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Abstract. Quantitative precipitation estimation with commercial microwave links (CMLs) is a technique developed to supple-

ment weather radar and rain gauge observations. It is exploiting the relation between the attenuation of CML signal levels and

the integrated rain rate along a CML path. The opportunistic nature of this method requires a sophisticated data processing

using robust methods. In this study we focus on the processing step of rain event detection in the signal level time series of

the CMLs, which we treat as a binary classification problem. We analyze the performance of a convolutional neural network5

(CNN), which is trained to detect rainfall specific attenuation patterns in CML signal levels, using data from 3904 CMLs in

Germany. The CNN consists of a feature extraction and a classification part with, in total, 20 layers of neurons and 1.4× 105

trainable parameters. With a structure, inspired by the visual cortex of mammals, CNNs use local connections of neurons to

recognize patterns independent of their location in the time-series. We test the CNNs ability to generalize to CMLs and time

periods outside the training data. Our CNN is trained on four months of data from 400 randomly selected CMLs and validated10

on two different months of data, once for all CMLs and once for the 3504 CMLs not included in the training. No CMLs are

excluded from the analysis. As a reference data set we use the gauge adjusted radar product RADOLAN-RW provided by the

German meteorological service (DWD). The model predictions and the reference data are compared on an hourly basis. Model

performance is compared to a reference method, which uses the rolling standard deviation of the CML signal level time series

as a detection criteria. Our results show that within the analyzed period of April to September 2018, the CNN generalizes well15

to the validation CMLs and time periods. A receiver operating characteristic (ROC) analysis shows that the CNN is outper-

forming the reference method, detecting on average 87% of all rainy and 91% of all non-rainy periods. In conclusion, we find

that CNNs are a robust and promising tool to detect rainfall induced attenuation patterns in CML signal levels from a large

CML data set covering entire Germany.
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1 Introduction

Rainfall is the major driver of the hydrologic cycle. Accurate rainfall observations are fundamental for understanding, mod-

eling and predicting relevant hydrological phenomena, e.g. flooding. Data from commercial microwave link (CML) networks

have proven to provide valuable rainfall information. Given the high spatio-temporal variability of rainfall, they are a welcome25

complement to support traditional observations with rain gauges and weather radars; particularly in regions where radar is

hampered by beam blockage or ground clutter. In regions with sparse rainfall observation networks, like in developing coun-

tries, CMLs might even be the only source of small scale rainfall information.

Since the work of Messer et al. (2006) and Leijnse et al. (2007) more than a decade ago, several research groups have shown

the potential of CML data for hydrometeorological usage. Prominent examples are the countrywide evaluations in the Nether-30

lands (Overeem et al., 2016b) and Germany (Graf et al., 2019), which demonstrated that CML-derived rainfall information

corresponds well with gauge-adjusted radar rainfall products, except for the cold season with solid precipitation. CML-derived

rainfall information was also successfully used for river runoff simulations in a pre-alpine catchment in Germany (Smiatek

et al., 2017) and for pipe flow simulation in a small urban catchment in Czech Republic (Pastorek et al., 2019). A further im-

portant step was the first analysis of CML-derived rain rates in a developing country, carried out by Doumounia et al. (2014),35

with data from Burkina Faso.

In general, the number of CMLs available for research has increased significantly over the last years and researchers from

several countries have gained access to CML attenuation data. Currently, data from 4000 CMLs over Germany is recorded

continuously with a temporal resolution of one minute via a real-time data acquisition system (Chwala et al., 2016). The num-

ber of existing CMLs over Germany is 30 times higher (Bundesnetzagentur, 2017), amounting to 130.000 registered CMLs.40

Consequently, it is envisaged to increase the number of CMLs included in the data acquisition.

With this large number of CMLs available in Germany and with new data being retrieved continuously, there is a need for

optimized and robust processing of these big data sets. Several studies address the details of the processing steps which are

required for deriving rainfall information from CMLs. These steps involve, e.g. the detection of rain events in noisy raw data,

the filtering of artifacts, correcting for bias due to wet antenna attenuation (WAA) and the spatial reconstruction of rainfall45

fields. Uijlenhoet et al. (2018) give a general overview of the required processing steps and the existing methods and Chwala

and Kunstmann (2019) discuss and summarize the related current challenges.

The first of these processing steps, called rain event detection, is the separation of rainy (wet) and non-rainy (dry) periods.

It is challenging, because CML signal levels can show high fluctuations, even when there is no rain, e.g. due to multi-path

propagation (e.g. Chwala and Kunstmann, 2019, Fig. 6). Therefore, the main difficulty is to distinguish between noise and50

signal fluctuations caused by light rain along the CML path. After successfully detecting rain events, an attenuation baseline

is determined and actual rain rates can be derived via the k-R power law which relates specific attenuation k in dB km−1 to

rain rate R in mm h−1. Misclassifications of wet and dry periods lead to over- or underestimation of rainfall. Therefore, it is

important to optimize the rain event detection as an isolated processing step first and to optimize subsequent processing steps

afterwards.55
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So far, several methods for rain event detection with CMLs have been proposed. Schleiss and Berne (2010) introduced a thresh-

old for the rolling standard deviation (RSTD) of the attenuation time-series as a criteria to detect rain events. Overeem et al.

(2011) introduced the ’nearby link approach’, where a period is considered wet if the increase of CML specific attenuation

correlates with the attenuation pattern of nearby CMLs. They concluded that this is only applicable for dense CML networks

with a high data availability. Chwala et al. (2012) introduced Fourier transformations on a rolling window of CML signal levels60

to detect the pattern of rain events in the frequency domain. Wang et al. (2012) used a Markov switching model. Kaufmann

and Rieckermann (2011) have shown the applicability of random forest classifiers and Gaussian factor graphs.

At the same time, deep learning is a rapidly evolving field that is becoming increasingly popular in the earth system sciences.

A large field of application is remote sensing using artificial neural networks for image recognition (Zhu et al., 2017). Deep

learning is also an established method in time-series classification (Fawaz et al., 2019). In both articles, convolutional neu-65

ral networks (CNNs) are considered one of the leading neural network architectures for image and time-series classification.

CNNs are inspired by the visual cortex of mammals and they are designed to recognize objects or patterns, regardless of their

location in images or time-series (Fukushima, 1980). They are characterized by local connections of neurons, shared weights

and a large number of layers of neurons, involving pooling layers (LeCun et al., 2015). CNNs with one dimensional input data

(1D-CNNs) have already been used for time-series classification, e.g. for classifying environmental sounds (Piczak, 2015).70

This makes 1D-CNNs a promising candidate for the task of rain event detection in CML signal levels.

Other artificial neural network architectures have already been proposed for rain event detection. Ðord̄ević et al. (2013) used

a simple Multilayer Perceptron (MLP) with data from a single CML. Habi and Messer (2018) tested the performance of Long

Short-Term Memory (LSTM) networks to classify rainy periods from 15 minute Min-Max values of CML signal levels for

34 CMLs. Kim and Kwon (2018) used LSTM networks on instantaneously sampled signal levels from 10 CMLs, which are75

situated close to each other, at a temporal resolution of 15 seconds.

All rain event detection methods have to make a similar trade-off: A liberal detection of wet periods is more likely to recognize

even small rain rates, while it will produce more false alarms during dry periods. On the other hand, a conservative detection

will accurately classify dry periods, but is more likely to miss small rain events. One can address this by two means. First, by

increasing detection rates on both wet and dry periods as much as possible and therefore decreasing the impact of the trade-off.80

Second, by allowing the flexibility to easily adjust the model towards liberal or conservative detection, e.g. by only changing a

single parameter.

Until now, there have been few studies analyzing the performance of rain event detection methods on large data sets. Overeem

et al. (2016a) tested the nearby link approach using 2044 CMLs distributed over the Netherlands with a temporal coverage of

2.5 years of data. In Graf et al. (2019) we adjusted the RSTD method to one year of data from 3904 CMLs to set a benchmark85

performance on this data set. By optimizing thresholds for individual CMLs we explore the full potential of the RSTD method

for this data set, yielding good results for the warm season with liquid precipitatoin. While the RSTD method is simple to im-

plement and has only two parameters to optimize, it is limited to measuring the amount of fluctuations, rather than the specific

pattern. More room for optimization is expected using machine learning techniques for pattern recognition. Since the variety

of signal fluctuations and possible sources of error rises with large quantities of CMLs, it has to be proven that artificial neural90
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networks allow for high-performance, fast and robust processing of large data sets, i.e. high variability of frequency, length and

spatial distribution of the analyzed CMLs and high variability of rain rates and event duration for a large amount of analyzed

periods.

The objective of this study is to evaluate the performance of 1D-CNNs to detect rainfall induced attenuation patterns in in-

stantaneously measured CML signal levels. We test the CNNs ability to generalize to new CMLs and future time periods. To95

validate our results, we compare the CNN to the method of Schleiss and Berne (2010) using a large data set consisting of six

months of data from 3904 CMLs distributed over entire Germany.

2 Methods

The following definition of rain event detection with CMLs is the basis of our methodology: Rain event detection is a binary

classification problem. Given a time window Xt,w,i of CML signal data, where t is the starting time, w is the window length100

and i is the index specifying a unique CML path, we have to decide if there is attenuation caused by rain (wet) or not (dry). A

time window is assigned the label 1 if it is wet or 0 if it is dry. The available information to do this classification depends on

the used data acquisition and on which information is provided by the CML network operator. In the following, we describe

how a CNN can be used as a binary classifier to succeed in this task.

2.1 Data set105

We use a CML data set that has been collected in cooperation with Ericsson Germany through our custom CML data acquisition

system Chwala et al. (2016). It covers 3904 CMLs across entire Germany. The CML path length ranges from 0.1 km to more

than 30 km, with an average of around 7 km. CML frequencies range from 10 to 40 GHz. The acquired data consists of two

sub-links per CML, transmitting their signal in opposite directions along the CML path. For each sub-link a received signal

level (RSL) and a transmitted signal level (TSL) is recorded at a temporal resolution of 1 minute and a power resolution of110

0.3 dB for RSL and 1.0 dB for TSL. The recorded period used in this study starts in April 2018 and ends in September 2018,

to focus on the periods which are dominated by liquid precipitation, where CMLs perform better than during the cold season

(Graf et al., 2019). The data is available at 97.1% of all time steps and gaps are mainly due to outages of the data acquisition

system.

As reference data we use the gauge adjusted radar product RADOLAN-RW provided by the German meteorological service115

(DWD). It has a spatial resolution of 1x1 km, covering entire Germany on 900x900 grid cells. The temporal resolution is 60

minutes and the resolution for the rain amount is 0.1 mm (Winterrath et al., 2012). To compare to this reference, the window

length w is set to 60 minutes and therefore w is omitted in the notation below. Along each CML i, the path-averaged mean

hourly rain rate Rt,i is generated from the reference, using the weighted sum

Rt,i =
∑
k lk,irk,t
li

, (1)120
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where k is indexing the RADOLAN grid cells intersected by the path of i. The rain rate of each grid cell is rk,t. Furthermore,

lk,i is the length of the intersect of k and i and li is the total length of i. A time window Xt,i is considered wet if Rt,i ≥ 0.1

mm h−1 and dry otherwise.

2.2 Pre-processing

Before training and testing an artificial neural network, the raw time-series data has to be pre-processed. We do this to sample125

time windows of a fixed size, which are normalized and labelled according to the reference.

First, the full data set, consisting of all available CMLs, is split into three subsets. One subset is used for training the CNN

(TRG), one is used for validation and to optimize model hyper-parameters (VALAPR) and one is used for testing only

(VALSEP). The data set TRG consists of data from 400 randomly chosen CMLs in the period from May to August 2018.

VALAPR covers the remaining 3504 CMLs during April 2018 and VALSEP consists of data from all 3904 CMLs during130

September 2018.We used this splitting routine to avoid information leakage from the training to the validation data. There can

be a high correlation of signal levels between CMLs that are situated close to each other (Overeem et al., 2011). Therefore, the

measurements contained in VALAPR or VALSEP can not be taken from the same time range as for TRG. Using only 10% of

all available CMLs for training allows us to analyze the CNNs generalization to the remaining CMLs in the validation data set.

No CMLs were excluded from the analysis.135

For each of the two sub-links of a CML, we compute a transmitted minus received signal level (TRSL). Within one TRSL

time-series, randomly occurring gaps of up to three minutes of missing data are linearly interpolated. Here, we assume that the

temporal variability of rainfall is not high enough such that entire rain events can be hidden in such short gaps. The next step is

to normalize the data. Normalization of training and validation data is a commonly used procedure in deep learning to enhance

the model performance. We perform the normalization as a pre-processing step and outside the CNN. After testing various140

normalization techniques it turned out that the best performance of the CNN can be achieved by subtracting the median of the

preceding 24 hours from each time step.

The set of starting time-stamps of the hourly reference data set is denoted Trad. For each CML i and each starting time t ∈ Trad
a sample of data X̄t,i is composed from 180 minutes of TRSL from the two sub-links starting at t−120. The first 120 minutes

serve as a reference to previous behaviour of the same CML and the last 60 minutes are the periodXt,i that has to be classified.145

An example TRSL over a period of 8 days is given in Fig. 1 (a).

After gap filling we exclude all samples with missing values from the analysis. Since we loose three hours of data whenever

there is a gap, the interpolation routine increases the number of available samples from 79.9% to 95.4%.

To train the CNN we have to balance the wet and dry classes in the data set (Hoens and Chawla, 2013). The under-sampling

approach to achieve an equalized (50:50) class ratio is to randomly discard samples of the majority class, i.e. dry samples.150

This approach is chosen since we assume that dry periods mostly consist of redundant samples with only small fluctuations.

Later, we check that there is no loss in performance by evaluating the unbalanced data. The initial percentage of wet samples

is between 5-7%. We perform the balancing on TRG and VALAPR. The balanced version of VALAPR is denoted VALAPRB.

VALAPR and VALSEP are kept as unbalanced data sets for validation. TRG already denotes the balanced data, since the orig-
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Figure 1. Performance of the CNN and the reference methods for an example CML time-series. Predictions from the CNN yield an MCC

(e) of 0.57. Predictions through σopt (c) and σq80 (d) yield MCCs of 0.47 and 0.33 Note that the TRSL and RSTD time series of sub-link 2

are almost identical to those of sub-link 1 and are shown in light grey.

inal unbalanced training data set is not used in the analysis. In total, the number of samples is 7× 104 for TRG, 2.9× 105 for155

VALAPRB, 2.35× 106 for VALAPR and 2.72× 106 for VALSEP.

2.3 Neural Network

CNNs especially apply to time-series classification when patterns have to be recognized in longer sequences of data but the

location of the occurring patterns is variable. They are therefore suitable classifiers for sensor data like the TRSL from CMLs.

The expected advantage of the CNN over the reference method is that it is able to recognize the rainfall specific patterns,160

rather than just the amount of fluctuations. Like other neural network architectures they consist of a series of layers of neurons

(Fig. 2). The first layer receives the input data and the last layer serves as an output for a prediction. The hidden layers in

between are organized in two functional parts. The first part consists of a series of convolution and pooling layers and is used
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to extract features from the raw model input. Earlier convolution layers identify simple patterns in the data, which are used to

identify more complex patterns in subsequent layers. The second part consists of fully connected layers of neurons and is used165

to classify the input based on the features extracted by the convolutional part.

Before a CNN can be used as a classifier, it has to be trained on data in a supervised learning process. All layers have a set

of trainable parameters, so called weights, which are optimized during the training process according to a learning rule. To be

able to monitor the model performance, a test data set is evaluated regularly during the training process. Training is stopped

before the model starts to over-fit, i.e. the performance on the test data set either stagnates or drops, while it still rises for the170

training data.

2.3.1 Network architecture

We use a 1D-CNN, which has the same structure as the basic 2D-CNN, with alternating convolutional and pooling layers

followed by fully connected layers. The only difference is that the input data of the convolutional layers is one dimensional.

The specific architecture and parameterization was optimized experimentally. To give an intuitive description of our CNN, we175

follow the approach provided in (LeCun et al., 2015, p. 439):

The convolutional part of the CNN consists of four blocks of two convolutional layers followed by a max pooling layer and one

block of one convolutional and one average pooling layer (see Fig. 2). Convolutional layers extract feature maps by passing

local patches (3x1) of input from the preceding layer through a set of filters followed by a rectified linear unit. Each filter

creates a different feature map. The pooling layer then combines semantically similar features by taking the maximum (resp.180

average) within one local patch. This way, the dimension of the input is gradually reduced while, at the same time, the number

of extracted features increases.

The fully connected part of the CNN consists of two layers with 64 neurons each and an output layer with one neuron. Its

output is a prediction between zero and one, that can be interpreted as the likeliness for the input sample to be wet or dry. To

avoid over-fitting to the training data dropout layers are added with a dropout ratio of 0.4 (Srivastava et al., 2014).185

We implement the CNN in a Python framework using the Keras (version 2.2.4) backend for Tensorflow (version 1.12.0)

(Chollet, 2015; Martín Abadi et al., 2015). For the model architecture, type, number and order of layers has to be chosen.

There are several hyper-parameters that can be specified in the model setup. Each layer has a number of hyper-parameters

that can be adjusted, e.g. the size of the local patch or the number of filters in a convolutional layer. We optimized all hyper-

parameters iteratively by evaluating the performance of several reasonable configurations on the test data set VALAPRB, and190

by choosing the model with the best performance metrics (see 2.4). The final CNN consists of 20 functional layers with a total

of 140,033 trainable parameters. The organization of those layers is shown in the network graph in Fig. 2. The detailed model

and training specifications, all hyper parameters and the weights of the trained CNN can be retrieved from the code example at

https://github.com/jpolz/cnn_cml_wet-dry_example.

195
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Figure 2. Graphical illustration of the CNNs architecture. The Input shows one sample X̄t,i of data consisting of 180 minutes of TRSL from

the two sub-links of one CML. Convolutional and pooling layers reduce the input dimension from 180 to 2, while a total of 192 features are

extracted. Numbers below convolutional layers are the layer output dimensions, i.e. input dimension times the number of filters. The size of

the local patch in a convolutional layer is 3. Based on the extracted features, the fully connected layers predict a class, which is stored in the

output layer.

2.3.2 Training setup

CNNs are feed-forward neural networks, which are trained by a supervised learning algorithm (Goodfellow et al., 2016).

Batches of samples are passed through the network and the outputs are compared to the reference labels. After each batch a

loss function is computed and the weights are updated according to a learning rule. Here, the learning rule is stochastic gradient

descent with binary cross-entropy as a loss function and an initial learning rate of 0.008 (Bottou et al., 2018). The training data200

set TRG consists of 7 batches with 104 samples each and the validation data set is VALAPRB. One training epoch is finished

when the whole data set is used once. After each epoch the training and validation data sets are evaluated and the learning rate

is decreased slightly.

The training is stopped once the loss function of the validation data set starts to increase or does not significantly decrease

within multiple epochs. The model is then considered ready for classification. The final number of epochs was 2000, since205

after 1500 epochs the validation loss did not decrease and the accuracy was increased only by 0.0005, while, at the same time,

the loss of the training data decreased by 0.02 (see Fig. 5 (a)). On one Nvidia Titan Xp GPU the training time was 1.5 hours.
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Classifying 3904 samples, i.e. one time-step for all CMLs, took 200ms. For further verification, we repeat the training multiple

times with a different randomization (selection of CMLs and balancing) of TRG and VALAPRB.

2.4 Validation210

Our CNN is a probabilistic classifier. The raw model output Ȳt,i is on a continuous scale from 0 to 1 (see Fig. 3), representing

the estimated likeliness that a sample X̄t,i is wet. A threshold τ ∈ [0,1] is then set to decide whether a sample is wet or not,

leading to the prediction rule

Ỹt,i =





1, if Ȳt,i > τ

0, otherwise
(2)

Classification results are compared to the reference in a confusion matrix, shown in Table 1, which is the basis for computing215

further metrics. The normalized version of the confusion matrix consists of the occurrence rates of TP, FP, FN and TN samples,

defined as

TPR=
TP

TP +FN
, (3)

FPR=
FP

FP +TN
, (4)220

FNR=
FN

TP +FN
, (5)

and

TNR=
TN

FP +TN
. (6)

As a first metric for validation we use the accuracy score, defined as225

ACC =
TP +TN

total population
∈ [0,1]. (7)

It is a measure for the percentage of correct classifications being made. It is dependent on the class balance of the data set.

The balance of wet and dry samples in the data set is directly related to the regional and seasonal climatology. Therefore, this

metric is not climatologically independent.

The second metric we use is the Matthews correlation coefficient (MCC), also known as φ-coefficient, which is a commonly230

used metric for binary classification (Baldi et al., 2000). It is acknowledging the possibly skewed ratio of the wet and dry

periods and is high only if the classifier is performing good on both of those classes. It is defined as

MCC =
TP ·TN −FP ·FN√

(TP +FP )(TP +FN)(TN +FP )(TN +FN)
∈ [−1,1], (8)
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Figure 3. Raw CNN predictions on VALAPRB, coloured according to the reference.

Table 1. Confusion matrix

reference

wet dry

pr
ed

ic
tio

n

wet true wet (TP) false wet (FP)

dry missed wet (FN) true dry (TN)

where an MCC of 0 represents random guessing and an MCC of 1 represents a perfect classification. A strong correlation is

given at values above 0.25 (Akoglu, 2018).235

The third metric we use is the receiver operating characteristic (ROC), defined by the pair (FPR,TPR) ∈ [0,1]× [0,1]

(Fawcett, 2006). The domain of the ROC is called ROC space. The point (0,1) represents a perfect classifier, while the

[(0,0),(1,1)] diagonal represents random guessing. The ROC is independent of the ratio of wet and dry periods and there-

fore a climatologically independent measure for the classifier’s performance on rain event detection. Each τ ∈ [0,1] leads to

a ROC resulting in a ROC curve γ ⊂ [0,1]× [0,1] (e.g. Fig. 4). The performance of a classifier for different values of τ is240

measured by the area

AUC =

1∫

0

γdτ ∈ [0,1] (9)

under the ROC curve. Since changing τ directly influences the prediction rule (Eq. 2), it can be adjusted causing the model

to classify in a conservative (below [(0,1),(1,0)] diagonal in ROC space) or liberal (above diagonal) manner. We can therefore

address the trade-off between true wet and true dry predictions as mentioned in the introduction. This way, the AUC becomes a245

measure of the flexibility of a classifier, i.e. the ability to show good performance with a more conservative or liberal threshold

τ .
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Figure 4. Receiver Operating Characteristic curves on VALAPR (left) and VALSEP (right). Fine lines are generated by 200 random selections

(bootstrapping) of 1% of the samples and account for the variability of the model performance during a random short period (∼ eight hours)

of data.

2.5 Reference method

To be able to compare the performance of the CNN to previously used methods for rain event detection we implement a

reference method. We choose the method introduced by Schleiss and Berne (2010) which we previously used for processing250

and validation of CML-derived rain rates for one year of CML data in Germany (Graf et al., 2019). It is based on the following

assumption: The standard deviation values of fixed-size windows of TRSL is bounded during dry periods, whereas it exceeds

this boundary during wet periods and therefore allows for distinguishing the two classes. This assumption has proven to give

good results on our data set, however there are known drawbacks. The method is limited to measuring the amount of signal

fluctuations and there are multiple effects that can cause high signal fluctuations during dry periods. Some of the factors are255

known, like multi-path propagation, but others are unknown and still need to be investigated.

The method is applied by computing a rolling standard deviation of the TRSL time-series. The normalization step is not

necessary for this method. The window length is 60 minutes and the standard deviation value is written to the timestamp in the

center of this window. A period Xt,i is considered wet if at least one standard deviation value on one or both sub-links exceeds

a threshold σ.260

We compare two different thresholds σ, which are computed individually for each CML. The first one, denoted σ80, is the

80th percentile of the 60-minute rolling standard deviation of one month for a certain CML multiplied by a scaling factor
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Table 2. Performance metrics of rain event detection methods on VALAPR and VALSEP

Method TPR TNR ACC MCC AUC

VA
LA

P
R CNN 0.85 0.91 0.91 0.54 0.94

σq80 0.85 0.78 0.78 0.35 0.89

σopt 0.72 0.93 0.92 0.50 0.87

VA
LS

E
P CNN 0.89 0.91 0.91 0.52 0.96

σq80 0.88 0.77 0.78 0.32 0.90

σopt 0.72 0.91 0.90 0.42 0.88

which is constant for all CMLs. In our case, the threshold is computed for VALAPR in April and VALSEP in September. The

scaling factor of 1.12 is adopted from Graf et al. (2019). The second one, denoted σopt, is optimized against the reference

by maximizing the MCC. We computed it for April 2018 and then reapplied it to September 2018 to test its transferability to265

future time periods. To derive ROC curves, we applied a scaling factor τσ to each of the standard deviation thresholds. In the

following we will refer to σ80 and σopt as both the resulting detection method and the threshold.

3 Results

During training on TRG, the performance of the CNN was evaluated on VALAPRB after each epoch. The resulting graphs

of loss, ACC, TPR and TNR during the training process are shown in Fig. 5. For all three variables the performance on TRG270

and VALAPRB were similar across all epochs with slightly higher performance on TRG. The threshold τ was optimized using

VALAPRB, by maximizing the MCC, with a resulting value of τ=0.565. As shown in Fig. 3 the sensitivity for small changes

of τ is not very high around its value of 0.565. A final evaluation on VALAPRB led to a TPR of 0.85 and a TNR of 0.91. No

significant changes in the training process or in the resulting performance could be observed with different randomizations of

TRG and VALAPRB.275

We evaluated the performance of the CNN and both reference methods using the unbalanced data sets VALAPR and VALSEP.

The complete list of the achieved performance metrics is presented in Table 2. Applying the threshold τ to the CNN predictions

yielded TPRs of 0.85 (VALAPR) and 0.89 (VALSEP) and TNRs of 0.91 (VALAPR) and 0.91 (VALSEP) (see also Fig. A1).

On average, 9% of the dry periods were falsely classified as wet and 13% of the wet periods were missed. With a scaling factor

τσq80 of 1.12, a similar TPR as with the CNN was achieved. But on both VALAPR and VALSEP the TNR of the σq80 method280

was substantially lower than the CNNs TNR. On the other hand σopt achieved similar TNRs than the CNN but at the cost of

lower TPRs.

For both data sets, the CNN’s ROC showed a higher TPR for any fixed FPR than the reference methods (see Fig. 4). As a

consequence, the AUC was largest for the CNN. On VALAPR, σopt yielded a better ROC than σq80, but only for low FPR

values. On VALSEP σq80 achieved a better ROC than σopt. The ROC curves of the CNN and σq80 had a very similar convex285
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Figure 5. Statistics of variables that were monitored during the training process.

shape. Compared to the other two curves the ROC curve of σopt showed a higher asymmetry. The CNN achieved the highest

ACC and MCC scores with an average of 0.91 and 0.53 on both data sets. While σopt has the second highest ACC and MCC

scores, the area below the ROC curve is lowest for both data sets.

We compare the ACC on detecting samples with a specific RADOLAN-RW rain rate of x < Rt,i < x+ 0.1 in Fig. 6. From

all rain events where Rt,i > 1.6 mm 99.4% were correctly detected by the CNN. On the other hand around 36.4% of all rain290

events with Rt,i < 0.2 mm were missed. All three methods have a lower ACC, the lower the rain rate is. While σq80 shows an

ACC for wet periods of different rain intensities, that is very similar to that of the CNN, σopt misses more small events. On the

other hand σq80 is producing more false wet classifications than the CNN and σopt.
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Figure 6. Each bar shows the ACC score on samples from VALSEP, grouped by the reference rain rate. The lower ACC limit of 0.5 on the

y-axis represents random guessing.

Figure 7. Scatter density plots of the MCC achieved by the CNN and σopt on data from individual CMLs. While the MCC optimized method

σopt achieves comparable MCC values in April, where it was optimized, the performance drops in September.

The MCC was computed individually for each CML and each validation data set. Figure 7 shows scatter density plots com-

paring the individual MCC scores of the CNN and σopt. The CNN’s MCC on VALAPR is higher for 61.7% of all CMLs and295

on VALSEP it is higher for 73.4% of all CMLs.
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4 Discussion

4.1 Performance

We evaluate the performance of the CNN to detect rain events by two means. First, we compare it to the performance of

a reference method. Second, we estimate if the model is performing in a near optimal state or if we expect that a higher300

performance could be achieved. The comparison to the results of previous studies, e.g. Overeem et al. (2016a), is difficult since

the performance is depending on the intensity of rain events (see Fig. 6) and since there is a large variability of performance

within the CMLs (see Fig. 7).

Since the results on both validation data sets are very similar (see Table 2) we further focus on VALSEP, which was not used to

optimize the model hyper-parameters. With an ACC of 0.91 and an MCC of 0.54 the correlation between the CNN predictions305

and the reference data set RADOLAN-RW can be considered as very high.

The CNN and the reference method σopt have the same ACC value. At the same time the CNN’s MCC is 0.1 points higher,

despite the fact that σopt is MCC optimized for each CML. The high ACC of σopt is due to the high TNR and the fact that 95%

of all samples are negative (dry). At a similar ACC and TNR we could increase the TPR, or rain event detection rate, by 0.17.

This constitutes a major improvement by the CNN. As shown in Fig. 7 the improvement is higher for CMLs with lower MCC,310

making the whole CML data set more balanced in performance and therefore more trustworthy for quantitative precipitation

estimation.

The CNN’s improvement in ACC and MCC over σq80 was even higher with 0.13 and 0.2. While the TPR of σq80 and the

CNN are similar, the TNR is much lower for σq80. Thus the CNN shows substantial improvement in correctly classifying dry

periods.315

While the RSTD method can be set up to either have a high TPR (σq80) or a high TNR (σopt), the CNN achieves both rates at

the same time. Thus, the CNN shows a better overall performance than the reference methods and therefore improves on the

trade-off as mentioned above. This general observation is illustrated by the example time-series in Fig. 1, which shows a CML

with an average MCC (achieved by the CNN) of 0.57.

All three methods have limitations to detect events with rain rates smaller than 0.3mm. This is likely due to the detection limit320

of CMLs in our data set which is in the same range. The detection limit depends on frequency, length and signal quantization

of a CML. For example, at a frequency of <20 GHz and at a length of <10 km a path averaged rain rate of 1 mm h−1 creates

a maximum of 1 dB of attenuation (Chwala and Kunstmann, 2019, Fig. 7). In some cases the quantization (0.3dB for RSL and

1dB for TSL) might therefore not allow for a detectable signal.

Differences in the performance on VALAPR and VALSEP can be traced back to a different distribution of occurring rain rates.325

While in April 35.5% of all events are in the critical range from 0.1mm to 0.3mm, there are only 32% in September. In both data

sets the performance on higher rain rates (> 1.6 mm) and dry periods is almost identical. Therefore the loss of performance in

April is due to the slightly worse performance of the CNN on smaller rain rates which occur more often in VALAPR than in

VALSEP.

It should not be expected that the rain events detected through CMLs and the events detected by the radar coincide completely.330
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Both methods produce artifacts that are mistaken as rainfall, or they miss events due to their detection limits. From all false

classifications that the CNN makes on VALSEP there are 50% with a raw model output between 0.2 and 0.8. Here the CNN

does not give a certain prediction. This is due to very similar signal patterns in noisy dry periods and small rain rates. The other

50% of those samples are, according to the CNN, very likely to belong to the falsely predicted class. Despite this being an issue

for many CMLs about 10% have a ROC of (> 0.97,< 0.1) and correlate very well with the RADOLAN reference. Therefore,335

we expect that less errors could be made when training with a perfect reference data set, but there would still be errors due to

artifacts or insensitivity in CML measurements.

Despite those errors, which occur mostly for small rain rates, the correlation of wet and dry periods between RADOLAN-RW

and our CML data set is very high. The performance boost in rain event detection gained through the CNN is very promising

for future applications in quantitative precipitation estimation with CMLs.340

4.2 Robustness

The CNNs ability to generalize to previously unknown CMLs is very high. As seen in the training results the learning curves

for both training and validation show a similar dynamic (see Fig. 5). As expected the training data showed better performance,

but the validation was close at all epochs.

Only 10% of all available CMLs were used for training. The remaining 90% were only used to prevent the model from over-345

fitting to the training data and to choose the model architecture and to slightly adjust τ . Thus no information about the validation

data was given directly to the model. The resulting model architecture and hyper-parameters are not specific enough to store

this information. The high performance in ACC, MCC and ROC on data set VALAPR, together with the learning curves in

Fig. 5), therefore prove that the CNN was able to recognize the attenuation pattern in the signal levels of a large number of

previously unknown CMLs.350

The stability of the CNNs performance for future time periods is analyzed using the results on VALSEP. While the training

was done with TRG including the period of May to August 2018, the performance in September was similar. Compared to the

results on VALAPR the CNN shows even higher performance on VALSEP, which can be explained by the lower percentage of

samples with small rain rates in September, which are challenging to classify (see Fig. 6 and A2). When we compare the CNNs

accuracy per rain rate between VALAPR and VALSEP, we see that there are no major differences in the individual scores.355

Therefore the method can be considered as very stable throughout the analyzed time period, while differences in overall per-

formance mostly stem from different distributions of the occurring rain rates. The reference method σopt, which was optimized

in April, loses performance in September, where it is outperformed by the adaptive method σq80. The bootstrapping in Fig. 4

shows that all three methods perform almost equally well on small random subsets of the validation data. The CNN shows the

lowest variability.360

As a measure for the flexibility of a classifier we adopted the ROC analysis in section 2.4. A model is called flexible if it has a

high area below its ROC curve and if the curve is axis-symmetric with respect to the [(0,1),(1,0)] diagonal of the ROC space.

As observed both the CNN and σq80 show a symmetrical ROC curve. Therefore they perform almost equally well with a liberal

or conservative threshold with a slight tendency to the conservative side. On the other hand σopt shows a skewed performance,
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with a strong tendency to the conservative side. The area AUC below the ROC curve was highest for the CNN, making it365

the most flexible classifier. We can adjust τ for a ROC of either (0.03,0.7) or (0.3,0.94) and a smooth, concave transition in

between (see Fig. 4).

We conclude that within the analyzed period the CNN shows a temporally stable performance, with a good generalization

to previously unknown CMLs. The σopt method performs well only if it is re-calibrated for different months and to individ-

ual CMLs, while σq80 is by definition an adaptive method. Even with re-calibration or adaption, the reference methods are370

outperformed by the CNN.

5 Conclusions

In this study, we explore the performance and robustness of 1D-CNNs for rain event detection in CML attenuation time-series

using a large and diverse data set, acquired from 3904 CMLs distributed over entire Germany. We prove that, compared to a

reference method, we can minimize the trade-off between false wet and missed wet predictions. While the reference method375

needs to be adjusted for different months of the analyzed period to provide optimal results, the trained CNN generalizes very

well to CMLs and time periods not included in the training data. On average, 87% of all wet and 91% of all dry periods were

detected by the CNN, which underlines the strong agreement between rain events that can be detected in the CML time-series

and rain events in the RADOLAN-RW data set.

In future work, we plan to investigate the potential of using reference data with higher temporal resolution to improve the380

temporal localization of the rain events. Data with higher temporal resolution will, however, magnify the uncertainties that

arise due to the different spatial and temporal coverage of the different rainfall observation techniques. In order to address

these uncertainties, it will be important to further explore the relationship between weather radar and CML derived rainfall

products. In the study presented here, we focused on the optimization of rain event detection as an isolated processing step,

which provides the basis for a successful rain rate estimation. All subsequent processing steps, including WAA correction,385

k-R relation and spatial interpolation, have an effect on the CML derived rain rate, that can lead to over or under-estimation.

Therefore, we plan to study the interplay of different rain event detection methods, including the one presented here, with the

different methods of the successive steps of rainfall estimation from CMLs in a larger inter-comparison study.

Our study shows that, using data driven methods like CNNs in combination with the good coverage of the highly developed

weather radar network in Germany can lead to robust CML data processing. We anticipate that this robustness enhances the390

chance that we can transfer processing methods to data from CML networks in developing countries like Burkina Faso, where

rainfall information is still scarce despite its high importance to the local population (Gosset et al., 2015).

Code and data availability. Interactive code to build the CNN and an example evaluation using the trained CNN are available at https:

//github.com/jpolz/cnn_cml_wet-dry_example. CML data was provided by Ericsson Germany and is not publicly available in its full extent.

RADOLAN-RW is publicly available through the Climate Data Center of the German Weather Service (DWD) https://opendata.dwd.de/395
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Figure A1. Normalized confusion matrices of VALAPR (top) and VALSEP (bottom).

climate_environment/CDC/grids_germany/hourly/radolan/. We include a small example data set with modified CML locations, the trained

model weights and the pre-processed RADOLAN-RW reference data together with the interactive code at https://github.com/jpolz/cnn_cml_

wet-dry_example.

Appendix A: Additional Figures
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April

Figure A2. Each bar shows the ACC score on samples from VALAPR, grouped by the reference rain rate.
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