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Abstract. In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not
well known due to the sparseness of official monitoring networks, or unrealistic assumptions being made in urban air quality
models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary
information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward
because of the localized nature of air pollution, and the large uncertainties associated with measurements of low-cost sensors.
This study presents a practical approach to producing high spatio-temporal resolution maps of urban air pollution capable of
assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building a versatile air quality
model, driven by an open source atmospheric dispersion model and emission proxies from open data sources, and (2) a practical
spatial interpolation scheme, capable of assimilating observations with different accuracies.

The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO>) in Amsterdam, the Netherlands,
during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy (defined
as the ratio between the root means square error and the mean of the observations) of 39% within 2 km of an observation
location, and 53% at larger distances. When low-cost measurements of the Urban AirQQ campaign are included, the maps reveal
more detailed concentration patterns in areas which are undersampled by the official network. It is shown that during the
summer holiday period, NO, concentrations drop about 10%. The reduction is less in the historic city centre, while strongest
reductions are found around the access ways to the tunnel connecting the northern and the southern part of the city, which was
closed for maintenance. The changing concentration patterns indicate how traffic flow is redirected to other main roads.
Overall, it is shown that Retina can be applied for an enhanced understanding of reference measurements, and as a framework

to integrate low-cost measurements next to reference measurements in order to get better localized information in urban areas.

1 Introduction

Due to growing urbanization in the last decades, more than half of the world’s population lives in cities nowadays. Dense
traffic and other human activity, in combination with unfavourable meteorological conditions, often cause unhealthy air
pollution concentrations. Over 80% of the urban dwellers are forced to breathe air which does not meet the standards of the

World Health Organization (WHO, 2016). In 2015, an estimated 4.5 million people died prematurely from diseases attributed
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to ambient air pollution (Lelieveld et al., 2018). Good monitoring is important to better understand the local dynamics of air
pollution, to identify hot spots, and to improve the ability to anticipate events. This is especially relevant for nitrogen dioxide
(NO3y) concentrations, which can vary considerably from street to street. NO, is, apart from being a toxic gas on its own, an
important precursor of particulate matter, ozone, and other regional air pollutants. Observations from a single location are not
necessarily representative for a larger area. Unfortunately, urban air quality reference networks are usually sparse or even
absent due to their high installation and maintenance costs. New low-cost sensor technology, available for several years now,
has the potential to extend an official monitoring network significantly, even though the current generation of sensors have
significant lower accuracy (WMO, 2018).

However, exploiting these measurements (either official or unofficial), apart from publishing the data as dots on a map, is not
straightforward. Here, the aim is to make better use of the existing measurement networks to get the best description of hourly
urban air quality, and to create value from low-cost measurements towards a Level 4 product, according to the classification
proposed by Schneider et al. (2019)

To obtain high-resolution information of air pollutants with sharp concentration gradients, a very sparse observation network
needs to be accompanied by a valid high-resolution air quality model, whereas a very dense network can do with simple spatial
interpolations. The situation in most large cities is somewhere in between. There is often a reasonably large reference network
present (10+ stations), sometimes complemented with an experimental network of low-cost AQ sensors. Assumptions about
underlying unresolved structures in the concentration field are still needed, but this can be done with a simplified air quality
model, using the available measurements to correct simulation biases where needed.

A popular approach in detailed mapping of air quality is land use regression modelling (LURM), see e.g. Beelen et al. (2013).
LURM uses multiple linear regression to couple a broad variety of predictor variables (geospatial information such as traffic,
population, altitude, land use classes) to the observed concentrations. It is typically used in exposure studies, which target long
integration intervals by definition. Problems of over-fitting might arise when too many predictor variables are used.
Alternatively, Denby (2015) advocates the use of less proxy data, and a model based on more physical principles. In his
approach, the emission proxies are first (quasi) dispersed with a parameterized inverse distance function, before being coupled
to observed concentrations in a regression analysis.

Mapping of air pollution for short time scales is challenging. Only a few scientific studies are published aiming at assimilation
of near-real time observations in hourly urban concentration maps. Tilloy et al. (2013) use the 3-hourly output of a well-
developed implementation of the AMDS Urban dispersion model in Clermont-Ferrand, France, to assimilate in-situ NO,
measurements at 9 reference sites in an optimal interpolation scheme. With a leave-one-out validation they show a strong
reduction in root mean square error of the time series after assimilation. Schneider et al. (2017) use Universal Kriging to
combine hourly NO, observations of 24 low-cost sensors in Oslo, Norway, with a time-invariant basemap. The basemap is
created from a yearly average concentration field calculated with an Eulerian/Lagrangian dispersion model on a 1 km grid,
downscaled to 100 m resolution. Averaged over reference locations, their study shows that hourly values compare well with

official values, showing the potential of low-cost sensor data for complementary air quality information at these time scales.
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In this paper presents a more advanced yet practical approach to map hourly air pollutant concentrations, named Retina. Its
main system design considerations are:

Observation driven

Able to assimilate observations of different accuracy
Potential near-real time application

Versatile / portable to other domains

Based on open data

Reasonable computer power

The method is applied to Amsterdam, a city like many where NO, emissions are dominated by transport and residential
emissions and where local exceedances of limit values are regularly observed. Amsterdam is the most populous city in the
Netherlands, with an estimated population of 863,000. Located at 52°22'N 4°54'E, it has a maritime climate with cool summers
and moderate winters. Concentrations of NO, within the city vary considerably, being partly produced locally and partly
transported from outside the city. Measurements of 2016 show that, compared with regional background values from the
CAMS ensemble (see Section 3.2.3), urban background concentrations are on average around 50% higher, while at road sides
NO; concentrations are about 100% higher.

Retina uses a two-stage approach. It runs an urban air quality model to account for hourly variability in meteorological
conditions (described in Section 3) which is dynamically calibrated with recent measurements (Section 4). In the second stage
it assimilates current measurements using statistical interpolation (Section 5). Section 6 presents the validation of the system,
while Section 7 shows the added value when assimilating additional low-cost sensor measurements. The last section is reserved

for discussion, conclusion and outlook.

2 Air quality measurements

The Public Health Service of Amsterdam (GGD) is the responsible authority for air quality measurements in the Amsterdam
area. Within the domain used in this study their NO, network consists of 15 reference stations: 5 stations classify as road
station, 5 as urban background station, 2 as industry, 2 as rural, and 1 undecided. Alternatingly, GGD operates a Teledyne API
200E and a Thermo Electron 421 NO/NOx analyser, both based on chemiluminescence. A catalytic-reactive converter converts
NO; in the sample gas to NO, which, along with the NO present in the sample is reported as NOx. NO, is calculated as the
difference between NOx and NO. The accuracy of both type of reference instruments is estimated at 3.7% (GGD, 2014),
following the EN 14211 standard which includes all aspects of the measurements method: uncertainties in calibration gas and
zero gas, interfering gases, repeatability of the measurement, derivation of NO, from NOx and NO, and averaging effects.

Low-cost NO, measurements are taken from the 2016 Urban AirQ campaign (Mijling et al., 2018). Sixteen low-cost air quality
sensor devices were built and distributed among volunteers living close to roads with high traffic volume for a 2-month
measurement period, from 13 June to 16 August. The devices are built around the NO2-B43F electrochemical cell by
Alphasense Ltd (Alphasense, 2018). The sensor generates an electrical current when the target gas diffuses through a

membrane where it is chemically reduced at the working electrode. Better sensor performance at low ppb levels is obtained by
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using low-noise interface electronics. The sensor devices were carefully calibrated using side-by-side measurements next to a
reference station, solving issues related to sensor drift and temperature dependence (Mijling et al., 2018). After calibration,

they are found to have a typical accuracy of 30%.

3 Setting up a versatile urban air quality model

One of the largest unknowns when modelling urban air quality is a detailed, up-to-date emission inventory capable of
describing the local contribution. For cities such as Amsterdam the local emissions are dominated by the transport and
residential sector. This is confirmed by the EDGAR HTAP v2 emission inventory (Janssens-Maenhout et al., 2013), which
estimates the contribution of NOx emissions in a 20 x 33 km? (0.3 degree) area around the centre being 62%, 20%, 12%, and
6% for the sectors transport, residential, energy, industry respectively. Especially the contribution of road transport is relevant,
as its emissions are close to the ground in densely populated areas. Traffic information and population density will be used as
proxies for urban emission (see Section 3.2.1 and 3.2.2).

In contrast to the regional atmosphere, the urban atmosphere is more dominated by dispersion processes, while many chemical
reactions are less important due to a relatively short residence time (Harrison, 2018). For the dispersion of the emission sources,
the open source steady-state plume model AERMOD (Cimorelli et al., 2004) is used, developed by the American
Meteorological Society (AMS) and United States Environmental Protection Agency (EPA). Based on the emission inventory
and meteorology (see Section 3.2.4), AERMOD calculates hourly concentrations of air pollutants. The concentration
distribution of an emission source is assumed to be Gaussian both horizontally as vertically when boundary layer conditions
are stable. In a convective boundary layer, the vertical distribution is described by a bi-Gaussian probability density function.
Note that any other dispersion model can be used in the Retina methodology, as long as it is capable of simulating

concentrations from individual emission sectors on an arbitrary receptor mesh.

3.1 AERMOD simulation settings

AERMOD version 16216r is used with simulation settings summarized in Table 1, operating on a rectangular domain of 18 x
22 km? covering the municipality of Amsterdam for the most part. All coordinates are reprojected in a custom oblique
stereographic projection (EPSG:9809) around the city centre coordinate, such that the coordinate system can be considered
equidistant at the urban scale. Instead of using a regular grid, a road-following mesh (Lefebre et al., 2011) is used. This reduces
the number of receptor points, while maintaining accurate description of strong gradients found close to roads. Receptor
locations are chosen at every 75 m along the parallel curves with 25 m distance to the road, and at every 125 m along the
parallel curves with 50 m distance to the road. The open spaces between these points are filled with a regular grid at 125 m
resolution. Roads are modelled as line sources, while residential emissions are described as area sources. The dispersion is
calculated for NOx to avoid a detailed analysis of the rapid cycling between its constituents NO and NO,. Afterwards, an
NO,/NOx ratio is applied, depending on the available ozone (O3), see Section 3.1.1.

4
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Memory usage of AERMOD for the Amsterdam domain is proportional to the total number of emission source elements (here
17,069 road fragments and 12,182 residential squares) and the number of receptor points in the road-following mesh (here
42,128). The calculation time for a single concentration field is around 10 minutes, but can be reduced to a fraction of this by

parallelizing the code.

3.1.1 Ozone chemistry and lifetime

Primary emissions of NO; (e.g. directly from the tailpipe) are only 5-10% of the total emitted NOx (Sokhi et al., 2007). At
short time scales, secondary NO, is formed by oxidation of NO with Os, while this reaction is counterbalanced by photolysis
converting NO; to NO. The reaction rate of the first reaction is temperature dependent, while the latter depends on the available
sunlight. The NO»/NOx ratio has therefore an intricate dependence on temperature, radiation, and the proximity to the source
(i.e. the travel time of the air mass since emission).

A practical approach to estimate this ratio is the Ozone Limited Method (OLM), as described in EPA (2015). The method uses
ambient O3 to determine how much NO is converted to NO,. The dispersed (locally produced) NOx concentration is divided
into two components: the primary emitted NO, (here assumed to be 10%), and the remaining NOx which is assumed to be all
NO available for reaction with ambient O3: NO+0O3; — NO»+0,. If the mixing ratio of ozone (O3) is larger than the 90% of
(NOx), than all NO is converted to NO,. Otherwise, the amount of NO converted is equal to the available O3, i.e. (NO») =
0.1(NOx) + (O3). The reaction is assumed to be instantaneous and irreversible. The resulting NO, concentration is added to
the NO, background concentration.

Removal processes of NOx are modeled with an exponential decay. The chemical lifetime is in the order of a few hours. Liu
et al. (2016) find NOx lifetimes in a range from 1.8 to 7.5 h using satellite observations over cities in China and the USA.
Given the size of the domain and average wind speeds, its exact value is not of great importance here. Based on regression

results a practical value of 2 hour is chosen.

3.2 Simulation input data

The dispersion simulation is driven by input data regarding emissions, background concentrations, and meteorology, listed in
Table 2. All data, except for the traffic counts of inner city traffic, are taken from open data portals. The emission proxies are

mapped in Fig. 2.

3.2.1 Traffic emissions

A recurrent problem when building urban air quality models is finding sufficiently detailed traffic emission information.
Traffic emissions depend roughly on traffic flow and fleet composition, including engine technology. For many cities,
unfortunately, this information is not available. Here a distinction is made between highways and primary roads, as both have
a distinct traffic volume and weekly cycle. Differences in driving conditions and fleet composition are captured by assigning

two different emission factors later on.
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Road location data and road type definition data are taken from OpenStreetMap (OSM, 2017), which is a crowd-source project
to create a free editable map of the world. A distinction is made between urban roads (labelled in OSM as “primary”,
“secondary”, and “tertiary”’) and highways (labelled as “motorway” and “trunk’), as they have a distinct traffic pulse, fleet
composition, and driving conditions. Road segments labelled as “tunnel” are not taken into account.

When the traffic flow ¢ (in vehicles per hour) is known, the emission rate E for a road segment / can be written as

E = ayenql (1

with emission factor ayen representing the (unknown) NOx emission per unit length per vehicle. Hourly traffic flow data is
taken from 29 representative highway locations from the National Data Warehouse for Traffic Information (NDW, 2019),
which contains both real-time and historic traffic data. For the urban traffic flow, data from 24 inductive loop counters provided
by the traffic research department of Amsterdam municipality is used. Due to its large numbers, traffic flow is relatively well
predictable, especially when lower volumes during holiday periods and occasional road closures are neglected. For each
counting site a traffic “climatology” is constructed, parametrized by hour and weekday, based on hourly data of 2016, see Fig.
3.

Traffic counts correlate strongly between different highway locations, all showing a strong commuting and weekend effect.
Urban traffic typically shows, apart from lower volumes, less reduction between morning and evening rush hours, a less
pronounced weekend effect, and higher traffic intensities on Friday and Saturday night.

For locations x between the counting locations x; the traffic flow ¢(x) is spatially interpolated by inverse distance weighting

(IDW):

q(x) =1 Ziwi® ’ ifd(x,x;) # Oforall i .,
qi if d(x,x;) = 0 for some i

in which the weighting factors w; depend on the distance d between x and the counting location x;:

1
Wi = T ©)

Validation in the Supplementary Material shows that for this counting network IDW predicts the traffic volume within a 50%
error margin at most locations. Better results are obtained when more counting locations are available, or when they are selected
strategically around crossings and access roads. Model simulations show that using inferior traffic data is partly compensated

by the calibration (Section 4), at the expense of less pronounced concentration gradients.

3.2.2 Population data

Population density is considered to be a good proxy for residential emissions, e.g. from cooking and heating. Here, data is
taken from the gridded population database of 2014, compiled by the national Central Bureau for Statistics (CBS, 2019) ata
100 m resolution. Each grid cell is offered to the dispersion model as a separate area source. To reflect the observation that
residential emissions per capita are less when people are living closer to each other (Makido et al., 2012), the emission fluxes

are taken proportional to the square root of the population density p:
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3.2.3 Background concentrations

As AERMOD only describes the local contribution to air pollution, background concentrations are added which are taken from
the Copernicus Atmosphere Monitoring Service (CAMS) European air quality ensemble (Marécal et al., 2015). The CAMS
ensemble consists of 7 regional models producing hourly air quality and atmospheric composition forecasts on a 0.1 x 0.1
degree resolution. The analysis of the ensemble is based on the assimilation of up-to-date (UTD) air quality observations
provided by the European Environment Agency (EEA). Each model has its own data assimilation system.

In the CAMS product the local contributions are already present. To get a better estimate for regional background
concentrations avoiding double counts, the lowest concentration found in a 0.3 x 0.3 degree area around the city for NO; is

taken, together with the mean concentration found in this area for Os.

3.2.4 Meteorological data

The dispersion of air pollution is strongly governed by local meteorological parameters, especially the winds driving the
horizontal advection and the characterization of the boundary layer which defines the vertical mixing. Meteorology also affects
the chemical lifetime of pollutants.

AERMET (EPA, 2019) is used as a meteorological pre-processor for organizing available data into a format suitable for use
by the AERMOD model. AERMET requires both surface and upper air meteorological data, but is designed to run with a
minimum of observed meteorological parameters. Vertical profiles of wind speed, wind direction, turbulence, temperature,
and temperature gradient are estimated using all available meteorological observations, and extrapolated using similarity
(scaling) relationships where needed (EPA, 2018).

Hourly surface data from the nearby Schiphol airport weather station can be obtained from the Integrated Surface Database
(ISD, see Smith et al. (2011)). Observations of temperature, winds, cloud cover, relative humidity, pressure, and precipitation
are retrofit to match the SAMSON data format (WebMet, 2019a) which is supported by AERMET. Upper air observations are
taken from daily radiosonde observations in De Bilt (at 35 km from Amsterdam), archived in the Integrated Global Radiosonde
Archive (IGRA) (Durre et al., 2006). Pressure, geopotential height, temperature, relative humidity, dew point temperature,
wind speed and direction are converted to the TD6201 data format (WebMet, 2019b) for each reported level up to 300 hPa.

4 Calibrating the model

Using proxy data instead of real emission introduces the problem to find the emission factors which best relate the activity
data to their corresponding emissions. Instead of using theoretical values or values found in literature, effective values are
derived which best fit the hourly averaged NO, observations of a network of NV stations.

For a certain hour ¢, the emission of a source element i belonging to source sector k can be written as

7



225

230

235

240

245

250

Ei(t) = ayPy(t) (5)

in which Py represents the corresponding emission proxy. The contribution of this source to the concentration at a receptor
locationj is

Cijie(t) = fij (O Ey(t) (6)
with f;; describing the dispersion of a unit emission from i to j, including the conversion from NOx to NO; from the OLM.
Eq. (6) is assumed to describe a linear relation between emission and concentration, although strictly speaking the variable
NO,/NOx ratio introduces a weak nonlinearity. A regression analysis is applied for a certain period, assuming that for each ¢
the total NO, concentration ¢; at station j can be described as a background field » and a local contribution consisting of a
linear combination of the dispersed fields of K emission sectors:

6 (6) = b(®) + Tey a T} fiy (OPw () (M

Sk represents the number of source elements for an emission sector k. The second sum in this equation is calculated for every
hour with the Gaussian dispersion model taking the meteorological conditions during # into account. Note that both background
concentrations H(¢) and local concentrations c;(¢) are taken from external data, see Section 3.2.3 and 2. Considering a period of
T hours, Eq. (7) can be interpreted as a matrix equation from which the emission factors a; can be solved using ordinary least
squares. Given the physical meaning of ay, only positive regression results are allowed.

In this setup, the emissions are approximated by three sectors highway traffic, urban traffic, and population density (K=3). The
resulting a; do not necessarily represent real emission factors. Their values partly compensate for unaccounted emission sectors
and unrealistic modelling (e.g. based on wrong traffic data or an incorrect chemical lifetime). In Retina ax every 24 hours,
based on observations of the preceding week (7=168). Doing so, the periodic calibration adjusts itself to seasonal cycles and
episodes not captured by the climatologies (e.g. cold spells or holiday periods). To avoid reducing the predictability of the
regression model too much (ax dropping to zero), not all reference stations are used for calibration, but only stations classified
as roadside or urban background. For the Amsterdam network, N=11. The residential emissions are represented by the
population density, which is a time invariant proxy. To allow for a diurnal cycle, the residential emission factor is evaluated
for two-hour bins. This brings the total number of fitted emission factors to 14: one for highway traffic, one for urban traffic,
and 12 describing the daily residential emission cycle.

Figure 4 shows an example of the air quality simulation after the emission factors have been determined. The stacked colours
in the time series of Fig. 4b show that the contribution from different emission sectors to local air pollution can strongly vary

from site to site.

4.1 Diurnal and seasonal analysis of calibration results

It is important to realize that the numerous modelling assumptions prevent that the calibration realistically solves the
underdetermined inverse problem of finding the underlying NOx emissions based on the observed NO» concentrations. Instead,

it evaluates how much NOx must be injected into the model to explain the observed spatial NO; patterns (unbiased with respect
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to the calibration locations). To study the results of the regression analysis, a comparison was made between a summer month
(July 2016, mean temperature 18.4 °C) and a winter month (January 2017, mean temperature 1.6 °C). Figure 5 shows the
diurnal emissions for a 0.2 % 0.1 degree area, corresponding to the two grid cells of the EDGAR inventory covering the city
centre.

Ideally, the emissions would be around the values found in the EDGAR inventory (6.23 and 7.18 107'° kg NOx/m?/s for
Summer and Winter respectively), and a corresponding ratio between residential and transport emissions (8% and 48% for
Summer and Winter respectively). Unlike traffic, however, the diurnal cycle for the residential contribution is not prescribed,
but is shaped in the regression analysis. The seasonal analysis shows that its fitted diurnal cycle not only describes changing
residential emissions, but also compensates for changing NO»/NOx ratios over the day (not included in the OLM) due to
changing photochemistry and temperature. In daylight, the destruction of NO, by photolysis (NO + Av — NO + O3) is strong,
reducing the NO»/NOx ratio. At low temperatures, the formation of NO, from NO (NO + O3 — NO; + O») is slow, also
reducing the NO,»/NOx ratio. Also, due to collinearity, part of the traffic emissions will be explained by population density.
Therefore, the found emission factors (and the corresponding sectoral emissions) should be considered as “effective” rather

than real, i.e. as factors which best describe the observations under the given model assumptions.

5 Assimilation of observations

As the air quality network is spatially undersampling the urban area, the observations need to be combined with additional
model information to preserve the fine local structures in air pollutant concentrations. The interpolation technique of choice
here is Optimal Interpolation (OI) (Daley, 1991), having the desired property that the Bayesian approach allows for assimilation
of heterogeneous measurements with different error bars. At an observation location the model value is corrected towards the
observation, the innovation depending on the balance between the observation error and the simulation error. The error
covariances determine how the simulation in the surroundings of this location is adjusted. Note that OI is essentially the same
assimilation scheme as kriging-based approaches. The main advantage here is that one has detailed manual control over the
error covariance matrix, which allows for a more comprehensive specification of the area of influence for each contributing
observation. Outside the representativity range (i.c. the correlation length) of the observations, the analysis relaxes to the model
values.

Consider a state vector x representing air pollutant concentrations on the (road-following) receptor mesh (7~40,000). Define

x” as the background, i.e. the model simulation. Observation vector z contains » measurements, typically 1001 100. Following

the convention by Ide et al. (1997), the OI algorithm can now be written as:

x® =x? + K(z — H(x?)) ¥
K = PPHT(HP?HT + R)1 )
P® = (I — KH)P® (10)
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Matrix R is the mxm observation error covariance matrix. As all observations are independent (the measurement errors are
uncorrelated), R is a diagonal matrix with the measurement variances on its diagonal.

P? is the nxn model error covariance matrix, describing how model errors are spatially correlated. The calculation of P? is not
straightforward; in Section 5.1 an approximation is derived.

Operator H is the forward model, which maps the model state to the observed variables and locations. The matrix calculations
can be simplified by reserving the first m elements of the state vector for the observation locations, and the other n —
m elements for the road-following mesh. The Gaussian dispersion model is evaluated “in-situ” at the observation locations.
Avoiding reprojection or interpolation means that there are no representation errors associated with H. The simulations at the
observation locations z” can then be written as a matrix multiplication

z? = H(x?) = Hx? (11)

in which H is an mxn matrix for which its first m columns form a unity matrix, while its remaining elements are 0.

Eq. (8) describes the analysis x¢, i.e. how the observations z are combined (assimilated) with the model x”. It is a balance
between the model covariance and the observation covariances, described by the gain matrix K in Eq. (9). K determines how
strong the analysis must incline towards the observations or remain at the simulated values, to obtain the lowest analysis error
variance, P“ in Eq. (10).

Note that Eq. (8)-(10) are analogous to the first step in Kalman filtering. The second step of the filter, propagating the analysis
to the next time step, cannot be made here as the plume model solves a stationary state which is independent of the initial air
pollutant concentration field. Also note that since an approximated model error covariance matrix will be used, generally these
equations do not lead to an optimal analysis, hence this approach is more correctly referred to as Statistical Interpolation.

Let vector ¢ represent the observed NO, mass concentrations, as described in Section 2. The distribution of the air pollutant
concentrations resembles better the lognormal distribution than the Gaussian distribution, as can be seen from the Q-Q plots
in Fig. 6. The analysis is done in log-space (z; = In ¢;), stabilizing the results by reducing the impact of less frequent
measurements of high concentrations. Once returning from the log domain, Eq. (8) can be rewritten as:

c® = exp(x?) = cPexp(KAz), with innovation vector Az = z — z" (12)

By doing the analysis in the log-domain the assimilation updates correspond to multiplication instead of addition: exp(KAz)
represents the local multiplication factor with which the simulated concentration ¢” is corrected. This means that the shape of
the model field (e.g. strong gradients found close to busy roads) is locally preserved. Note that the error in z; corresponds to
the relative error in ¢; : dz =d(Inc)/dc =dc/c . The observation error covariance matrix is therefore R =

diag(a?, 0%, ..., 02), with g; the relative error corresponding to observation j.

4.1 Modelling the model error covariance matrix

For an optimal result in the data assimilation a realistic representation of the model covariance matrix P? is essential. The
model covariances influence the spatial representativity of the observations: when model errors correlate over larger distances,

the assimilated observation will change the analysis over a longer range.

10
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Tilloy et al. (2013) choose to model the covariances depending on the road network. Error correlations are assumed to be high
on the same road or on connected roads. For background locations, the correlation decreases fast in the vicinity of a road, while
the error correlation between two background locations remains significant across a larger distance. The error covariances are
kept constant in time, and taken independent of traffic conditions.

However, P? changes from hour to hour, mainly because varying meteorology changes the atmospheric dispersion properties.
Here, the model error covariance is estimated for each hour based on the spatial coherence of the simulated concentration field.
The covariance between two grid locations x; and x; can be expressed as their correlation p and their standard deviations o:
P = 0, p(XX)) 7 (13)
The model error o can only be evaluated at locations of the reference network using time series analysis. These model errors
are spatially interpolated to other grid locations using IDW, analogous to Eq. (2)-(3). The correlation of model errors between
different locations is parametrized with a downwind correlation length Lg4y and a crosswind correlation length L.y. The extent
of the correlation lengths reflect the turbulent diffusion and transport of the Gaussian dispersed plumes for a specific hour.

From spatial analysis of the simulation data a heuristic model is derived which describes the dependence of the correlation on

distance:
p(d) = exp(—Vd), (14)
with d the scaled distance between x; and x; (expressed as x4w and xc along the downwind and crosswind axes)
2 2
= [(Fdw Xew
a=JG2) +(2). (15)

such that all points on an ellipse with semi-major axis L4y and semi-minor axis L.y have the same correlations.

To fit the parameters Lqw and L for a certain hour, 1000 sample locations are selected from the road-following mesh. To
represent both polluted and less polluted areas, the locations are selected such that their concentrations are homogeneously
distributed over the value range, excluding the first and last 5 percentile. For this sample, correlation lengths Lqw and L are
fitted using Eq. (14) and (15).

Figure 7 shows the results of this analysis for two different hours. For fields with low gradients (e.g. when traffic contribution
is low at night), large values of L can occur. To prevent assimilation instabilities, the fitted values of L are limited to a maximum
of 10 km. During the 2016 summer months, longest correlation lengths are found for fields with low gradients. Average
midnight values, when traffic contribution is low, are about 8 km. Correlation lengths are shortest during the morning rush
hour (~1 km), increasing to 3 km during the late morning and afternoon. There is a wind dependency, as stronger winds stretch
the pollution plumes, increasing correlation lengths. From the fit results the average ratio between L.y and Lgw is found to be
68%.

Once the covariance parameters are known, the covariance matrix elements are calculated with Eq. (13). Note that for the
calculation of the gain matrix K there is no need to calculate the full P” matrix. Instead, P’H" is calculated, which due to the

structure of H this matrix product corresponds to the first 7 columns of the nXn matrix P?.
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6 Validation of simulation and assimilation

To assess the data quality across the domain, a leave-one-out analysis is performed at all locations of the reference network
for the period June 1 - August 31, 2016. The results are summarized in Table 3. Figure 8 illustrates two examples; plots for all
validation locations can be found in the Supplementary Material. For the observation-free simulation (i.e. the model forecast)
an average RMSE is found of 13.6 ug/m? and correlation of 0.57. When assimilating observations, the average RMSE drops
to 10.4 ug/m? while the correlation increases to 0.78. Strong systematic underestimations of the simulation (characterized by
a large negative bias) are observed at street locations NL49002, NL49007 and industrial locations NL49546, NL49704. These
are most likely caused by unrealistic assumptions of local emissions of either traffic or industry. The strong positive bias found
at NL49014, located in a city park separated from the nearby main road by a block of 4-storey buildings, might be explained
by an incorrect simulation of air pollutants in the direct vicinity of these buildings.

The CAMS regional ensemble analysis compares well with the average of the urban background stations; the very low bias (-
0.1 pg/m®) corresponds with the fact that data of these stations are used in its analysis. (Note that the CAMS values used here
correspond to the Amsterdam grid cell, not the 3x3 minimum values used as background for the modelling.) On the other
hand, it shows strong underestimations at street locations, as expected. It is here where the Retina simulation outperforms the
low resolution results of CAMS.

From Table 3 can be seen that the relative error in the model forecast (defined as the ratio between the RMSE and the mean of
the observations) is around 58% on average. When assimilating, the error becomes dependent on the distance to the nearest
observation locations. For sites having the nearest assimilated observation within 2 km distance, the average RMSE drops
from 16.8 to 11.9 pg/m3, corresponding to an average relative error of 39%. For sites where the nearest assimilated observation

is further away than 2 km, the average RMSE drops from 10.8 to 9.1 pg/m?, corresponding to an average relative error of 53%.

7 Added value of low-costs sensors

The previous analysis is purely based on high-quality reference measurements. In this section is explored whether the statistical
interpolation scheme can be used to derive useful information of low-cost measurements, despite their lower accuracy.
This is done by testing different assimilation configurations during the Urban AirQ campaign, from 15 June to 15 August 2016
(see Section 2). The campaign targeted a central area with 4 reference stations and 14 low-cost sensors (See Figure 10a).
Validation is done for 5 different assimilation scenarios (AS):

e ASI: Assimilation of all reference measurements (leave-one-out);

e AS2: Assimilation of measurements from 3 central reference sites (leave-one-out);

e  AS3: Assimilation of low-cost data only;

e AS4: Assimilation of measurements from 3 central reference sites (leave-one-out) and all low-cost data;

e ASS5: Assimilation of all reference measurements (leave-one-out) and all low-cost data.
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The results are summarized in Figure 9. As expected, results deteriorate when the number of reference locations in the
assimilation are reduced from 14 (AS1) to 3 (AS2). The correlation decreases at all 4 validation locations. At NL49012, the
RMSE increases significantly due to a positive jump in the bias. The lower analysis with respect to the observations is due to
the absence of assimilation of high values at nearby street location NL49002, which enlarges the influence of lower
observations found at urban background location NL49019. At NL49019, located in the middle of 3 assimilation locations, the
RMSE does not change significantly. Apparently, the effect of assimilation of observations farther than the surrounding
locations is small.

When only observations of 14 low-cost sensors are assimilated (AS3), instead of observations at 3 reference sites (AS2), there
is a notable improvement visible in bias and RMSE at location NL49019. Here, the low-cost sensors are relatively nearby, the
closest being sensor SD04 at 120 m distance. At the other validation locations, the low-cost sensor assimilation results in
similar RMSE (i.e. within 1 pg/m®), a comparable bias, but a slightly lower correlation.

The results can be further improved if both reference and low-cost sensor data are included (AS4 and ASS5). At NL49019, the
RMSE drops to 5.1 pg/m?® (compared to 7.8 pg/m> when no low-cost data are included) while the correlation increases to 0.89.
Again, there is no significant difference between including the three surrounding reference locations and including all reference
locations. Also at street location NL49017 and urban background location NL49003, the inclusion of low-cost sensor data
improves RMSE and correlation compared to assimilations with reference data only (AS4 vs. AS2, and ASS vs. AS1). At
location NL49012, the bias reduces considerably only when all reference data are included in the assimilation (AS1 and ASS5).
The different assimilation scenarios show that low-cost sensor data assimilation improves the results locally, even in absence
of reference data. Generally, the best results are obtained when both reference data and low-cost data are included. Assimilation
can reduce local model biases. However, unrealistically modelled covariances can lead locally to the introduction of an
additional bias.

Next, a monthly averaged concentration map of Amsterdam is constructed with all reference data and all low-cost sensor data
from the first half of the Urban AirQ, see Fig. 10b. The addition of the low-cost data lowers the assimilation results by several
ug/m® in the undersampled area west of Oude Schans (NL49019), while the NO, increases with several pg/m* around the
traffic arteries found south and east of this location (Fig. 10c). A large fraction of traffic on these roads uses the 1J-tunnel to
cross the river. On a monthly basis, this tunnel is used by approximately one million vehicles.

The second half of the Urban AirQ campaign coincides with the start of the summer holiday period and the closure of the 1J-
tunnel for maintenance. Comparison of the NO, concentration maps of both periods reveal interesting features (Fig. 11). Based
on averaged NO2 measurements at rural stations NL49565 and NL49703, the NO2 reduction due to meteorological variability
is estimated to be 7%. The overall drop in NO, concentrations in the central area, however, is around 10% due to reduced
traffic during the summer break. Notable exception is the historic city centre, where the NO; reduction is only a few percent,
probably related to the steady economic activity driven by tourism. The strongest NO, reductions, around 15%, are found
around the access ways of the [J-tunnel. A few main roads (e.g. De Ruijterkade/Piet Heinkade and Ceintuurbaan) show less

NO; reduction than average, apparently due to redirected traffic avoiding the tunnel.
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8 Discussion and Conclusions

As air pollution gradients can be strong in the urban environment, it is essential to combine (sparse) measurements with an air
quality model when aiming at street-level resolution. Retina is a practical approach to interpolating hourly urban air quality
measurements. The first step consists of a simulation by a dispersion model which is driven by meteorological data and proxies
for traffic and residential emissions. The model is daily calibrated with historic measurements. In the second step, observations
of different accuracy are assimilated using a statistical interpolation scheme.

Validation analysis confirms that the European CAMS ensemble is a good predictor for hourly NO, concentrations found in
the urban background. However, the CAMS data for NO, can be misleading when interpreted at the local scale, as the predicted
diurnal cycle often deviates substantially from that observed at urban air quality stations. Local effects can be better resolved
when CAMS data is used for background concentrations in a dispersion model which is driven by proxies for traffic and
residential emissions.

The Retina simulation setup shows that such a system can be built from open software and open data. Applied to Summer
2016 in Amsterdam, it reduces the relative error at street locations from 70% to 51%, mainly by reducing the negative bias
from 18.2 to 5.3 pg/m3. At urban background locations the dispersion model often introduces a positive bias, especially when
traffic sources are nearby.

The mapping results improve considerably with the second Retina step when available observations are assimilated by the
statistical interpolation scheme. When assimilating measurements of the reference network, the relative error in NO;
concentrations drops to 44% on average. The local error depends on the distance to the nearest observations: approximately
39% within 2 km of an observation site, increasing to 53% for larger distances. The typical correlation increases from 0.6 to
0.8.

The Bayesian assimilation scheme also allows us to improve the results by including low-cost sensor data, in order to get
improved localized information. However, biases must be removed beforehand with careful calibration, as most low-cost air
quality sensors suffer from issues like cross-sensitivity or signal drift, see e.g. Mijling et al. (2018). The assimilation of low-
cost sensor data from the Urban AirQ campaign reveals more detailed structure in concentration patterns in an area which is
undersampled by the official network. The additional measurements correct for wrong assumptions in traffic emissions used
in the apriori interpolation, and give better insight into how traffic rerouting (for instance due to closure of an arterial road)
affects local air quality.

Retina has been built on open data to facilitate a flexible application to other cities. The meteorology needed for AERMOD is
taken from global data sets of ISD and IGRA. Road network information can also be obtained globally from OpenStreetMap.
Traffic data tends to be hard to obtain. When no local data is available on diurnal and weekly traffic flow its patterns should
be estimated. In the absence of local census data, population density data can be taken from the Global Human Settlement

database (Schiavina et al., 2019), which has global coverage on a 250 m resolution. For application within Europe, the
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necessary background pollutant concentrations can be obtained from CAMS. For applications outside Europe other data sets
have to be found.

In general, degraded input data and imperfections in the dispersion modelling will deteriorate the system’s capability to resolve
local structures; it will lower the effective spatial resolution of the simulations. In its extreme it will only describe the blurry
urban background pollution contribution added to the rural background. Oppositely, with improved input data and atmospheric
modelling, the effective resolution will improve, reducing local biases. This is the focus of future research.

Significant inaccuracies due to local emissions which are not described adequately by the proxies (e.g. from industry, port and
airport activity) can be reduced by including these sources explicitly in the dispersion modelling. Small-scale structures
provoked by the local built-up area will be better described by introducing the street canyon effect. The model will also benefit
from a more detailed traffic emission model, based on more counting locations and aggregated from shorter time intervals.
Ideally, such an emission model takes local differences in fleet composition also into account. Finally, simulations will gain
accuracy with a more realistic NOx chemistry, concerning the NOx chemical lifetime (influencing the plume length) and the
NO»/NOx ratio.

Overall, the error of the assimilation results depends on the accuracy of the air quality model, the number of assimilated
observations, the quality of observations, and the distance to the observation location. A reasonable approximation of the
model covariance matrix is found by assuming the model covariance to be isotropic and by fitting correlation lengths along
the downwind and crosswind axes for every hour. Finding a more realistic description of the model covariance matrix will
better suppress the introduction of bias by the assimilation, and will be subject to future research.

For near-real time monitoring and forecasting of air quality the CAMS ensemble analysis must be changed for the ensemble
forecast. Instead of observation-based meteorology one should use data from local or global numerical weather prediction
models e.g. from the National Centers for Environmental Prediction (the Global Forecast System, GFS; open data) or the
European Centre for Medium-Range Weather Forecasts (ECMWF; not open data).

Apart from assessment of historic data such as in this study, Retina has been applied successfully for near-real time monitoring
and forecasting of NO; in the cities of Amsterdam, Barcelona, and Madrid. Future work includes the implementation of other

cities inside and outside of Europe, and the application of Retina to other pollutants such as particulate matter.
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Figure 2: Map of the emission proxies used for the dispersion model. Red lines indicate the highways, green lines indicate the urban
580 main roads. Grey colours indicate the population density. (Road location data adopted from © OpenStreetMap contributors 2019.
Distributed under a Creative Commons BY-SA License.)
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Weekly traffic cycle for Amsterdam
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Figure 3: Weekly cycle of highways and urban roads at counting locations (thin lines), aggregated from hourly data from 2016. The
thick lines show the median of traffic flow for both road types. The morning and evening rush hours on working days are clearly
585  visible for highways. Urban traffic has, apart from lower volume, less distinct peaks.
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Figure 4a: Dispersion maps of NO: concentrations for each emission sector at 8 July 2016, 9:00. The lower right panel shows the
linear combination which best fits the time series at the calibration sites. Wind is blowing from the southwest at 16 km/h. The grey
590 dots indicate an urban background location, a street location, and a highway location.
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Figure 4b: Comparison of observed and simulated NO: time series for the urban background location, the street
location, and the highway location. The colours indicate the simulated contribution of the three source sectors and the

background.
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distribution. (right) The logarithm of the observed values correspond better to a Gaussian distribution, shown by the quantile value
pairs being almost on a straight line.
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Figure 7: Left panels show simulated NO: concentration fields at two different hours. The middle panels show the spatial correlations
along the downwind and crosswind axes based on a sample of »=1000. The right panels show the spatial correlations of the sample
and the resulting modelled spatial correlation model.
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NL49012: Observation vs Forecast NL49012: Observation vs Analysis NL49012: Error distribution
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Figure 8: Validation of hourly time series for the period 1 June to 31 August, 2016, for a well performing street location (above) and
a less performing urban background location (below). Statistics of the n data pairs are given in correlation (p), coefficient of
determination (R?), and RMSE. The right hand panels compare the error distributions: the observation minus forecast (OmF)
against the observation minus analysis (OmA).
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Figure 9: Validation of the model forecast and five different assimilation scenarios at four central reference sites, for
the period June 15 to August 15, 2016.
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Figure 10: (a) Observation sites during the Urban AirQ campaign. (b) 30-day average of NO: concentrations in the centre of

Amsterdam, after assimilation of both reference measurements (black dots) and low-cost measurements (white dots). (c) Changes in

spatial pattern when low-cost measurements are included in the analysis. (Basemap source: © Mapbox © OpenStreetMap
625  contributors 2019. Distributed under a Creative Commons BY-SA License.)
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Figure 11: Reduction of NO:2 during the holiday period. Largest reduction of concentrations is found in the vicinity of access ways
to the IJ-tunnel, which was closed for maintenance. Concentrations in the historic centre remain unchanged. (Basemap source: ©
630 Mapbox © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.)
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Table 1: Overview of AERMOD simulation settings

Road width 20 m

Emission height traffic 0.5m

Emission height residential 10 m

Initial vertical extension of concentration 10 m

layer (sigma Zo)

Receptor grid Road following

Receptor height 1.5m

Urban surface roughness length Im

NO»/NOx ratio Ozone Limited Method (OLM),
Primary emission ratio 10%

NOx lifetime 2h

Other AERMOD modelling options Optimizing model runtime for sources (FASTALL)
Address low wind speed conditions (LOWWIND3)
Assuming flat terrain (FLAT)
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635 Table 2: Summary of simulation input data for Amsterdam

Emission

Highway locations

OpenStreetMap (OSM, 2017): street segments labelled
motorway and trunk

Urban road locations

OpenStreetMap (OSM, 2017): street segments labelled
primary, secondary, tertiary

Highway traffic flow

National Data Warehouse for Traffic Information (NDW,
2019): weekly cycle of vehicle counts at 29 selected
locations (2016), interpolated to street segments

Urban traffic flow

Amsterdam municipality (personal communication): weekly
cycle of vehicle counts at 24 locations (2016), interpolated to
street segments

Population data

Statistics Netherlands (CBS, 2016): population density
(2014) gridded at 100 m resolution

Observation

Background NO,

Copernicus Atmosphere Monitoring Service (CAMS, 2019):
NO; analysis from model ensemble; minimum value found in
3x3 grid around domain centre

Background O3

Copernicus Atmosphere Monitoring Service (CAMS, 2019):
Os analysis from model ensemble; mean value found in 3x3
grid around domain centre

Meteorology

Meteorology (surface)

Integrated Surface Database (ISD, 2019): hourly
observations from Schiphol Airport weather station

Meteorology (upper air)

Integrated Global Radiosonde Archive (IGRA, 2019): daily
radio sounding at De Bilt (NL)
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Table 3: Validation results at reference locations, June 1-August 31, 2016

CAMS ensemble Model forecast Assimilated observations
mean

1D name type n" obs. |RMSE? [bias [corr |[RMSE? |bias |corr [RMSE? |bias [corr [dist®
Amsterdam -

NL49002 |Haarlemmerweg street 2145 422 314 -25.6 1049 [22.6 -143 10.55 |[18.6 -14.5 10.83  [0.99
Amsterdam -

NL49007 |Einsteinweg street 2145 |38.1 29.2 -21.4 10.42 19.6 -6.9 10.57 |[16.5 -6.2 10.72 [1.26
Amsterdam - Van

NL49012 |Diemenstr. street 2145 129.1 20.2 -12.5 10.53 15.7 2.7 1057 (9.7 -0.5 10.87 [0.99
Amsterdam -

NL49017 |Stadhouderskade street 2140 |30.1 17.9 -13.5 10.45 14.3 1.9 0.50 19.0 -2.7 10.78 1.60
Amsterdam - Jan

NL49020 |van Galenstraat street 2131 |34.8 24.0 -18.2 10.59 16.6 -47 10.58 |[11.1 -53 1086 [1.26
Amsterdam - urban

NL49003 |Nieuwend. dijk backgr. [2145 |16.6 8.6 0.1 0.60 10.5 2.0 047 |75 0.8 0.71 |3.28
Amsterdam - urban

NL49014 | Vondelpark backgr. (2115 |17.3 9.0 -0.7 0.52 14.9 7.9 044 199 6.5 0.75 1.73
Amsterdam - Oude |urban

NL49019 |Schans backgr. [2124 |20.7 10.3 -4.1 0.59 13.8 5.8 0.50 |8.7 4.6 0.81 1.60
Amsterdam - urban

NL49021 |Kantershof backgr. (2082 |14.9 7.5 1.6 0.65 10.7 5.6 0.56 8.0 4.4 0.73 |7.33
Amsterdam - urban

NL49022 |Sportp. Ookmeer backgr. (2124 |14.3 8.4 2.4 0.65 9.2 34 0.66 8.0 3.7 0.80 |3.89
Oude Meer -

NL49565 | Aalsmeerderdijk rural 2127 |17.3 9.1 -0.6 0.57 [9.0 24 1059 8.0 -3.0 10.73  |5.94
Amsterdam -

NL49703 |Spaarnwoude rural 2125 |13.0 8.7 3.7 0.61 8.1 2.1 0.60 |7.5 2.4 0.71 |4.47

NL49546 |Zaanstad - Hemkade |industry |2145 [22.9 14.3 -6.2 0.63 15.0 -8.1 0.66 |13.0 -83 10.83 [3.26

NL49704 |Zaanstad - Hoogtij |industry [2120 |19.6 12.7 -3.0 0.66 134 -6.0 10.72 |12.1 -6.4 (0.84 |3.72
Badhoevedorp -

NL49561 (Sloterweg undecided (2145 |20.5 10.6 -3.9 0.64 10.8 29 10.61 (8.9 -42 10.79 [3.96

Average street locations 34.9 24.5 -182 |0.50 [17.8 -5.3 1055 |13.0 -5.8 10.81
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640

Average urban background locations 16.8

8.8

0.60

4.9

0.53

8.4

4.0

0.76

Average all locations 234

14.8

0.57

0.57

10.4

0.78

1) Number of samples
2) In units pg/m3

3) The distance to the nearest observation site, in km
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