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Review of amt-2019-410: Final Response 

High-resolution mapping of urban air quality with heterogeneous observations: a new methodology and its application 

to Amsterdam 

 

I want to thank both reviewers for their useful comments. It resulted in a revised manuscript which puts more emphasis on the 5 

added value of low-cost sensors by including results for different assimilation configurations. Also, a sensitivity study on 

traffic emissions have been added, and the accuracy and limitation of the method are better discussed. To put more emphasis 

on actual measurements governing the spatial interpolation, the subsection on observations is now put forward as an 

independent section. Also, new figures have been added to better support the content. Results which are considered of 

importance but distracting from the main argument have been moved to Supplemental Material. The Discussion section and 10 

Conclusion section have been joined together and rewritten.  

 

Below is my response to the reviewers. In blue the original comments, and in black the answers. It is followed by a marked-

up version of the manuscript, indicating the changes made. 

  15 
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Response to reviewer #1 

I favor the publication of the manuscript in AMT after the following two main issues and the specific comments have been 

carefully addressed and the manuscript has been substantially revised. 

 

1. Due to the modularity of the modelling framework it is necessary that the accuracy and limitations of the individual 20 

components are determined and described in more detail and a little bit more critical. For example, the used dispersion model 

is computationally fast but it seems that it has clear limitations when applied in an urban environment as e.g. building 

geometries are not an input. Similarly, the emissions used as input for the dispersion model are derived in a simple way that 

similar data is probably available also for many other cities but the accuracy of the derived emission inventory seems by far 

not to be optimal. I think that the gain in accuracy of a spatially variable pollutant field by assimilating measurement data 25 

strongly depends on the model’s capability to resolve small scale structures. It should be made more clear in the manuscript if 

measurements adjust local deviations in emission source activity or only general model deficiencies. In the latter case the 

assimilation of measurements does not necessarily lead to throughout improved results in a local environment around the 

sensor. 

The revised manuscript elaborates on the comments above. The assimilation corrects both general model deficiencies and local 30 

deviations. The leave-one-out validation results show that in most cases the assimilation improves the accuracy, by reducing 

the local modelling bias, and improving the precision. This is better shown by including histograms of Observation minus 

Forecast (OmF) and Observations minus Analysis (OmA) for all validation locations. The potential shortcomings of the 

method are better discussed. Further reduction of the bias will be the subject of future studies, concentrating on (1) improving 

the modelling of traffic emissions, (2) including street canyon effects, (3) improving NOX chemistry (ratio NO2/NOX and 35 

lifetime), (4) improving the modelling of the model covariance. 

 

2. The validation part should be extended. The model uses a proxy for residential emissions as input data. Residential emissions 

probably have a distinct seasonality. Therefore, I strongly recommend to use an additional winter period to validate the 

modelling framework and to analyse the resulting alpha_pop. Actually, the simulation of a whole year would be best. No low-40 

cost sensor data are required for this analysis. 

I have added an analysis of the seasonality of the emission proxy calibration in Section 4.1. It compares a summer period (July 

2016) with a winter period (January 2017). The results show that the average emissions do not agree well with the expected 

emissions from a bottom-up inventory. The regression analysis of the dynamic calibration finds the best linear combination of 

traffic proxies and residential proxies which explains the observations. Unlike traffic, the diurnal cycle for the residential 45 

contribution is shaped by the regression analysis. The seasonal analysis shows that the fitted diurnal cycle for the residential 

sector not only describes the cycle of the residential emissions, but also compensates for changing NO2/NOX ratios over the 

day due to changing photochemistry and temperature. Also, due to collinearity, part of the traffic emissions can be explained 
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by population density. Therefore, the found emission factors (and the corresponding sectoral emissions) should be considered 

as “effective” rather than real, i.e. factors which best describe the observations under the given model assumptions.  50 

 

Specific comments 

Introduction (section 1) or Setting up an urban air quality model (section 2): For completeness, a short discussion/list of other 

dispersion models that could be used as an alternative to AERMOD should be included. 

Added to the end of the introduction in Section 3: “Note that any other dispersion model can be used in the Retina methodology, 55 

as long as it is capable of simulating concentrations from individual emission sectors on an arbitrary receptor mesh.” 

 

Traffic emissions (section 2.2.1): The author writes that traffic emissions are the dominant source of NO2 in the Amsterdam 

domain. Hence, traffic emissions are an important input factor for the simulation of the NO2 concentration. The interpolation 

of the vehicle counts for arbitrary locations based on the counting sites using IDW is practical but, at least for urban roads, 60 

possibly limitedly accurate as network characteristics are neglected. When I think of parallel roads in close distance, IDW 

would assign them similar vehicle counts, but in reality the true counts can be very different. An analysis/description/discussion 

of the accuracy of the resulting traffic input data should be added. 

Indeed, the question remained how well this IDW interpolation describes the traffic flow differences found for nearby roads 

of the same road type. This is now assessed by two different approaches (presented in the Supplementary Material, and 65 

mentioned at the end of Section 3.2.1): a leave-one-out validation to study the error in local traffic flow estimations, and a 

concentration validation study of dispersion simulations done under different traffic scenarios. The results show that for this 

counting network IDW predicts the traffic volume within a 50% error margin at most locations. The model simulations show 

that using inferior traffic data is partly compensated by the calibration dynamics, at the expense of less pronounced 

concentration gradients.   70 

 

Population data (section 2.2.2): The indication of the magnitude of different contributions (heating, cooking, others) to the 

total residential emissions in Amsterdam would be helpful. For the all-season applicability of the model: does the population 

database also include the spatial distribution of employees to account for heating emissions of office buildings? And for the 

selected period: Are heating emissions substantial in this summer period? 75 

This is now assessed in newly added Section 4.1, where the diurnal cycles of sectoral emissions are analysed for summer and 

winter. There is no clear answer to the reviewer’s questions, as the NOx emissions used by the model after calibration should 

be regarded as “effective” rather than real, i.e. best describing the spatial concentration patterns under given model 

assumptions. The effective residential emissions contain an unquantified contribution which compensates for the simplified 

NOx chemistry assumptions. 80 
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Calibrating the model (section 3): First, lines 217 to 219 are unclear for me. After reading these sentences I was confused if 

cj(t) in Eq. 6 is the measured NOX concentration. But it is not, correct?  

The confusion arises from the fact that P represents proxies for NOx emissions, while c represents the observed NO2 

concentrations. The conversion from NOx to NO2 is implicitly done by dispersion f, using an NO2/NOx ratio from the Ozone 85 

Limiting Method.  

In Gaussian dispersion modelling there is a linear relation between emission strength and concentration, but this linearity 

breaks down when conversion from NOx to NO2 is included. This is now better formulated by eliminating lines 217 to 219 and 

changing the description of Eq. (6) to: “(...) with 𝑓𝑖𝑗 describing the dispersion of a unit emission from i to j, including the 

conversion from NOx to NO2 from the OLM. Eq. (6) is assumed to describe a linear relation between emission and 90 

concentration, although strictly speaking the variable NO2/NOx ratio introduces a weak nonlinearity.” 

 

Second, can you comment on how worse the model is performing when residential emissions are omitted? I guess that in the 

selected summer period heating emissions are nearly zero. Are the estimated two-hourly alpha_pop plausible and can you 

show that the temporal pattern of the values are related e.g. to cooking emissions? In Figure 3b, the contribution of residential 95 

emissions to the NO2 is surprisingly large given the fact that residential emissions are only 1/3 of the traffic emissions (stated 

in section 2). 

This is now assessed in Section 4.1, where also the collinearity between the traffic and residential proxies is mentioned. 

 

Assimilation of observations (section 4): The described algorithm is applied by using the pollutant concentrations transformed 100 

into the log-space. Here, one has to be aware that the distribution of the pollutant concentration at a particular location is not 

equal to the measurement error that is required for the algorithm in this section. The measurement error is described in the 

manuscript as being dependent on the concentration (section 2.3). So, the reasoning of this transformation is not correct. 

However, I suppose that the transformation of the measurements into the log-space has a positive effect on the stability of the 

results as the modeling framework becomes less sensitive to (less frequent) measurements of high concentrations by reducing 105 

their impact. The transformation into the log-space is fine, but the respective paragraph should be reformulated. 

The reviewer is right. Changed “The analysis is therefore done in log-space (zj = ln cj), which converts lognormal distributions 

to Gaussian, for which the Bayesian assumptions behind Equation 8-10 are valid.” to “The analysis is done in log-space (zj = 

ln cj), stabilizing the results by reducing the impact of less frequent measurements of high concentrations.” 

 110 

Modelling the model error covariance matrix (section 4.1): The interpolation of the model error by IDW might result in an 

error field that is too smooth in the urban environment given that the model is limitedly capable to represent small-scale 

structures (e.g. buildings). At least a comment should be included in the manuscript that points out this issue. 

It is impossible to assess the model error at all locations and under all conditions when the “ground truth” is only available at 

15 locations. In my opinion, interpolation of the model error gives a good first impression of the local model performance 115 
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away from validation locations. However, the reviewer is right that small-scale structures provoked by the local built-up area 

might not be well represented in the model. Inclusion of the street canyon effect, together with refinements in covariance 

modelling, is subject of further study. It will reduce local bias in the modelling, but also suppress the introduction of bias by 

the assimilation. This is now pointed out in the discussion section. 

 120 

Validation (section 5): The first paragraph is, as I understand, only an example where the modelling framework works well. It 

can be removed. Start with the second paragraph ("overall assessment"). Figure 6 can be presented directly after the overall 

assessment by discussing sites where the model performs well (NL49019) and where it performs less optimal (e.g. NL49002, 

NL49014). Figure 6 should include examples for both types. The time period of the used data in this Figure should correspond 

to table 3. Omit in the Figure the performance analysis of low-cost sensors but extend chapter 6. Moreover, add a file to the 125 

manuscript with supplementary materials where the scatter plots of the remaining, in the manuscript not presented air quality 

monitoring sites are shown analogue to Fig. 6 in order to provide the reader a clear picture of the model performance. 

The reviewer’s suggestions have been implemented. The first paragraph has been deleted. Figure 6 has been replaced by two 

validation examples, for a well performing location (NL49012) and a worse performing location (NL49014). The time series 

plots have been removed, regarded as redundant as the performance can also be read from the scatter plots. Bar plots with error 130 

distributions have been added to better illustrate the effect of the assimilation. The validation plots for all reference locations 

are included in the Supplementary Material. 

 

Added value of low-cost sensors (section 6): The material presented in this chapter is only qualitative. The two average 

concentration maps presented are not validated and so the accuracy of their differences is unclear. The single example of the 135 

"Oude Schans" site is not sufficient to show that low-cost sensors add value. I have some questions here: What is the reasoning 

of largely adjusting the results of the dispersion model by low-cost sensors when there is also the option to improve the input 

data for the dispersion model? 

To start with the last question: better input data is not always available. In this particular case there was no detailed information 

available about traffic flow and changing traffic patterns. To better assess the added value of low-cost sensors, additional 140 

results have been added from different assimilation configurations. The different assimilation scenarios show that low-cost 

sensor data assimilation improves the results locally, even in absence of reference data. Generally, the best results are obtained 

when both reference data and low-cost data are included. This is the configuration used to obtain the map showing the NO2 

reduction during the holiday period (Figure 11). 

 145 

Is it possible to generate traffic input data for the dispersion model for each month based on the traffic counts you have access 

to?  

Yes, it would be possible to generate monthly traffic data. This is done for instance in traffic scenario TS3, which can be found 

in the Supplementary Material. However, as both the holiday period and the closure of the tunnel started at half July and ended 



6 

 

half August, neither traffic data for July or August would be representative for the whole month. Anticipating the application 150 

for other cities where such detailed traffic data might not be available, it was decided to evaluate the system for a yearly 

averaged traffic “climatology”. 

 

Moreover, NO2 concentrations also depend on meteorology. What fraction of the differences in the monthly aggregated 

concentration fields is related to different weather conditions? 155 

The influence of meteorological variability is now included in the discussion of the figure. It can be estimated from the NO2 

reduction found at rural stations NL49565 and NL49703. Average values drop from 16.60 and 12.57 ug/m3 during 15 June - 

15 July, to 15.53 and 11.55 ug/m3 during 16 July - 15 August. Added to this section: “Based on averaged NO2 measurements 

at rural stations NL49565 and NL49703, the NO2 reduction due to meteorological variability is estimated to be 7%.” 

 160 

As I understand the main benefit of the low-cost sensors for the modelling framework is the increased spatial resolution of the 

measurements. Here, I miss some sensitivity analyses or similar material regarding measurement network design. What options 

exist when using this modelling framework in reducing traditional air quality monitoring sites and adding low-cost sensors? 

The accuracy of low-cost sensors is reported to be about 30%. Is this enough for adding substantial information? 

These questions are now implicitly answered by the results of the different assimilation scenarios. Validation results are 165 

comparable when only observations of 14 low-cost sensors are assimilated (AS3), instead of observations at 3 reference sites 

(AS2). Even a notable improvement is visible in bias and RMSE at location NL49019, where the low-cost sensors are relatively 

nearby.  

 

Technical comments 170 

page 4, lines 102-103. How are the parallel distances of 75 and 125 m related to the grid? Maybe reformulate this sentence to 

make it clearer. 

Changed to: “Receptor locations are chosen at every 75 m along the parallel curves with 25 m distance to the road, and at 

every 125 m along the parallel curves with 50 m distance to the road.” 

page 5, lines 143-144. Refers traffic "climatology" to counting sites? 175 

Changed “For each location” to “For each counting site”. 

 

page 7, line 197. Mijling (2018) instead of Mijling (2017)? 

Changed to Mijling (2018) 

 180 

page 7, lines 204-205. Pik, Pki: keep consistent. 

Adapted 
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page 7, lines 213-214. I would not say that b(t) is observed. It is rather the output to another modelling system. 

Agreed, changed to “Note that both background concentrations b(t) and local concentrations cj(t) are taken from external 185 

data”  

 

page 9, line 266. Section 3 instead of Section 2.3? 

c refers to the measurements of the reference network, described (according to the new numbering) in Section 2.  

 190 

page 10, line 285-286. "Isotropic" is the wrong word here as it is not isotropic. 

True. Changed to “The correlation of model errors between different locations is parametrized with a downwind correlation 

length Ldw and a crosswind correlation length Lcw.” 

 

page 11, line 336. Change to "lower accuracy". 195 

Changed accordingly 

 

Figure 1. Add units to the x and y axes. 

Units are mentioned in the figure caption. 

 200 

Figure 2. What do the depicted lines show? Sample week, yearly aggregation? Add more information. 

Caption changed to “Weekly cycle of highways and urban roads at counting locations, aggregated from hourly data from 

2016. The morning and evening rush hours on working days are clearly visible for highways. Urban traffic has, apart from 

lower volume, less distinct peaks. The thick lines show the median of traffic flow for both road types.” 

 205 

Figure 3a. Add north arrow and scale in one of the four Figures. The meaning of the three dots should be explained already in 

the caption of Figure 3a. 

Scale bar and arrow added. The figure caption now explains the three dots. 

 

Figure 3b. Indicate in the Figure in an appropriate manner the weekday the dates refer to. 2016-07-07 –> Thu, 2016-07-07. In 210 

Figure 2 the distinct traffic pattern is shown. It is interesting if there is a clear relation between traffic and NO2 in the modelling 

results. 

Labels on x-axis of Figure 3b changed. 

 

Figure 5. Add units for x and y axes and scale in all Figures. Remove the first "and" in the second sentence of the caption. 215 
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Figure updated, scale bars added. 

 

Figure 7. Add scale in both Figures. Moreover, the visibility of the points could be better in all the presented maps. 

Figure 8. Add location of IJ-tunnel and of the historic center. 

A new panel has been added showing the location of reference stations and low-cost sensors, the location of the IJ-tunnel, and 220 

the scale.  

 

Table 3. Indicate more precisely the date period the analysed measurements refer to. 

Table caption changed to “Validation results at reference locations, June 1 - August 31, 2016”  

  225 
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Response to reviewer #2 

One of my main concerns relates to the lack of detail in some of the sections, but particularly in the section that is supposed to 

demonstrate the added value from assimilating low-cost sensor data (Sec 6). Given that multiple previous studies have already 

successfully assimilated regular stations observations using OI (e.g. Tilloy et al. 2013), one of the more novel aspects of this 

study is the assimilation of low-cost air quality sensors. The manuscript goes through great lengths of building up a dispersion 230 

model system with simplified emissions as well as an OI assimilation scheme, but the added value from low-cost sensor 

networks is covered in just a few lines towards the end without much detailed analysis. I think the manuscript could be a lot 

stronger and have more impact if a more comprehensive analysis of this were carried out in Section 6. 

The work of Tilloy et al. is now referenced in the manuscript. This work is different in the sense that it presents a flexible 

urban dispersion model, it presents an alternative covariance model, and it studies the added value of low-cost sensors (details 235 

below). The section on the added value of low-cost sensor data has been extended with a sensitivity study of different network 

configurations.  

 

Secondly, Section 2.2.1 on traffic emissions (which are crucially controlling NOx/NO2) left me scratching my head at times. 

I realize that the system is designed to be portable and thus the necessary input data should be kept to a minimum, but I wonder 240 

if some of the simplifications taken here are defensible. In particular spatial interpolation of traffic monitoring sites seems to 

me a quite crude approximation that introduces significant uncertainties in the modelling.  

Spatial interpolation of traffic flow might indeed seem a crude way of solving the lack of traffic data. However, part of the 

introduced inaccuracy is avoided by distinguishing between two road types, highway and urban roads. Both having different 

diurnal patterns and vehicle counts, the traffic flow interpolation of one road type does not affect the other road type.  245 

The validity of the approach is now assessed in two different manners, presented in the Supplementary Material, and mentioned 

at the end of Section 3.2.1: a leave-one-out validation to study the error in local traffic flow estimations, and a concentration 

validation study of dispersion simulations done under different traffic scenarios. The results show that for this counting network 

IDW predicts the traffic volume within a 50% error margin at most locations. The model simulations show that using inferior 

traffic data is partly compensated by the calibration dynamics, at the expense of less pronounced concentration gradients.   250 

 

Further, what about distinguishing different types of vehicles? Regular cars versus heavy trucks? Euro 4/5/6 emissions 

categories? These things can have a very significant impact on the modelling results for NO2 and I wonder if some more care 

in setting up the modelling would not be beneficial in the long run? This is particularly a concern in the sense that OI should 

technically only be used when model and observations are unbiased against each other and ignoring certain high polluting 255 

vehicle classes could introduce potentially damaging biases.  

The reviewer is right. We consider only two emission factors, one for highway traffic and one for urban traffic. The emission 

factors, however, are estimated from analysis against observations in the calibration phase, which implicitly compensates for 
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i.e. different fleet composition. Further refinement of the traffic model is desirable (e.g. based on the COPERT database), and 

will definitely improve local model performance. However, introducing a detailed traffic model, including fleet composition, 260 

was considered outside the scope of this work.  

 

At the very least, the author should discuss these potential issues and lay out future steps to resolve these problems. In the best 

case scenario, it would be good to see some sensitivity studies testing the modelled NO2 sensitivity to inclusion of these 

different classes.  265 

New validation results in the Supplementary Material show that the current method of interpolated traffic flow predicts the 

traffic volume within a 50% error margin at most locations. Better results are obtained when more counting locations are 

available, or when they are selected strategically around crossings and access roads. It is now remarked in the Discussion & 

Conclusion section that improved traffic emission models should take local differences in local fleet composition into account.  

Thirdly, I feel that the manuscript could benefit from some more detail on how the error characteristics of the observations 270 

were derived. Estimating uncertainties from reference instruments and low-cost sensors on its own is a difficult subject and 

the paper does not provide the reader with information on how these were estimated or how such uncertainties were then 

transformed into error characteristics suitable for ingestion in the OI scheme. Such a discussion should be included in the paper 

and I believe this would strengthen the authors conclusions. 

The section on observations has been elaborated hereupon. The accuracy of reference instrumentation is determined following 275 

the EN 14211 standard (now referenced in the section on observations), which includes all aspects of the measurements 

method: uncertainties in calibration gas and zero gas, interfering gases, repeatability of the measurement, derivation of NO2 

from NOX and NO, and averaging effects. The error in the low-cost sensors is determined by side-by-side comparison against 

reference instruments. Details can be found in the referenced Mijling et al. (2018) paper. 

 280 

Finally, given that 90% of the paper deals with modelling and data assimilation, I do find the choice of AMT for this manuscript 

slightly puzzling and I feel that the paper would probably be better suited for a journal more focused on modelling or general 

air quality issues. However since the editor has accepted the paper to AMTD I assume that the material is considered suitable 

for the journal. 

AMT was chosen because the study describes an observation-driven framework which can be used for processing air quality 285 

measurements of different sources. Therefore, it was felt that it is of interest to the air quality measurement community. As the 

involved data assimilation sits on top of both observation and model, the current work would neither fully qualify for an air 

quality modelling journal. To put more emphasis on the importance of observations, Section 2.3 on observations is now put 

forward in the manuscript as an independent section. 

 290 

DETAILED COMMENTS 
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L15: "Retina" - why is it called this? Include the full name if this is an acronym. 

The algorithm’s name reflects its ambition to produce high-resolution imagery; it is not an acronym. A simple name was 

preferred above a badly constructed or unpronounceable acronym. 

 295 

L16/17: how are these percentages to be interpreted? Would be good to mention here how accuracy is defined. Something as 

simple as "... a typical accuracy (defined here as [...]) of 39%" or similar 

Added “(defined here as the ratio between the root means square error and the mean of the observations)” 

 

L23: "enhanced understanding of reference measurements". Please [missing] 300 

 

L38: "adding value". I suggest you give an example of what you consider as adding value to the measurements or otherwise 

better write "exploiting the measurements" 

Changed to “exploiting the measurements” 

 305 

L39: In single-author papers it looks quite odd to use plural terms such as "our" and"we". Consider revising. 

I replaced the inappropriate use of pluralis majestatis by the passive tense. 

 

L43: I would add here that it depends on the mapping resolution and the pollutant. The required sampling density increases 

with the desired spatial resolution of the map. Furthermore, NO2 with its very sharp spatial gradients will always require a 310 

much denser network than for example mapping PM2.5 with its relatively smooth spatial gradients. 

Added: “To obtain high-resolution information of air pollutants with sharp concentration gradients, (...)”. From the first 

paragraph it is clear that is especially the case for NO2 concentrations, “which can vary considerably from street to street”. 

 

L60: The introduction/background section is missing a reference and a discussion of Tilloy et al (2013) 315 

(https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/jgrd.50233),who have essentially done the same as this paper (OI of 

point-based observations into an urban-scale AQ model). 

The paper of Tilloy is now referenced twice. 

In the Introduction: “Tilloy et al. [2013] use the 3-hourly output of a well-developed implementation of the AMDS Urban 

dispersion model in Clermont-Ferrand, France, to assimilate in-situ NO2 measurements at 9 reference sites in an optimal 320 

interpolation scheme. With a leave-one-out validation they show a strong reduction in root mean square error of the time 

series after assimilation.” 

In Section 5.1 on the modelling of the error covariance matrix: “Tilloy et al. [2013] choose to model the covariances depending 

on the road network. Error correlations are assumed to be high on the same road or on connected roads. For background 

locations, the correlation decreases fast in the vicinity of a road, while the error correlation between two background locations 325 
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remains significant across a larger distance. The error covariances are kept constant in time, and taken independent of traffic 

conditions.” 

 

L61: Again, the name "Retina" comes a bit out of the blue. You should probably introduce here what the acronym stands for. 

Retina is not an acronym, please see the answer above. 330 

 

L70: I would be a bit careful with the term "calibration" in this context, given that it has a very specific meaning for 

measurements (both reference as well as sensors). Maybe reword or describe a bit more thoroughly what happens in this step. 

I prefer to stick to calibration here, as I think that within the context of model calibration it is sufficiently clear that it refers to 

adjusting model parameters to best match the evaluation criteria. 335 

 

L98: A reference to AERMOD would be useful here. 

AERMOD has already been introduced and referenced shortly above (Cimorelli et al., 2004). This particular version of 

AERMOD has no specific scientific reference. 

 340 

L99: "local equidistant coordinate system" - at this point you might as well give the actual projection you used. Presumably 

something UTM-like? 

Clarified to: “All coordinates are reprojected in a custom oblique stereographic projection (EPSG:9809) around the city 

center coordinate, such that the coordinate system can be considered equidistant at the urban scale.” 

 345 

L100: "road-following grid". This is used as if this a commonly known term, which in my opinion it is not. So first of all you 

might want to introduce this term a bit more carefully by saying something like "we use a road-following grid, which is 

essentially....". Secondly, to me it sounds a bit weird to use the term "grid" in this context, when you are basically talking about 

a spatially irregular and scattered set of receptor points with higher density along road links. I think the term grid should be 

reserved for a somewhat regular arrangement of cells. 350 

The occurrences of road-following grid are replaced by road-following mesh. 

 

L148-152: I realize that the goal of this paper is not to build the world’s best model so a certain amount of simplification is 

expected, but interpolating traffic flow using IDW seems to be an incredibly crude method. How can this method possibly 

work?Between two loop counters there will likely be many road segments that either have much more or much less traffic than 355 

at the observation sites, so I fail to understand how simply interpolating here can lead to useful results. I think this section 

needs more detail on how this is carried out and a robust demonstration that the chosen methods are meaningful. 

This concern is shared with Reviewer #1. In the revised article, the traffic model is assessed in two different approaches, 

presented in the Supplementary Material, and mentioned at the end of Section 3.2.1: a leave-one-out validation to study the 
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error in local traffic flow estimations, and a concentration validation study of dispersion simulations done under different 360 

traffic scenarios. The results show that for this counting network IDW predicts the traffic volume within a 50% error margin 

at most locations. The model simulations show that using inferior traffic data is partly compensated by the calibration 

dynamics, at the expense of less pronounced concentration gradients.  

 

L164: Don’t they assimilate UTD data? In that case it wouldn’t be a day old but just a few hours (maybe better write "up to a 365 

day old" or so). 

Clarified to: “The analysis of the ensemble is based on the assimilation of up-to-date (UTD) air quality observations provided 

by the European Environment Agency (EEA).” 

L230: This should be Figure 3b? Also, I think this Figure should be discussed a bit more (maybe in the discussion section?) 

for example with respect to potential reasons for the difference between model and observations, particularly for the highway 370 

location. 

Reference to Figure 3b now included. Differences between model and observations are now mentioned in the discussion 

section and mainly attributed to its inability to resolve all small-scale structures provoked by local built-up area, and sketchy 

traffic emission modelling. The latter is especially true for highway location NL49007, which is very near this strong source. 

 375 

L235: I recommend to remove the term "geostatistical" here. While OI is mathematically very similar to kriging-based 

techniques (and it can in fact be shown that it provides identical results to kriging if the same inputs are used) it is not 

traditionally considered a part of the field of geostatistics. Geostatistics was developed in the mining and earth resources 

community (Matheron et al.), whereas OI was developed within the meteorological community (Gandin 1965). 

Rephrased to “the interpolation technique of choice here is”. 380 

 

L241: Again, I would not use the term "grid" for what is essentially a set of irregular, scattered receptor points. 

Grid replaced by mesh. 

 

L265: I think it would be good to mention here that Statistical Interpolation/OI is essentially the same assimilation scheme 385 

(just a different mathematical framework) asprevious kriging-based approaches. The main advantage of OI over geostatistics 

(but also an added complexity) is that one has detailed manual control over the Pb covariance matrix, which allows for a more 

comprehensive specification of the area of influence for each contributing observation. 

This valuable remark has been included in the beginning of the section, where OI is first introduced. 

 390 

L287: extend -> extent (or maybe magnitude?); also reflect -> reflects 

Corrected 
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L335-340: I think this section should be either left out entirely or expanded upon significantly. As it is currently it does not 

represent a robust demonstration that low-cost sensors add value to the system, since the effect has only been shown at a single 395 

site and not been analysed in detail. Demonstrating that the information from low-cost sensors can improve urban-scale air 

quality modelling is clearly a very worthwhile goal but this short section reads unfortunately more like an afterthought than a 

proper analysis. 

This section has been expanded with new material: an additional analysis and discussion for 5 different assimilation scenarios. 

The different assimilation scenarios show that low-cost sensor data assimilation can improve the results locally, even in 400 

absence of reference data.  

L354: I think it would also be worthwhile noting here that, while CAMS is definitely useful for providing background 

conditions and initial conditions, for NO2 the CAMS forecasts can be very misleading when interpreted at the local scale. The 

predicted diurnal cycle can often deviate substantially from that observed at urban AQ stations. 

This valuable remark has been added in the discussion.  405 

 

L356: Agreed. And in addition the higher resolution from a dispersion model is also much more appropriate than CAMS for 

applications such as exposure estimates etc. 

 

L374: "Traffic data tend to be harder to obtain". That is very true (and maybe even an understatement) and is one of the most 410 

limiting factors in running local-scale dispersion models at random locations. Given that traffic is typically the most important 

source for NOx I have the suspicion that even the comparatively portable Retina methodology is likely to fail when no such 

traffic data is available at all. I think it would be worthwhile discussing here that at some point, if nearly all the crucial input 

data to Aermod is either of low quality or entirely missing, the resulting forecasted concentration fields will be so bad that any 

type of sophisticated data assimilation of observations is no longer very meaningful.  415 

A traffic degradation study is now included in the Supplemental Material. From this can be seen that the calibration is partly 

capable of compensating for inferior traffic data by relating traffic emissions more to population density, at the expense of 

higher RMSE and lower correlation. In general, degraded input data and imperfections in the dispersion modelling will 

deteriorate the system’s capability to resolve local structures; it will lower the effective spatial resolution of the simulations. 

In its extreme it will only describe the blurry urban background pollution contribution added to the rural background. 420 

Oppositely, with improved input data and atmospheric modelling, the effective resolution will improve. This insight has been 

added to the discussion. 

 

L396: It might be more detailed, but is it really much better? This section is too qualitative to draw much of a conclusion. As 

I said above, I think the manuscript would benefit from a more robust analysis along these lines. 425 



15 

 

This is now better addressed in the section on the added value of low-cost sensors. 

 

Figure 2: The caption should indicate more clearly that the thin lines represent the traffic at individual stations. 

The caption is rewritten. 

 430 

Figure 3a: These maps would benefit from some basic cartographic elements, e.g. a background map from OpenStreetmap 

similarly to Figure 7/8, scale bar, coordinates etc. 

A scale bar and North arrow have been added. A cartographic background has not been added as the domain can now be 

inspected by comparison with new Figure 1. 

 435 

Figure 5: "Units are in meters" - not all of them. I recommend to either label all axes properly or to have a more thorough 

caption describing the various elements of this busy Figure in more detail. It would also be helpful to have labels for each 

subplot (a,b, c..) so that they can be better referred to in the caption.  

The representation has been improved by removing distance units on the axes by scale bars, by better formulating plot titles, 

and adding grid lines. The figure caption has been reformulated. 440 

 

Figure 6: I think it is a bit confusing that the time series is only for 8 days, whereas the scatter plots show an entire month of 

data. Why not show the time series also for the entire period? If it is a visualization issue, it could be plotted over multiple 

rows. Similar to my earlier comments I also think that the analysis here would benefit from looking at more than just a single 

station. 445 

Figure 6 has been replaced by two validation examples, for a well performing location (NL49012) and a worse performing 

location (NL49014). The time series plots have been removed, regarded as redundant as the performance can also be read from 

the scatter plots. Bar plots with error distributions have been added to better illustrate the effect of the assimilation. The 

validation plots for all reference locations are included in the Supplementary Material. 

 450 

Figure 8: "IJ-tunnel" Should be marked on the map since non-locals will not be familiar with this. 

A new panel has been added showing the location of reference stations and low-cost sensors in the central area, and the location 

of the IJ-tunnel.  

 

  455 
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High-resolution mapping of urban air quality with heterogeneous 

observations: a new methodology and its application to Amsterdam 

Bas Mijling1 

1Royal Netherlands Meteorological Institute (KNMI), Postbus 201, 3730 AE, De Bilt, The Netherlands 

Correspondence to: Bas Mijling (mijling@knmi.nl) 460 

Abstract. In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not 

well known due to the sparseness of official monitoring networks, or unrealistic assumptions being made in urban air quality 

models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary 

information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward 

because of the localized nature of air pollution, and the large uncertainties associated with measurements of low-cost sensors. 465 

In this study, we presentThis study presents a practical approach to producing high spatio-temporal resolution maps of urban 

air pollution capable of assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building 

a versatile air quality model, driven by an open source atmospheric dispersion model and emission proxies from open data 

sources, and (2) a practical spatial interpolation scheme, capable of assimilating observations with different accuracies. 

The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO2) in Amsterdam, the Netherlands, 470 

during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy (defined 

as the ratio between the root means square error and the mean of the observations) of 39% within 2 km of an observation 

location, and 53% at larger distances. When low-cost measurements of the Urban AirQ campaign are included, the maps reveal 

more detailed concentration patterns in areas which are undersampled by the official network. It is shown that During during 

the summer holiday period, NO2 concentrations drop about 10% due to reduced urban activity. The reduction is less in the 475 

historic city centercentre, while strongest reductions are found around the access ways to the tunnel connecting the northern 

and the southern part of the city, which was closed for maintenance. The changing concentration patterns indicate how traffic 

flow is redirected to other main roads. 

Overall, we it is shown that Retina can be applied for an enhanced understanding of reference measurements, and as a 

framework to integrate low-cost measurements next to reference measurements in order to get better localized information in 480 

urban areas. 

1 Introduction 

Due to growing urbanization in the last decades, more than half of the world’s population lives in cities nowadays. Dense 

traffic and other human activity, in combination with unfavourable meteorological conditions, often cause unhealthy air 

pollution concentrations. Over 80% of the urban dwellers are forced to breathe air which does not meet the standards of the 485 
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World Health Organization (WHO, 2016). In 2015, an estimated 4.5 million people died prematurely from diseases attributed 

to ambient air pollution (Lelieveld et al., 2018). Good monitoring is important to better understand the local dynamics of air 

pollution, to identify hot spots, and to improve the ability to anticipate events. This is especially relevant for nitrogen dioxide 

(NO2) concentrations, which can vary considerably from street to street. NO2 is, apart from being a toxic gas on its own, an 

important precursor of particulate matter, ozone, and other regional air pollutants. Observations from a single location are not 490 

necessarily representative for a larger area. Unfortunately, urban air quality reference networks are usually sparse or even 

absent due to their high installation and maintenance costs. New low-cost sensor technology, available for several years now, 

has the potential to extend an official monitoring network significantly, even though the current generation of sensors have 

significant lower accuracy (WMO, 2018).  

However, adding value to theexploiting these measurements (either official or unofficial), apart from publishing the data as 495 

dots on a map, is not straightforward. Our Here, the aim is to make better use of the existing measurement networks to get the 

best description of hourly urban air quality, and to create value from low-cost measurements towards a Level 4 product, 

according to the classification proposed by Schneider et al. (2019)  

To obtain high-resolution information of air pollutants with sharp concentration gradients, a very sparse observation network 

needs to be accompanied by a valid high-resolution air quality model, whereas a very dense network can do with simple spatial 500 

interpolations. The situation in most large cities is somewhere in between. There is often a reasonably large reference network 

present (10+ stations), sometimes complemented with an experimental network of low-cost AQ sensors. Assumptions about 

underlying unresolved structures in the concentration field are still needed, but this can be done with a simplified air quality 

model, using the available measurements to correct simulation biases where needed. 

A popular approach in detailed mapping of air quality is land use regression modelling (LURM), see e.g. Beelen et al. (2013). 505 

LURM uses multiple linear regression to couple a broad variety of predictor variables (geospatial information such as traffic, 

population, altitude, land use classes) to the observed concentrations. It is typically used in exposure studies, which target long 

integration intervals by definition. Problems of over-fitting might arise when too many predictor variables are used. 

Alternatively, Denby (2015) advocates the use of less proxy data, and a model based on more physical principles. In his 

approach, the emission proxies are first (quasi) dispersed with a parameterized inverse distance function, before being coupled 510 

to observed concentrations in a regression analysis. 

Mapping of air pollution for short time scales is challenging. Only a few scientific studies are published aiming at assimilation 

of near-real time observations in hourly urban concentration maps. Tilloy et al. (2013) use the 3-hourly output of a well-

developed implementation of the AMDS Urban dispersion model in Clermont-Ferrand, France, to assimilate in-situ NO2 

measurements at 9 reference sites in an optimal interpolation scheme. With a leave-one-out validation they show a strong 515 

reduction in root mean square error of the time series after assimilation. Schneider et al. (2017) use Universal Kriging to 

combine hourly NO2 observations of 24 low-cost sensors in Oslo, Norway, with a time-invariant basemap. The basemap is 

created from a yearly average concentration field calculated with an Eulerian/Lagrangian dispersion model on a 1 km grid, 
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downscaled to 100 m resolution. Averaged over reference locations, their study shows that hourly values compare well with 

official values, showing the potential of low-cost sensor data for complementary air quality information at these time scales. 520 

In this paper, we present presents a more advanced yet practical approach to map hourly air pollutant concentrations, named 

Retina. Its main system design considerations are: 

● Observation driven  

● Able to assimilate observations of different accuracy 

● Potential near-real time application 525 

● Versatile / portable to other domains 

● Based on open data 

● Reasonable computer power 

Retina uses a two-stage approach. It runs an urban air quality model to account for hourly variability in meteorological 

conditions (described in Section 2) which is dynamically calibrated with recent measurements (Section 3). In the second stage 530 

it assimilates current measurements using statistical interpolation (Section 4). Section 5 presents the validation of the system, 

while Section 6 shows the added value when assimilating additional low-cost sensor measurements. Section 7 and 8 are 

reserved for discussion, conclusion and outlook. 

The method is applied to Amsterdam, a city like many where NO2 emissions are dominated by transport and residential 

emissions and where local exceedances of limit values are regularly observed. The methodology is flexible enough to be 535 

applied to other cities, mainly because it is relatively easy to implement the urban model for a new domain. Amsterdam is the 

most populous city in the Netherlands, with an estimated population of 863,000. Located at 52°22′N 4°54′E, it has a maritime 

climate with cool summers and moderate winters. Concentrations of NO2 within the city vary considerably, being partly 

produced locally and partly transported from outside the city. Measurements of 2016 show that, compared with regional 

background values from the CAMS ensemble (see Section 3.2.3), urban background concentrations are on average around 540 

50% higher, while at road sides NO2 concentrations are about 100% higher.  

Retina uses a two-stage approach. It runs an urban air quality model to account for hourly variability in meteorological 

conditions (described in Section 3) which is dynamically calibrated with recent measurements (Section 4). In the second stage 

it assimilates current measurements using statistical interpolation (Section 5). Section 6 presents the validation of the system, 

while Section 7 shows the added value when assimilating additional low-cost sensor measurements. The last section is reserved 545 

for discussion, conclusion and outlook. 

2.3 Air quality measurements 

The Public Health Service of Amsterdam (GGD) is the responsible authority for air quality measurements in the Amsterdam 

area. Within the domain used in this study their NO2 network consists of 15 reference stations: 5 stations classify as road 

station, 5 as urban background station, 2 as industry, 2 as rural, and 1 undecided. Alternatingly, GGD operates a Teledyne API 550 

200E and a Thermo Electron 42I NO∕NOX analyser, both based on chemiluminescence. A catalytic-reactive converter converts 

NO2 in the sample gas to NO, which, along with the NO present in the sample is reported as NOX. NO2 is calculated as the 
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difference between NOX and NO. Laboratory calibration estimates the combined uncertainty of hourly NO2 measurement at 

3.7% (GGD, 2014).The accuracy of both type of reference instruments is estimated at 3.7% (GGD, 2014), following the EN 

14211 standard, which includes all aspects of the measurements method: uncertainties in calibration gas and zero gas, 555 

interfering gases, repeatability of the measurement, derivation of NO2 from NOX and NO, and averaging effects. 

Low-cost NO2 measurements are taken from the 2016 Urban AirQ campaign (Mijling et al., 2018). Sixteen low-cost air quality 

sensor devices were built and distributed among volunteers living close to roads with high traffic volume for a 2-month 

measurement period, from 13 June to 16 August. The devices are built around the NO2-B43F electrochemical cell by 

Alphasense Ltd (Alphasense, 2018). The sensor generates an electrical current when the target gas diffuses through a 560 

membrane where it is chemically reduced at the working electrode. Better sensor performance at low ppb levels is obtained by 

using low-noise interface electronics. The sensor devices were carefully calibrated in Mijling et al. (2017)using side-by-side 

measurements next to a reference station, solving issues related to sensor drift and temperature dependence (Mijling et al., 

2018). After calibration, they are found to have a typical accuracy of 30%.  

 565 

2 3 Setting up a versatile urban air quality model 

Amsterdam is the most populous city in the Netherlands, with an estimated population of 863,000. Located at 52°22′N 4°54′E, 

it has a maritime climate with cool summers and moderate winters. Concentrations of NO2 within the city vary considerably, 

being partly produced locally and partly transported from outside the city. Measurements of 2016 show that, compared with 

regional background values from the CAMS ensemble (see Section 2.2.3), urban background concentrations are on average 570 

around 50% higher, while at road sides NO2 concentrations are about 100% higher.  

One of the largest unknowns when modelling urban air quality is a detailed, up-to-date emission inventory capable of 

describing the local contribution. For cities such as Amsterdam the local emissions are dominated by the transport and 

residential sector. This is confirmed by the EDGAR HTAP v2 emission inventory (Janssens-Maenhout et al., 2013), which 

estimates the contribution of NOX emissions in a 20 × 33 km2 (0.3 degree) area around the center centre being 62%, 20%, 575 

12%, and 6% for the sectors transport, residential, energy, industry respectively. Especially the contribution of road transport 

is relevant, as its emissions are close to the ground in densely populated areas. We will use tTraffic information and population 

density will be used as proxies for urban emission (see Section 23.2.1 and 23.2.2). 

In contrast to the regional atmosphere, the urban atmosphere is more dominated by dispersion processes, while many chemical 

reactions are less important due to a relatively short residence time (Harrison, 2018). For the dispersion of the emission sources, 580 

we use the open source steady-state plume model AERMOD (Cimorelli et al., 2004) is used, developed by the American 

Meteorological Society (AMS) and United States Environmental Protection Agency (EPA). Based on the emission inventory 

and meteorology (see Section 23.2.4), AERMOD calculates hourly concentrations of air pollutants. The concentration 

distribution of an emission source is assumed to be Gaussian both horizontally as vertically when boundary layer conditions 



20 

 

are stable. In a convective boundary layer, the vertical distribution is described by a bi-Gaussian probability density function. 585 

Note that any other dispersion model can be used in the Retina methodology, as long as it is capable of simulating 

concentrations from individual emission sectors on an arbitrary receptor mesh. 

23.1 AERMOD simulation settings 

We use AERMOD version 16216r is used with simulation settings summarized in Table 1, operating on a rectangular domain 

of 18 × 22 km2 covering the municipality of Amsterdam for the most part. All coordinates are reprojected in a custom oblique 590 

stereographic projection (EPSG:9809) around the city centre coordinate, such that the coordinate system can be considered 

equidistant at the urban scale.All coordinates are reprojected to a local equidistant coordinate system with the city center as 

projection center. Instead of using a regular grid, we use a road-following grid mesh (Lefebre et al., 2011) is used. This reduces 

the number of receptor points, while maintaining accurate description of strong gradients found close to roads. Receptor 

locations are chosen at every 75 m along the parallel curves with 25 m distance to the road, and at every 125 m along the 595 

parallel curves with 50 m distance to the road.Grid points are defined at 25 and 50 m distances perpendicular to roads, and at 

parallel distances of 75 and 125 m respectively. The open spaces between these grid points are filled with a regular grid at 125 

m resolution. Roads are modelled as line sources, while residential emissions are described as area sources. The dispersion is 

calculated for NOX to avoid a detailed analysis of the rapid cycling between its constituents NO and NO2. Afterwards, an 

NO2/NOX ratio is applied, depending on the available ozone (O3), see Section 23.1.1. 600 

Memory usage of AERMOD for the Amsterdam domain is proportional to the total number of emission source elements (here 

17,069 road fragments and 12,182 residential squares) and the number of receptor points in the road-following grid mesh (here 

42,128). The calculation time for a single concentration field is around 10 minutes, but can be reduced to a fraction of this by 

parallelizing the code. 

23.1.1 Ozone chemistry and lifetime 605 

Primary emissions of NO2 (e.g. directly from the tailpipe) are only 5-10% of the total emitted NOX (Sokhi et al., 2007). At 

short time scales, secondary NO2 is formed by oxidation of NO with O3, while this reaction is counterbalanced by photolysis 

converting NO2 to NO. The reaction rate of the first reaction is temperature dependent, while the latter depends on the available 

sunlight. The NO2/NOX ratio has therefore an intricate dependence on temperature, radiation, and the proximity to the source 

(i.e. the travel time of the air mass since emission).  610 

A practical approach to estimate this ratio is the Ozone Limited Method (OLM), as described in EPA (2015). The method uses 

ambient O3 to determine how much NO is converted to NO2. The dispersed (locally produced) NOX concentration is divided 

into two components: the primary emitted NO2 (here assumed to be 10%), and the remaining NOX which is assumed to be all 

NO available for reaction with ambient O3: NO+O3 → NO2+O2. If the mixing ratio of ozone (O3) is larger than the 90% of 

(NOX), than all NO is converted to NO2. Otherwise, the amount of NO converted is equal to the available O3, i.e. (NO2) = 615 
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0.1(NOX) + (O3). The reaction is assumed to be instantaneous and irreversible. The resulting NO2 concentration is added to 

the NO2 background concentration. 

Removal processes of NOX are modeled with an exponential decay. The chemical lifetime is in the order of a few hours. Liu 

et al. (2016) find NOX lifetimes in a range from 1.8 to 7.5 h using satellite observations over cities in China and the USA. 

Given the size of our the domain and average wind speeds, its exact value is not of great importance here. Based on regression 620 

results, we choose a practical value of 2 hour is chosen. 

23.2 Simulation input data 

The dispersion simulation is driven by input data regarding emissions, background concentrations, and meteorology, listed in 

Table 2. All data, except for the traffic counts of inner city traffic, are taken from open data portals. The emission proxies are 

mapped in Fig. 12. 625 

23.2.1 Traffic emissions 

A recurrent problem when building urban air quality models is finding sufficiently detailed traffic emission information. 

Traffic emissions depend roughly on traffic flow and fleet composition, including engine technology. For many cities, 

unfortunately, this information is not available. Here a distinction is made between highways and primary roads, as both have 

a distinct traffic volume and weekly cycle. Differences in driving conditions and fleet composition are captured by assigning 630 

two different emission factors later on. 

Road location data and road type definition data are taken from OpenStreetMap (OSM, 2017), which is a crowd-source project 

to create a free editable map of the world. We separateA distinction is made between urban roads (labelled in OSM as 

“primary”, “secondary”, and “tertiary”) and highways (labeled as “motorway” and “trunk”), as they have a distinct traffic 

pulse, fleet composition, and driving conditions. Road segments labeled as “tunnel” are not taken into account. 635 

When the traffic flow q (in vehicles per hour) is known, the emission rate E for a road segment l can be written as 

 𝐸 = 𝛼veh𝑞𝑙            (1) 

with emission factor αveh representing the (unknown) NOX emission per unit length per vehicle. Hourly traffic flow data is 

taken from 29 representative highway locations from the National Data Warehouse for Traffic Information (NDW, 2019), 

which contains both real-time and historic traffic data. For the urban traffic flow we use, data from 24 inductive loop counters 640 

provided by the traffic research department of Amsterdam municipality is used. Due to its large numbers, traffic flow is 

relatively well predictable, especially when lower volumes during holiday periods and occasional road closures are neglected. 

For each location counting site we construct a traffic “climatology” is constructed, parametrized by hour and weekday, based 

on hourly data of 2016, see Fig. 23.  

Traffic counts correlate strongly between different highway locations, all showing a strong commuting and weekend effect. 645 

Urban traffic typically shows, apart from lower volumes, less reduction between morning and evening rush hours, a less 

pronounced weekend effect, and higher traffic intensities on Friday and Saturday night.  
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For locations x between the counting locations xi the traffic flow q(x) is spatially interpolated by inverse distance weighting 

(IDW): 

𝑞(𝐱) = {

∑ 𝑤𝑖(𝐱)𝑞𝑖𝑖

∑ 𝑤𝑖(𝐱)𝑖
,          if 𝑑(𝐱, 𝐱𝑖) ≠ 0 for all 𝑖

𝑞𝑖 ,                 if 𝑑(𝐱, 𝐱𝑖) = 0 for some 𝑖
        (2) 650 

in which the weighting factors wi depend on the distance d between x and the counting location xi: 

𝑤𝑖 =
1

𝑑(𝐱,𝐱𝑖)2            (3) 

Validation in the Supplementary Material shows that for this counting network IDW predicts the traffic volume within a 50% 

error margin at most locations. Better results are obtained when more counting locations are available, or when they are selected 

strategically around crossings and access roads. Model simulations show that using inferior traffic data is partly compensated 655 

by the calibration (Section 4), at the expense of less pronounced concentration gradients. 

23.2.2 Population data 

Population density is considered to be a good proxy for residential emissions, e.g. from cooking and heating. Here, we take 

data is taken from the gridded population database of 2014, compiled by the national Central Bureau for Statistics (CBS, 2019) 

at a 100 m resolution. Each grid cell is offered to the dispersion model as a separate area source. To reflect the observation 660 

that residential emissions per capita are less when people are living closer to each other (Makido et al., 2012), the emission 

fluxes are taken proportional to the square root of the population density p: 

𝐸 = 𝛼pop√𝑝            (4) 

23.2.3 Background concentrations 

As AERMOD only describes the local contribution to air pollution, we add background concentrations are added which are 665 

taken from the Copernicus Atmosphere Monitoring Service (CAMS) European air quality ensemble (Marécal et al., 2015). 

The CAMS ensemble consists of 7 regional models producing hourly air quality and atmospheric composition forecasts on a 

0.1 × 0.1 degree resolution. The analysis of the ensemble is based on the assimilation of 1-day oldup-to-date (UTD) air quality 

observations provided by the European Environment Agency (EEA). Each model has its own data assimilation system. 

In the CAMS product the local contributions are already present. To get a better estimate for regional background 670 

concentrations avoiding double counts, we take the lowest concentration found in a 0.3 × 0.3 degree area around the city for 

NO2 is taken, together with, and the mean concentration found in this area for O3. 

23.2.4 Meteorological data 

The dispersion of air pollution is strongly governed by local meteorological parameters, especially the winds driving the 

horizontal advection and the characterization of the boundary layer which defines the vertical mixing. Meteorology also affects 675 

the chemical lifetime of pollutants. 
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We use AERMET (EPA, 2019) is used as a meteorological pre-processor for organizing available data into a format suitable 

for use by the AERMOD model. AERMET requires both surface and upper air meteorological data, but is designed to run 

with a minimum of observed meteorological parameters. Vertical profiles of wind speed, wind direction, turbulence, 

temperature, and temperature gradient are estimated using all available meteorological observations, and extrapolated using 680 

similarity (scaling) relationships where needed (EPA, 2018). 

Hourly surface data from the nearby Schiphol airport weather station can be obtained from the Integrated Surface Database 

(ISD, see Smith et al. (2011)). We retrofit oObservations of temperature, winds, cloud cover, relative humidity, pressure, and 

precipitation are retrofit to match the SAMSON data format (WebMet, 2019a) which is supported by AERMET. Upper air 

observations are taken from daily radiosonde observations in De Bilt (at 35 km from Amsterdam), archived in the Integrated 685 

Global Radiosonde Archive (IGRA) (Durre et al., 2006). We convert pPressure, geopotential height, temperature, relative 

humidity, dew point temperature, wind speed and direction are converted to the TD6201 data format (WebMet, 2019b) for 

each reported level up to 300 hPa. 

2.3 Air quality measurements 

The Public Health Service of Amsterdam (GGD) is the responsible authority for air quality measurements in the Amsterdam 690 

area. Within the domain used in this study their NO2 network consists of 15 reference stations: 5 stations classify as road 

station, 5 as urban background station, 2 as industry, 2 as rural, and 1 undecided. Alternatingly, GGD operates a Teledyne API 

200E and a Thermo Electron 42I NO∕NOX analyser, both based on chemiluminescence. A catalytic-reactive converter converts 

NO2 in the sample gas to NO, which, along with the NO present in the sample is reported as NOX. NO2 is calculated as the 

difference between NOX and NO. Laboratory calibration estimates the combined uncertainty of hourly NO2 measurement at 695 

3.7% (GGD, 2014). 

Low-cost NO2 measurements are taken from the 2016 Urban AirQ campaign (Mijling et al., 2018). Sixteen low-cost air quality 

sensor devices were built and distributed among volunteers living close to roads with high traffic volume for a 2-month 

measurement period, from 13 June to 16 August. The devices are built around the NO2-B43F electrochemical cell by 

Alphasense Ltd (Alphasense, 2018). The sensor generates an electrical current when the target gas diffuses through a 700 

membrane where it is chemically reduced at the working electrode. Better sensor performance at low ppb levels is obtained by 

using low-noise interface electronics. The sensor devices were carefully calibrated in Mijling et al. (2017), solving issues 

related to sensor drift and temperature dependence. After calibration, they are found to have a typical accuracy of 30%.  

3 4 Calibrating the model 

Using proxy data instead of real emission introduces the problem to find the emission factors which best relate the activity 705 

data to their corresponding emissions. Instead of using theoretical values or values found in literature, we derive effective 

values are derived which best fit the hourly averaged NO2 observations of a network of N stations.  
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For a certain hour t, the emission of a source element i belonging to source sector k can be written as 

𝐸𝑖𝑘(𝑡) = 𝛼𝑘𝑃𝑖𝑘(𝑡)           (5) 

in which Pki Pik represents the corresponding emission proxy. The contribution of this source to the concentration at a receptor 710 

location j is 

𝑐𝑖𝑗𝑘(𝑡) = 𝑓𝑖𝑗(𝑡)𝐸𝑖𝑘(𝑡)           (6) 

with 𝑓𝑖𝑗 describing the dispersion of a unit emission from i to j, including the conversion from NOX to NO2 from the OLM. 

Eq. (6) is assumed to describe a linear relation between emission and concentration, although strictly speaking the variable 

NO2/NOX ratio introduces a weak nonlinearity. We apply aA regression analysis is applied for a certain period, assuming that 715 

for each t the total NO2 concentration cj at station j can be described as a background field b and a local contribution consisting 

of a linear combination of the dispersed fields of K emission sectors: 

𝑐𝑗(𝑡) = 𝑏(𝑡) + ∑ 𝑎𝑘 ∑ 𝑓𝑖𝑗(𝑡)𝑃𝑖𝑘(𝑡)
𝑆𝑘
𝑖

𝐾
𝑘=1          (7) 

Sk represents the number of source elements for an emission sector k. The second sum in this equation is calculated for every 

hour with the Gaussian dispersion model taking the meteorological conditions during t into account. Note that both background 720 

concentrations b(t) and local concentrations cj(t) are observed quantitiestaken from external data, see Section 23.2.3 and 2.3. 

Considering a period of T hours, Eq. (7) can be interpreted as a matrix equation from which the emission factors ak can be 

solved using ordinary least squares. Given the physical meaning of ak, only positive regression results are allowed. 

Note that our linearity assumption in Eq. (6) works best when relating NOX emissions to NOX concentrations. The non-linearity 

introduced by the variable NO2/NOX ratio (here determined within AERMOD by OLM) is assumed to be sufficiently weak 725 

for this assumption to remain valid. 

In our this setup, the emissions are approximated by three sectors highway traffic, urban traffic, and population density (K=3). 

The resulting ak do not necessarily represent real emission factors. Their values partly compensate for unaccounted emission 

sectors and unrealistic modelling (e.g. based on wrong traffic data or an incorrect chemical lifetime). In Retina we update ak 

every 24 hours, based on observations of the preceding week (T=168). Doing so, the periodic calibration adjusts itself to 730 

seasonal cycles and episodes not captured by the climatologies (e.g. cold spells or holiday periods). To avoid reducing the 

predictability of the regression model too much (ak dropping to zero), we do not usenot all reference stations are used for 

calibration, but only stations classified as roadside or urban background. For the Amsterdam network, N=11. The residential 

emissions are represented by the population density, which is a time invariant proxy. To allow for a diurnal cycle, the residential 

emission factor is evaluated for two-hour bins. This brings the total number of fitted emission factors to 14: one for highway 735 

traffic, one for urban traffic, and 12 describing the daily residential emission cycle. 

Figure 34 shows an example of the air quality simulation after the emission factors have been determined. The stacked colours 

in the time series of Fig. 4b show that the contribution from different emission sectors to local air pollution can strongly vary 

from site to site.  
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4.1 Diurnal and seasonal analysis of calibration results 740 

It is important to realize that the numerous modelling assumptions prevent that the calibration realistically solves the 

underdetermined inverse problem of finding the underlying NOX emissions based on the observed NO2 concentrations. Instead, 

it evaluates how much NOX must be injected into the model to explain the observed spatial NO2 patterns (unbiased with respect 

to the calibration locations). To study the results of the regression analysis, a comparison was made between a summer month 

(July 2016, mean temperature 18.4 ºC) and a winter month (January 2017, mean temperature 1.6 ºC). Figure 5 shows the 745 

diurnal emissions for a 0.2 × 0.1 degree area, corresponding to the two grid cells of the EDGAR inventory covering the city 

centre. 

Ideally, the emissions would be around the values found in the EDGAR inventory (6.23 and 7.18 10-10 kg NOX/m2/s for 

Summer and Winter respectively), and a corresponding ratio between residential and transport emissions (8% and 48% for 

Summer and Winter respectively). Unlike traffic, however, the diurnal cycle for the residential contribution is not prescribed, 750 

but is shaped in the regression analysis. The seasonal analysis shows that its fitted diurnal cycle not only describes changing 

residential emissions, but also compensates for changing NO2/NOX ratios over the day (not included in the OLM) due to 

changing photochemistry and temperature. In daylight, the destruction of NO2 by photolysis (NO2 + hv → NO + O3) is strong, 

reducing the NO2/NOX ratio. At low temperatures, the formation of NO2 from NO (NO + O3 → NO2 + O2) is slow, also 

reducing the NO2/NOX ratio. Also, due to collinearity, part of the traffic emissions will be explained by population density. 755 

Therefore, the found emission factors (and the corresponding sectoral emissions) should be considered as “effective” rather 

than real, i.e. as factors which best describe the observations under the given model assumptions. 

4 5 Assimilation of observations 

As the air quality network is spatially undersampling the urban area, we need to combine the observations need to be combined 

with additional model information to preserve the fine local structures in air pollutant concentrations. The interpolation 760 

technique of choice here is From the various geostatistical techniques available we choose Optimal Interpolation (OI) (Daley, 

1991), having the desired property that the Bayesian approach allows for assimilation of heterogeneous measurements with 

different error bars. At an observation location the model value is corrected towards the observation, the innovation depending 

on the balance between the observation error and the simulation error. The error covariances determine how the simulation in 

the surroundings of this location is adjusted. Note that OI is essentially the same assimilation scheme as kriging-based 765 

approaches. The main advantage here is that one has detailed manual control over the error covariance matrix, which allows 

for a more comprehensive specification of the area of influence for each contributing observation. Outside the representativity 

range (i.e. the correlation length) of the observations, the analysis relaxes to the model values.  

Consider a state vector x representing air pollutant concentrations on the (road-following) receptor grid mesh (n≈40,000). 

Define xb as the background, i.e. the model simulation. Observation vector z contains m measurements, typically 10﹣100. 770 

Following the convention by Ide et al. (1997), the OI algorithm can now be written as: 
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 𝐱𝑎 = 𝐱𝑏 + 𝐊(𝐳 − 𝐻(𝐱𝑏))           (8) 

𝐊 = 𝐏𝑏𝐇T(𝐇𝐏𝑏𝐇T + 𝐑)−𝟏          (9) 

𝐏𝑎 = (𝐈 − 𝐊𝐇)𝐏𝑏           (10) 

Matrix R is the m×m observation error covariance matrix. As all observations are independent (the measurement errors are 775 

uncorrelated), R is a diagonal matrix with the measurement variances on its diagonal. 

Pb is the n×n model error covariance matrix, describing how model errors are spatially correlated. The calculation of Pb is not 

straightforward; in Section 45.1 an approximation is derived. 

Operator H is the forward model, which maps the model state to the observed variables and locations. We can simplify tThe 

matrix calculations can be simplified by reserving the first m elements of the state vector for the observation locations, and the 780 

other 𝑛 − 𝑚 elements for the road-following gridmesh. The Gaussian dispersion model is evaluated “in-situ” at the observation 

locations. Avoiding reprojection or interpolation means that there are no representation errors associated with H. The 

simulations at the observation locations zb can then be written as a matrix multiplication 

𝐳𝑏 = 𝐻(𝐱𝑏) = 𝐇𝐱𝑏           (11) 

in which H is an m×n matrix for which its first m columns form a unity matrix, while its remaining elements are 0. 785 

Eq. (8) describes the analysis xa, i.e. how the observations z are combined (assimilated) with the model xb. It is a balance 

between the model covariance and the observation covariances, described by the gain matrix K in Eq. (9). K determines how 

strong the analysis must incline towards the observations or remain at the simulated values, to obtain the lowest analysis error 

variance, Pa in Eq. (10). 

Note that Eq. (8)-(10) are analogous to the first step in Kalman filtering. The second step of the filter, propagating the analysis 790 

to the next time step, cannot be made here as the plume model solves a stationary state which is independent of the initial air 

pollutant concentration field. Also note that since we will use an approximated model error covariance matrix will be used, 

generally these equations do not lead to an optimal analysis, hence this approach is more correctly referred to as Statistical 

Interpolation. 

Let vector c represent the observed NO2 mass concentrations, as described in Section 2.3. The distribution of the air pollutant 795 

concentrations resembles better the lognormal distribution than the Gaussian distribution, as can be seen from the Q-Q plots 

in Fig. 46. The analysis is done in log-space (zj = ln cj), stabilizing the results by reducing the impact of less frequent 

measurements of high concentrations. The analysis is therefore done in log-space (zj = ln cj), which converts lognormal 

distributions to Gaussian, for which the Bayesian assumptions behind Eq. (8)-(10) are valid. Once returning from the log 

domain, Eq. (8) can be rewritten as:  800 

𝐜𝑎 = exp(𝐱𝑎) = 𝐜𝑏exp(𝐊∆𝐳),   with innovation vector ∆𝐳 = 𝐳 − 𝐳𝑏      (12) 

By doing the analysis in the log-domain the assimilation updates correspond to multiplication instead of addition: exp(𝐊Δ𝐳) 

represents the local multiplication factor with which the simulated concentration cb is corrected. This means that the shape of 

the model field (e.g. strong gradients found close to busy roads) is locally preserved. Note that the error in zj corresponds to 
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the relative error in cj : d𝑧 = d(ln𝑐) d𝑐⁄ = d𝑐/𝑐 . The observation error covariance matrix is therefore 𝑹 =805 

 diag(𝜎1
2, 𝜎2

2, … , 𝜎𝑚
2 ), with σj the relative error corresponding to observation j. 

4.1 Modelling the model error covariance matrix  

For an optimal result in the data assimilation a realistic representation of the model covariance matrix Pb is essential. The 

model covariances influence the spatial representativity of the observations: when model errors correlate over larger distances, 

the assimilated observation will change the analysis over a longer range. 810 

Tilloy et al. (2013) choose to model the covariances depending on the road network. Error correlations are assumed to be high 

on the same road or on connected roads. For background locations, the correlation decreases fast in the vicinity of a road, while 

the error correlation between two background locations remains significant across a larger distance. The error covariances are 

kept constant in time, and taken independent of traffic conditions. 

However, Pb changes from hour to hour, mainly because varying meteorology changes the atmospheric dispersion properties. 815 

We estimateHere, the model error covariance is estimated for each hour based on the spatial coherence of the simulated 

concentration field. The covariance between two grid locations xi and xj can be expressed as their correlation 𝜌 and their 

standard deviations 𝜎: 

𝑃𝑖𝑗
𝑏  =  𝜎𝑖 𝜌(𝐱𝑖 , 𝐱𝑗) 𝜎𝑗           (13) 

The model error 𝜎 can only be evaluated at locations of the reference network using time series analysis. These model errors 820 

are spatially interpolated to other grid locations using IDW, analogous to Eq. (2)-(3). The correlation of model errors between 

different locations isWe assume the covariance to be isotropic (i.e. location independent) but inhomogeneous: we parametrized 

the covariance with a downwind correlation length Ldw and a crosswind correlation length Lcw. The extend extent of the 

correlation lengths reflect the turbulent diffusion and transport of the Gaussian dispersed plumes for a specific hour.  

From spatial analysis of the simulation data a heuristic model is derived which describes the dependence of the correlation on 825 

distance:we see that the correlation depends on distance with a heuristic model 

𝜌(𝑑)  = exp(−√𝑑) ,           (14) 

with d the scaled distance between xi and xj (expressed as xdw and xcw along the downwind and crosswind axes) 

𝑑 = √(
𝑥dw

𝐿dw
)

2

+ (
𝑥cw

𝐿dw
)

2

,           (15) 

such that all points on an ellipse with semi-major axis Ldw and semi-minor axis Lcw have the same correlations. 830 

To fit the parameters Ldw and Lcw for a certain hour, we select 1000 sample locations are selected from the road-following 

gridmesh. To represent both polluted and less polluted areas, the locations are selected such that their concentrations are 

homogeneously distributed over the value range, excluding the first and last 5 percentile. For this sample, correlation lengths 

Ldw and Lcw are fitted using Eq. (14) and (15). 

Figure 5 7 shows the results of this analysis for two different hours. For fields with low gradients (e.g. when traffic contribution 835 

is low at night), large values of L can occur. To prevent assimilation instabilities, the fitted values of L are limited to a maximum 
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of 10 km. During the 2016 summer months, longest correlation lengths are found for fields with low gradients. Average 

midnight values, when traffic contribution is low, are about 8 km. Correlation lengths are shortest during the morning rush 

hour (~1 km), increasing to 3 km during the late morning and afternoon. There is a wind dependency, as stronger winds stretch 

the pollution plumes, increasing correlation lengths. From the fit results we find anthe average ratio between Lcw and Ldw of is 840 

found to be 68%. 

Once the covariance parameters are known, the covariance matrix elements are calculated with Eq. (13). Note that for the 

calculation of the gain matrix K there is no need to calculate the full Pb matrix. Instead we calculate, PbHT,  is calculated, 

which due to the structure of H this matrix product corresponds to the first m columns of the n×n matrix Pb. 

5 6 Validation of simulation and assimilation 845 

We validate the system for the period June 15 - August 15 in 2016 with hourly observations from station NL49019 (Oude 

Schans), located in the city centre and classified as an urban background site. We test (1) the ability to simulate the NO2 

concentrations at this location with the dispersion model, and (2) the effectiveness of the data assimilation when only 

measurements of the neighbouring reference stations are included in the assimilation (i.e. a leave-one-out approach). From the 

results in Fig. 6 we see that the simulation describes the hourly observations with an RMSE of 11.7 μg/m3. The results improve 850 

considerably when the surrounding observations of the reference network are assimilated, taking advantage of the covariance 

between the observational information from nearby stations and the validation location. The error reduces to 7.6 μg/m3, while 

the correlation improves from 0.52 to 0.82. 

To assess the data quality across the domain, we perform a leave-one-out analysis is performed at all locations of the reference 

network for the period June 1 - August 31, 2016. The results are summarized in Table 3. Figure 8 illustrates two examples; 855 

plots for all validation locations can be found in the Supplementary Material. For the observation-free simulation (i.e. the 

model forecast) we find an average RMSE is found of 13.6 μg/m3 and correlation of 0.57. When assimilating observations, the 

average RMSE drops to 10.4 μg/m3 while the correlation increases to 0.78. Strong systematic underestimations of the 

simulation (characterized by a large negative bias) are observed at street locations NL49002, NL49007 and industrial locations 

NL49546, NL49704. These are most likely caused by unrealistic assumptions of local emissions of either traffic or industry. 860 

The strong positive bias found at NL49014, located in a city park separated from the nearby main road by a block of 4-storey 

buildings, might be explained by an incorrect simulation of air pollutants in the direct vicinity of these buildings. 

The CAMS regional ensemble analysis compares well with the average of the urban background stations; the very low bias (-

0.1 μg/m3) corresponds with the fact that data of these stations are used in its analysis. (Note that we use here the CAMS values 

used here corresponding to the Amsterdam grid cell, not the 3×x3 minimum values used as background for the modelling.) On 865 

the other hand, it shows strong underestimations at street locations, as expected. It is here where the Retina simulation 

outperforms the low resolution results of CAMS. 
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From Table 3 we can be seen that the relative error in the model forecast (defined as the ratio between the RMSE and the mean 

of the observations) is around 58% on average. When assimilating, the error becomes dependent on the distance to the nearest 

observation locations. For sites having the nearest assimilated observation within 2 km distance, the average RMSE drops 870 

from 16.8 to 11.9 μg/m3, corresponding to an average relative error of 39%. For sites where the nearest assimilated observation 

is further away than 2 km, the average RMSE drops from 10.8 to 9.1 μg/m3, corresponding to an average relative error of 53%. 

76 Added value of low low-costs sensors 

The previous analysis is purely based on high-quality reference measurements. In this section we is explored whether the 

statistical interpolation scheme can be used to derive useful information of low-cost measurements, despite their larger inlower 875 

accuracy.  

During the Urban AirQ campaign (see Section 2.3) sensor SD04 was mounted at 120 m distance from location NL49019. 

From the hourly time series in Fig. 6 it can be seen that including its sensor data in the assimilation leads to a better description 

of NO2 concentrations at location NL49019 than when assimilating with reference data alone. The RMSE drops from 7.6 

μg/m3 to 4.7 μg/m3, while the correlation improves from 0.82 to 0.92. 880 

This is done by testing different assimilation configurations during the Urban AirQ campaign, from 15 June to 15 August 2016 

(see Section 2). The campaign targeted a central area with 4 reference stations and 14 low-cost sensors (See Figure 10a). 

Validation is done for 5 different assimilation scenarios (AS): 

• AS1: Assimilation of all reference measurements (leave-one-out); 

• AS2: Assimilation of measurements from 3 central reference sites (leave-one-out); 885 

• AS3: Assimilation of low-cost data only; 

• AS4: Assimilation of measurements from 3 central reference sites (leave-one-out) and all low-cost data; 

• AS5: Assimilation of all reference measurements (leave-one-out) and all low-cost data. 

The results are summarized in Figure 9. As expected, results deteriorate when the number of reference locations in the 

assimilation are reduced from 14 (AS1) to 3 (AS2). The correlation decreases at all 4 validation locations. At NL49012, the 890 

RMSE increases significantly due to a positive jump in the bias. The lower analysis with respect to the observations is due to 

the absence of assimilation of high values at nearby street location NL49002, which enlarges the influence of lower 

observations found at urban background location NL49019. At NL49019, located in the middle of 3 assimilation locations, the 

RMSE does not change significantly. Apparently, the effect of assimilation of observations farther than the surrounding 

locations is small. 895 

When only observations of 14 low-cost sensors are assimilated (AS3), instead of observations at 3 reference sites (AS2), there 

is a notable improvement visible in bias and RMSE at location NL49019. Here, the low-cost sensors are relatively nearby, the 

closest being sensor SD04 at 120 m distance. At the other validation locations, the low-cost sensor assimilation results in 

similar RMSE (i.e. within 1 µg/m3), a comparable bias, but a slightly lower correlation.  
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The results can be further improved if both reference and low-cost sensor data are included (AS4 and AS5). At NL49019, the 900 

RMSE drops to 5.1 µg/m3 (compared to 7.8 µg/m3 when no low-cost data are included) while the correlation increases to 0.89. 

Again, there is no significant difference between including the three surrounding reference locations and including all reference 

locations. Also at street location NL49017 and urban background location NL49003, the inclusion of low-cost sensor data 

improves RMSE and correlation compared to assimilations with reference data only (AS4 vs. AS2, and AS5 vs. AS1). At 

location NL49012, the bias reduces considerably only when all reference data are included in the assimilation (AS1 and AS5).  905 

The different assimilation scenarios show that low-cost sensor data assimilation improves the results locally, even in absence 

of reference data. Generally, the best results are obtained when both reference data and low-cost data are included. Assimilation 

can reduce local model biases. However, unrealistically modelled covariances can lead locally to the introduction of an 

additional bias. 

Next, a monthly averaged concentration map of Amsterdam is constructed with we use all reference data and all low-cost 910 

sensor data from the first half of the Urban AirQ campaign to construct a monthly averaged concentration map of Amsterdam, 

see Fig. 710b. The addition of the low-cost data lowers the assimilation results by several μg/m3 in the undersampled area west 

of Oude Schans (NL49019), while the NO2 increases with several μg/m3 around the traffic arteries found south and east of this 

location (Fig. 10c). A large fraction of traffic on these roads uses the IJ-tunnel to cross the river. On a monthly basis, this 

tunnel is used by approximately one million vehicles. 915 

The second half of the Urban AirQ campaign coincides with the start of the summer holiday period and the closure of the IJ-

tunnel for maintenance. Comparison of the NO2 concentration maps of both periods reveal interesting features (Fig. 811). 

Based on averaged NO2 measurements at rural stations NL49565 and NL49703, the NO2 reduction due to meteorological 

variability is estimated to be 7%.  Overall, the The overall drop in NO2 concentrations in the central area, however,  dropis 

around 10% due to reduced traffic during the summer break. Notable exception is the historic city centercentre, where the NO2 920 

reduction is only  a few percent, probably related to the steady economic activity driven by tourism. The strongest NO2 

reductions, around 15%, are found around the access ways of the IJ-tunnel. A few main roads (e.g. De Ruijterkade/Piet 

Heinkade and Ceintuurbaan) show less NO2 reduction than average, apparently due to redirected traffic avoiding the tunnel. 

87 Discussion and Conclusions 

The validation analysis in Section 5 confirms that the CAMS ensemble is a good predictor for hourly NO2 concentrations 925 

found in the urban background. However, local effects can be better resolved when CAMS data is used for background 

concentrations in a dispersion model which is driven by proxies for traffic and residential emissions. 

The Retina simulation setup shows that such a system can be built from open software and open data. Applied to Summer 

2016 in Amsterdam, it reduces the relative error at street locations from 70% to 51%, mainly by reducing the negative bias 

from 18.2 to 5.3 μg/m3. At urban background locations the dispersion model introduces often a positive bias, especially when 930 

traffic sources are nearby. This is probably related to the assumption of uniform surface roughness used by the dispersion 
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model to account for the urban structure. A better description of street canyons in the model is likely to reduce this bias. Also 

unrealistic assumptions about chemical lifetime of NO2 (influencing the plume “length”) might play a role here. 

The Retina approach works best for areas where air pollution is dominated by transport and residential emissions. Significant 

inaccuracies will be found in areas dominated by local emissions (e.g. from industry, port and airport activity) which are not 935 

described adequately by the proxies. This can be addressed by including these sources explicitly in the dispersion modelling. 

The mapping results improve considerably with the second Retina step when available observations are assimilated by the 

statistical interpolation scheme. In general, the error of the assimilation results depends on the accuracy of air quality model, 

the number of assimilated observations, the quality of observations, and the distance to the observation location. When 

assimilating measurements of the reference network, the relative error in NO2 concentrations drop to 44% on average. The 940 

local error depends on the distance to the nearest observations: approximately 39% within 2 km of an observation site, 

increasing to 53% for larger distances. The typical correlation increases from 0.6 to 0.8. 

Retina has been built on open data to facilitate a flexible application to other cities. The meteorology needed for AERMOD is 

taken from global data sets of ISD and IGRA. Road network information can also be obtained globally from OpenStreetMap. 

Traffic data tend to be harder to obtain. When no local data is available on diurnal and weekly traffic flow its patterns should 945 

be estimated. In the absence of local census data, population density data can be taken from the Global Human Settlement 

database (Schiavina et al., 2019), which has global coverage on a 250 m resolution. For application within Europe, the 

necessary background pollutant concentrations can be obtained from CAMS. For applications outside Europe other data sets 

have to be found. 

For near-real time monitoring and forecasting of air quality the CAMS ensemble analysis must be changed for the ensemble 950 

forecast. Instead of observation-based meteorology one should use data from local or global numerical weather prediction 

models e.g. from the National Centers for Environmental Prediction (the Global Forecast System, GFS; open data) or the 

European Centre for Medium-Range Weather Forecasts (ECMWF; not open data). 

8 Conclusions 

In this paper we have presented Retina, a practical approach to interpolating hourly urban air quality measurements. As air 955 

pollution gradients can be strong in the urban environment, it is essential to combine (sparse) measurements with an air quality 

model when aiming at street-level resolution. The first step of Retina consists of a simulation by a dispersion model which is 

driven by meteorological data and proxies for traffic and residential emissions. In the second step, observations of different 

accuracy are assimilated using a statistical interpolation scheme. 

A reasonable approximation of the model covariance matrix is found by assuming the model covariance to be isotropic and by 960 

fitting correlation lengths along the downwind and crosswind axes for every hour. Finding a more realistic description of the 

model covariance matrix may further improve the assimilation results, which will be subject of future research.  
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Retina can be used for an enhanced understanding of reference measurements by deriving detailed observation-based 

concentration maps. The Bayesian assimilation scheme also allows us to improve the results by including low-cost sensor data, 

in order to get improved localized information. However, biases must be removed beforehand with careful calibration, as most 965 

low-cost air quality sensors suffer from issues like cross-sensitivity or signal drift, see e.g. Mijling et al. (2018).  

The assimilation of low-cost sensor data from the Urban AirQ campaign reveals more detailed structure in concentration 

patterns in an area which is undersampled by the official network. The additional measurements correct for wrong assumptions 

in traffic emissions used in the apriori interpolation, and give better insight in how traffic rerouting (for instance due to closure 

of an arterial road) affects local air quality. 970 

Apart from assessment of historic data such as in this study, Retina has been applied successfully for near-real time monitoring 

and forecasting of NO2 in the cities of Amsterdam, Barcelona, and Madrid. Future work includes the application of Retina to 

other cities inside and outside of Europe, and the application of Retina to other pollutants such as particulate matter. 

 

As air pollution gradients can be strong in the urban environment, it is essential to combine (sparse) measurements with an air 975 

quality model when aiming at street-level resolution. Retina is a practical approach to interpolating hourly urban air quality 

measurements. The first step consists of a simulation by a dispersion model which is driven by meteorological data and proxies 

for traffic and residential emissions. The model is daily calibrated with historic measurements. In the second step, observations 

of different accuracy are assimilated using a statistical interpolation scheme. 

Validation analysis confirms that the European CAMS ensemble is a good predictor for hourly NO2 concentrations found in 980 

the urban background. However, the CAMS data for NO2 can be misleading when interpreted at the local scale, as the predicted 

diurnal cycle often deviates substantially from that observed at urban air quality stations. Local effects can be better resolved 

when CAMS data is used for background concentrations in a dispersion model which is driven by proxies for traffic and 

residential emissions.  

The Retina simulation setup shows that such a system can be built from open software and open data. Applied to Summer 985 

2016 in Amsterdam, it reduces the relative error at street locations from 70% to 51%, mainly by reducing the negative bias 

from 18.2 to 5.3 μg/m3. At urban background locations the dispersion model often introduces a positive bias, especially when 

traffic sources are nearby.  

The mapping results improve considerably with the second Retina step when available observations are assimilated by the 

statistical interpolation scheme. When assimilating measurements of the reference network, the relative error in NO2 990 

concentrations drops to 44% on average. The local error depends on the distance to the nearest observations: approximately 

39% within 2 km of an observation site, increasing to 53% for larger distances. The typical correlation increases from 0.6 to 

0.8. 

The Bayesian assimilation scheme also allows us to improve the results by including low-cost sensor data, in order to get 

improved localized information. However, biases must be removed beforehand with careful calibration, as most low-cost air 995 

quality sensors suffer from issues like cross-sensitivity or signal drift, see e.g. Mijling et al. (2018). The assimilation of low-
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cost sensor data from the Urban AirQ campaign reveals more detailed structure in concentration patterns in an area which is 

undersampled by the official network. The additional measurements correct for wrong assumptions in traffic emissions used 

in the apriori interpolation, and give better insight into how traffic rerouting (for instance due to closure of an arterial road) 

affects local air quality. 1000 

Retina has been built on open data to facilitate a flexible application to other cities. The meteorology needed for AERMOD is 

taken from global data sets of ISD and IGRA. Road network information can also be obtained globally from OpenStreetMap. 

Traffic data tends to be hard to obtain. When no local data is available on diurnal and weekly traffic flow its patterns should 

be estimated. In the absence of local census data, population density data can be taken from the Global Human Settlement 

database (Schiavina et al., 2019), which has global coverage on a 250 m resolution. For application within Europe, the 1005 

necessary background pollutant concentrations can be obtained from CAMS. For applications outside Europe other data sets 

have to be found. 

In general, degraded input data and imperfections in the dispersion modelling will deteriorate the system’s capability to resolve 

local structures; it will lower the effective spatial resolution of the simulations. In its extreme it will only describe the blurry 

urban background pollution contribution added to the rural background. Oppositely, with improved input data and atmospheric 1010 

modelling, the effective resolution will improve, reducing local biases. This is the focus of future research. 

Significant inaccuracies due to local emissions which are not described adequately by the proxies (e.g. from industry, port and 

airport activity) can be reduced by including these sources explicitly in the dispersion modelling. Small-scale structures 

provoked by the local built-up area will be better described by introducing the street canyon effect. The model will also benefit 

from a more detailed traffic emission model, based on more counting locations and aggregated from shorter time intervals. 1015 

Ideally, such an emission model takes local differences in fleet composition also into account. Finally, simulations will gain 

accuracy with a more realistic NOX chemistry, concerning the NOX chemical lifetime (influencing the plume length) and the 

NO2/NOX ratio. 

Overall, the error of the assimilation results depends on the accuracy of the air quality model, the number of assimilated 

observations, the quality of observations, and the distance to the observation location. A reasonable approximation of the 1020 

model covariance matrix is found by assuming the model covariance to be isotropic and by fitting correlation lengths along 

the downwind and crosswind axes for every hour. Finding a more realistic description of the model covariance matrix will 

better suppress the introduction of bias by the assimilation, and will be subject to future research.  

For near-real time monitoring and forecasting of air quality the CAMS ensemble analysis must be changed for the ensemble 

forecast. Instead of observation-based meteorology one should use data from local or global numerical weather prediction 1025 

models e.g. from the National Centers for Environmental Prediction (the Global Forecast System, GFS; open data) or the 

European Centre for Medium-Range Weather Forecasts (ECMWF; not open data). 

Apart from assessment of historic data such as in this study, Retina has been applied successfully for near-real time monitoring 

and forecasting of NO2 in the cities of Amsterdam, Barcelona, and Madrid. Future work includes the implementation of other 

cities inside and outside of Europe, and the application of Retina to other pollutants such as particulate matter. 1030 
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Figure 1: Air quality reference network of Amsterdam. (Basemap source: © Mapbox © OpenStreetMap contributors 2019. 1135 

Distributed under a Creative Commons BY-SA License.) 
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Figure 12: Map of the emission proxies used for the dispersion model. Red lines indicate the highways, green lines indicate the urban 

main roads. Grey colours indicate the population density. The locations of the reference measurement sites are indicated with the 1140 
yellow dots. Units on the axes are in meters. (Road location data adopted from © OpenStreetMap contributors 2019. Distributed 

under a Creative Commons BY-SA License.)  

 

Figure 23: Weekly cycle of highways and urban roads at counting locations (thin lines), aggregated from hourly data from 2016. 

The thick lines show the median of traffic flow for both road types. Weekly cycle of highways in the Amsterdam area, as opposed to 1145 
the weekly cycle of urban roads. The morning and evening rush hours on working days are clearly visible for highways. Urban 

traffic has, apart from lower volume, less distinct peaks. The thick lines show the median of traffic flow for both road types. 
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Figure 43a: Dispersion maps of NO2 concentrations for each emission sector at 8 July 2016, 9:00. The lower right panel shows the 1150 
linear combination which best fits the time series at the calibration sites. Wind is blowing from the southwest at 16 km/h. The grey 

dots indicate an urban background location, a street location, and a highway location. 
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Figure 3b4b: Comparison of observed and simulated NO2 time series for three different sites (marked with grey dots 

above): anthe urban background location, a the street location, and a the highway location. The colours indicate the 1155 

simulated contribution of the three source sectors and the background. 

 

 

Figure 5: Diurnal emission cycles after calibration of emission factors in different seasons.  
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 1160 

 

Figure 46: (left) Distribution of the NO2 observations at reference station Oude Schans in July 2016 compared to a standard normal 

distribution. (right) The logarithm of the observed values correspond better to a Gaussian distribution, shown by the quantile value 

pairs being almost on a straight line. 

 1165 
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Figure 57: Left panels show Simulated simulated NO2 concentration fields at two different hours. The middle panels show the spatial 

correlations along the downwind and crosswind axes based on a sample of n=1000. The right panels show and the spatial correlations 

of a the sample (n=1000) and the resulting modeledmodelled spatial correlation model. Units are in meters. 1170 
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Figure 68: Validation of hourly time series for the period 1 June to 31 August, 2016, for a well performing street location (above) 

and a less performing urban background location (below). Statistics of the n data pairs are given in correlation (ρ), coefficient of 1175 
determination (R2), and RMSE. The right hand panels compare the error distributions: the observation minus forecast (OmF) 

against the observation minus analysis (OmA).(top) 8-day snapshot of NO2 time series of observation, simulation, and assimilation 

at location “Oude Schans”. Assimilation is performed with data from reference stations alone (green line), and with additional data 

from nearby low-cost sensor SD04 (blue line). (bottom) Scatter plots of observation against simulation and assimilation for the June 

15 -August 15 2016 period. Statistics of the n data pairs are given in correlation (𝝆), coefficient of determination (R2), and RMSE. 1180 

 

 

Figure 9: Validation of the model forecast and five different assimilation scenarios at four central reference sites, for 

the period June 15 to August 15, 2016.  
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 1185 
Figure 107: (a) Observation sites during the Urban AirQ campaign. (ab) 30-day average of NO2 concentrations in the center centre 

of Amsterdam, after assimilation of both reference measurements (black dots) and low-cost measurements (white dots). (bc) Changes 

in spatial pattern when low-cost measurements are included in the analysis. (Basemap source: © Mapbox © OpenStreetMap 

contributors 2019. Distributed under a Creative Commons BY-SA License.) 

 1190 

 



46 

 

Figure 811: Reduction of NO2 during the holiday period. Largest reduction of concentrations is found in the vicinity of access ways 

to the IJ-tunnel, which was closed for maintenance. Concentrations in the historic centercentre remain unchanged. (Basemap source: 

© Mapbox © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.) 

  1195 
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Table 1: Overview of AERMOD simulation settings 

Road width  20 m 

Emission height traffic 0.5 m 

Emission height residential 10 m 

Initial vertical extension of concentration 

layer (sigma Z0) 

10 m 

Receptor grid Road following 

Receptor height 1.5 m 

Urban surface roughness length 1 m 

NO2/NOX ratio Ozone Limited Method (OLM),  

Primary emission ratio 10% 

NOX lifetime 2 h 

Other AERMOD modelling options Optimizing model runtime for sources (FASTALL) 

Address low wind speed conditions (LOWWIND3) 

Assuming flat terrain (FLAT) 
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Table 2: Summary of simulation input data for Amsterdam 

Emission Highway locations OpenStreetMap (OSM, 2017): street segments labelled 

motorway and trunk 

Urban road locations OpenStreetMap (OSM, 2017): street segments labelled 

primary, secondary, tertiary 

Highway traffic flow National Data Warehouse for Traffic Information (NDW, 

2019): weekly cycle of vehicle counts at 29 selected 

locations (2016), interpolated to street segments 

Urban traffic flow Amsterdam municipality (personal communication): weekly 

cycle of vehicle counts at 24 locations (2016), interpolated to 

street segments 

Population data Statistics Netherlands (CBS, 2016): population density 

(2014) gridded at 100 m resolution 

Observation Background NO2 Copernicus Atmosphere Monitoring Service (CAMS, 2019): 

NO2 analysis from model ensemble; minimum value found in 

3x3 grid around domain centercentre 

Background O3 Copernicus Atmosphere Monitoring Service (CAMS, 2019): 

O3 analysis from model ensemble; mean value found in 3x3 

grid around domain centercentre 

Meteorology Meteorology (surface) Integrated Surface Database (ISD, 2019): hourly 

observations from Schiphol Airport weather station 

Meteorology (upper air) Integrated Global Radiosonde Archive (IGRA, 2019): daily 

radio sounding at De Bilt (NL) 

 1200 

  



49 

 

Table 3: Validation results at reference locations, June 1-August 31, 2016 

ID name type n1) 

mean 

obs. 

CAMS ensemble Model forecast Assimilated observations 

RMSE2) bias corr RMSE2) bias corr RMSE2) bias corr dist3) 

NL49002 

Amsterdam - 

Haarlemmerweg street 2145 42.2 31.4 -25.6 0.49 22.6 -14.3 0.55 18.6 -14.5 0.83 0.99 

NL49007 

Amsterdam - 

Einsteinweg street 2145 38.1 29.2 -21.4 0.42 19.6 -6.9 0.57 16.5 -6.2 0.72 1.26 

NL49012 

Amsterdam - Van 

Diemenstr. street 2145 29.1 20.2 -12.5 0.53 15.7 -2.7 0.57 9.7 -0.5 0.87 0.99 

NL49017 

Amsterdam - 

Stadhouderskade street 2140 30.1 17.9 -13.5 0.45 14.3 1.9 0.50 9.0 -2.7 0.78 1.60 

NL49020 

Amsterdam - Jan 

van Galenstraat street 2131 34.8 24.0 -18.2 0.59 16.6 -4.7 0.58 11.1 -5.3 0.86 1.26 

NL49003 

Amsterdam - 

Nieuwend. dijk 

urban 

backgr. 2145 16.6 8.6 0.1 0.60 10.5 2.0 0.47 7.5 0.8 0.71 3.28 

NL49014 

Amsterdam - 

Vondelpark 

urban 

backgr. 2115 17.3 9.0 -0.7 0.52 14.9 7.9 0.44 9.9 6.5 0.75 1.73 

NL49019 

Amsterdam - Oude 

Schans 

urban 

backgr. 2124 20.7 10.3 -4.1 0.59 13.8 5.8 0.50 8.7 4.6 0.81 1.60 

NL49021 

Amsterdam - 

Kantershof 

urban 

backgr. 2082 14.9 7.5 1.6 0.65 10.7 5.6 0.56 8.0 4.4 0.73 7.33 

NL49022 

Amsterdam - 

Sportp. Ookmeer 

urban 

backgr. 2124 14.3 8.4 2.4 0.65 9.2 3.4 0.66 8.0 3.7 0.80 3.89 

NL49565 

Oude Meer - 

Aalsmeerderdijk rural 2127 17.3 9.1 -0.6 0.57 9.0 -2.4 0.59 8.0 -3.0 0.73 5.94 

NL49703 

Amsterdam - 

Spaarnwoude rural 2125 13.0 8.7 3.7 0.61 8.1 2.1 0.60 7.5 2.4 0.71 4.47 

NL49546 Zaanstad - Hemkade industry 2145 22.9 14.3 -6.2 0.63 15.0 -8.1 0.66 13.0 -8.3 0.83 3.26 

NL49704 Zaanstad - Hoogtij industry 2120 19.6 12.7 -3.0 0.66 13.4 -6.0 0.72 12.1 -6.4 0.84 3.72 

NL49561 

Badhoevedorp - 

Sloterweg undecided 2145 20.5 10.6 -3.9 0.64 10.8 -2.9 0.61 8.9 -4.2 0.79 3.96 

Average street locations 34.9 24.5 -18.2 0.50 17.8 -5.3 0.55 13.0 -5.8 0.81  
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1) Number of samples 

2) In units μg/m3 1205 

3) The distance to the nearest observation site, in km 

 

Average urban background locations 16.8 8.8 -0.1 0.60 11.8 4.9 0.53 8.4 4.0 0.76  

Average all locations 23.4 14.8 -6.8 0.57 13.6 -1.3 0.57 10.4 -1.9 0.78  


