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Abstract. In many cities around the world people are exposed to elevated levels of air pollution. Often local air quality is not 

well known due to the sparseness of official monitoring networks, or unrealistic assumptions being made in urban air quality 

models. Low-cost sensor technology, which has become available in recent years, has the potential to provide complementary 

information. Unfortunately, an integrated interpretation of urban air pollution based on different sources is not straightforward 

because of the localized nature of air pollution, and the large uncertainties associated with measurements of low-cost sensors. 10 

This study presents a practical approach to producing high spatio-temporal resolution maps of urban air pollution capable of 

assimilating air quality data from heterogeneous data streams. It offers a two-step solution: (1) building a versatile air quality 

model, driven by an open source atmospheric dispersion model and emission proxies from open data sources, and (2) a practical 

spatial interpolation scheme, capable of assimilating observations with different accuracies. 

The methodology, called Retina, has been applied and evaluated for nitrogen dioxide (NO2) in Amsterdam, the Netherlands, 15 

during the summer of 2016. The assimilation of reference measurements results in hourly maps with a typical accuracy (defined 

as the ratio between the root means square error and the mean of the observations) of 39% within 2 km of an observation 

location, and 53% at larger distances. When low-cost measurements of the Urban AirQ campaign are included, the maps reveal 

more detailed concentration patterns in areas which are undersampled by the official network. It is shown that during the 

summer holiday period, NO2 concentrations drop about 10%. The reduction is less in the historic city centre, while strongest 20 

reductions are found around the access ways to the tunnel connecting the northern and the southern part of the city, which was 

closed for maintenance. The changing concentration patterns indicate how traffic flow is redirected to other main roads. 

Overall, it is shown that Retina can be applied for an enhanced understanding of reference measurements, and as a framework 

to integrate low-cost measurements next to reference measurements in order to get better localized information in urban areas. 

1 Introduction 25 

Due to growing urbanization in the last decades, more than half of the world’s population lives in cities nowadays. Dense 

traffic and other human activity, in combination with unfavourable meteorological conditions, often cause unhealthy air 

pollution concentrations. Over 80% of the urban dwellers are forced to breathe air which does not meet the standards of the 

World Health Organization (WHO, 2016). In 2015, an estimated 4.5 million people died prematurely from diseases attributed 



2 
 

to ambient air pollution (Lelieveld et al., 2018). Good monitoring is important to better understand the local dynamics of air 30 

pollution, to identify hot spots, and to improve the ability to anticipate events. This is especially relevant for nitrogen dioxide 

(NO2) concentrations, which can vary considerably from street to street. NO2 is, apart from being a toxic gas on its own, an 

important precursor of particulate matter, ozone, and other regional air pollutants. Observations from a single location are not 

necessarily representative for a larger area. Unfortunately, urban air quality reference networks are usually sparse or even 

absent due to their high installation and maintenance costs. New low-cost sensor technology, available for several years now, 35 

has the potential to extend an official monitoring network significantly, even though the current generation of sensors have 

significant lower accuracy (WMO, 2018).  

However, exploiting these measurements (either official or unofficial), apart from publishing the data as dots on a map, is not 

straightforward. Here, the aim is to make better use of the existing measurement networks to get the best description of hourly 

urban air quality, and to create value from low-cost measurements towards a Level 4 product, according to the classification 40 

proposed by Schneider et al. (2019)  

To obtain high-resolution information of air pollutants with sharp concentration gradients, a very sparse observation network 

needs to be accompanied by a valid high-resolution air quality model, whereas a very dense network can do with simple spatial 

interpolations. The situation in most large cities is somewhere in between. There is often a reasonably large reference network 

present (10+ stations), sometimes complemented with an experimental network of low-cost AQ sensors. Assumptions about 45 

underlying unresolved structures in the concentration field are still needed, but this can be done with a simplified air quality 

model, using the available measurements to correct simulation biases where needed. 

A popular approach in detailed mapping of air quality is land use regression modelling (LURM), see e.g. Beelen et al. (2013). 

LURM uses multiple linear regression to couple a broad variety of predictor variables (geospatial information such as traffic, 

population, altitude, land use classes) to the observed concentrations. It is typically used in exposure studies, which target long 50 

integration intervals by definition. Problems of over-fitting might arise when too many predictor variables are used. 

Alternatively, Denby (2015) advocates the use of less proxy data, and a model based on more physical principles. In his 

approach, the emission proxies are first (quasi) dispersed with a parameterized inverse distance function, before being coupled 

to observed concentrations in a regression analysis. 

Mapping of air pollution for short time scales is challenging. Only a few scientific studies are published aiming at assimilation 55 

of near-real time observations in hourly urban concentration maps. Tilloy et al. (2013) use the 3-hourly output of a well-

developed implementation of the AMDS Urban dispersion model in Clermont-Ferrand, France, to assimilate in-situ NO2 

measurements at 9 reference sites in an optimal interpolation scheme. With a leave-one-out validation they show a strong 

reduction in root mean square error of the time series after assimilation. Schneider et al. (2017) use Universal Kriging to 

combine hourly NO2 observations of 24 low-cost sensors in Oslo, Norway, with a time-invariant basemap. The basemap is 60 

created from a yearly average concentration field calculated with an Eulerian/Lagrangian dispersion model on a 1 km grid, 

downscaled to 100 m resolution. Averaged over reference locations, their study shows that hourly values compare well with 

official values, showing the potential of low-cost sensor data for complementary air quality information at these time scales. 
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In this paper presents a more advanced yet practical approach to map hourly air pollutant concentrations, named Retina. Its 

main system design considerations are: 65 

● Observation driven  
● Able to assimilate observations of different accuracy 
● Potential near-real time application 
● Versatile / portable to other domains 
● Based on open data 70 
● Reasonable computer power 

The method is applied to Amsterdam, a city like many where NO2 emissions are dominated by transport and residential 

emissions and where local exceedances of limit values are regularly observed. Amsterdam is the most populous city in the 

Netherlands, with an estimated population of 863,000. Located at 52°22′N 4°54′E, it has a maritime climate with cool summers 

and moderate winters. Concentrations of NO2 within the city vary considerably, being partly produced locally and partly 75 

transported from outside the city. Measurements of 2016 show that, compared with regional background values from the 

CAMS ensemble (see Section 3.2.3), urban background concentrations are on average around 50% higher, while at road sides 

NO2 concentrations are about 100% higher.  

Retina uses a two-stage approach. It runs an urban air quality model to account for hourly variability in meteorological 

conditions (described in Section 3) which is dynamically calibrated with recent measurements (Section 4). In the second stage 80 

it assimilates current measurements using statistical interpolation (Section 5). Section 6 presents the validation of the system, 

while Section 7 shows the added value when assimilating additional low-cost sensor measurements. The last section is reserved 

for discussion, conclusion and outlook. 

2 Air quality measurements 

The Public Health Service of Amsterdam (GGD) is the responsible authority for air quality measurements in the Amsterdam 85 

area. Within the domain used in this study their NO2 network consists of 15 reference stations: 5 stations classify as road 

station, 5 as urban background station, 2 as industry, 2 as rural, and 1 undecided. Alternatingly, GGD operates a Teledyne API 

200E and a Thermo Electron 42I NO∕NOX analyser, both based on chemiluminescence. A catalytic-reactive converter converts 

NO2 in the sample gas to NO, which, along with the NO present in the sample is reported as NOX. NO2 is calculated as the 

difference between NOX and NO. The accuracy of both type of reference instruments is estimated at 3.7% (GGD, 2014), 90 

following the EN 14211 standard which includes all aspects of the measurements method: uncertainties in calibration gas and 

zero gas, interfering gases, repeatability of the measurement, derivation of NO2 from NOX and NO, and averaging effects. 

Low-cost NO2 measurements are taken from the 2016 Urban AirQ campaign (Mijling et al., 2018). Sixteen low-cost air quality 

sensor devices were built and distributed among volunteers living close to roads with high traffic volume for a 2-month 

measurement period, from 13 June to 16 August. The devices are built around the NO2-B43F electrochemical cell by 95 

Alphasense Ltd (Alphasense, 2018). The sensor generates an electrical current when the target gas diffuses through a 

membrane where it is chemically reduced at the working electrode. Better sensor performance at low ppb levels is obtained by 
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using low-noise interface electronics. The sensor devices were carefully calibrated using side-by-side measurements next to a 

reference station, solving issues related to sensor drift and temperature dependence (Mijling et al., 2018). After calibration, 

they are found to have a typical accuracy of 30%.  100 

3 Setting up a versatile urban air quality model 

One of the largest unknowns when modelling urban air quality is a detailed, up-to-date emission inventory capable of 

describing the local contribution. For cities such as Amsterdam the local emissions are dominated by the transport and 

residential sector. This is confirmed by the EDGAR HTAP v2 emission inventory (Janssens-Maenhout et al., 2013), which 

estimates the contribution of NOX emissions in a 20 × 33 km2 (0.3 degree) area around the centre being 62%, 20%, 12%, and 105 

6% for the sectors transport, residential, energy, industry respectively. Especially the contribution of road transport is relevant, 

as its emissions are close to the ground in densely populated areas. Traffic information and population density will be used as 

proxies for urban emission (see Section 3.2.1 and 3.2.2). 

In contrast to the regional atmosphere, the urban atmosphere is more dominated by dispersion processes, while many chemical 

reactions are less important due to a relatively short residence time (Harrison, 2018). For the dispersion of the emission sources, 110 

the open source steady-state plume model AERMOD (Cimorelli et al., 2004) is used, developed by the American 

Meteorological Society (AMS) and United States Environmental Protection Agency (EPA). Based on the emission inventory 

and meteorology (see Section 3.2.4), AERMOD calculates hourly concentrations of air pollutants. The concentration 

distribution of an emission source is assumed to be Gaussian both horizontally as vertically when boundary layer conditions 

are stable. In a convective boundary layer, the vertical distribution is described by a bi-Gaussian probability density function. 115 

Note that any other dispersion model can be used in the Retina methodology, as long as it is capable of simulating 

concentrations from individual emission sectors on an arbitrary receptor mesh. 

3.1 AERMOD simulation settings 

AERMOD version 16216r is used with simulation settings summarized in Table 1, operating on a rectangular domain of 18 × 

22 km2 covering the municipality of Amsterdam for the most part. All coordinates are reprojected in a custom oblique 120 

stereographic projection (EPSG:9809) around the city centre coordinate, such that the coordinate system can be considered 

equidistant at the urban scale. Instead of using a regular grid, a road-following mesh (Lefebre et al., 2011) is used. This reduces 

the number of receptor points, while maintaining accurate description of strong gradients found close to roads. Receptor 

locations are chosen at every 75 m along the parallel curves with 25 m distance to the road, and at every 125 m along the 

parallel curves with 50 m distance to the road. The open spaces between these points are filled with a regular grid at 125 m 125 

resolution. Roads are modelled as line sources, while residential emissions are described as area sources. The dispersion is 

calculated for NOX to avoid a detailed analysis of the rapid cycling between its constituents NO and NO2. Afterwards, an 

NO2/NOX ratio is applied, depending on the available ozone (O3), see Section 3.1.1. 
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Memory usage of AERMOD for the Amsterdam domain is proportional to the total number of emission source elements (here 

17,069 road fragments and 12,182 residential squares) and the number of receptor points in the road-following mesh (here 130 

42,128). The calculation time for a single concentration field is around 10 minutes, but can be reduced to a fraction of this by 

parallelizing the code. 

3.1.1 Ozone chemistry and lifetime 

Primary emissions of NO2 (e.g. directly from the tailpipe) are only 5-10% of the total emitted NOX (Sokhi et al., 2007). At 

short time scales, secondary NO2 is formed by oxidation of NO with O3, while this reaction is counterbalanced by photolysis 135 

converting NO2 to NO. The reaction rate of the first reaction is temperature dependent, while the latter depends on the available 

sunlight. The NO2/NOX ratio has therefore an intricate dependence on temperature, radiation, and the proximity to the source 

(i.e. the travel time of the air mass since emission).  

A practical approach to estimate this ratio is the Ozone Limited Method (OLM), as described in EPA (2015). The method uses 

ambient O3 to determine how much NO is converted to NO2. The dispersed (locally produced) NOX concentration is divided 140 

into two components: the primary emitted NO2 (here assumed to be 10%), and the remaining NOX which is assumed to be all 

NO available for reaction with ambient O3: NO+O3 → NO2+O2. If the mixing ratio of ozone (O3) is larger than the 90% of 

(NOX), than all NO is converted to NO2. Otherwise, the amount of NO converted is equal to the available O3, i.e. (NO2) = 

0.1(NOX) + (O3). The reaction is assumed to be instantaneous and irreversible. The resulting NO2 concentration is added to 

the NO2 background concentration. 145 

Removal processes of NOX are modeled with an exponential decay. The chemical lifetime is in the order of a few hours. Liu 

et al. (2016) find NOX lifetimes in a range from 1.8 to 7.5 h using satellite observations over cities in China and the USA. 

Given the size of the domain and average wind speeds, its exact value is not of great importance here. Based on regression 

results a practical value of 2 hour is chosen. 

3.2 Simulation input data 150 

The dispersion simulation is driven by input data regarding emissions, background concentrations, and meteorology, listed in 

Table 2. All data, except for the traffic counts of inner city traffic, are taken from open data portals. The emission proxies are 

mapped in Fig. 2. 

3.2.1 Traffic emissions 

A recurrent problem when building urban air quality models is finding sufficiently detailed traffic emission information. 155 

Traffic emissions depend roughly on traffic flow and fleet composition, including engine technology. For many cities, 

unfortunately, this information is not available. Here a distinction is made between highways and primary roads, as both have 

a distinct traffic volume and weekly cycle. Differences in driving conditions and fleet composition are captured by assigning 

two different emission factors later on. 
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Road location data and road type definition data are taken from OpenStreetMap (OSM, 2017), which is a crowd-source project 160 

to create a free editable map of the world. A distinction is made between urban roads (labelled in OSM as “primary”, 

“secondary”, and “tertiary”) and highways (labelled as “motorway” and “trunk”), as they have a distinct traffic pulse, fleet 

composition, and driving conditions. Road segments labelled as “tunnel” are not taken into account. 

When the traffic flow q (in vehicles per hour) is known, the emission rate E for a road segment l can be written as 

 𝐸𝐸 = 𝛼𝛼veh𝑞𝑞𝑞𝑞            (1) 165 

with emission factor αveh representing the (unknown) NOX emission per unit length per vehicle. Hourly traffic flow data is 

taken from 29 representative highway locations from the National Data Warehouse for Traffic Information (NDW, 2019), 

which contains both real-time and historic traffic data. For the urban traffic flow, data from 24 inductive loop counters provided 

by the traffic research department of Amsterdam municipality is used. Due to its large numbers, traffic flow is relatively well 

predictable, especially when lower volumes during holiday periods and occasional road closures are neglected. For each 170 

counting site a traffic “climatology” is constructed, parametrized by hour and weekday, based on hourly data of 2016, see Fig. 

3.  

Traffic counts correlate strongly between different highway locations, all showing a strong commuting and weekend effect. 

Urban traffic typically shows, apart from lower volumes, less reduction between morning and evening rush hours, a less 

pronounced weekend effect, and higher traffic intensities on Friday and Saturday night.  175 

For locations x between the counting locations xi the traffic flow q(x) is spatially interpolated by inverse distance weighting 

(IDW): 

𝑞𝑞(𝐱𝐱) = �
∑ 𝑤𝑤𝑖𝑖(𝐱𝐱)𝑞𝑞𝑖𝑖𝑖𝑖
∑ 𝑤𝑤𝑖𝑖(𝐱𝐱)𝑖𝑖

,          if 𝑑𝑑(𝐱𝐱,𝐱𝐱𝑖𝑖) ≠ 0 for all 𝑖𝑖

𝑞𝑞𝑖𝑖 ,                 if 𝑑𝑑(𝐱𝐱, 𝐱𝐱𝑖𝑖) = 0 for some 𝑖𝑖
        (2) 

in which the weighting factors wi depend on the distance d between x and the counting location xi: 

𝑤𝑤𝑖𝑖 = 1
𝑑𝑑(𝐱𝐱,𝐱𝐱𝑖𝑖)2

            (3) 180 

Validation in the Supplementary Material shows that for this counting network IDW predicts the traffic volume within a 50% 

error margin at most locations. Better results are obtained when more counting locations are available, or when they are selected 

strategically around crossings and access roads. Model simulations show that using inferior traffic data is partly compensated 

by the calibration (Section 4), at the expense of less pronounced concentration gradients. 

3.2.2 Population data 185 

Population density is considered to be a good proxy for residential emissions, e.g. from cooking and heating. Here, data is 

taken from the gridded population database of 2014, compiled by the national Central Bureau for Statistics (CBS, 2019) at a 

100 m resolution. Each grid cell is offered to the dispersion model as a separate area source. To reflect the observation that 

residential emissions per capita are less when people are living closer to each other (Makido et al., 2012), the emission fluxes 

are taken proportional to the square root of the population density p: 190 
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𝐸𝐸 = 𝛼𝛼pop�𝑝𝑝            (4) 

3.2.3 Background concentrations 

As AERMOD only describes the local contribution to air pollution, background concentrations are added which are taken from 

the Copernicus Atmosphere Monitoring Service (CAMS) European air quality ensemble (Marécal et al., 2015). The CAMS 

ensemble consists of 7 regional models producing hourly air quality and atmospheric composition forecasts on a 0.1 × 0.1 195 

degree resolution. The analysis of the ensemble is based on the assimilation of up-to-date (UTD) air quality observations 

provided by the European Environment Agency (EEA). Each model has its own data assimilation system. 

In the CAMS product the local contributions are already present. To get a better estimate for regional background 

concentrations avoiding double counts, the lowest concentration found in a 0.3 × 0.3 degree area around the city for NO2 is 

taken, together with the mean concentration found in this area for O3. 200 

3.2.4 Meteorological data 

The dispersion of air pollution is strongly governed by local meteorological parameters, especially the winds driving the 

horizontal advection and the characterization of the boundary layer which defines the vertical mixing. Meteorology also affects 

the chemical lifetime of pollutants. 

AERMET (EPA, 2019) is used as a meteorological pre-processor for organizing available data into a format suitable for use 205 

by the AERMOD model. AERMET requires both surface and upper air meteorological data, but is designed to run with a 

minimum of observed meteorological parameters. Vertical profiles of wind speed, wind direction, turbulence, temperature, 

and temperature gradient are estimated using all available meteorological observations, and extrapolated using similarity 

(scaling) relationships where needed (EPA, 2018). 

Hourly surface data from the nearby Schiphol airport weather station can be obtained from the Integrated Surface Database 210 

(ISD, see Smith et al. (2011)). Observations of temperature, winds, cloud cover, relative humidity, pressure, and precipitation 

are retrofit to match the SAMSON data format (WebMet, 2019a) which is supported by AERMET. Upper air observations are 

taken from daily radiosonde observations in De Bilt (at 35 km from Amsterdam), archived in the Integrated Global Radiosonde 

Archive (IGRA) (Durre et al., 2006). Pressure, geopotential height, temperature, relative humidity, dew point temperature, 

wind speed and direction are converted to the TD6201 data format (WebMet, 2019b) for each reported level up to 300 hPa. 215 

4 Calibrating the model 

Using proxy data instead of real emission introduces the problem to find the emission factors which best relate the activity 

data to their corresponding emissions. Instead of using theoretical values or values found in literature, effective values are 

derived which best fit the hourly averaged NO2 observations of a network of N stations.  

For a certain hour t, the emission of a source element i belonging to source sector k can be written as 220 
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𝐸𝐸𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑘𝑘𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)           (5) 

in which Pik represents the corresponding emission proxy. The contribution of this source to the concentration at a receptor 

location j is 

𝑐𝑐𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡) = 𝑓𝑓𝑖𝑖𝑖𝑖(𝑡𝑡)𝐸𝐸𝑖𝑖𝑖𝑖(𝑡𝑡)           (6) 

with 𝑓𝑓𝑖𝑖𝑖𝑖 describing the dispersion of a unit emission from i to j, including the conversion from NOX to NO2 from the OLM. 225 

Eq. (6) is assumed to describe a linear relation between emission and concentration, although strictly speaking the variable 

NO2/NOX ratio introduces a weak nonlinearity. A regression analysis is applied for a certain period, assuming that for each t 

the total NO2 concentration cj at station j can be described as a background field b and a local contribution consisting of a 

linear combination of the dispersed fields of K emission sectors: 

𝑐𝑐𝑗𝑗(𝑡𝑡) = 𝑏𝑏(𝑡𝑡) + ∑ 𝑎𝑎𝑘𝑘 ∑ 𝑓𝑓𝑖𝑖𝑖𝑖(𝑡𝑡)𝑃𝑃𝑖𝑖𝑖𝑖(𝑡𝑡)𝑆𝑆𝑘𝑘
𝑖𝑖

𝐾𝐾
𝑘𝑘=1          (7) 230 

Sk represents the number of source elements for an emission sector k. The second sum in this equation is calculated for every 

hour with the Gaussian dispersion model taking the meteorological conditions during t into account. Note that both background 

concentrations b(t) and local concentrations cj(t) are taken from external data, see Section 3.2.3 and 2. Considering a period of 

T hours, Eq. (7) can be interpreted as a matrix equation from which the emission factors ak can be solved using ordinary least 

squares. Given the physical meaning of ak, only positive regression results are allowed. 235 

In this setup, the emissions are approximated by three sectors highway traffic, urban traffic, and population density (K=3). The 

resulting ak do not necessarily represent real emission factors. Their values partly compensate for unaccounted emission sectors 

and unrealistic modelling (e.g. based on wrong traffic data or an incorrect chemical lifetime). In Retina ak every 24 hours, 

based on observations of the preceding week (T=168). Doing so, the periodic calibration adjusts itself to seasonal cycles and 

episodes not captured by the climatologies (e.g. cold spells or holiday periods). To avoid reducing the predictability of the 240 

regression model too much (ak dropping to zero), not all reference stations are used for calibration, but only stations classified 

as roadside or urban background. For the Amsterdam network, N=11. The residential emissions are represented by the 

population density, which is a time invariant proxy. To allow for a diurnal cycle, the residential emission factor is evaluated 

for two-hour bins. This brings the total number of fitted emission factors to 14: one for highway traffic, one for urban traffic, 

and 12 describing the daily residential emission cycle. 245 

Figure 4 shows an example of the air quality simulation after the emission factors have been determined. The stacked colours 

in the time series of Fig. 4b show that the contribution from different emission sectors to local air pollution can strongly vary 

from site to site.  

4.1 Diurnal and seasonal analysis of calibration results 

It is important to realize that the numerous modelling assumptions prevent that the calibration realistically solves the 250 

underdetermined inverse problem of finding the underlying NOX emissions based on the observed NO2 concentrations. Instead, 

it evaluates how much NOX must be injected into the model to explain the observed spatial NO2 patterns (unbiased with respect 
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to the calibration locations). To study the results of the regression analysis, a comparison was made between a summer month 

(July 2016, mean temperature 18.4 ºC) and a winter month (January 2017, mean temperature 1.6 ºC). Figure 5 shows the 

diurnal emissions for a 0.2 × 0.1 degree area, corresponding to the two grid cells of the EDGAR inventory covering the city 255 

centre. 

Ideally, the emissions would be around the values found in the EDGAR inventory (6.23 and 7.18 10-10 kg NOX/m2/s for 

Summer and Winter respectively), and a corresponding ratio between residential and transport emissions (8% and 48% for 

Summer and Winter respectively). Unlike traffic, however, the diurnal cycle for the residential contribution is not prescribed, 

but is shaped in the regression analysis. The seasonal analysis shows that its fitted diurnal cycle not only describes changing 260 

residential emissions, but also compensates for changing NO2/NOX ratios over the day (not included in the OLM) due to 

changing photochemistry and temperature. In daylight, the destruction of NO2 by photolysis (NO2 + hv → NO + O3) is strong, 

reducing the NO2/NOX ratio. At low temperatures, the formation of NO2 from NO (NO + O3 → NO2 + O2) is slow, also 

reducing the NO2/NOX ratio. Also, due to collinearity, part of the traffic emissions will be explained by population density. 

Therefore, the found emission factors (and the corresponding sectoral emissions) should be considered as “effective” rather 265 

than real, i.e. as factors which best describe the observations under the given model assumptions. 

5 Assimilation of observations 

As the air quality network is spatially undersampling the urban area, the observations need to be combined with additional 

model information to preserve the fine local structures in air pollutant concentrations. The interpolation technique of choice 

here is Optimal Interpolation (OI) (Daley, 1991), having the desired property that the Bayesian approach allows for assimilation 270 

of heterogeneous measurements with different error bars. At an observation location the model value is corrected towards the 

observation, the innovation depending on the balance between the observation error and the simulation error. The error 

covariances determine how the simulation in the surroundings of this location is adjusted. Note that OI is essentially the same 

assimilation scheme as kriging-based approaches. The main advantage here is that one has detailed manual control over the 

error covariance matrix, which allows for a more comprehensive specification of the area of influence for each contributing 275 

observation. Outside the representativity range (i.e. the correlation length) of the observations, the analysis relaxes to the model 

values.  

Consider a state vector x representing air pollutant concentrations on the (road-following) receptor mesh (n≈40,000). Define 

xb as the background, i.e. the model simulation. Observation vector z contains m measurements, typically 10﹣ 100. Following 

the convention by Ide et al. (1997), the OI algorithm can now be written as: 280 

 𝐱𝐱𝑎𝑎 = 𝐱𝐱𝑏𝑏 + 𝐊𝐊�𝐳𝐳 − 𝐻𝐻(𝐱𝐱𝑏𝑏)�           (8) 

𝐊𝐊 = 𝐏𝐏𝑏𝑏𝐇𝐇T(𝐇𝐇𝐏𝐏𝑏𝑏𝐇𝐇T + 𝐑𝐑)−𝟏𝟏          (9) 

𝐏𝐏𝑎𝑎 = (𝐈𝐈 − 𝐊𝐊𝐊𝐊)𝐏𝐏𝑏𝑏           (10) 
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Matrix R is the m×m observation error covariance matrix. As all observations are independent (the measurement errors are 

uncorrelated), R is a diagonal matrix with the measurement variances on its diagonal. 285 

Pb is the n×n model error covariance matrix, describing how model errors are spatially correlated. The calculation of Pb is not 

straightforward; in Section 5.1 an approximation is derived. 

Operator H is the forward model, which maps the model state to the observed variables and locations. The matrix calculations 

can be simplified by reserving the first m elements of the state vector for the observation locations, and the other 𝑛𝑛 −

𝑚𝑚 elements for the road-following mesh. The Gaussian dispersion model is evaluated “in-situ” at the observation locations. 290 

Avoiding reprojection or interpolation means that there are no representation errors associated with H. The simulations at the 

observation locations zb can then be written as a matrix multiplication 

𝐳𝐳𝑏𝑏 = 𝐻𝐻(𝐱𝐱𝑏𝑏) = 𝐇𝐇𝐱𝐱𝑏𝑏           (11) 

in which H is an m×n matrix for which its first m columns form a unity matrix, while its remaining elements are 0. 

Eq. (8) describes the analysis xa, i.e. how the observations z are combined (assimilated) with the model xb. It is a balance 295 

between the model covariance and the observation covariances, described by the gain matrix K in Eq. (9). K determines how 

strong the analysis must incline towards the observations or remain at the simulated values, to obtain the lowest analysis error 

variance, Pa in Eq. (10). 

Note that Eq. (8)-(10) are analogous to the first step in Kalman filtering. The second step of the filter, propagating the analysis 

to the next time step, cannot be made here as the plume model solves a stationary state which is independent of the initial air 300 

pollutant concentration field. Also note that since an approximated model error covariance matrix will be used, generally these 

equations do not lead to an optimal analysis, hence this approach is more correctly referred to as Statistical Interpolation. 

Let vector c represent the observed NO2 mass concentrations, as described in Section 2. The distribution of the air pollutant 

concentrations resembles better the lognormal distribution than the Gaussian distribution, as can be seen from the Q-Q plots 

in Fig. 6. The analysis is done in log-space (zj = ln cj), stabilizing the results by reducing the impact of less frequent 305 

measurements of high concentrations. Once returning from the log domain, Eq. (8) can be rewritten as:  

𝐜𝐜𝑎𝑎 = exp(𝐱𝐱𝑎𝑎) = 𝐜𝐜𝑏𝑏exp(𝐊𝐊∆𝐳𝐳),   with innovation vector ∆𝐳𝐳 = 𝐳𝐳 − 𝐳𝐳𝑏𝑏      (12) 

By doing the analysis in the log-domain the assimilation updates correspond to multiplication instead of addition: exp(𝐊𝐊Δ𝐳𝐳) 

represents the local multiplication factor with which the simulated concentration cb is corrected. This means that the shape of 

the model field (e.g. strong gradients found close to busy roads) is locally preserved. Note that the error in zj corresponds to 310 

the relative error in cj : d𝑧𝑧 = d(ln𝑐𝑐) d𝑐𝑐⁄ = d𝑐𝑐/𝑐𝑐 . The observation error covariance matrix is therefore 𝑹𝑹 =

 diag(𝜎𝜎12,𝜎𝜎22, … ,𝜎𝜎𝑚𝑚2 ), with σj the relative error corresponding to observation j. 

4.1 Modelling the model error covariance matrix  

For an optimal result in the data assimilation a realistic representation of the model covariance matrix Pb is essential. The 

model covariances influence the spatial representativity of the observations: when model errors correlate over larger distances, 315 

the assimilated observation will change the analysis over a longer range. 
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Tilloy et al. (2013) choose to model the covariances depending on the road network. Error correlations are assumed to be high 

on the same road or on connected roads. For background locations, the correlation decreases fast in the vicinity of a road, while 

the error correlation between two background locations remains significant across a larger distance. The error covariances are 

kept constant in time, and taken independent of traffic conditions. 320 

However, Pb changes from hour to hour, mainly because varying meteorology changes the atmospheric dispersion properties. 

Here, the model error covariance is estimated for each hour based on the spatial coherence of the simulated concentration field. 

The covariance between two grid locations xi and xj can be expressed as their correlation 𝜌𝜌 and their standard deviations 𝜎𝜎: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑏𝑏  =  𝜎𝜎𝑖𝑖  𝜌𝜌(𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑗𝑗) 𝜎𝜎𝑗𝑗           (13) 

The model error 𝜎𝜎 can only be evaluated at locations of the reference network using time series analysis. These model errors 325 

are spatially interpolated to other grid locations using IDW, analogous to Eq. (2)-(3). The correlation of model errors between 

different locations is parametrized with a downwind correlation length Ldw and a crosswind correlation length Lcw. The extent 

of the correlation lengths reflect the turbulent diffusion and transport of the Gaussian dispersed plumes for a specific hour.  

From spatial analysis of the simulation data a heuristic model is derived which describes the dependence of the correlation on 

distance: 330 

𝜌𝜌(𝑑𝑑)  = exp�−√𝑑𝑑� ,           (14) 

with d the scaled distance between xi and xj (expressed as xdw and xcw along the downwind and crosswind axes) 

𝑑𝑑 = ��𝑥𝑥dw
𝐿𝐿dw
�
2

+ �𝑥𝑥cw
𝐿𝐿dw
�
2
,           (15) 

such that all points on an ellipse with semi-major axis Ldw and semi-minor axis Lcw have the same correlations. 

To fit the parameters Ldw and Lcw for a certain hour, 1000 sample locations are selected from the road-following mesh. To 335 

represent both polluted and less polluted areas, the locations are selected such that their concentrations are homogeneously 

distributed over the value range, excluding the first and last 5 percentile. For this sample, correlation lengths Ldw and Lcw are 

fitted using Eq. (14) and (15). 

Figure 7 shows the results of this analysis for two different hours. For fields with low gradients (e.g. when traffic contribution 

is low at night), large values of L can occur. To prevent assimilation instabilities, the fitted values of L are limited to a maximum 340 

of 10 km. During the 2016 summer months, longest correlation lengths are found for fields with low gradients. Average 

midnight values, when traffic contribution is low, are about 8 km. Correlation lengths are shortest during the morning rush 

hour (~1 km), increasing to 3 km during the late morning and afternoon. There is a wind dependency, as stronger winds stretch 

the pollution plumes, increasing correlation lengths. From the fit results the average ratio between Lcw and Ldw is found to be 

68%. 345 

Once the covariance parameters are known, the covariance matrix elements are calculated with Eq. (13). Note that for the 

calculation of the gain matrix K there is no need to calculate the full Pb matrix. Instead, PbHT is calculated, which due to the 

structure of H this matrix product corresponds to the first m columns of the n×n matrix Pb. 
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6 Validation of simulation and assimilation 

To assess the data quality across the domain, a leave-one-out analysis is performed at all locations of the reference network 350 

for the period June 1 - August 31, 2016. The results are summarized in Table 3. Figure 8 illustrates two examples; plots for all 

validation locations can be found in the Supplementary Material. For the observation-free simulation (i.e. the model forecast) 

an average RMSE is found of 13.6 μg/m3 and correlation of 0.57. When assimilating observations, the average RMSE drops 

to 10.4 μg/m3 while the correlation increases to 0.78. Strong systematic underestimations of the simulation (characterized by 

a large negative bias) are observed at street locations NL49002, NL49007 and industrial locations NL49546, NL49704. These 355 

are most likely caused by unrealistic assumptions of local emissions of either traffic or industry. The strong positive bias found 

at NL49014, located in a city park separated from the nearby main road by a block of 4-storey buildings, might be explained 

by an incorrect simulation of air pollutants in the direct vicinity of these buildings. 

The CAMS regional ensemble analysis compares well with the average of the urban background stations; the very low bias (-

0.1 μg/m3) corresponds with the fact that data of these stations are used in its analysis. (Note that the CAMS values used here 360 

correspond to the Amsterdam grid cell, not the 3×3 minimum values used as background for the modelling.) On the other 

hand, it shows strong underestimations at street locations, as expected. It is here where the Retina simulation outperforms the 

low resolution results of CAMS. 

From Table 3 can be seen that the relative error in the model forecast (defined as the ratio between the RMSE and the mean of 

the observations) is around 58% on average. When assimilating, the error becomes dependent on the distance to the nearest 365 

observation locations. For sites having the nearest assimilated observation within 2 km distance, the average RMSE drops 

from 16.8 to 11.9 μg/m3, corresponding to an average relative error of 39%. For sites where the nearest assimilated observation 

is further away than 2 km, the average RMSE drops from 10.8 to 9.1 μg/m3, corresponding to an average relative error of 53%. 

7 Added value of low-costs sensors 

The previous analysis is purely based on high-quality reference measurements. In this section it is explored whether the 370 

statistical interpolation scheme can be used to derive useful information of low-cost measurements, despite their lower 

accuracy.  

This is done by testing different assimilation configurations during the Urban AirQ campaign, from 15 June to 15 August 2016 

(see Section 2). The campaign targeted a central area with 4 reference stations and 14 low-cost sensors (See Figure 10a). 

Validation is done for 5 different assimilation scenarios (AS): 375 

• AS1: Assimilation of all reference measurements (leave-one-out); 

• AS2: Assimilation of measurements from 3 central reference sites (leave-one-out); 

• AS3: Assimilation of low-cost data only; 

• AS4: Assimilation of measurements from 3 central reference sites (leave-one-out) and all low-cost data; 



13 
 

• AS5: Assimilation of all reference measurements (leave-one-out) and all low-cost data. 380 

The results are summarized in Figure 9. As expected, results deteriorate when the number of reference locations in the 

assimilation are reduced from 14 (AS1) to 3 (AS2). The correlation decreases at all 4 validation locations. At NL49012, the 

RMSE increases significantly due to a positive jump in the bias. The lower analysis with respect to the observations is due to 

the absence of assimilation of high values at nearby street location NL49002, which enlarges the influence of lower 

observations found at urban background location NL49019. At NL49019, located in the middle of 3 assimilation locations, the 385 

RMSE does not change significantly. Apparently, the effect of assimilation of observations farther than the surrounding 

locations is small. 

When only observations of 14 low-cost sensors are assimilated (AS3), instead of observations at 3 reference sites (AS2), there 

is a notable improvement visible in bias and RMSE at location NL49019. Here, the low-cost sensors are relatively nearby, the 

closest being sensor SD04 at 120 m distance. At the other validation locations, the low-cost sensor assimilation results in 390 

similar RMSE (i.e. within 1 µg/m3), a comparable bias, but a slightly lower correlation.  

The results can be further improved if both reference and low-cost sensor data are included (AS4 and AS5). At NL49019, the 

RMSE drops to 5.1 µg/m3 (compared to 7.8 µg/m3 when no low-cost data are included) while the correlation increases to 0.89. 

Again, there is no significant difference between including the three surrounding reference locations and including all reference 

locations. Also at street location NL49017 and urban background location NL49003, the inclusion of low-cost sensor data 395 

improves RMSE and correlation compared to assimilations with reference data only (AS4 vs. AS2, and AS5 vs. AS1). At 

location NL49012, the bias reduces considerably only when all reference data are included in the assimilation (AS1 and AS5).  

The different assimilation scenarios show that low-cost sensor data assimilation improves the results locally, even in absence 

of reference data. Generally, the best results are obtained when both reference data and low-cost data are included. Assimilation 

can reduce local model biases. However, unrealistically modelled covariances can lead locally to the introduction of an 400 

additional bias. 

Next, a monthly averaged concentration map of Amsterdam is constructed with all reference data and all low-cost sensor data 

from the first half of the Urban AirQ, see Fig. 10b. The addition of the low-cost data lowers the assimilation results by several 

μg/m3 in the undersampled area west of Oude Schans (NL49019), while the NO2 increases with several μg/m3 around the 

traffic arteries found south and east of this location (Fig. 10c). A large fraction of traffic on these roads uses the IJ-tunnel to 405 

cross the river. On a monthly basis, this tunnel is used by approximately one million vehicles. 

The second half of the Urban AirQ campaign coincides with the start of the summer holiday period and the closure of the IJ-

tunnel for maintenance. Comparison of the NO2 concentration maps of both periods reveal interesting features (Fig. 11). Based 

on averaged NO2 measurements at rural stations NL49565 and NL49703, the NO2 reduction due to meteorological variability 

is estimated to be 7%.  The overall drop in NO2 concentrations in the central area, however, is around 10% due to reduced 410 

traffic during the summer break. Notable exception is the historic city centre, where the NO2 reduction is only  a few percent, 

probably related to the steady economic activity driven by tourism. The strongest NO2 reductions, around 15%, are found 
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around the access ways of the IJ-tunnel. A few main roads (e.g. De Ruijterkade/Piet Heinkade and Ceintuurbaan) show less 

NO2 reduction than average, apparently due to redirected traffic avoiding the tunnel. 

8 Discussion and conclusions 415 

As air pollution gradients can be strong in the urban environment, it is essential to combine (sparse) measurements with an air 

quality model when aiming at street-level resolution. Retina is a practical approach to interpolating hourly urban air quality 

measurements. The first step consists of a simulation by a dispersion model which is driven by meteorological data and proxies 

for traffic and residential emissions. The model is daily calibrated with historic measurements. In the second step, observations 

of different accuracy are assimilated using a statistical interpolation scheme. 420 

Validation analysis confirms that the European CAMS ensemble is a good predictor for hourly NO2 concentrations found in 

the urban background. However, the CAMS data for NO2 can be misleading when interpreted at the local scale, as the predicted 

diurnal cycle often deviates substantially from that observed at urban air quality stations. Local effects can be better resolved 

when CAMS data is used for background concentrations in a dispersion model which is driven by proxies for traffic and 

residential emissions.  425 

The Retina simulation setup shows that such a system can be built from open software and open data. Applied to Summer 

2016 in Amsterdam, it reduces the relative error at street locations from 70% to 51%, mainly by reducing the negative bias 

from 18.2 to 5.3 μg/m3. At urban background locations the dispersion model often introduces a positive bias, especially when 

traffic sources are nearby.  

The mapping results improve considerably with the second Retina step when available observations are assimilated by the 430 

statistical interpolation scheme. When assimilating measurements of the reference network, the relative error in NO2 

concentrations drops to 44% on average. The local error depends on the distance to the nearest observations: approximately 

39% within 2 km of an observation site, increasing to 53% for larger distances. The typical correlation increases from 0.6 to 

0.8. 

The Bayesian assimilation scheme also allows us to improve the results by including low-cost sensor data, in order to get 435 

improved localized information. However, biases must be removed beforehand with careful calibration, as most low-cost air 

quality sensors suffer from issues like cross-sensitivity or signal drift, see e.g. Mijling et al. (2018). The assimilation of low-

cost sensor data from the Urban AirQ campaign reveals more detailed structure in concentration patterns in an area which is 

undersampled by the official network. The additional measurements correct for wrong assumptions in traffic emissions used 

in the apriori interpolation, and give better insight into how traffic rerouting (for instance due to closure of an arterial road) 440 

affects local air quality. 

Retina has been built on open data to facilitate a flexible application to other cities. The meteorology needed for AERMOD is 

taken from global data sets of ISD and IGRA. Road network information can also be obtained globally from OpenStreetMap. 

Traffic data tends to be hard to obtain. When no local data is available on diurnal and weekly traffic flow its patterns should 
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be estimated. In the absence of local census data, population density data can be taken from the Global Human Settlement 445 

database (Schiavina et al., 2019), which has global coverage on a 250 m resolution. For application within Europe, the 

necessary background pollutant concentrations can be obtained from CAMS. For applications outside Europe other data sets 

have to be found. 

In general, degraded input data and imperfections in the dispersion modelling will deteriorate the system’s capability to resolve 

local structures; it will lower the effective spatial resolution of the simulations. In its extreme it will only describe the blurry 450 

urban background pollution contribution added to the rural background. Oppositely, with improved input data and atmospheric 

modelling, the effective resolution will improve, reducing local biases. This is the focus of future research. 

Significant inaccuracies due to local emissions which are not described adequately by the proxies (e.g. from industry, port and 

airport activity) can be reduced by including these sources explicitly in the dispersion modelling. Small-scale structures 

provoked by the local built-up area will be better described by introducing the street canyon effect. The model will also benefit 455 

from a more detailed traffic emission model, based on more counting locations and aggregated from shorter time intervals. 

Ideally, such an emission model takes local differences in fleet composition also into account. Finally, simulations will gain 

accuracy with a more realistic NOX chemistry, concerning the NOX chemical lifetime (influencing the plume length) and the 

NO2/NOX ratio. 

Overall, the error of the assimilation results depends on the accuracy of the air quality model, the number of assimilated 460 

observations, the quality of observations, and the distance to the observation location. A reasonable approximation of the 

model covariance matrix is found by assuming the model covariance to be isotropic and by fitting correlation lengths along 

the downwind and crosswind axes for every hour. Finding a more realistic description of the model covariance matrix will 

better suppress the introduction of bias by the assimilation, and will be subject to future research.  

For near-real time monitoring and forecasting of air quality the CAMS ensemble analysis must be changed for the ensemble 465 

forecast. Instead of observation-based meteorology one should use data from local or global numerical weather prediction 

models e.g. from the National Centers for Environmental Prediction (the Global Forecast System, GFS; open data) or the 

European Centre for Medium-Range Weather Forecasts (ECMWF; not open data). 

Apart from assessment of historic data such as in this study, Retina has been applied successfully for near-real time monitoring 

and forecasting of NO2 in the cities of Amsterdam, Barcelona, and Madrid. Future work includes the implementation of other 470 

cities inside and outside of Europe, and the application of Retina to other pollutants such as particulate matter. 
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 575 
Figure 1: Air quality reference network of Amsterdam. (Basemap source: © Mapbox © OpenStreetMap contributors 2019. 
Distributed under a Creative Commons BY-SA License.) 

 

 
Figure 2: Map of the emission proxies used for the dispersion model. Red lines indicate the highways, green lines indicate the urban 580 
main roads. Grey colours indicate the population density. (Road location data adopted from © OpenStreetMap contributors 2019. 
Distributed under a Creative Commons BY-SA License.)  
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Figure 3: Weekly cycle of highways and urban roads at counting locations (thin lines), aggregated from hourly data from 2016. The 
thick lines show the median of traffic flow for both road types. The morning and evening rush hours on working days are clearly 585 
visible for highways. Urban traffic has, apart from lower volume, less distinct peaks.  

 

 

Figure 4a: Dispersion maps of NO2 concentrations for each emission sector at 8 July 2016, 9:00. The lower right panel shows the 
linear combination which best fits the time series at the calibration sites. Wind is blowing from the southwest at 16 km/h. The grey 590 
dots indicate an urban background location, a street location, and a highway location. 
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Figure 4b: Comparison of observed and simulated NO2 time series for the urban background location, the street 
location, and the highway location. The colours indicate the simulated contribution of the three source sectors and the 
background. 595 

 

 

Figure 5: Diurnal emission cycles after calibration of emission factors in different seasons. 
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 600 
Figure 6: (left) Distribution of the NO2 observations at reference station Oude Schans in July 2016 compared to a standard normal 
distribution. (right) The logarithm of the observed values correspond better to a Gaussian distribution, shown by the quantile value 
pairs being almost on a straight line. 

 

 605 

 
Figure 7: Left panels show simulated NO2 concentration fields at two different hours. The middle panels show the spatial correlations 
along the downwind and crosswind axes based on a sample of n=1000. The right panels show the spatial correlations of the sample 
and the resulting modelled spatial correlation model. 
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 610 

 

 
Figure 8: Validation of hourly time series for the period 1 June to 31 August, 2016, for a well performing street location (above) and 
a less performing urban background location (below). Statistics of the n data pairs are given in correlation (ρ), coefficient of 
determination (R2), and RMSE. The right hand panels compare the error distributions: the observation minus forecast (OmF) 615 
against the observation minus analysis (OmA). 
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Figure 9: Validation of the model forecast and five different assimilation scenarios at four central reference sites, for 
the period June 15 to August 15, 2016. 620 
 
 

  
Figure 10: (a) Observation sites during the Urban AirQ campaign. (b) 30-day average of NO2 concentrations in the centre of 
Amsterdam, after assimilation of both reference measurements (black dots) and low-cost measurements (white dots). (c) Changes in 
spatial pattern when low-cost measurements are included in the analysis. (Basemap source: © Mapbox © OpenStreetMap 625 
contributors 2019. Distributed under a Creative Commons BY-SA License.) 

 



26 
 

 
Figure 11: Reduction of NO2 during the holiday period. Largest reduction of concentrations is found in the vicinity of access ways 
to the IJ-tunnel, which was closed for maintenance. Concentrations in the historic centre remain unchanged. (Basemap source: © 630 
Mapbox © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.) 
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Table 1: Overview of AERMOD simulation settings 

Road width  20 m 

Emission height traffic 0.5 m 

Emission height residential 10 m 

Initial vertical extension of concentration 
layer (sigma Z0) 

10 m 

Receptor grid Road following 

Receptor height 1.5 m 

Urban surface roughness length 1 m 

NO2/NOX ratio Ozone Limited Method (OLM),  
Primary emission ratio 10% 

NOX lifetime 2 h 

Other AERMOD modelling options Optimizing model runtime for sources (FASTALL) 
Address low wind speed conditions (LOWWIND3) 
Assuming flat terrain (FLAT) 

 

  635 
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Table 2: Summary of simulation input data for Amsterdam 

Emission Highway locations OpenStreetMap (OSM, 2017): street segments labelled 
motorway and trunk 

Urban road locations OpenStreetMap (OSM, 2017): street segments labelled 
primary, secondary, tertiary 

Highway traffic flow National Data Warehouse for Traffic Information (NDW, 
2019): weekly cycle of vehicle counts at 29 selected 
locations (2016), interpolated to street segments 

Urban traffic flow Amsterdam municipality (personal communication): weekly 
cycle of vehicle counts at 24 locations (2016), interpolated to 
street segments 

Population data Statistics Netherlands (CBS, 2016): population density 
(2014) gridded at 100 m resolution 

Observation Background NO2 Copernicus Atmosphere Monitoring Service (CAMS, 2019): 
NO2 analysis from model ensemble; minimum value found in 
3x3 grid around domain centre 

Background O3 Copernicus Atmosphere Monitoring Service (CAMS, 2019): 
O3 analysis from model ensemble; mean value found in 3x3 
grid around domain centre 

Meteorology Meteorology (surface) Integrated Surface Database (ISD, 2019): hourly 
observations from Schiphol Airport weather station 

Meteorology (upper air) Integrated Global Radiosonde Archive (IGRA, 2019): daily 
radio sounding at De Bilt (NL) 
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Table 3: Validation results at reference locations, June 1-August 31, 2016 

ID name type n1) 

mean 

obs. 

CAMS ensemble Model forecast Assimilated observations 

RMSE2) bias corr RMSE2) bias corr RMSE2) bias corr dist3) 

NL49002 

Amsterdam - 

Haarlemmerweg street 2145 42.2 31.4 -25.6 0.49 22.6 -14.3 0.55 18.6 -14.5 0.83 0.99 

NL49007 

Amsterdam - 

Einsteinweg street 2145 38.1 29.2 -21.4 0.42 19.6 -6.9 0.57 16.5 -6.2 0.72 1.26 

NL49012 

Amsterdam - Van 

Diemenstr. street 2145 29.1 20.2 -12.5 0.53 15.7 -2.7 0.57 9.7 -0.5 0.87 0.99 

NL49017 

Amsterdam - 

Stadhouderskade street 2140 30.1 17.9 -13.5 0.45 14.3 1.9 0.50 9.0 -2.7 0.78 1.60 

NL49020 

Amsterdam - Jan 

van Galenstraat street 2131 34.8 24.0 -18.2 0.59 16.6 -4.7 0.58 11.1 -5.3 0.86 1.26 

NL49003 

Amsterdam - 

Nieuwend. dijk 

urban 

backgr. 2145 16.6 8.6 0.1 0.60 10.5 2.0 0.47 7.5 0.8 0.71 3.28 

NL49014 

Amsterdam - 

Vondelpark 

urban 

backgr. 2115 17.3 9.0 -0.7 0.52 14.9 7.9 0.44 9.9 6.5 0.75 1.73 

NL49019 

Amsterdam - Oude 

Schans 

urban 

backgr. 2124 20.7 10.3 -4.1 0.59 13.8 5.8 0.50 8.7 4.6 0.81 1.60 

NL49021 

Amsterdam - 

Kantershof 

urban 

backgr. 2082 14.9 7.5 1.6 0.65 10.7 5.6 0.56 8.0 4.4 0.73 7.33 

NL49022 

Amsterdam - 

Sportp. Ookmeer 

urban 

backgr. 2124 14.3 8.4 2.4 0.65 9.2 3.4 0.66 8.0 3.7 0.80 3.89 

NL49565 

Oude Meer - 

Aalsmeerderdijk rural 2127 17.3 9.1 -0.6 0.57 9.0 -2.4 0.59 8.0 -3.0 0.73 5.94 

NL49703 

Amsterdam - 

Spaarnwoude rural 2125 13.0 8.7 3.7 0.61 8.1 2.1 0.60 7.5 2.4 0.71 4.47 

NL49546 Zaanstad - Hemkade industry 2145 22.9 14.3 -6.2 0.63 15.0 -8.1 0.66 13.0 -8.3 0.83 3.26 

NL49704 Zaanstad - Hoogtij industry 2120 19.6 12.7 -3.0 0.66 13.4 -6.0 0.72 12.1 -6.4 0.84 3.72 

NL49561 

Badhoevedorp - 

Sloterweg undecided 2145 20.5 10.6 -3.9 0.64 10.8 -2.9 0.61 8.9 -4.2 0.79 3.96 

Average street locations 34.9 24.5 -18.2 0.50 17.8 -5.3 0.55 13.0 -5.8 0.81  
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 640 

1) Number of samples 
2) In units μg/m3 
3) The distance to the nearest observation site, in km 

 

Average urban background locations 16.8 8.8 -0.1 0.60 11.8 4.9 0.53 8.4 4.0 0.76  

Average all locations 23.4 14.8 -6.8 0.57 13.6 -1.3 0.57 10.4 -1.9 0.78  
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