
Authors response to the Editor and the Referees for in regard of the revision of the paper:  
 
 
Dear Editor and Reviewers, 
 
we appreciate your comments which we used as a basis to improve our manuscript. This response                
letter is structured in the following way. We first summarize our general changes which follow the                
recommendations of the reviewers. Then we describe further general changes that we made in the               
analysis. Additionally, we provide a copy of our final response to the reviewers (that we submitted to                 
AMTD at the end of the open discussion) and a marked-up manuscript version of all changes. 
 
The following changes have been introduced following the recommendations of the reviewers: 
 

- The main issue raised during the discussion phase was a lack of scientific significance of the                
results we presented. To underline the importance of the processing step of rain event              
detection in CML signal levels we now additionally analyzed the impact of falsely detected              
and missed wet periods on the overall amount of rainfall estimated by CMLs. We show that                
the impact is large and that an improvement in the rain event detection directly influences the                
estimated rainfall amount. To our knowledge such an analysis has not been done before.  
To illustrate why fluctuations during dry periods constitute such a challenge for detection             
algorithms we added three exemplary time-series in Fig. 1. The introduction was revised in              
large parts focusing on a better review of challenges and state of the art. For better readability                 
we separated the introduction into several sections. (Changes in revised version: revised            
section 1 and new sections 2.5, and 4.3 and an additional paragraph in section 3) 

 
- We introduced different setups for the added ‘old data’ that we provide to the CNN as an input                  

and which has the purpose of a reference to previous behavior of the CML. Previously we                
used 120 minutes and now added a larger analysis for 0, 15, 30, 45, 60, 120, 180 and 240                   
minutes. This way a ROC analysis in Fig. 4 c) can show that the performance increase                
converges with longer windows and significant changes are not visible beyond the 120 minute              
variant. As a consequence the main analysis keeps the simplest version with good             
performance, which is the 120 minute old data version. This addresses specific comment 2 of               
referee 1 and specific comment 2 of referee 2. (Changes in revised version: Added plot in Fig.                 
4, added Table A1 and new text in sections 2.3.1 and 3) 
 

- We introduced an additional CNN architecture that uses the CML metadata as an input. The               
performance of this new model is also shown in Fig. 4 c). No increase in performance could                 
be observed and the model was not used for further analysis. This addresses specific              
comment 3 of referee 1 and the comment of referee 2, that in principle, a model could make                  
use of this information. (Changes in revised version: Added plot in Fig. 4 and new text in                 
sections 2.3.1 and 3). 
 

- Information about the dropout layers was added in the text as requested by referee 2. (L.230) 
 

- The definition of TP, FP, FN and TN was clarified.  (Updated version of Table 1) 
 

- In section 2.4. we added explanations about the different intended use cases for MCC and               
ROC as requested by referee 2. (L.283 and L.296) 
 

- The remaining points have already been answered in our author’s comment below. 
 



- We corrected our error regarding the citation of Kim and Kwon (2018) . 
 
 
As described in our final author response at the end of the open discussion, we did not consider all                   
recommendations of the reviewers. These are the following:  
 

- We did not include an investigation on LSTM networks in our analysis as we believe it is out                  
of the scope of this paper to include another method in addition to the two that are discussed                  
and evaluated here in detail. We already elaborated this topic in our direct answer to referee                
2. 
 

- We did not find an appropriate way of separating the data set into different climatic settings                
other than separating liquid and solid precipitation types. However, it is not our goal to               
investigate the transferability between those, because CMLs do not perform well when            
precipitation is solid or of mixed type. We will therefore wait to do this specific analysis (not                 
only for rain event detection but CMLs in general) until we gain more data from other climatic                 
regions from projects that are already starting now. 
 

In addition to the changes that we introduced based on the reviewer suggestions, we made the                
following changes to our data processing: 
 

- To increase the robustness of the normalization we increased the maximum time for the              
rolling median from 24 to 72 hours if that data is available. 
 

- We increased the number of training CMLs from 400 to 800. Compared to the original results,                
there is not much of an improvement but this increased the number samples available when               
using the newly introduced 5 hour input data windows instead of 3. 
 

- In accordance with the rain rate estimation scheme from Graf et al. (2019) we increased the                
time series interpolation from 3 to 5 minutes. 
 

- We adjusted the initial learning rate, stopping rule and model selection resulting in a faster               
training time but reaching a similar performance. 

 
Due to these changes, the absolute numbers of the results in this revised version differ from those in                  
the initial version, but the conclusions remain the same. The largest change is due to the new                 
threshold optimization using the unbalanced data set VALAPR, which makes more sense when             
comparing to the RSTD method which is also optimized for the original unbalanced data. This leads to                 
a significant increase in the CNNs MCC which can be observed in Fig 7. 
 
Due to the substantial overhaul of our manuscript, additional smaller changes are not listed here, but                
can be derived from the marked up manuscript version. 
 
We believe that the substantial revision and the relevant additional analysis we conducted are now               
able to clearly demonstrate the scientific significance of rain event detection in CML data and the                
improvements our proposed CNN-based method provides. 
 
  



Final response from AC2 
 
This is our final response after the discussion phase and it addresses both referee comments. During                
the open discussion phase we already provided a quick, but comprehensive, response to referee 2               
(Andreas Scheidegger). It was meant to provide feedback from our side to encourage further              
contributions. In the following, we will first give a summary of our assessment of the major issues, as                  
they were reported by the two referees. We will then discuss these major issues and propose the                 
related changes and additions for a revision of our manuscript. Finally we will list all individual                
comments of the referees and our corresponding responses, referring to our general answers where              
appropriate. 
 
Summary and assessment of major referee comments 
 
We thank both referees for their critical assessment of our manuscript. According to their comments               
they acknowledged that the manuscript is well written and that our analysis is scientifically correct.               
Both referees have pointed out major issues, though. According to the individual referee comments,              
these major issues are: 

1. Lack of scientific significance: ​In contrast to referee 1, who rates our manuscript to have               
“good scientific significance”, Andreas Scheidegger’s main objection is “poor scientific          
significance” and he therefore recommends a rejection. While we clearly see that we have to               
improve on the justification of our research in the manuscript, we do not agree with this                
assessment. Our detailed response and the proposed changes for a revised manuscript can             
be found in the next section. 

2. Legitimacy of comparing to method based on rolling standard deviation: ​The           
comparison with the rolling standard deviation (RSTD) method of Schleiss and Berne 2010 [1]              
is criticized by both referees, albeit for different reasons. Referee 1 states that an              
intercomparison with another neural network architecture, namely LSTM, is essential.          
Unfortunately, a clear reason for rejecting the comparison to the RSTD method is not visible               
from their argumentation. Andreas Scheidegger is concerned about the simplicity of our            
chosen reference method and that this diminishes scientific quality. Our main argument for             
using the method is that it is still state of the art. Thus, using it as a reference enables other                    
CML researchers to put the performance gain into perspective. We explain this argumentation             
and our proposed changes for the manuscript below. 

 
Summarizing answers to major issues and proposed changes for a revision: 
 
To 1. ​Lack of scientific significance​: 
In our answer to Andreas Scheidegger’s general comments on our work (See AC1 of the discussion)                
we already discussed the importance of rain event detection for the CML-rainfall community (backed              
up by supporting statements from other community members that deal with the same kind of CML                
data). In summary, we acknowledge that the relevance may be low from a machine learning               
perspective, but this is not a computer science paper and it was not submitted to a computer science                  
journal. As explained in AC1 the relevance is given by the application, which is the improvement of                 
quantitative precipitation estimation with commercial microwave links. To appear shallow in one            
discipline is a common hurdle for interdisciplinary research items, although interdisciplinary research            
is wanted by the scientific community. Our suggestions for improving our manuscript in order to               
highlight the relevance for the application are the following: 

i. We will revise the introduction by adding a more detailed review of previously proposed              
methods for rain event detection, separating them into application on the different data             
acquisition types of min/max and instantaneous sampling. Methods developed for one kind of             
data acquisition are in general incompatible with the other kind. Whenever this information is              



publicly available, we will review the problems previous methods had with false detections             
and missed events. While many previous studies were event based evaluations, our study is              
free of any preselection which is a necessary analysis for potential operational applications. 

ii. To show the significant impact of rain event detection on estimated rain rates, we will add an                 
analysis about the rainfall overestimation through falsely classified rain events and           
underestimation through missed events in absolute numbers. Using the same processing           
scheme as in Graf et al. 2019 we will discuss the improvement over the previous method in                 
terms of absolute hourly and monthly rainfall amount. A preliminary evaluation is shown in the               
plot below from which we can derive a reduction of the overestimation through falsely              
classified rain events by 27% of the monthly overestimation through the Q80 method.             
Additionally the CNN reduces the underestimation through missed events by 15%. A larger             
evaluation and description of the derivation of the final rain rates will be added to the revised                 
manuscript. 

 
 

 

 
Figure 1: Histogram of false positive hours (FP) in April 2018 (reference rain rate below 0.1 mm). At a                   
threshold of 0.8 the CNN reduces the number of falsely detected rain events and therefore the total                 
falsely generated rainfall amount by approximately 27%. At the same time the CNN still misses less                
events than the standard deviation method (not shown in this plot). 
 
 
 
To 2.​ The comparison to the method of Schleiss and Berne 2010 [1].  
In our opinion, the comparison is justified as follows:  
First, the method should still be considered state of the art due to the works of Fencl et al. 2020 [3],                     
Graf et al. 2019 [4], and Kim and Kwon 2018 [5] using the rolling standard deviation according to [1]                   
for rain event detection. Additionally De Vos et al. 2019 [6] are using correlation to nearby links and                  
Ostrometzky and Messer 2018 [7] propose a simple rolling minimum to set the baseline level. Both                
methods are of similar or lower complexity than the RSTD method which is still applied to CML                 
attenuation data due to its robustness (in the sense that only few parameters have to be tuned) and                  
easy applicability. In our work, we show a significant improvement over the RSTD, while the resulting                
model is just as easy to apply using our pre-trained model, which we also share as open source                  
software. 
Second, although very simple, the RSTD method is not performing poorly. In a Lab setup rain events                 
could be purely detected using the rolling standard deviation due to the justified assumption that               
fluctuations are bounded during dry periods and they exceed the boundary even for small rain events.                



Unfortunately, this does not always apply to real world data, where strong signal fluctuations occur               
due to e.g. multipath effects. The challenge is to separate those artifacts from real rainfall fluctuations,                
and the fact that Andreas Scheidegger is not surprised that the CNN can outperform the RSTD                
solidifies our assumption that we picked the right model for the large scale real world application. 
 
We believe that this justifies our choice of comparing to the RSTD method from [1]. We propose to                  
revise our introduction by citing the works that underline the state of the art status of using the RSTD                   
method and we will add more examples of real world CML attenuation time-series that underline the                
challenges which can not be solved by this method, thus generating the knowledge (or performance)               
gap, that our method seeks to fill. 
 
The question which artificial neural network architecture should be used is therefore of secondary              
relevance. Previously, LSTM was used for min/max sampled attenuation data and a small amount of               
CMLs [2]. The main point of our study is showing the potential of an artificial neural network approach                  
for instantaneously sampled data from a large amount of sensors likely to occur in an operational                
setup and certify the robustness for further application. This was not done before. Again, we believe                
that showing this potential by comparing to the state of the art is justified, if not necessary. 
 
 
  



Direct answers to referee comments: 
 
Note: The complete referee comments are copied here using italic font, our response uses normal               
font. 
 
Anonymous Referee #1  
 
In general, this paper demonstrates the use of a 1D convolution neural network for the task of                 
Wet-Dry classification using commercial microwave links (CMLs). The scientific significance of this            
paper is in presenting the potential of the suggested method for the specific application: the use of 1D                  
CNN for wet-dry classification with commercial microwave links. But, without any theoretical            
justification for the use of 1D CNN, it must be compared empirically with other algorithms/methods.               
The results are shown in this work only compare 1D CNN with a model-driven method [1], however,                 
the suggested method must be compared with another data-driven algorithm, previously suggested            
(and cited by the author) - the use of LSTM for wet-dry classification [2]. This comparison is important                  
also since the LSTM can capture long sequence, while the CNN only see a fix window size of the                   
attenuation time series. Additionally, the authors didn’t use the CML’s parameters (e.g. link length,              
frequency, and polarization ) as an additional input to the neural network, which may make this                
method more sensitive to differences in those parameters. 
 
We thank the referee for their critical assessment of the comparison to the RSTD method which is                 
used to show the potential of our proposed method. Our justification for doing this comparisonis given                
in paragraph 2 above. The use of LSTM is discussed in 1 
 
Specific comments required for the paper to be acceptable for publication: 
 
1. Comparing the results of the LSTM and CNN on the same data set is essential. 
 
To 1.: While it is true that LSTM is a common neural network architecture which might also be                  
applicable to the task we miss a fact based justification for ‘must be compared with another                
data-driven algorithm’. As written above, the use of a rolling standard deviation can be considered               
state of the art. The method makes heavy use of long term CML statistics and can be called a                   
statistical method. We therefore do not understand what the word ‘model-based’ should mean in this               
context or why the comparison to the RSTD method should be unfair or of less scientific relevance.                 
Apart from that, our justification for using CNNs is the generally accepted fact that they are good in                  
recognizing patterns independent of their location within a longer sequence of the time-series and this               
is also what we wrote in the manuscript (see lines 8, 67 and 158). As we already stated in paragraph                    
3 of AC1, LSTM is a common ANN architecture for time series analysis. This does not mean that                  
CNNs, which have the benefit of very fast parallel processing, are not applicable to time-series data.                
Indeed, our results prove that CNNs are a valid processing tool for one-dimensional data. 
 
 
2. Study the effect of different window sizes on the performance of the proposed method. 
 
We evaluated the effect of longer window sizes and did not find a significant improvement. But we                 
agree that information about suitable window sizes is important. Hence, in the revised version, we will                
shortly describe the different setup with a 5 hour window length and add the results to table 2. 
 
3. Study the effect of different CML’s parameters (e.g. link length, frequency, and polarization). 
 



We evaluated the effect of adding the CML parameters and did not find a significant improvement.                
According to the k-R power-law, CML frequency and length influence the amplitude of the              
rainfall-induced fluctuations. E.g. short CMLs with a comparably low frequency are less sensitive to              
rainfall. We expected that this information about the CML sensitivity to rainfall would help the               
classification performance. We did not see a relevant improvement, though. One possible explanation             
is that knowing the CML parameters does not help to detect wet periods close to or below the                  
individual CML’s detection limit, since there just might not be a detectable signal. Furthermore,              
according to our experience with CML time series, the occurrence of signal fluctuations during dry               
periods, for which distinguishing between wet and dry is most challenging, does not depend on CML                
parameters. 
Initially, we decided to only describe the less complex and equally well performing setup without the                
CML parameters for the sake of brevity.  
We will now include our results from the CNN with the CML parameters in the revised manuscript, by                  
shortly describing the different setup and adding the results to table 2. 
 
  



Andreas Scheidegger: 
 
 
* General 
The manuscript describes the application of a one-dimensional convolutional neuronal network (CNN)            
to classify wet and dry periods based on microwave link attenuation data. The CNN is compared                
against a very simple classification scheme that is only based on the standard deviation of the signal.                 
Not surprisingly, the CNN performed better. 
 
The manuscript is well written and the underlying work seems solid. Still, in my opinion, this paper                 
lacks ambition and innovation to deserve a publication in AMT. As the authors mention, various ANN’s                
and other machine learning techniques have previously been applied in different settings on MWL              
data. Also the whet/dry classification problem does not appear particulary challenging from a machine              
learning perspective. Furthermore, for time-series data recurrent neuronal network architectures          
(e.g.LSTM) seem a more obvious choice (which could be combined with convolution layers if              
needed). 
 
This is, in our opinion, the main issue which we discuss in our summarizing answer 1. above and in                   
the majority of AC1. In summary, rain event detection is a necessary processing step to set the                 
baseline signal level, required to derive the specific attenuation ​k which is then used to derive the rain                  
rate ​R via the k-R relation. The community state of the art are methods like the RSTD and the                   
problems with false detections can be shown from recent publications. Although less relevant from a               
machine learning point of view, the relevance for the application is high. 
 
A more interesting question would be to investigate if we can train a ANN to predict the rainfall                  
intensities directly, and so avoid all submodels for baseline estimation, wetantenna correction, and so              
on. Such a model could also make use of additional information, like MWL properties, frequency,               
maybe temperature, … 
 
This is answered in AC1 paragraph 4. 
 
A good transferability of the trained model to a region with different climate is key for an application                  
where no reference data are available (such as in the mentioned Burkina Faso). This could have been                 
partly emulated by training the model in one region and then validating it in a region with different                  
climate. Or by training the model in winter and validating it in summer. 
 
This is answered in AC1 paragraph 5. 
 
I’m sure the current work offers the authors a solid foundation for more ambitious investigations. 
 
No answer required. 
 
L 90: "...it has to be proven that artificial neural networks allow for high-performance,fast and robust                
processing of large data sets..." - I think this is already proven by countless other application. 
 
This statement has to be read in the context of CML data sets. The purpose is not to show that CNNs                     
can achieve this in general, which is indeed proven on countless examples. To show that the                
behaviour of a large CML data set can be predicted by training only on a comparably small subset is                   
still to be proven for the application and the CNN is our method of choice to do so. To our knowledge                     
no previous study achieved or even investigated this degree of generalization. In fact, most previous               
studies use a setup that uses long time statistics of all individual CMLs for a low amount of CMLs and                    



many of them deal with min/max sampled data, which is different from our instantaneous              
measurements. We will adjust the relevant paragraph in the manuscript accordingly, to better explain              
that. 
 
L 145: Besides the attenuation data for the hour to classify, the Network was also feed with the two                   
hours of "old" data. Did this improve the classification? If yes, it would indicate that attenuation data                 
have some kin of memory effect (antenna wetting?). 
 
Adding the two hours of “old” data has a positive effect. Antenna wetting is kind of a memory effect                   
since it will increase the baseline level during the rain events, but it will also keep the baseline level                   
increased after the rain event. With the drying of the antenna, the baseline level then decreases                
slowly after the event. Since this drying process is quite continuous it does not lead to strong rain-like                  
attenuation fluctuations of the signal level. Hence, we think, the wet antenna effect is not the reason                 
for the improvement with the added ‘old’ data. Our reasoning for using ‘old’ data was that this data                  
provides more context for the CNN, i.e. there is a lot more information on how a CML time series                   
generally ‘behaves’. Also as a human it is a lot easier to distinguish rain events from dry fluctuations                  
when the available time period is larger. Humans are, compared to CNNs, unfortunately very slow in                
doing so. In addition to the longer window size, as requested by reviewer 1, we will include the                  
performance when not providing any old data to show this improvement. 
 
L185: Where did you add the dropout layers? How many? 
 
Dropout was used between the fully connected layers, i.e. two times. We will indicate the exact                
location in figure 2. 
 
L216: Are TP, FP, FN, and TN defined? 
 
We introduced this notation in table 1. We will add a direct reference to the table at the first occurence                    
of TP, FP, FN, and TN. We will also add a set theoretic definition in addition to the table. 
 
L230: What is the advantage of the MCC compared to the ROC? 
 
The Matthews Correlation Coefficient is a single number, which can be used to optimize the threshold                
for the CNN or the thresholds of the rolling standard deviation. The ROC consists of the two numbers                  
FPR and TPR. Using them for optimizing a threshold is not straight forward and would require a cost                  
function that can be minimized. The advantage of ROC is that the performance of classifiers with a                 
variable threshold can be compared independent of a fixed threshold value by considering the ROC               
curve. We will clarify these different purposes in the respective parts of the method section. 
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Abstract. Quantitative precipitation estimation with commercial microwave links (CMLs) is a technique developed to supple-

ment weather radar and rain gauge observations. It is exploiting the relation between the attenuation of CML signal levels and

the integrated rain rate along a CML path. The opportunistic nature of this method requires a sophisticated data processing

using robust methods. In this study we focus on the processing step of rain event detection in the signal level time series of the

CMLs, which we treat as a binary classification problem.
::::
This

:::::::::
processing

::::
step

::
is

:::::::::
particularly

:::::::::::
challenging,

:::::::
because

::::
even

:::::
when5

::::
there

::
is

::
no

::::
rain

:::
the

:::::
signal

:::::
level

:::
can

:::::
show

::::
large

::::::::::
fluctuations

::::::
similar

:::
to

:::
that

::::::
during

:::::
rainy

:::::::
periods.

::::
False

::::::::::::
classifications

:::
can

:::::
have

:
a
::::
high

::::::
impact

:::
on

::::::
falsely

::::::::
estimated

::::::
rainfall

::::::::
amounts.

:
We analyze the performance of a convolutional neural network (CNN),

which is trained to detect rainfall specific attenuation patterns in CML signal levels, using data from 3904 CMLs in Germany.

The CNN consists of a feature extraction and a classification part with, in total, 20 layers of neurons and 1.4× 105 trainable

parameters. With a structure, inspired by the visual cortex of mammals, CNNs use local connections of neurons to recognize10

patterns independent of their location in the time-series. We test the CNNs ability to generalize to CMLs and time periods

outside the training data. Our CNN is trained on four months of data from 400
:::
800

:
randomly selected CMLs and validated

on two different months of data, once for all CMLs and once for the 3504
::::
3104 CMLs not included in the training. No CMLs

are excluded from the analysis. As a reference data set we use the gauge adjusted radar product RADOLAN-RW provided by

the German meteorological service (DWD). The model predictions and the reference data are compared on an hourly basis.15

Model performance is compared to a
::::
state

::
of

:::
the

:::
art reference method, which uses the rolling standard deviation of the CML

signal level time series as a detection criteria. Our results show that within the analyzed period of April to September 2018,

the CNN generalizes well to the validation CMLs and time periods. A receiver operating characteristic (ROC) analysis shows

that the CNN is outperforming the reference method, detecting on average 87
::
76% of all rainy and 91

::
97% of all non-rainy

periods.
::::
From

:::
all

::::::
periods

::::
with

::
a
::::::::
reference

:::
rain

::::
rate

:::::
larger

::::
than

:::
0.6

::::::::
mmh−1,

::::
more

::::
than

::::
90%

:::::
were

::::::::
detected.

:::
We

:::
also

:::::
show

::::
that20

::
the

:::::::::
improved

::::
event

::::::::
detection

:::::
leads

::
to

:
a
:::::::::

significant
::::::::
reduction

:::
of

::::::
falsely

::::::::
estimated

::::::
rainfall

:::
by

::
up

::
to

:::::
51%.

::
At

:::
the

:::::
same

:::::
time,

:::
the

::::::
quality

::
of

:::
the

:::::::
correctly

:::::::::
estimated

::::::
rainfall

::
is

::::
kept

::
at

:::
the

:::::
same

::::
level

::
in

::::::
regard

::
to

:::
the

:::::::
Pearson

:::::::::
correlation

::::
with

:::
the

:::::
radar

:::::::
rainfall.

In conclusion, we find that CNNs are a robust and promising tool to detect rainfall induced attenuation patterns in CML signal

levels from a large CML data set covering entire Germany.

1
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Copyright statement. TEXT

1 Introduction

Rainfall is the major driver of the hydrologic cycle. Accurate rainfall observations are fundamental for understanding, mod-

eling and predicting relevant hydrological phenomena, e.g. flooding. Data from commercial microwave link (CML) networks30

have proven to provide valuable rainfall information. Given the high spatio-temporal variability of rainfall, they are a welcome

complement to support traditional observations with rain gauges and weather radars; particularly in regions where radar is

hampered by beam blockage or ground clutter. In regions with sparse rainfall observation networks, like in developing coun-

tries, CMLs might even be the only source of small scale rainfall information.

Since the work of Messer et al. (2006) and Leijnse et al. (2007) more than a decade ago, several research groups have shown35

the potential of CML data for hydrometeorological usage. Prominent examples are the countrywide evaluations in the Nether-

lands (Overeem et al., 2016b) and Germany (Graf et al., 2019), which demonstrated that CML-derived rainfall information

corresponds well with gauge-adjusted radar rainfall products, except for the cold season with solid precipitation. CML-derived

rainfall information was also successfully used for river runoff simulations in a pre-alpine catchment in Germany (Smiatek

et al., 2017) and for pipe flow simulation in a small urban catchment in Czech Republic (Pastorek et al., 2019). A further im-40

portant step was the first analysis of CML-derived rain rates in a developing country, carried out by Doumounia et al. (2014),

with data from Burkina Faso.

In general, the number of CMLs available for research has increased significantly over the last years and researchers from

several countries have gained access to CML attenuation data. Currently, data from 4000 CMLs over Germany is recorded

continuously with a temporal resolution of one minute via a real-time data acquisition system (Chwala et al., 2016). The num-45

ber of existing CMLs over Germany is 30 times higher (Bundesnetzagentur, 2017), amounting to 130.000 registered CMLs.

Consequently, it is envisaged to increase the number of CMLs included in the data acquisition.

With this large number of CMLs available in Germany and with new data being retrieved continuously, there is a need for

optimized and robust processing of these big data sets. Several studies address the details of the processing steps which are

required for deriving rainfall information from CMLs. These steps involve, e.g. the detection of rain events in noisy raw data,50

the filtering of artifacts, correcting for bias due to wet antenna attenuation (WAA) and the spatial reconstruction of rainfall

fields. Uijlenhoet et al. (2018) give a general overview of the required processing steps and the existing methods and Chwala

and Kunstmann (2019) discuss and summarize the related current challenges.
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1.1
::

On
:::
the

:::::::::::
importance

::
of

::::
rain

:::::
event

::::::::
detection

The first of these processing steps, called rain event detection, is the separation of rainy (wet) and non-rainy (dry) periods. It
::
A55

::::
static

:::::
signal

:::::
level

:::::::
baseline

::
to

:::::
derive

::::::::::
attenuation

:::
that

:::
can

:::
be

::::::::
attributed

::
to

::::::
rainfall

:::
has

::::::
proven

::
to

::
be

:::::::::
ineffective

::::
due

::
to

:::
e.g.

:::::
daily

::
or

:::::
annual

::::::
cycles

:::
and

::::::::::
unexpected

:::::
jumps

::
in
:::
the

:::::
time

:::::
series

:::
like

:::
for

:::::
CML

::
B

::
in

::::
Fig.

::
1.

:::::::::
Therefore,

::::
after

:::
the

:::
rain

::::::
events

:::
are

::::::::
localized

:::::::
correctly,

:::
an

:::::
event

::::::
specific

::::::::::
attenuation

:::::::
baseline

:::
can

:::
be

:::::::::
determined

::::
and

:::::
actual

::::
rain

::::
rates

:::
can

:::
be

::::::
derived

:::
via

:::
the

::::
k-R

:::::
power

::::
law

:::::
which

::::::
relates

::::::
specific

::::::::::
attenuation

:
k
::
in

:::
dB

:::::
km−1

::
to
::::
rain

:::
rate

:::
R

::
in

:::
mm

::::
h−1.

:

::::::::
Detecting

:::
rain

::::::
events is challenging, because CML signal levels can show high fluctuations, even when there is no rain, e.g. due60

to multi-path propagation (e.g. Chwala and Kunstmann, 2019, Fig. 6). Therefore, the main difficulty is to distinguish between

noise and signal fluctuations caused by light rain along the CML path. After successfully detecting rain events, an attenuation

baseline is determined and actual rain rates can be derived via the k-R power law which relates specific attenuation k in dB

km−1 to rain rate R in mm h−1. Misclassifications
::
As

::::
seen

::
in

::::
Fig.

::
1,

:::
the

::::::::::
differences

::
in

:::::
noise

:::::
levels

::::
can

::::
vary

:::::::::::
significantly,

::::::::
depending

:::
on

:::
the

:::::
CML

:::
that

::
is
:::::
used.

:::::
When

:::::::
looking

::
at

:::
the

:::::::::
magnitude

::
of

:::::
these

::::::::::
fluctuations,

:::
we

::::
can

:::
see

:::
that

::
a
::::::::::::::
misclassification65

of wet and dry periods lead to
:::
can

:::::
easily

::::
lead

::
to

:
a
:::::
large over- or underestimation of rainfall. Therefore,

:::::
These

::::::
missed

::
or

::::::
falsely

::::::::
estimated

::::::::
quantities

:::
are

:::::
often

::::::::::
overlooked

::
in

::::::
scatter

::::::
density

:::::::::::
comparisons

::
of

:::::::
rainfall

:::::::
products

::::
like

::::::
Figure

::
9

::
a)

:::
and

:::
b)

::::::
below,

:::::
which

:::::
shows

:::
our

::::
own

::::::
results.

::::
But

:::::
when

:::::::
absolute

:::::::
amounts

:::
are

:::::::::
compared,

::::
they

:::::::
represent

:::
an

:::::::
obvious

::::
issue

::::
with

:::
up

::
to

::::
30%

::
of

:::
the

::::
total

::::
CML

:::::::
rainfall

:::
that

::::
can

::
be

::::::::
attributed

:::
to

::::
false

::::::::
positives.

:::
As

:::::
these

::::::::::::::
misclassifications

::::::::
generate

:
a
::::
bias

:::::::
different

:::::
from

:::
the

::::
bias

:::::::
corrected

:::
in

::::
later

:::::::::
processing

::::
steps

::::
like

:::
the

:::::
WAA

:::::::::
correction

:
it is important to optimize the rain event detection as an isolated70

processing step first and to optimize subsequent processing steps afterwards.

1.2
::::
State

::
of

:::
the

:::
art

So far, several methods for rain event detection with CMLs have been proposed.
::::
The

::::
main

::::::::
difference

::::
that

::::::
divides

:::::
these

:::::::
methods

:::
into

::::
two

::::::
groups,

::
is
:::
the

::::
type

:::
of

:::::
CML

::::
data

:::
that

::::
can

::
be

:::::
used

::
to

:::::::
estimate

:::::::
rainfall.

:::::::::
Depending

:::
on

:::
the

::::::::
available

::::
data

::::::::::
acquisition,

::::
CML

::::::
signal

:::::
levels

:::
are

:::::
either

:::::::::::::
instantaneously

:::::::
sampled

::
at

:
a
::::
rate

::::::
ranging

:::::
from

:
a
::::
few

::::::
seconds

:::
up

::
to

::
15

:::::::
minutes

::
or

::::
they

:::
are

::::::
stored75

::
as

::::::::
15-minute

:::::::::
minimum

:::
and

:::::::::
maximum

:::::
values

:::::::
derived

::::
from

:
a
::::
high

::::::::::::
instantaneous

:::::::
sampling

::::
rate

::
in

:::
the

::::::::::
background.

::
In

::::::
almost

:::
all

::::
cases

::::
only

::::
one

::
of

:::
the

::::
two

::::::::
sampling

::::::::
strategies

::
is

:::::::
available

::::
due

::
to

:::
the

::::
type

::
of

::::
data

:::::::::::
management

:::::::
through

:::
the

:::::::
network

::::::::
provider.

:::
The

::::::::
resulting

::::
rain

::::
event

::::::::
detection

::::::::
methods

:::
are

::::::
highly

::::::::
optimized

:::
for

::::
one

::::
kind

:::
of

::::::::
sampling

:::::::
strategy

:::
and

::::::::
therefore

::
in

:::::::
general

::::::::::
incompatible

::::
with

:::
the

:::::
other

:::::
kind.

:::
The

::::::::
following

::::::::
methods

::::
were

:::::::::
developed

::
for

::::::::::::
instantaneous

::::::::::::
measurements:

:
Schleiss and Berne (2010) introduced a threshold for80

the rolling standard deviation (RSTD) of the attenuation time-series as a criteria to detect rain events. Overeem et al. (2011)

introduced the ’nearby link approach’, where a period is considered wet if the increase of CML specific attenuation correlates

with the attenuation pattern of nearby CMLs. They concluded that this is only applicable for dense CML networks with a

high data availability
::::::
Despite

::::::
being

:::
one

:::
of

:::
the

::::
first

:::::::
methods

::::
that

:::::
were

:::::::::
developed,

::
a

::::
large

::::
part

:::
the

:::::::
method

::
is
::::
still

:::
the

:::::
most

:::::::::
commonly

::::
used

:::::
within

:::
the

:::::
CML

:::::::
research

::::::::::
community,

::
as

::
it

:::
was

::::
used

:::
in

::::
very

:::::
recent

::::::
studies

::::
from

::::::::
different

:::::::
working

::::::
groups

::::
such85

::
as

::::::::::::::::::
Kim and Kwon (2018)

:
,
:::::::::::::::
Graf et al. (2019)

:
or

::::::::::::::::
Fencl et al. (2020). Chwala et al. (2012) introduced Fourier transformations on
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Figure 1.
:::::
Three

::::::
example

:::::
signal

::::
level

::::::
(TRSL)

::::
time

::::
series

:::
that

:::::::
illustrate

:::
the

:::
high

::::::::
variability

::
in

::::
data

:::::
quality

::::
when

:::::::::
comparing

::::::
different

::::::
CMLs.

:::
The

:::
blue

::::::
shaded

::::::
periods

::::::
indicate

:::::
where

::
the

::::
radar

:::::::
reference

:::::
show

:::::
rainfall

:::::
along

::
the

:::::
CML

::::
paths.

::::
The

:::::::
challenge

::
is

::
to

::::::
identify

::::
these

:::::
periods

:::
by

:::::::
analysing

:::
the

:::
time

:::::
series.

::::
Note

::::
that

:::
each

:::::::::
attenuation

::::
event

:::
that

::
is

:::::
falsely

:::::::
classified

::
as
::::

wet,
:::
will

:::::::
produce

:::
false

::::
rain

:::
rate

::::::::
estimates,

::::
which

::::
will

:::
lead

::
to

:::::::::::
overestimation.

::::
The

::::::::
histograms

::::
show

:::
that

:::
for

::::
some

:::::
CMLs

:::
the

:::
wet

:::::
periods

:::
can

::
be

:::::
easily

:::::::
separated

::::
from

:::
the

:::
dry

:::::
periods

:::
and

:::
for

:::::
others

::
the

:::::::::
distribution

::
of

:::::
TRSL

:::::
values

::
is

:::::
nearly

::::::
identical

:::
for

::::
both

::::::
classes.

:::
Fig.

:
2
:::::

below
::::
will

::::
show

::
an

:::::::
example

::
of

:::
how

:::::::
different

:::::::
detection

:::::::
methods

:::
deal

::::
with

::
the

:::::::::
challenging

::::
time

::::
series

::
of

:::::
CML

::
C.

a rolling window of CML signal levels to detect the pattern of rain events in the frequency domain. Wang et al. (2012) used a

Markov switching model. ?
:
,
:::::
which

:::
was

:::::::::
calibrated

:::
and

::::::::
validated

::
for

::
a

:::::
single

::::
CML

::::
test

:::
site.

::::::::::::::::::::::::::::::
Kaufmann and Rieckermann (2011)

have shown the applicability of random forest classifiers and Gaussian factor graphs . At the same time, deep learning is a

rapidly evolving field that is becoming increasingly popular in the earth system sciences. A large field of application is remote90

sensing using artificial neural networks for image recognition (Zhu et al., 2017). Deep learning is also an established method

in time-series classification (Fawaz et al., 2019). In both articles, convolutional neural networks (CNNs) are considered one

of the leading neural network architectures for image and time-series classification. CNNs are inspired by the visual cortex
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of mammals and they are designed to recognize objects or patterns, regardless of their location in images or time-series

(Fukushima, 1980). They are characterized by local connections of neurons, shared weights and a large number of layers95

of neurons, involving pooling layers (LeCun et al., 2015). CNNs with one dimensional input data (1D-CNNs) have already

been used for time-series classification, e.g. for classifying environmental sounds (Piczak, 2015). This makes 1D-CNNs

a promising candidate for the task of rain event detection in CML signal levels.
:::
and

::::::::
validated

::::
their

:::::::::
approach

:::::
using

:::
14

::::::
CMLs.

::::::::::::::::::
Ðord̄ević et al. (2013)

::::
used

:
a
::::::
simple

:::::::::
Multilayer

::::::::::
Perceptron

::::::
(MLP)

:::::
which

::::
was

::::::
trained

:::
and

::::::::
validated

:::
on

:
a
:::::
single

::::::
CML.

::::::::::::::::::::::::::
Ostrometzky and Messer (2018)

::::::::
proposed

:
a
::::::
simple

::::::
rolling

:::::
mean

::::::::
approach

::
to

::::::::
determine

::
a

:::::::
dynamic

::::::::
baseline,

:::
also

::::::::
validated

:::
on100

:
a
:::::
single

::::::
CML.

:::::
Most

::
of

:::::
these

::::::
studies

:::
are

:::::
based

:::
on

:
a
:::::::::::

comparably
:::
low

::::
and

:::::::::
sometimes

::::::::::
pre-selected

:::::::
amount

::
of

::::::
CMLs

:::::::
ranging

::::
from

:::
one

::
to

::
a
::::::::
maximum

::
of
:::
50

:::::::
devices,

:
a
:::::::
number

:::
that

::
is
:::::
likely

:::::
much

:::::
larger

::
in
::
a
:::::::
possible

:::::::::
operational

:::::::
setting.

Other artificial neural network architectures have already been proposed for
::
As

:
a
::::::::

detection
:::::::

scheme
:::
for

:::
15

::::::
minute

::::::::
min/max

:::::::
sampled

::::
data

::::
with

:
a
:::
10

:::
Hz

::::::::::
background

::::::::
sampling

:::
rate

:::::::::::::::::::
Overeem et al. (2011)

::::::::
introduced

:::
the

:::::::
’nearby

::::
link

:::::::::
approach’.

::
A

::::::
period

:
is
::::::::::
considered

:::
wet

::
if
:::
the

:::::::
increase

:::
of

:::::
CML

::::::
specific

::::::::::
attenuation

::::::::
correlates

:::::
with

:::
the

:::::::::
attenuation

::::::
pattern

:::
of

::::::
nearby

::::::
CMLs.

:::::
They105

::::::::
concluded

::::
that

:::
this

::
is
:::::

only
:::::::::
applicable

:::
for

:::::
dense

:::::
CML

::::::::
networks

::::
with

:
a
:::::

high
::::
data

::::::::::
availability.

:::::
Later,

::::
they

:::::::::
conducted

:::
the

::::
first

::::::::
evaluation

::
of

::
a rain event detection . Ðord̄ević et al. (2013) used a simple Multilayer Perceptron (MLP) with data from a single

CML
::::::
method

:::
on

::::
data

::::
from

:::::
2044

:::::
CMLs

:::
on

:
a
:::::::
country

:::::
scale

:::::::::::::::::::
Overeem et al. (2016b).

::::
Very

:::::::
recently

:::
the

:::::
same

::::::::
approach

::::
was

::::
used

::
in

::::::::::::::::
de Vos et al. (2019),

::::::::
showing

:::
that

::::
this

::::::::
approach

:::::
works

:::::
better

::
in
:::::::::::
combination

::::
with

::::::::
min/max

::::::::
sampling

::::
than

::::
with

:::
15

::::::
minute

:::::::::::
instantaneous

::::::::
sampling. Habi and Messer (2018) tested the performance of Long Short-Term Memory (LSTM) networks to110

classify rainy periods from 15 minute Min-Max
:::::::
min/max

:
values of CML signal levels for 34 CMLs. Kim and Kwon (2018)

used LSTM networks on instantaneously sampled signal levels from 10 CMLs, which are situated close to each other, at a

temporal resolution of 15 seconds.

All rain event detection methods have to make a similar trade-off: A liberal detection of wet periods is more likely to recognize

even small rain rates, while it will produce more false alarms during dry periods. On the other hand, a conservative detection115

will accurately classify dry periods, but is more likely to miss small rain events. One can address this by two means. First, by

increasing detection rates on both wet and dry periods as much as possible and therefore decreasing the impact of the trade-off.

Second, by allowing the flexibility to easily adjust the model towards liberal or conservative detection, e.g. by only changing a

single parameter.

Until
:
In

::::::::::
conclusion,

::::
until now, there have been few studies analyzing the performance of rain event detection methods on large120

data sets. Overeem et al. (2016a)
:::::::::::::::::::
Overeem et al. (2016b) tested the nearby link approach using 2044 CMLs distributed over

the Netherlands with a temporal coverage of 2.5 years of data. In Graf et al. (2019) we adjusted
:::::::::::::::
Graf et al. (2019)

:::::::
extended the

RSTD method
:::
and

:::::::
applied

:
it
:
to one year of data from 3904 CMLs to set a benchmark performance on this data set

::
the

:::::
same

:::
data

:::
set

::::
used

:::
in

:::
this

:::::
study. By optimizing thresholds for individual CMLs we explore the full potential of the RSTD method

for this data set
:::
one

::::
year

::
of

::::
data

::::
was

:::::::
explored, yielding good results for the warm season with liquid precipitatoin

::::::::::
precipitation.125

While the RSTD method is simple to implement and has only two parameters
:::::::
(window

:::::
length

::::
and

::::::::
threshold)

:
to optimize, it is

limited to measuring the amount of fluctuations, rather than the specific pattern. More room for optimization is expected using

:
a
::::
data

:::::
driven

:::::::::
approach,

::::
such

::
as machine learning techniques for pattern recognition. Since
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1.3
::::

Data
::::::
driven

:::::::::::
optimization

:::::::
through

:::::
deep

:::::::
learning

::::
Deep

:::::::
learning

::
is
::
a
::::::
rapidly

::::::::
evolving

::::
field

:::
that

::
is
:::::::::
becoming

::::::::::
increasingly

:::::::
popular

::
in

:::
the

:::::
earth

::::::
system

::::::::
sciences.

::
A

::::
large

::::
field

:::
of130

:::::::::
application

::
is

::::::
remote

:::::::
sensing

:::::
using

:::::::
artificial

::::::
neural

::::::::
networks

:::
for

:::::
image

::::::::::
recognition

::::::::::::::
(Zhu et al., 2017)

:
.
:::::
Deep

:::::::
learning

::
is

::::
also

::
an

:::::::::
established

:::::::
method

::
in

:::::::::
time-series

:::::::::::
classification

::::::::::::::::
(Fawaz et al., 2019)

:
.
::
In

::::
both

::::::
studies,

::::::::::::
convolutional

:::::
neural

::::::::
networks

:::::::
(CNNs)

::
are

::::::::::
considered

:::
one

::
of

:::
the

:::::::
leading

:::::
neural

:::::::
network

:::::::::::
architectures

:::
for

:::::
image

::::
and

:::::::::
time-series

::::::::::::
classification.

:::::
CNNs

:::
are

:::::::
inspired

:::
by

::
the

::::::
visual

:::::
cortex

:::
of

::::::::
mammals

:::
and

::::
they

:::
are

::::::::
designed

::
to

::::::::
recognize

:::::::
objects

::
or

:::::::
patterns,

:::::::::
regardless

::
of

::::
their

:::::::
location

::
in

:::::::
images

::
or

:::::::::
time-series

::::::::::::::::
(Fukushima, 1980).

:::::
They

:::
are

:::::::::::
characterized

:::
by

::::
local

:::::::::::
connections

::
of

::::::::
neurons,

:::::
shared

:::::::
weights

::::
and

:
a
:::::
large

:::::::
number135

::
of

:::::
layers

::
of

::::::::
neurons,

::::::::
involving

:::::::
pooling

:::::
layers

:::::::::::::::::
(LeCun et al., 2015).

::::::
CNNs

::::
with

:::
one

:::::::::::
dimensional

::::
input

::::
data

::::::::::
(1D-CNNs)

:::::
have

::::::
already

::::
been

::::
used

:::
for

:::::::::
time-series

:::::::::::
classification,

::::
e.g.

::
for

:::::::::
classifying

::::::::::::
environmental

::::::
sounds

::::::::::::
(Piczak, 2015)

:
.
::::
This

:::::
makes

:::::::::
1D-CNNs

:
a
::::::::
promising

:::::::::
candidate

::
for

:::
the

::::
task

::
of

::::
rain

:::::
event

::::::::
detection

::
in

::::
CML

::::::
signal

:::::
levels.

:

1.4
:::::::

Research
::::
gap

::::
and

:::::::::
objectives

:::
Due

::
to

:::
the

:::::::::::
opportunistic

:::
use

:::
of

::::::
CMLs, the variety of signal fluctuations and possible sources of error rises with large quantities140

of CMLs, it has to be proven that
:::::::::
occurrences

::
of

:::::
errors

::::::::
naturally

:::::::
increase

::
in

:
a
:::::
CML

::::
data

::
set

::::
with

:::
its

::::
size.

:::::::::
Separating

::::
rainy

:::::
from

::::::::
non-rainy

::::::
periods

::
is

::::::::
therefore

:
a
::::::
crucial

::::
step

:::
for

::::::
rainfall

:::::::::
estimation

::::
from

::::::
CMLs.

:::::::::
Although

::::::::
applicable

:::
on

:
a
:::::
large

:::::
scale,

:::::::
recently

::::::
applied

:::::::
methods

::::
still

:::::::
struggle

:::::
with

::::::
falsely

::::::::
estimated

:::::::
rainfall

::
as

::::
can

::
be

:::::
seen

::
in

:::
the

::::::::::
evaluations

:::::
from

:::::::::::::::
Graf et al. (2019)

:::
and

::::::::::::::::
de Vos et al. (2019).

:::::::
Despite

:::
the

::::::
amount

::
of

::::::::
proposed

::::::::
methods,

:::
this

:::::::::
processing

::::
step

:::
has

:::
not

:::
yet

::::
been

::::::::::
investigated

::
in

:::::
detail

:::::
using

:
a
::::
large

::::
and

::::::
diverse

:::::
CML

:::
data

::::
set,

::::::::
especially

:::
for

::::
data

:::::
driven

::::::::::
approaches.

:::::
Given

::::
their

:::::::::
promising

::::::
results

::
in

::::
other

:::::::::::
applications,

:::
the145

:::::
usage

::
of artificial neural networks

:::::::
(ANNs)

:::
for

:::
rain

:::::
event

::::::::
detection

::
in

:::
the

::::
CML

::::::::::
attenuation

:::::::::
time-series

::
on

::
a

::::
large

::::
scale

::::::::
provides

:
a
:::::::::
promising

::::::::::
opportunity.

::
It

:::
has

::::
been

::::::
proven

::::
that

::
in

:::::
many

::::
cases

::::::
ANNs

:
allow for high-performance, fast and robust processing

of large data sets, i. e.
:
a
::::::
variety

::
of

:::::::
suitable

::::
data

::::
sets.

:::::
What

::
is

:::::::
missing

:
is
::
a
:::::
proof

:::
that

::::
they

:::
are

:::::::::
applicable

::
to

::
a

::::
large

:::
and

:::::::
diverse

::::
CML

::::
data

:::
set.

::::
The

:::::::
question

:::
is,

::::
does

:
a
:
high variability of frequency, length and spatial distribution of the analyzed CMLs and

::
or

:
a
:
high variability of rain rates and event duration for a large amount of analyzed periods

::::
affect

:::
the

:::::::::::
performance

::
of

::::::
ANNs

::
in150

:::
this

:::::::
specific

::::
case

::
or

::::
not?

:::::::::::
Additionally,

:::
the

:::::
effect

::
of

::::
rain

:::::
event

:::::::
detection

:::::::::::
performance

:::
on

:::
the

::::::::
estimated

::::
rain

::::
rates

:::
has

:::
yet

::
to

:::
be

::::::::::
investigated.

The objective of this study is to evaluate the performance of 1D-CNNs to detect rainfall induced attenuation patterns in in-

stantaneously measured CML signal levels . We
:::
and

::
to

:::::::::
investigate

:::
the

:::::
effect

::
of

::
an

::::::::
improved

::::::::
temporal

:::::
event

:::::::::
localization

:::
on

:::
the

:::::::::::
CML-derived

::::::
rainfall

::::::::
amounts.

:::::::::::
Furthermore,

:::
we

:
test the CNNs ability to generalize to new CMLs and future time periods .155

To validate our
:
in
:::::

order
::
to
:::::::

provide
::
a

::::::::
validated

::::
open

::::::
source

::::::
model,

::::
that

:::
can

:::
be

::::
used

::
on

:::::
other

::::
data

::::
sets.

:::
To

:::::::
provide

:::
the

:::::
CML

:::::::::
community

::::
with

::::::::::::::
comprehensible results, we compare the CNN to the method of Schleiss and Berne (2010)using a large

:
,

:::::
which

:::
we

:::::::
consider

::::::::::::
state-of-the-art

::::
due

::
to

:::
the

::::::
amount

:::
of

:::::
recent

:::::::::::
applications.

:::
We

:::
aim

::
to
:::::::
provide

:
a
:::::
high

::::::::
statistical

:::::::::
robustness

::
of

::
the

:::::::
derived

:::::::::::
performance

::::::::
measures

::
by

:::::
using

:::
the,

:::
to

::::
date,

::::::
largest

:::::::
available

:::::
CML

:
data set consisting of six months of data from

3904 CMLs distributed over entire Germany.160

6



2 Methods

The following definition of rain event detection with CMLs is the basis of our methodology: Rain event detection is a binary

classification problem. Given a time window Xt,w,i of CML signal data, where t is the starting time, w is the window length

and i is the index specifying a unique CML path, we have to decide if there is attenuation caused by rain (wet) or not (dry). A

time window is assigned the label 1 if it is wet or 0 if it is dry. The available information to do this classification depends on165

the used data acquisition and on which information is provided by the CML network operator. In the following, we describe

how a CNN can be used as a binary classifier to succeed in this task.

2.1 Data set

We use a CML data set that has been collected in cooperation with Ericsson Germany through our custom CML data acquisition

system Chwala et al. (2016). It covers 3904 CMLs across entire Germany. The CML path length ranges from 0.1 km to more170

than 30 km, with an average of around 7 km. CML frequencies range from 10 to 40 GHz. The acquired data consists of two

sub-links per CML, transmitting their signal in opposite directions along the CML path. For each sub-link a received signal

level (RSL) and a transmitted signal level (TSL) is recorded at a temporal resolution of 1 minute and a power resolution of

0.3 dB for RSL and 1.0 dB for TSL. The recorded period used in this study starts in April 2018 and ends in September 2018,

to focus on the periods which are dominated by liquid precipitation, where CMLs perform better than during the cold season175

(Graf et al., 2019). The data is available at 97.1% of all time steps and gaps are mainly due to outages of the data acquisition

system.

As reference data we use the gauge adjusted radar product RADOLAN-RW provided by the German meteorological service

(DWD). It has a spatial resolution of 1x1 km, covering entire Germany on 900x900 grid cells. The temporal resolution is 60

minutes and the resolution for the rain amount is 0.1 mm (Winterrath et al., 2012). To compare to this reference, the window180

length w is set to 60 minutes and therefore w is omitted in the notation below. Along each CML i, the path-averaged mean

hourly rain rate Rt,i is generated from the reference, using the weighted sum

Rt,i =

∑
k lk,irk,t
li

, (1)

where k is indexing the RADOLAN grid cells intersected by the path of i. The rain rate of each grid cell is rk,t. Furthermore,

lk,i is the length of the intersect of k and i and li is the total length of i. A time window Xt,i is considered wet if Rt,i ≥ 0.1185

mm h−1 and dry otherwise.

2.2 Pre-processing

Before training and testing an artificial neural network, the raw time-series data has to be pre-processed. We do this to sample

time windows of a fixed size, which are normalized and labelled according to the reference.

First, the full data set, consisting of all available CMLs, is split into three subsets. One subset is used for training the CNN190

(TRG), one is used for validation and to optimize model hyper-parameters (VALAPR) and one is used for testing only
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(VALSEP). The data set TRG consists of data from 400
:::
800 randomly chosen CMLs in the period from May to August

2018. VALAPR covers the remaining 3504
::::
3104

:
CMLs during April 2018 and VALSEP consists of data from all 3904 CMLs

during September 2018. We used this splitting routine to avoid information leakage from the training to the validation data.

There can be a high correlation of signal levels between CMLs that are situated close to each other (Overeem et al., 2011).195

Therefore, the measurements contained in VALAPR or VALSEP can not be taken from the same time range as for TRG. Using

only 10
::
20% of all available CMLs for training allows us to analyze the CNNs generalization to the remaining CMLs in the

validation data set. No CMLs were excluded from the
:::
this

:
analysis.

For each of the two sub-links of a CML, we compute a transmitted minus received signal level (TRSL). Within one TRSL

time-series, randomly occurring gaps of up to three
:::
five

:
minutes of missing data are linearly interpolated . Here, we

:
to

:::
be200

::::::::
consistent

::::
with

::::
with

:::
the

::::::::::::
preprocessing

::::
used

::
in

::::::::::::::
Graf et al. (2019)

:
.
:::
We assume that the temporal variability of rainfall is not high

enough such that entire rain events can be hidden in such short gaps. The next step is to normalize the data. Normalization of

training and validation data is a commonly used procedure in deep learning to enhance the model performance. We perform

the normalization as a pre-processing step and outside the CNN. After testing various normalization techniques it turned out

that the best performance of the CNN can be achieved by subtracting the median of the preceding 24
::
all

:::::::
available

::::
data

:::::
from205

::
the

:::::::::
preceding

::
72

:
hours from each time step.

::
In

::::
rare

::::
cases

::
of

::::::
larger

::::
gaps

::
in

:::
the

:::
data

::::::::::
acquisition,

:::
we

:::
set

:
a
:::::
lower

::::
limit

:::
for

:::
the

::::
data

:::::::::
availability

::
to

:::
120

::::::::
minutes.

The set of starting time-stamps of the hourly reference data set is denoted Trad. For each CML i and each starting time t ∈ Trad
a sample of data X̄t,i is composed from 180

::::
60+k

:
minutes of TRSL from the two sub-links starting at t− 120

::::
t− k. The first

120
::
k minutes serve as a reference to previous behaviour of the same CML and the last 60 minutes are the period Xt,i that has210

to be classified.
::
To

:::::::::
investigate

::::
the

::::::
impact

::
of

::::::
adding

::::
this

::::::::
additional

:::::::::::
information,

:::
we

:::::::
compare

:::::::
multiple

::::::
setups

::::
with

::
k
:::::::
ranging

::::
from

::
0

::
to

:::
240

::::::::
minutes.

::::
The

:::::
results

:::
are

:::::
given

:::
in

::::::
section

::
3.

:
An example TRSL over a period of 8 days is given

:::
two

::::::
weeks

::
is

:::::
shown

:
in Fig. 2 (a).

After gap filling
::::::::::
interpolating

:::::
short

:::::
gaps,

::
as

::::::::
described

::::::
above,

:
we exclude all samples with missing values from the analysis.

Since we loose three
::
up

::
to

:::
five hours of data whenever there is a gap, the interpolation routine increases the number of available215

samples from 79.9% to 95.4
:::
75%

::
to

:::
94%.

To train the CNN we have to balance the wet and dry classes in the data set (Hoens and Chawla, 2013). The under-sampling

approach to achieve an equalized (50:50) class ratio is to randomly discard samples of the majority class, i.e. dry samples.

This approach is chosen since we assume that dry periods mostly consist of redundant samples with only small fluctuations.

Later, we check that there is no loss in performance by evaluating the unbalanced data. The initial percentage of wet sam-220

ples is between 5-7
:::
5-10%. We perform the balancing on TRG and VALAPR. The balanced version of VALAPR is denoted

VALAPRB. VALAPR and VALSEP are kept as unbalanced data sets for validation. TRG already denotes the balanced data,

since the original unbalanced training data set is not used in the analysis. In total, the number of samples is 7× 104
::::::::
2.3× 105

for TRG, 2.9× 105
::::::::
3.9× 105 for VALAPRB, 2.35× 106

::::::::
2.2× 106 for VALAPR and 2.72× 106

::::::::
2.8× 106 for VALSEP.
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Figure 2. Performance of the CNN and the reference methods for an
::
the

::::
noisy

:
example CML time-series

:::
from

:::
Fig.

::
1.

::
a)

:::::
shows

::
the

:::::::::
normalized

::::
TRSL

:::::::::
time-series

:::
and

::
b)

:
is
:::
the

::::
radar

:::::::
reference. Predictions from the CNN yield an MCC (e)

:::
yield

:::
an

::::
MCC of 0.57

:::
0.74. Predictions through

σopt (c) and σq80 (d),
:::::

which
:::
are

::::
very

:::::
similar

::
in

:::
this

::::
case,

::::
both yield MCCs of 0.47 and 0.33

::::
0.28. Note that the TRSL and RSTD time series

of sub-link 2 are almost identical to those of sub-link 1 and are shown in light grey.

2.3 Neural Network225

CNNs especially apply to time-series classification when patterns have to be recognized in longer sequences of data but the

location of the occurring patterns is variable. They are therefore suitable classifiers for sensor data like the TRSL from CMLs.

The expected advantage of the CNN over the reference method is that it is able to recognize the rainfall specific patterns,

rather than just the amount of fluctuations. Like other neural network architectures they consist of a series of layers of neurons

(Fig. 3). The first layer receives the input data and the last layer serves as an output for a prediction. The hidden layers in230

between are organized in two functional parts. The first part consists of a series of convolution and pooling layers and is used

to extract features from the raw model input. Earlier convolution layers identify simple patterns in the data, which are used to

identify more complex patterns in subsequent layers. The second part consists of fully connected layers of neurons and is used
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to classify the input based on the features extracted by the convolutional part.

Before a CNN can be used as a classifier, it has to be trained on data in a supervised learning process. All layers have a set235

of trainable parameters, so called weights, which are optimized during the training process according to a learning rule. To be

able to monitor the model performance, a test data set is evaluated regularly during the training process. Training is stopped

before the model starts to over-fit, i.e. the performance on the test data set either stagnates or drops, while it still rises for the

training data.

2.3.1 Network architecture240

We use a 1D-CNN, which has the same structure as the basic 2D-CNN, with alternating convolutional and pooling layers

followed by fully connected layers. The only difference is that the input data of the convolutional layers is one dimensional.

The specific architecture and parameterization was optimized experimentally. To give an intuitive description of our CNN, we

follow the approach provided in (LeCun et al., 2015, p. 439):

The convolutional part of the CNN consists of four blocks of two convolutional layers followed by a max pooling layer and one245

block of one convolutional and one average pooling layer (see Fig. 3). Convolutional layers extract feature maps by passing

local patches (3x1) of input from the preceding layer through a set of filters followed by a rectified linear unit. Each filter

creates a different feature map. The pooling layer then combines semantically similar features by taking the maximum (resp.

average) within one local patch. This way, the dimension of the input is gradually reduced while, at the same time, the number

of extracted features increases.250

The fully connected part of the CNN consists of two layers with 64 neurons each and an output layer with one neuron. Its

output is a prediction between zero and one, that can be interpreted as the likeliness for the input sample to be wet or dry. To

avoid over-fitting to the training data
:::
two

:
dropout layers are added,

::::
one

::::
after

::::
each

::::
fully

:::::::::
connected

:::::
layer,

:
with a dropout ratio

of 0.4 (Srivastava et al., 2014).

We implement the CNN in a Python framework using the Keras (version 2.2.4
::::
2.3.1) backend for Tensorflow (version 1.12

:::
2.1.0)255

(Chollet, 2015; Martín Abadi et al., 2015). For the model architecture, type, number and order of layers has to be chosen.

There are several hyper-parameters that can be specified in the model setup. Each layer has a number of hyper-parameters

that can be adjusted, e.g. the size of the local patch or the number of filters in a convolutional layer. We optimized all hyper-

parameters iteratively by evaluating the performance of several reasonable configurations on the test data set VALAPRB, and

by choosing the model with the best performance metrics (see 2.4). The
:::::::::
Depending

:::
on

:::
the

:::::
length

:::
of

:::
the

:::::
input

::::::::::
time-series,260

:::::
which

:::::
varies

::::
with

:::
k,

:::
the

::::::
number

:::
of

:::::::::::
convolutional

:::::
layers

::
is
::::::::
different,

:::
i.e.

::::::
k < 60

:::
we

:::::
omit

:::
the

:::
last

::::
two

::::::::::
convolution

::::::
layers.

:::
We

::::::
trained

:::
one

::::::
model

:::
for

::::
each

:::::
value

::
of

::
k
::::
and

:::
one

:::::
extra

::::::
model,

::::
that

::::::::::
additionally

:::::::
receives

:::
the

:::::
CML

:::::::::
meta-data

::::::::
consisting

:::
of

:::
the

:::::
length

:::
and

:::
the

:::::::::
frequency

::
of

::::
both

::::::::
channels

::::::
through

:::::::
parallel

::::
fully

:::::::::
connected

:::::
layers

::::
and

::
an

::::::::
add-layer

::::::
before

:::
the

::::
fully

:::::::::
connected

::::
part.

:::
For

::
k

:::
set

::
to

::::
120

:::::::
minutes

:::
the

:
final CNN consists of 20 functional layers with a total of 140,033 trainable parameters.

The organization of those layers is shown in the network graph in Fig. 3. The
:::
For

:::
all

:::::
model

::::::::
versions,

:::
the detailed model and265

training specifications, all hyper parameters and the weights of the trained CNN can be retrieved from the code example at
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Figure 3. Graphical illustration of the CNNs architecture
::
for

:::::::
k = 120. The Input shows one sample X̄t,i of data consisting of 180 minutes of

TRSL from the two sub-links of one CML. Convolutional and pooling layers reduce the input dimension from 180 to 2, while a total of 192

features are extracted. Numbers below convolutional layers are the layer output dimensions, i.e. input dimension times the number of filters.

The size of the local patch in a convolutional layer is 3. Based on the extracted features, the fully connected layers predict a class, which is

stored in the output layer.

https://github.com/jpolz/cnn_cml_wet-dry_example.

2.3.2 Training setup

CNNs are feed-forward neural networks, which are trained by a supervised learning algorithm (Goodfellow et al., 2016).270

Batches of samples are passed through the network and the outputs are compared to the reference labels. After each batch a

loss function is computed and the weights are updated according to a learning rule. Here, the learning rule is stochastic gradient

descent with binary cross-entropy as a loss function and an initial learning rate of 0.008 (Bottou et al., 2018). The training data

set TRG consists of 7 batches with 104 samples each and the validation data set is VALAPRB. One training epoch is finished

when the whole data set is used once. After each epoch the training and validation data sets are evaluated
::
to

::::::::
compute

:::
the275

::::::
training

::::
and

::::::::
validation

::::
loss and the learning rate is decreased slightly.

The training is stopped once the loss function of the validation data set starts to increase or does not significantly decrease

within multiple epochs . The model is then considered ready for classification. The final number of epochs was 2000, since

after 1500 epochs the validation loss did not decrease and the accuracy was increased only by 0.0005, while, at the same time,

11
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the loss of the training data decreased by 0.02 (see Fig. 6 (a)) . On one Nvidia Titan Xp GPU the training time was 1.5 hours.280

Classifying 3904 samples, i.e. one time-step for all CMLs, took 200ms. For further verification, we repeat the training multiple

times with a different randomization (selection of CMLs and balancing)of TRG and VALAPRB
:
if
:::
the

:::::::::
validation

:::
loss

:::::
does

:::
not

::::
equal

:::
or

::::::
surpass

:::
an

:::::
earlier

::::::::
minimal

:::::
value

:::
for

::
50

:::::::
epochs

::::::::
(stopping

::::::::
criterion).

::::::::::
Afterwards

:::
the

::::::
model

:::::
which

::::::::
achieves

:::
the

::::
best

::::::::
validation

::::::::
Matthews

:::::::::
correlation

::::
(see

:::::
MCC

::::::
below)

::
is

:::::::
selected

::::
from

::
all

::::::::
versions,

:::
that

:::::::
existed

::::
after

:::
the

::::::::
individual

:::::::
training

::::::
epochs

::::::
(model

:::::::
selection

:::::::::
criterion).

::::
This

:::::
model

::
is

::::
then

::::
used

:::
for

:::::::::::
classification

::
on

:::
the

:::::::::
validation

::::
data

:::
sets.285

2.4 Validation

Our CNN is a probabilistic classifier. The raw model output Ȳt,i is on a continuous scale from 0 to 1 (see Fig. 5), representing

the estimated likeliness that a sample X̄t,i is wet. A threshold τ ∈ [0,1] is then set to decide whether a sample is wet or not,

leading to the prediction rule

Ỹt,i =

 1, if Ȳt,i > τ

0, otherwise
(2)290

Classification results,
::
in

:::
the

:::::
form

::
of

::::
true

:::::::
positives

:::::
(TP),

::::
false

::::::::
positives

::::
(FP),

:::::
false

::::::::
negatives

::::
(FN)

::::
and

:::
true

::::::::
negatives

:::::
(TN) are

compared to the reference in a confusion matrix, shown in Table 1, which is the basis for computing further metrics. The

normalized version of the confusion matrix consists of the occurrence rates of TP, FP, FN and TN samples, defined as

TPR=
TP

TP +FN
, (3)

295

FPR=
FP

FP +TN
, (4)

FNR=
FN

TP +FN
, (5)

and

TNR=
TN

FP +TN
. (6)300

Raw CNN predictions on VALAPRB, coloured according to the reference. As a first metric for validation we use the accuracy

score, defined as

ACC =
TP +TN

total population
∈ [0,1]. (7)

It is a measure for the percentage of correct classifications being made. It is dependent on the class balance of the data set.

The balance of wet and dry samples in the data set is directly related to the regional and seasonal climatology. Therefore, this305
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Table 1. Confusion matrix

reference

wet dry
pr

ed
ic

tio
n

wet true
::::
True wet (TP):

:::
#{

::::::
detected

::::
wet|

:::::::
reference

::::
wet}

:
false

::::
False wet (FP):

:::
#{

::::::
detected

::::
wet|

:::::::
reference

::::
dry}

dry missed
:::::
Missed wet (FN):

:::
#{

:::::::
detected

:::
dry|

:::::::
reference

::::
wet}

:
true

:::
True

:
dry (TN)

:
:
:::
#{

::::::
detected

:::
dry|

::::::::
reference

:::
dry}

:

metric is not climatologically independent.

The second metric we use is the Matthews correlation coefficient (MCC), also known as φ-coefficient, which is a commonly

used metric for binary classification (Baldi et al., 2000). It is acknowledging the possibly skewed ratio of the wet and dry

periods and is high only if the classifier is performing good on both of those classes. It is defined as

MCC =
TP ·TN −FP ·FN√

(TP +FP )(TP +FN)(TN +FP )(TN +FN)
∈ [−1,1], (8)310

where an MCC of 0 represents random guessing and an MCC of 1 represents a perfect classification. A strong correlation is

given at values above 0.25 (Akoglu, 2018).
:::
The

:::::::::
advantage

::
of

:::
the

:::::
MCC

::
is,

::::
that

:
it
::
is
::
a
:::::
single

:::::::
number

:::::
which

:::
we

:::
use

::
to

::::::::
optimize

::
the

::::::::
threshold

:::
for

:::
the

:::::
CNN.

:

The third metric we use is the receiver operating characteristic (ROC), defined by the pair (FPR,TPR) ∈ [0,1]× [0,1]

(Fawcett, 2006). The domain of the ROC is called ROC space. The point (0,1) represents a perfect classifier, while the315

[(0,0),(1,1)] diagonal represents random guessing. The ROC is independent of the ratio of wet and dry periods and there-

fore a climatologically independent measure for the classifier’s performance on rain event detection. Each τ ∈ [0,1] leads to

a ROC resulting in a ROC curve γ ⊂ [0,1]× [0,1] (e.g. Fig. 4). The performance of a classifier for different values of τ is

measured by the area

AUC =

1∫
0

γdτ ∈ [0,1] (9)320

under the ROC curve. Since changing τ directly influences the prediction rule (Eq. 2), it can be adjusted causing the model

to classify in a conservative (below [(0,1),(1,0)] diagonal in ROC space) or liberal (above diagonal) manner. We can therefore

address the trade-off between true wet and true dry predictions as mentioned in the introduction. This way, the AUC becomes a

measure of the flexibility of a classifier, i.e. the ability to show good performance with a more conservative or liberal threshold

τ .
:::
The

:::::
main

:::::::
purpose

::
of

:::
the

::::
ROC

::
is
::::
that

:::
we

:::
use

:
it
::
to
::::::::
compare

:::::::
different

::::::::
methods,

:::
e.g.

::::::::
different

:::::
values

::
of
:::
k,

::::::::::
independent

::::
from

::
a325

::::
fixed

::::::::
threshold,

:::
by

::::::::::
considering

:::
the

::::
ROC

:::::
curve

::::
and

::
the

::::::
AUC.

2.5 Reference method

To be able to compare the performance of the CNN to previously used methods for rain event detection we implement a

reference method . We choose the method introduced by Schleiss and Berne (2010) which we previously used for processing

13



Figure 4. Receiver Operating Characteristic curves on VALAPR (left
:
a) and VALSEP (right

:
b). Fine lines are generated by 200 random

selections (bootstrapping) of 1% of the samples and account for the variability of the model performance during a random short period (∼

eight hours) of data.
:::
The

::::::::::
performances

::
of

::
the

:::::
CNN

::
for

:::::::
different

:::::
values

::
of

:
k
:::
and

:::
the

:::::
added

::::
meta

:::
data

:::
are

:::::
shown

:
in
::

c)
:::
and

:::
the

::::
AUC

:::::
values

:::
are

::::
given

::
in

::::
Table

:::
B1

and validation of CML-derived rain rates for one year of CML data in Germany (Graf et al., 2019)
:::
The

::::::::
reference

:::::::
method330

:
is
::

a
:::::::::::
modification

::
of

:::::::::::::::::::::::
Schleiss and Berne (2010)

::::
which

:::
is

::
to

::::
date

:::
the

:::::
most

:::::::::
commonly

:::::
used

::::::
method

:::
to

:::::::
separate

::::
wet

:::
and

::::
dry

::::::
periods

::
as

::::::::
reviewed

::
in

:::
the

:::::::::::
introduction. It is based on the following assumption: The standard deviation values of fixed-size

windows of TRSL is bounded during dry periods, whereas it exceeds this boundary during wet periods and therefore allows

for distinguishing the two classes. This assumption has proven to give good results on our data set, however there are known

drawbacks. The method is limited to measuring the amount of signal fluctuations and there are multiple effects that can cause335

high signal fluctuations during dry periods
:
,
:::
e.g.

::::
like

:::
for

:::::
CML

::
C

::
in

::::
Fig.

::
1. Some of the factors are known, like multi-path

propagation, but others are unknown and still need to be investigated.

The method is applied by computing a rolling standard deviation of the TRSL time-series. The normalization step is not

necessary for this method. The window length is 60 minutes and the standard deviation value is written to the timestamp in the

center of this window. A period Xt,i is considered wet if at least one standard deviation value on one or both sub-links exceeds340

a threshold σ.

We compare two different thresholds σ, which are computed individually for each CML. The first one, denoted σ80, is the

80th percentile of the 60-minute rolling standard deviation of one month for a certain CML multiplied by a scaling factor

which is constant for all CMLs. In our case, the threshold is computed for VALAPR in April and VALSEP in September. The

scaling factor of 1.12 is adopted from Graf et al. (2019). The second one, denoted σopt, is optimized against the reference345

by maximizing the MCC. We computed it for April 2018 and then reapplied it to September 2018 to test its transferability to

future time periods. To derive ROC curves, we applied a scaling factor τσ to each of the standard deviation thresholds. In the

following we will refer to σ80 and σopt as both the resulting detection method and the threshold.
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2.6
::::

Rain
::::
rate

:::::::::
estimation

::
In

:::
the

::::
same

::::
way

::
as

:::
the

:::::
rolling

::::::::
standard

::::::::
deviation,

:::
the

::::
CNN

::::
can

::
be

::::
used

::
in

:
a
::::::
rolling

:::::::
window

::::::::
approach,

:::::::::
classifying

:::
the

:::::::::
timestamp350

:
t
::
as

::::
wet

::
or

:::
dry

:::
by

:::::
using

:::
the

:::::::
sample

::::
with

:::::::
starting

:::::::::
timestamp

:::::
t− 30

:::
as

:::::
model

::::::
input.

::::
With

:::
the

::::::::
resulting

::::
rain

:::::
event

::::::::
detection

:::::::::
information

:::::
from

:::::
either

:::
the

::::
CNN

:::
or

::
the

::::
two

::::::::
reference

::::::::
methods,

:::
rain

::::
rates

:::
are

::::::::
estimated

::
in
::::::
several

:::::
steps.

:::
We

::::
use

::
the

:::::
exact

:::::
same

:::::::::
processing

::::::
scheme

::
as

::::::::
described

::
in
:::::::::::::::
Graf et al. (2019),

::::::
which

:::
we

::::
refer

:::
the

:::::
reader

::
to
:::
for

:::
all

:::
the

:::::::
technical

:::::::
details.

::::
This

:::::::::
processing

:::::::
includes

:::::
erratic

::::::::
treatment

:::
of

:::::
CMLs

::::
and

:::::
WAA

:::::::::::
compensation

::
to

::::::
derive

:::
rain

:::::
rates

::::
with

:
a
::::::::
temporal

::::::::
resolution

::
of
::::
one

::::::
minute.

::::
For

::::
each

:::::::
detected

::::
rain

::::
event

::
a
:::::::
constant

:::::::
baseline

:::
of

:::
the

:::::
TRSL

::
is

:::::::::
calculated

::::
from

:::
the

:::::::::
preceding

:::
dry

::::::
period.

::::
The

:::::::::
attenuation

::::::
above355

:::
this

:::::::
baseline

::::
level

::
is
::::::::
attributed

::
to
::::

rain
:::
but

::::
also

::
to

::::::
WAA.

:::
The

:::::
WAA

::
is
:::::::::::
compensated

:::::::::
depending

:::
on

:::
the

:::
rain

::::
rate

:::::
using

:
a
:::::::
method

:::::::
modified

::::
after

:::::::::::::::::
Leijnse et al. (2008).

::::
The

:::::::::
remaining

::::::
specific

::::::::::
attenuation

:
k
::
is
::::
used

:::
to

:::::
derive

:::
the

::::
path

::::::::
averaged

:::
rain

::::
rate

::
R

:::::
using

::
the

::::::
k−R

::::::
relation

:::::
from

:::
Eq.

:::
10.

::::
The

::::::::
constants

:
a
::::
and

:
b
:::
are

:::::
taken

::::
from

::::::::::
ITU (2005).

:

k = aRb
::::::

(10)

:::
For

:::
the

:::::
CMLs

:::::
used

::
in

:::
this

:::::
study

:::
this

:::::::
relation

::
is

:::::
close

::
to

:::::
linear,

:::
i.e.

:
b
::

is
:::::
close

::
to

::::
one.

:::
For

::
a
::::::::::
comparison

::
to

::::::::::::::
RADOLAN-RW

:::
the360

:::
one

::::::
minute

::::
rain

::::
rates

:::
are

::::
then

:::::::::
aggregated

::
by

::::::
taking

:::
the

::::::
hourly

:::::::
average.

::::
Only

::::
from

::::
this

:::::::
analysis

::::
data

::::
from

:::
45

:::::
CMLs

::::
(1.1

:::
%)

::
is

::::::::
discarded

::::
due

::
to

::::::::::
substantially

::::::
erratic

:::::
signal

:::::
levels

:::
to

::
be

::::
able

::
to

::::::
follow

::
the

:::::
same

::::::::
procedure

:::
as

::
in

::::::::::::::
Graf et al. (2019).

:::::::::::
Additionally,

:::
we

::::::
justify

:::
this

:::::::::
procedure

::::
with

:::
the

::::::::
following

::::::::::
observation:

:::
For

:::
the

::::
rain

::::
event

::::::::
detection

:::
we

::::
want

::::::
periods

:::
of

:::::
erratic

:::::::
behavior

::
to
:::
be

:::::::
included

::
in

::::
both

:::::::
training

:::
and

::::::::
validation

:::::
data,

::::
since

::::
also

:::::
CMLs

::::
that

:::
are

:::
not

::::::::
discarded

::
by

:::
the

::::::
erratic

::::::::
treatment

:::
can

:::::
show

:::::::
periods

::
of

:::::
erratic

::::::::
behavior,

:::::
such

::
as

:::::
CML

::
C

::::
from

::::
Fig.

::
1.

::::
Each

::::::
erratic

:::::::
training365

:::
and

::::::::
validation

:::::::
sample

:::::::::
contributes

::
to
:::

the
:::::

final
:::::::
statistics

::
as
::::

one
::::::
sample

::::
and

:::
the

::::::
erratic

:::::
CMLs

:::
do

:::
not

::::::
distort

:::
the

::::::::
analysis.

::::
This

:
is
::::
very

::::::::
different

:::
for

:::
the

::::::
rainfall

:::::::
amount,

:::::
since

:::::
erratic

:::::
links

:::
are

:::::
prone

::
to

::
a

::::
very

::::
high

::::::::::::
overestimation

::
of

:::
the

::::
final

::::
rain

::::
rates

:::::
even

::::
when

::
a
:::
low

:::::::
amount

::
of

::::
time

:::::::
periods

::
is

:::::::
detected

::::
wet.

:::::
Since

::::::
erratic

:::::
CMLs

:::
are

::
a
:::::
small

:::::::
fraction

::
of

:::
the

::::::::
available

:::::
CMLs

::::
and

::::
they

:::
can

::
be

:::::::
detected

::::::::::::
automatically,

:::
we

:::::::
decided

::
to

:::::::
exclude

::::
their

::::
bias

:::::
when

::::::::
analyzing

:::
the

::::::::::
contribution

::
of
:::::

false
:::::::
positives

:::
to

:::::::
absolute

::::::
rainfall

::::::::
amounts.

::
An

::::::::
example

::
of

::::
such

:
a
::::
time

::::::
series

:::
can

::
be

:::::
found

::
in
::::
Fig.

::::
A2.370

3 Results

During training on TRG, the performance of the CNN was evaluated on VALAPRB after each epoch. The resulting graphs

of loss, ACC, TPR and TNR during the training process are shown in Fig. 6. For all three variables the performance on TRG

and VALAPRB were similar across all epochs with slightly higher performance on TRG. The threshold τ was optimized using

VALAPRB
::::::::
VALAPR, by maximizing the MCC, with a resulting value

:::::::
resulting

:::::
values

:
of τ =0.565. As shown in Fig. 5 the375

sensitivity for small changes of τ is not very high around its value of 0.565. A final evaluation on VALAPRBled to a TPR of

0.85 and a TNR of 0.91. No significant changes in the training process or in the resulting performance could be observed with

different randomizations
:::::
shown

::
in

::::
Tab.

:::
B1.

::::
The

::::::
results

::::
from

:::
that

:::::
table

:::
and

:::
the

:::::
ROC

:::::
curves

::
in

::::
Fig.

:
4
::
c)
:::::
show

:::
that

::
in
:::::::
general

:::
the

::::::::::
performance

::
of

:::
the

:::::
CNN

::
is

::::::::
increasing

::::
with

::::::
higher

::::::
values

::
of

::
k,

:::
but

:::
the

::::::::::
performance

::::
gain

::::
was

::::::::::
insignificant

:::
for

::::::
raising

:::
the

:::::
value

:::::
higher

::::
than

::::
120

:::::::
minutes

::
or

::::::
adding

::::
meta

::::
data

::
as

::::::
model

:::::
input.

:::
We

::::::::
therefore

:::::::
decided

::
to

:::
set

:::::::
k = 120

:::
and

::::
not

::
to

:::
use

:::::
added

:::::
meta380

15



Figure 5.
::::
Raw

::::
CNN

::::::::
predictions

:::
on

:::::::::
VALAPRB,

::::::
coloured

::::::::
according

::
to

::
the

::::::::
reference.

:::
data

:::
for

:::::::::
evaluating

::::::
further

::::::
results

:::
and

:::::::::
comparing

:::::
them

::
to

:::
the

:::::::
reference

::::::::
methods.

:

:::
Fig.

::
5
::::::
shows

:::
the

::::::::::
distribution

::
of

:::
the

::::::
CNNs

::::::::::
predictions

::
on

:::::::::::
VALAPRB.

:::
The

:::::::::
threshold

:
τ
::

is
:::

set
:::

to
::::
0.82.

::::
The

::::
final

:::::::
number

:::
of

::::::
training

::::::
epochs

::::
was

:::
248

::::
and

::
the

::::::
model

::::
from

::::::
epoch

:::
212

::::
was

::::::
selected

::::
(see

::::
Fig.

:
6
::::
(a)).

:::
On

:::
one

::::::
Nvidia

:::::
Titan

:::
Xp

::::
GPU

:::
the

:::::::
training

::::
time

:::
was

:::
30

:::::::
minutes.

::::::::::
Classifying

::::
3904

::::::::
samples,

::
i.e.

::
a
:::
one

::::::
minute

::::::::
time-step

:::
for

:::
all

::::::
CMLs,

::::
took

:::::
20ms

:::::
which

:::
can

:::
be

:::::::::
considered

::::::::
extremely

:::
fast

::::::::
allowing

:::
for

::
a

:::::::
real-time

::::::::::
application

::
of

:::
the

:::::::
method.

::::
For

::::::
further

::::::::::
verification,

:::
we

:::::::
repeated

::::
the

::::::
training

::::::::
multiple385

::::
times

::::
with

::
a
:::::::
different

::::::::::::
randomization

:::::::::
(selection

::
of

:::::
CMLs

::::
and

:::::::::
balancing) of TRG and VALAPRB

::
but

:::
no

:::::::::
significant

:::::::
changes

::
in

::::::::::
performance

:::::
could

::
be

::::::::
observed.

We evaluated the performance of the CNN and both reference methods using the unbalanced data sets VALAPR and VALSEP.

The complete list of the achieved performance metrics is presented in Table 2. Applying the threshold τ to the CNN predictions

yielded TPRs of 0.85
:::
0.74

:
(VALAPR) and 0.89

:::
0.77

:
(VALSEP) and TNRs of 0.91 (VALAPR ) and 0.91 (

:::
0.97

:::::::::
(VALAPR

::::
and390

VALSEP) (see also Fig. A1). On average, 9
:::
only

::
3% of the dry periods were falsely classified as wet and 13

::
24% of the wet

periods were missed. With a scaling factor τσq80
of 1.12, a similar TPR as with the CNN was achieved. But on both VALAPR

and VALSEP the TNR of the σq80 method was substantially lower than the CNNs TNR. On
:::::::
achieved

:
a
::::::::
balanced

::::
TPR

:::
and

:::::
TNR

::::
with

:
a
:::::
value

::
of

::::::
around

::::
0.79

:::
for

::::
both

::::
rates

::
in

:::::
April

:::
and

::::::::::
September.

::::
σopt ::

on
:
the other hand σopt achieved similar TNRs than the

CNN but at the cost of lower TPRs.395

For both data sets, the CNN’s ROC showed a higher TPR for any fixed FPR than the reference methods (see Fig. 4). As a

consequence, the AUC was largest for the CNN. On VALAPR, σopt yielded a better ROC than σq80, but only for low FPR

values. On VALSEP σq80 achieved a better ROC than σopt. The ROC curves of the CNN and σq80 had a very similar convex

shape. Compared to the other two curves the ROC curve of σopt showed a higher asymmetry. The CNN achieved the highest

ACC and MCC scores with an average of 0.91 and 0.53
::::
0.95

:::
and

::::
0.69

:
on both data sets. While σopt has the second highest400

ACC and MCC scores, the area below the ROC curve is lowest for both data sets.

We compare the ACC on detecting samples with a specific RADOLAN-RW rain rate of x < Rt,i < x+ 0.1 in Fig. 7. From all

rain events where Rt,i > 1.6 mm 99.4
::::::::::::
Rt,i ≥ 0.6 mm

::::
90.4% were correctly detected by the CNN. On the other hand around
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Figure 6. Statistics of variables that were monitored during the training process.

36.4
:::
38.9% of all rain events with Rt,i < 0.2 mm

::::::::::::
Rt,i < 0.6 mm were missed. All three methods have a lower ACC, the lower

the rain rate is. While σq80 shows an ACC for wet periods of different rain intensities, that is very similar to that of the CNN,405

σopt misses more small events. On the other hand σq80 is producing more false wet classifications than the CNN and
:
or

:
σopt.

The MCC was computed individually for each CML and each validation data set. Figure 8 shows scatter density plots com-

paring the individual MCC scores of the CNN and σopt. The CNN’s MCC on VALAPR is higher for 61.7
::::
95.9% of all CMLs

and on VALSEP it is higher for 73.4
::::
96.7% of all CMLs.

:::
We

:::::
focus

:::
our

:::::::
analysis

:::
on

:::::
hourly

:::::::
rainfall

::::
rates

:::::
from

::
all

::::::::::
non-erratic

::::::
CMLs

::
in

:::::::::
September

:::::
2018.

::::
The

::::::::
resulting

:::
rain

:::::
rates

:::::
using410

:::::
either

:::
the

::::
CNN

::
or

:::
the

:::::
σq80 :::::::

detection
:::::::
scheme

:::
are

::::::
shown

::
in

:::
Fig.

::
9.
::::
For

::::
both

:::::::
methods

:::
the

::::::::::
distribution

::
of

::::
false

:::::::
positive

:::
and

:::::
false

17



Table 2. Performance metrics of rain event detection methods on VALAPR and VALSEP

Method TPR TNR ACC MCC AUC

VA
LA

P
R CNN 0.85

:::
0.74 0.91

:::
0.97 0.91

:::
0.95 0.54

:::
0.69 0.94

σq80 0.85
:::
0.79 0.78

:::
0.79 0.78

:::
0.79 0.35

:::
0.38 0.89

:::
0.85

σopt 0.72
:::
0.61 0.93

:::
0.95 0.92

:::
0.91 0.50

:::
0.52 0.87

:::
0.83

VA
LS

E
P CNN 0.89

:::
0.77 0.91

:::
0.97 0.91

:::
0.96 0.52

:::
0.69 0.96

σq80 0.88
:::
0.82 0.77

:::
0.78 0.78 0.32

:::
0.35 0.90

:::
0.87

σopt 0.72
:::
0.63 0.91

:::
0.92 0.90 0.42

:::
0.44 0.88

:::
0.84

Figure 7. Each bar shows the ACC score on samples from
::
a)

:::::::
VALAPR

:::
and

::
b)

:
VALSEP, grouped by the reference rain rate. The lower

::
An

ACC limit of 0.5 on the y-axis represents random guessing.

:::::::
negative

:::::::
samples

:
is
::::::::

centered
::::::
around

:::
0.1

:::::::
mmh−1

:::
and

:::
the

::::::::::
distribution

::
of

::::
true

:::::::
positives

::
is

:::::::
centered

:::::::
around

:
1
:::::::
mmh−1.

::::::
While

:::
the

:::::::::
percentage

::
of

:::::
CML

::::::
derived

::::::
rainfall

::::::::
estimated

::::::
during

::::
false

:::::::
positive

:::::
events

::
is
::::::
29.9%

:::
for

::::
σq80,

::
it

::
is

::::::::::
significantly

:::
less

:::
for

:::
the

:::::
CNN

:::
(see

::::
Fig.

::
9

::
d)

:::
and

:::
f).

::::
This

:::::::::
constitutes

::
a
::::::::
reduction

::
of

:::::
51%

::
of

::::::
falsely

::::::::
estimated

:::::::
rainfall

:::
for

:::
the

:::::
month

:::
of

:::::::::
September

:::::
2018.

:::
At

::
the

:::::
same

::::
time

:::
the

:::::::
amount

::
of

::::::
missed

:::::::
rainfall

::
is

:::::::
reduced

::
by

::::::
27.5%.

::::
The

:::::::
amount

::
of

::::::
rainfall

:::
in

:::
the

:::
true

:::::::
positive

::::::::
category

:::::
could415

:::::::
therefore

:::
be

:::::
raised

:::
by

:::::
4.7%.

::::
The

::::::
Pearson

::::::::::
correlation

:::
for

:::
the

:::::
hourly

:::::::
rainfall

::::::::
estimates

:::::::
between

:::::
radar

:::
and

::::::
CMLs

::
is

::::
0.83

:::::
using

::::
σq80 :::

and
::::
0.84

:::::
using

:::
the

:::::
CNN.

:
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Figure 8. Scatter density plots of the MCC achieved by the CNN and σopt on data from individual CMLs. While the
:::
Both

:::::::
methods

::
are

:
MCC

optimized method σopt achieves comparable MCC values in April
::
for

:::
the

:::::::::
unbalanced

:::
data

::::
from

:::::::
VALAPR, where it was

::::
while

:::
the

::::
CNN

:::::
keeps

::
the

:
optimized

:::::::::
performance

::
in
::::::::
September, the performance

::
of

::::
σopt dropsin September.

4 Discussion

4.1 Performance

We evaluate the performance of the CNN to detect rain events by two means. First, we compare it to the performance of420

a reference method. Second, we estimate if the model is performing in a near optimal state or if we expect that a higher

performance could be achieved. The comparison to the results of previous studies, e.g. Overeem et al. (2016a), is difficult since

the
::::::
overall performance is depending on the

::::::::::
distribution

::
of

:::
the

:
intensity of rain events (see Fig. 7) and since there is a large

variability of performance within
:::::::
between the CMLs (see Fig. 8).

Since the results on both validation data sets are very similar (see Table 2) we further focus on VALSEP, which was not used to425

optimize the model hyper-parameters. With an ACC of 0.91
:::
0.95

:
and an MCC of 0.54

::::
0.69 the correlation between the CNN

predictions and the reference data set RADOLAN-RW can be considered as very high.
:
A

::::
TPR

::
of

::::
0.74

::::::
might

:::
not

::::::
appear

::::
very

::::
good

::
at

::::
first

:::::
sight,

:::
but

::::::::::
considering

:::
that

:::
the

::::::::
detection

::::::::
accuracy

::
for

:::::::
samples

:::::
with

:
a
::::
rain

:::
rate

::
of

:::::::
smaller

::::
than

:::
0.6

:::::::
mmh−1

::
is

::::
only

::::
0.61,

:::
we

:::::::
actually

::::::
achieve

:::
an

:::::::
accuracy

::
of

::::
over

:::
0.9

:::
for

:::
all

:::
rain

:::::
rates

:::::
higher

::::
than

:::
0.6

:::::::
mmh−1.

:

The CNN and the reference method σopt have the same
:
a
::::::
similar

:
ACC value. At the same time the CNN’s MCC is 0.1 points430
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Figure 9.
:::::
Scatter

::::::
density

:::::::::
comparison

:::::::
between

:::::
hourly

::::
CML

:::
and

::::
radar

::::
rain

:::
rate

:::::::
estimates

::::::
derived

::::
from

::
a)

::::
σq80:::

and
::
b)

:::
the

::::
CNN.

:::
On

:::
the

:::
left

:::
hand

::::
side

:::
the

:::::
amount

::
of
:::
FP,

:::
TP

:::
and

::
FN

:::::
hours

::::
with

:
a
::::::
specific

:::
rain

:::
rate

:::
are

:::::::
compared

:::
for

::
c)

::::
σq80,

::
e)

:::
the

::::
CNN

:::
and

::
g)

::::
their

::::::::
difference).

:::
On

:::
the

:::
right

::::
hand

::::
side

::
the

::::::
amount

::
of

::::::
rainfall

::::
these

::::
hours

::::::::
contribute

::
are

:::::
shown

:::
for

::
d)

::::
σq80,

::
f)

::
the

::::
CNN

:::
and

::
h)
::::
their

::::::::
difference.

:::
The

::::
rain

:::
rates

:::
for

::::
false

::::::
positives

:::
and

::::
true

::::::
positives

:::
are

:::::::
estimated

:::
by

::
the

:::::
CML,

:::::
while

::
the

:::
rain

::::
rates

:::
for

::::
false

:::::::
negatives

::
are

:::::
taken

::::
from

::
the

::::::::
reference.

higher, despite the fact that σopt is MCC optimized for each CML. The high ACC of σopt is due to the high TNR and the fact

that 95% of all samples are negative (dry). At a similar ACC and TNR we could increase the TPR, or rain event detection rate,

by 0.17
:::
0.13. This constitutes a major improvement by the CNN. As shown in Fig. 8 the improvement is higher for CMLs with
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lower MCC, making the whole CML data set more balanced in performance and therefore more trustworthy for quantitative

precipitation estimation.
:::
The

:::::
CNNs

::::::::::
distribution

::
of

:::::
MCC

::::::
values

::
of

::::::::
individual

::::::
CMLs

::
is

:::
the

::::
same

::
in

:::::
April

:::
and

::::::::::
September,

:::::
while435

::::::::::
performance

:::::
drops

:::
for

::::
σopt.:The CNN’s improvement in ACC and MCC over σq80 was even higher with 0.13 and 0.2

:::
0.17

::::
and

::::
0.32. While the TPR of σq80 and the CNNare similar

:
is
:::::::
slightly

:::::
higher

:::::
than

:::
the

::::
TPR

::
of

:::
the

:::::
CNN, the TNR is much lower for

σq80. Thus the CNN shows substantial improvement in correctly classifying dry periods.

While the RSTD method can be set up to either have a high TPR (σq80) or a high TNR (σopt), the
::::
ROC

::::::
curves

:::::
show

::::
that

CNN achieves both rates at the same time. Thus, the CNN shows a better overall performance than the reference methods and440

therefore improves on the trade-off as mentioned above. This general observation is illustrated by the example time-series in

Fig. 2, which shows a CML with an average MCC (achieved by the CNN ) of 0.57
:::
very

:::::
noisy

:::::
CML

:::::::::
time-series

::::
that

:::::::
produces

::
a

::::
high

::::::
amount

::
of

::::
false

::::::::
positives

:::
for

:::
the

::::::::
reference

:::::::
method,

:::::
while

:::
the

::::
CNN

::::
does

::::
not

:::::::
attribute

::::
these

::::::::::
fluctuations

::
to

::::::
rainfall.

All three methods have limitations to detect events with rain rates smaller than 0.3mm. This is likely due to the detection limit

of CMLs in our data set which is in the same range. The detection limit depends on frequency, length and signal quantization445

of a CML. For example, at a frequency of <20 GHz and at a length of <10 km a path averaged rain rate of 1 mm h−1 creates

a maximum of 1 dB of attenuation (Chwala and Kunstmann, 2019, Fig. 7). In some cases the quantization (0.3dB for RSL and

1dB for TSL) might therefore not allow for a detectable signal.

Differences in the performance on VALAPR and VALSEP can be traced back to a different distribution of occurring rain rates.

While in April 35.5% of all events are in the critical range from 0.1mm to 0.3mm, there are only 32% in September. In both data450

sets the performance on higher rain rates (> 1.6 mm) and dry periods is almost identical. Therefore the loss of performance in

April is due to the slightly worse performance of the CNN on smaller rain rates which occur more often in VALAPR than in

VALSEP.

It should not be expected that the rain events detected through CMLs and the events detected by the radar coincide completely.

Both methods produce artifacts that are mistaken as rainfall, or they miss events due to their detection limits. From all false455

classifications that the CNN makes on VALSEP there are 50% with a raw model output between 0.2 and 0.8. Here the CNN

does not give a certain prediction. This is due to very similar signal patterns in noisy dry periods and small rain rates. The other

50% of those samples are, according to the CNN, very likely to belong to the falsely predicted class. Despite this being an issue

for many CMLs about 10% have a ROC of (> 0.97,< 0.1) and correlate very well with the RADOLAN reference. Therefore,

we expect that less errors could be made when training with a perfect reference data set, but there would still be errors due to460

artifacts or insensitivity in CML measurements.

Despite those errors, which occur mostly for small rain rates, the correlation of wet and dry periods between RADOLAN-RW

and our CML data set is very high. The performance boost in rain event detection gained through the CNN is very promising

for future applications in quantitative precipitation estimation with CMLs.

4.2 Robustness465

The CNNs ability to generalize to previously unknown CMLs is very high. As seen in the training results the learning curves

for both training and validation show a similar dynamic (see Fig. 6). As expected the training data showed better performance,
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but the validation was close at all epochs.

Only 10
::
20% of all available CMLs were used for training. The remaining 90

::
80% were only used to prevent the model from

over-fitting to the training dataand
:
,
:
to choose the model architecture and to slightly adjust

:::::::
optimize

:::
the

::::::
single

::::::::
parameter

:
τ .470

Thus no information about the validation data was given directly to the model. The resulting model architecture and hyper-

parameters are not specific enough to store this information. The high performance in ACC, MCC and ROC on data set

VALAPR, together with the learning curves in Fig. 6), therefore prove that the CNN was able to recognize the attenuation

pattern in the signal levels of a large number of previously unknown CMLs.

The stability of the CNNs performance for future time periods is analyzed using the results on VALSEP. While the training475

was done with TRG including the period of May to August 2018, the performance in September was similar. Compared to the

results on VALAPR the CNN shows even higher performance on VALSEP, which can be explained by the lower percentage

of samples with small rain rates in September, which are challenging to classify (see Fig. 7 and ??
::
a)). When we compare the

CNNs accuracy per rain rate between VALAPR and VALSEP, we see that there are no major differences in the individual

scores. Therefore the method can be considered as very stable throughout the analyzed time period, while differences in over-480

all performance mostly stem from different distributions of the occurring rain rates. The reference method σopt, which was

optimized in April, loses performance in September, where it is outperformed by the adaptive method σq80. The bootstrapping

in Fig. 4 shows that all three methods perform almost equally well on small random subsets of the validation data. The CNN

shows the lowest variability.

As a measure for the flexibility of a classifier we adopted the ROC analysis in section 2.4. A model is called flexible if it has a485

high area below its ROC curve and if the curve is axis-symmetric with respect to the [(0,1),(1,0)] diagonal of the ROC space.

As observed both the CNN and σq80 show a symmetrical ROC curve. Therefore they perform almost equally well with a liberal

or conservative threshold with a slight tendency to the conservative side. On the other hand σopt shows a skewed performance,

with a strong tendency to the conservative side. The area AUC below the ROC curve was highest for the CNN, making it

the most flexible classifier. We can adjust τ for a ROC of either (0.03,0.7) or (0.3,0.94) and a smooth, concave transition in490

between (see Fig. 4).

We conclude that within the analyzed period the CNN shows a temporally stable performance, with a good generalization

to previously unknown CMLs. The σopt method performs well only if it is re-calibrated for different months and to individ-

ual CMLs, while σq80 is by definition an adaptive method. Even with re-calibration or adaption, the reference methods are

outperformed by the CNN.495

4.3
::::::
Impact

::
of

:::
the

::::::::
detection

:::::::
scheme

:::
on

:::
the

:::::::
derived

::::::
rainfall

::::::::
amounts

:::
The

:::::::::
difference

:::::::
between

:::
the

:::::
scatter

:::::::
density

::::
plots

::
in

::::
Fig.

:
9
::
a)

::::
and

::
b)

:::::
seems

::
to

::
be

:::::
quite

:::
low

::
at
::::
first

:::::
sight.

:::::
What

:::
this

::::::::::::
representation

::
of

:::
the

::::
data

::
is

:::
not

:::::::
stressing

:::::::
enough

::
is

:::
the

::::::
amount

:::
of

::::::
rainfall

::::::::
generated

:::
by

::::
false

:::::::::
positives.

:::
But

::::
they

:::
are

:::
an

::::
issue

::::
that

::
is

::::::
clearly

:::::
visible

:::::
from

::::
Fig.

:
9
:::::
c)-h).

:::::::::::
Considering

:::
that

:::
the

:::::::
amount

::
of

:::::::
rainfall

::::::::
estimated

::::::
during

::::
time

:::::::
periods

:::::
falsely

:::::::::
classified

::
as

:::
wet

::::
can

::
be

:::::::
reduced

::
by

::::::
51.0%

::::
and

:::
that

:::
the

:::::::
amount

::
of

:::::::
rainfall

::::
from

::::::
missed

::::::
events

:::
can

:::
be

:::::::
reduced

::
by

:::::::
27.4%,

:::
the

::::
CNN

::::::
shows

:
a
::::::

major500

:::::::::::
improvement

::::
over

:::
the

::::::::
reference

:::::::
method.

::::
The

:::::
4.1%

:::
of

::::::::
additional

:::::::
rainfall

::
in

:::
the

::::::::
correctly

::::::::
classified

::::
wet

:::::::
periods

::::
stem

:::::
from
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::::
time

::::::
periods

::::
that

::::
were

::::::::
originally

::::::
harder

::
to

:::::::
classify,

:::
i.e.

:::::
from

:::::
small

:::
rain

::::::
events,

::::
and

:
it
::::::

should
:::
be

::::::::
expected,

:::
that

:::
the

::::::::::
correlation

:::::::
between

:::::
CML

:::
and

:::::
radar

::::::
rainfall

:::::
drops.

:::::::
Instead,

:::
the

:::::::
Pearson

:::::::::
correlation

:::::::::
coefficient

::::::::
increased

:::::::
slightly

:::::::
showing

::::
that

:::
the

::::::
quality

::
of

:::
the

::::::::
estimated

::::::
hourly

::::::
rainfall

:::::
could

:::
be

::::::::
improved.

:::
We

:::::::
omitted

:::
the

:::::
same

:::::::
analysis

:::
for

:
a
::::::::::
comparison

::
of

:::
the

:::::
CNN

::::
and

::::
σopt:::

for

:::::
which,

:::::
based

:::
on

:::
the

:::::
ROC

:::::
values

::
in

:::
Fig

::
4,
:::
we

:::::::::
anticipate

:
a
::::::
similar

:::::
result,

::::
but

::::
with

:
a
::::::
higher

:::::::::::
pronunciation

::
of

:::::::
missed

:::
rain

::::::
events505

::::::
instead

::
of

:::
the

:::::
strong

::::::
impact

::
of

:::::
false

::::::::
positives.

::::::
Overall,

:::
we

::::::
could

::::::
observe

::::
that

:::
the

:::::::::::
improvement

:::
in

:::
rain

:::::
event

::::::::
detection

::::
has

:
a
:::::::::::
considerable

:::::
effect

:::
on

:::
the

::::::
amount

:::
of

::::
over-

:::
or

:::::
under

::::::::
estimation

:::::::
through

::::::
falsely

:::::::
detected

::
or

::::::
missed

::::
rain

::::::
events.

:::
The

::::::::::::
improvement

::
on

:::
the

:::::::
trade-off

::::::::
between

::::
false

:::::::
positives

::::
and

::::
false

::::::::
negatives

::::::
directly

::::::::
translates

::
to

:::
the

::::::
impact

::
of

::::
their

:::::::::
respective

::::::
rainfall

::::::::
amounts.

::::
This

:
is
::::::
shown

::
by

:::
the

::::
false

:::::::
positive

::::
and

::::
false

:::::::
negative

::::::::::
distributions

::
in

::::
Fig.

:
9
:::::
c)-f)

:::::
which

:::
are

:::::::
centered

::::::
around

:::
the

:::::
same

:::::
value,

:::
but

:::
are

::::::::
different

::
in

::::
their

::::::
amount

:::::::::
depending

:::
on510

::
the

:::::
used

:::::::
detection

:::::::
method.

:

5 Conclusions

In this study, we explore the performance and robustness of 1D-CNNs for rain event detection in CML attenuation time-series

using a large and diverse data set, acquired from 3904 CMLs distributed over entire Germany. We prove that, compared to a

reference method, we can minimize the trade-off between false wet and missed wet predictions. While the reference method515

needs to be adjusted for different months of the analyzed period to provide optimal results, the trained CNN generalizes

very well to CMLs and time periods not included in the training data. On average, 87
::
76% of all wet and 91

::
97% of all dry

periods were detected by the CNN, which
:
.
:::
For

::::
rain

::::
rates

::::::
higher

::::
than

:::
0.6

:::::::
mmh−1

:::::
more

::::
than

:::::
90%

::::
were

::::::::
correctly

::::::::
detected.

::::
This underlines the strong agreement between rain events that can be detected in the CML time-series and rain events in the

RADOLAN-RW data set.520

In future work, we plan to investigate the potential of using reference data with higher temporal resolution to improve the

temporal localization of the rain events. Data with higher temporal resolution will, however, magnify the uncertainties that

arise due to the different spatial and temporal coverage of the different rainfall observation techniques. In order to address

these uncertainties, it will be important to further explore the relationship between weather radar and CML derived rainfall

products. In the study presented here, we focused on the optimization of rain event detection as an isolated processing step,525

which provides the basis for a successful rain rate estimation. All subsequent processing steps, including WAA correction, k-R

relation and spatial interpolation, have an effect on the CML derived rain rate, that can
:::
also lead to over or under-estimation.

Therefore, we plan to study the interplay of different rain event detection methods, including the one presented here, with the

different methods of the successive steps of rainfall estimation from CMLs in a larger inter-comparison study
:::::
While

::::::
29.9%

::
of

:::
the

::::::::
estimated

::::::
rainfall

:::::::
through

:::
the

::::::::
reference

::::::
method

::::
can

::
be

::::::::
attributed

::
to
:::::

false
:::::::
positive

::::::::::::
classifications,

:::
the

:::::
CNN

::::::
reduces

::::
this530

::::::
amount

::
by

:::
up

::
to

::::
51%

::::
and,

::
at

:::
the

::::
same

:::::
time,

:::::::
improves

:::
on

:::
true

:::::::
positive

::::
and

::::
false

::::::::
negatives.

:::
We

:::::::::
anticipate,

:::
that

::::
this

:::::::::::
improvement

:::
will

::::
lead

::
to

::::
new

:::::::
insights

:::
into

:::::
other

::::::
effects

:::
that

::::
may

::::::
disturb

:::
the

::::::
quality

::
of

::::
this

:::::::::::
opportunistic

::::::
sensing

::::::::
approach.

Our study shows that , using data driven methods like CNNs in combination with the good coverage of the highly developed

weather radar network in Germany can lead to robust CML data processing. We anticipate that this robustness enhances the
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Figure A1. Normalized confusion matrices of VALAPR (top) and VALSEP (bottom).

chance that we can transfer processing methods to data from CML networks
::::
other

:::::
CML

::::::::
networks,

::::::::::
particularly

:
in developing535

countries like Burkina Faso, where rainfall information is still scarce despite its high importance to the local population (?)

::::::::::::::::
(Gosset et al., 2016).

Code and data availability. Interactive code to build the CNN and an example evaluation using the trained CNN are available at https:

//github.com/jpolz/cnn_cml_wet-dry_example. CML data was provided by Ericsson Germany and is not publicly available in its full extent.

RADOLAN-RW is publicly available through the Climate Data Center of the German Weather Service (DWD) https://opendata.dwd.de/540

climate_environment/CDC/grids_germany/hourly/radolan/. We include a small example data set with modified CML locations, the trained

model weights and the pre-processed RADOLAN-RW reference data together with the interactive code at https://github.com/jpolz/cnn_cml_

wet-dry_example.
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April

Figure A2.
::::
Time

:::::
series

::
of

:
a
:::::

CML
:::
that

::
is
:::::::::
considered

::
as

:::::
erratic

:::
and

::
is
:::::::
removed

:::
by

::
the

::::::
simple

::::
filter

:::
for

:::::
erratic

:::::
CML

:::
data

:::::::::
introduced

::
in

::::::::::::
Graf et al. (2019)

:
.
:::::
There

::
are

::
no

::::
time

::::::
periods,

:::::
where

:
a
:::::::::
reasonable

:::::
rainfall

::::::::
estimation

:::::
would

::
be

:::::::
possible.

Table B1.
::::::
Number

::
of

::::::
training

:::::
epochs,

:::::
MCC

::::::::
optimized

:::::::
threshold

:::
and

:::::::
resulting

:::::
metrics

:::
for

::::::
different

:::::
values

::
of
::
k,
::::::::
evaluated

::
on

::::::::
VALAPR.

:::::
Method

: :
k
: ::::::

Training
::::::
epochs

:::::::
Threshold

::
τ

::::
TPR

::::
TNR

::::
ACC

::::
MCC

: ::::
AUC

:::
CNN

: :
0

::
269

: :::
0.77

: :::
0.53

: ::::
0.97

::::
0.93

:::
0.55

::::
0.86

:
15

: ::
158

: :::
0.78

: :::
0.59

: ::::
0.97

::::
0.94

:::
0.60

::::
0.88

:
30

: ::
274

: :::
0.79

: :::
0.64

: ::::
0.97

::::
0.94

:::
0.64

::::
0.91

:
45

: ::
271

: :::
0.79

: :::
0.67

: ::::
0.97

::::
0.94

:::
0.66

::::
0.92

:
60

: ::
128

: :::
0.84

: :::
0.71

: ::::
0.97

::::
0.95

:::
0.68

::::
0.93

:::
120

::
212

: :::
0.85

: :::
0.72

: ::::
0.97

::::
0.95

:::
0.69

::::
0.94

:::
180

::
211

: :::
0.86

: :::
0.72

: ::::
0.97

::::
0.95

:::
0.69

::::
0.94

:::
240

::
170

: :::
0.84

: :::
0.73

: ::::
0.97

::::
0.95

:::
0.69

::::
0.94

:::::::::
CNN+Meta

:::
180

::
321

: :::
0.79

: :::
0.70

: ::::
0.97

::::
0.95

:::
0.68

::::
0.93

:::
σq80: :

- -
: :

-
:::
0.79

: ::::
0.79

::::
0.79

:::
0.38

::::
0.85

:::
σopt: :

- -
: :

-
:::
0.61

: ::::
0.95

::::
0.91

:::
0.51

::::
0.83

Appendix A: Additional Figures

Appendix B:
:::::::::
Additional

::::::
Tables545
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