.7 6.2 21.2 180.7 

Cloudy 
(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Layer > 0 
115.5 9.5 1.8 7.4 6.6 5.3 15.8 162.0 

Single Phase 
Cloud 

Aerosol Free, 
Cloud 1km Liquid 

or Ice Phase 
65.1 4.4 1.0 4.0 3.4 2.4 13.5 93.7 

Single Phase 
Cloud 

(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Liquid or Ice 
Phase 

64.2 4.3 0.9 3.9 3.3 2.3 12.7 91.5 

Liquid Phase 
Cloud 

(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Liquid Phase 
40.5 1.8 0.3 1.7 1.3 1.0 3.2 49.7 

Ice Phase 
Cloud 

(homogeneous) 

Aerosol Free, 
Cloud 1km/5km 

Ice Phase 
23.7 2.5 0.6 2.2 2.0 1.3 9.5 41.8 

 849 
  850 
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Table 3: Accuracy scores of RF all-day models based on testing pixels with different inputs and a 851 
fixed model configuration (N_Trees = 150 and Max_TreeDepths = 15). 852 

# 
Input Model Input Ocean Forest Shrubland Crop Grassland Barren Snow/Ice All 

Surface* 

1 BT8.6, BT11, BT12, 
and VZA 90.3 89.9 88.7 88.4 88.2 88.0 87.4 89.4 

2 
BT8.6, BT11, BT12, 

VZA, and 
Lat/Lon 

92.1 90.1 89.8 90.7 89.5 90.1 88.0 90.9 

3 BT8.6, BT11, BT12, 
VZA, and TS 93.1 90.9 89.9 91.4 90.2 90.3 88.5 91.7 

4 
BT8.6, BT11, BT12, 

VZA, Lat/Lon, 
and TS 

93.2 91.7 90.0 91.8 91.2 90.8 88.9 92.0 

5 BT8.6, BT11, BT12, 
VZA, TS, and eS 

93.2 91.4 89.8 91.4 90.4 90.4 88.8 91.9 

6 
BT8.6, BT11, BT12, 

VZA, Lat/Lon, 
TS, and eS 

93.2 91.8 90.1 91.8 91.3 90.6 88.9 92.0 

*The all-surface accuracy scores are weighted by pixel numbers of individual surface types.  853 
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Table 4: Accuracy scores of RF daytime models based on testing pixels with different inputs and 854 
a fixed model configuration (N_Trees = 150 and Max_TreeDepths = 15). 855 

# 
Input Model Input Ocean Forest Shrubland Crop Grassland Barren Snow/Ice All 

Surface* 

1 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 
R2.25, VZA, and 

SZA  

95.47 93.71 93.25 93.86 92.82 94.04 94.94 94.97 

2 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 
R2.25, VZA, SZA, 

and RAA 

95.47 93.72 93.22 93.84 92.81 94.02 94.94 94.97 

3 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 
R2.25, Lat/Lon, 
VZA, and SZA 

95.47 93.74 93.36 93.95 92.95 94.16 94.95 94.99 

4 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 

R2.25, R1.24, 
Lat/Lon, VZA and 

SZA 

95.51 93.73 93.47 93.93 92.98 94.21 95.05 95.04 

5 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 

R2.25, Ts, Lat/Lon, 
VZA, SZA, and 

RAA 

95.45 93.77 93.36 93.93 92.92 94.21 94.95 94.98 

6 

BT8.6, BT11, BT12, 
R0.86, R1.38, R1.61, 
R2.25, R0.48, R0.67, 
R1.24, VZA, and 

SZA 

95.51 93.90 93.54 94.11 93.07 94.38 95.17 95.09 

*The all-surface accuracy scores are weighted by pixel numbers of individual surface types.  856 
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Table 5: Fractions of the 2017 validation samples that have determined phases (i.e., liquid water 857 
or ice) in different surface types. 858 
 859 

Determined Phase (%) Ocean Forest Shrubland Crop Grassland Barren Snow/Ice All 

MODIS MYD06 IR-Phase 89 75 74 80 79 75 66 85 

MODIS MYD06 OP-Phase 97 99 97 98 99 95 92 97 

MODIS CLDPROP OP-Phase 98 99 98 99 99 97 99 98 

VIIRS CLDPROP OP-Phase 98 99 97 99 98 96 99 98 

  860 
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 861 

Figure 1. Spectral patterns of the five different pixel types (averaged over 1,000 pixels for each 862 
type). For each plot, an apex indicates reflectance ratio between a given VNIR/SWIR band and 863 
the 0.86-µm band, and the spread is filled by false RGB composite (Red: 0.74-µm reflectance; 864 
Green: 8.5-11µm brightness temperature difference (BTD); Blue: 11-12µm BTD). The spectral 865 
patterns are used in the machine learning algorithms. 866 
  867 
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 868 

Figure 2. Climatology of the spectral surface emissivity data from the UW-Madison baseline fit 869 
land surface emissivity database [Seemann et al., 2008] for different IGBP surface types. Error 870 
bars indicate the emissivity standard deviations at given wavelengths. 871 
  872 
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 873 
Figure 3. Climatology of the spectral surface white sky surface albedo data from MCD12C1 [Sulla-874 
Menashe and Friedl 2018] for different IGBP surface types. Error bars indicate the albedo standard 875 
deviations at given wavelengths. 876 
  877 
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 878 

Figure 4. A global map of the seven reduced surface types chosen for the RF model training.  879 
  880 
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 881 
Figure 5. Global distributions of the of clear and cloudy pixels from collocated VIIRS and CALIOP 882 
data from 2013 to 2017. Panels a) and d) show the total clear and cloudy pixel counts, respectively. 883 
Panels b) and d) show the pixel counts after applying the quality control. The corresponding 884 
selection ratios are shown in panels c) and f).  885 
  886 
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 887 

Figure 6. False Positive Rate (FPR) versus True Positive Rate (TPR) plots of daytime cloud mask 888 
from the two RF models and operational algorithms. Collocated CALIOP Level 2 products in 2017 889 
are used as reference. Global comparisons are shown in panel (a), while panels (b) through (h) 890 
show comparisons for difference surface types. The total pixel number is shown in each panel. 891 
  892 
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 893 

Figure 7. Similar to Figure 6, but for nighttime cloud mask comparisons. The total pixel number 894 
is shown in each panel. 895 
  896 
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 897 

Figure 8. Similar to Figure 6, but for daytime cloud thermodynamic phase comparisons. The total 898 
pixel number is shown in each panel. Note that for specific products, the total pixel numbers are 899 
less because of the exclusion of “unknown phase” category (see text for more details).  900 
  901 
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 902 

Figure 9. Similar to Figure 6, but for nighttime cloud thermodynamic phase comparisons. The total 903 
pixel number is shown in each panel. Note that for specific products, the total pixel numbers are 904 
less because of the exclusion of “unknown phase” category (see text for more details). 905 
  906 



 49 

 907 
Figure 10. Normalized density functions of the clear (blue), liquid water cloud (red), and ice cloud 908 
(green) probabilities from the RF all-day model in four CALIOP detected aerosol-free scenes: (a) 909 
clear, (b) homogenous liquid, (c) homogenous ice, and (d) multi-layer cloud with different 910 
thermodynamic phases. 911 
  912 
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 913 

Figure 11. Comparisons between one-month daytime cloud mask and thermodynamic phase 914 
products from the VIIRS CLDMSK and CLDPROP OP-Phase (top row) and the RF daytime 915 
model (second row), and their differences (VIIRS – RF daytime, bottom row) in January, 2017. 916 
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 918 

Figure 12. Similar to Figure 11, but for comparisons in July, 2017. 919 
  920 
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 921 

Figure 13. Liquid water (a) and ice (b) cloud fractions as a function of viewing zenith angle from 922 
the one-month daytime cloud mask/phase products in January 2017. The gray dashed curve is the 923 
probability density function of the 4-year VIIRS/CALIOP training samples (2013-2016). 924 
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